THE SCATTERING RESONANCES FOR SCHRODINGER-TYPE
OPERATORS WITH UNBOUNDED POTENTIALS
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ABSTRACT. This paper addresses the meromorphic continuation of the outgoing resolvent
associated with Schrédinger-type operators in three dimensions. The first part focuses on the
classical Schrodinger-type operator involving unbounded potentials. The absence of nonzero
real poles for the outgoing resolvent is investigated. The second part examines the fractional
Schrédinger operator, including both bounded and unbounded potentials. The analysis relies
on a resolvent identity that establishes a connection between the resolvents of the fractional
Schrédinger operator and its classical counterpart.

1. INTRODUCTION AND MAIN RESULTS

This paper focuses on exploring the meromorphic continuation of outgoing resolvents for
Schrodinger-type operators in three dimensions. Extensive literature exists on this subject,
see e.g., [4,6,8-11,23,27,131,|32,|34-37] and references therein. This area closely relates to the
theory of scattering resonances, which are defined as poles in the meromorphic continuation.
For a comprehensive study on the mathematical theory of scattering resonances, we refer to
the monograph [12]. Scattering resonances phenomena have significant applications across
various scientific and engineering research fields. For example, as highlighted in [12], the
study of scattering resonances finds applications in determining the long-time behavior of
wave equations, leading to resonance expansions of waves. However, existing research on
the meromorphic continuation of resolvents primarily concentrates on bounded potentials.
This work aims to extend some of these results to accommodate unbounded potentials for
Schrodinger-type operators.

We introduce certain notations in this context. Throughout this discussion, V' (z) represents
a nonnegative real-valued potential function with compact support, while Q C R? stands for
a bounded open set where suppV C Q. Let p(z) be a smooth cutoff function with compact
support, and T = diam(suppp) denotes the diameter of the support of p. For a € R, the
notation a+ refers to a constant greater than a. The notation a < b denotes a < Cb, where
C > 0 serves as a generic constant that may vary throughout the proofs.

We begin by examining the Schrédinger equation

—Au(z, \) + V(2)u(z,\) — Nu(x,\) = f(z), xR
where A € C, f(x) € L%, (R?), and V € LF (R?) represents an unbounded potential with

comp comp

p > 3/2. The Schrodinger operator —A + V' is self-adjoint; for further details regarding this
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property, we refer to Appendix . Let Ry(A) = (A +V — A?)~! be the outgoing resolvent
of the Schrodinger operator.

The free resolvent Ry()\) : L*(R?) — H?*(R?) is holomorphic in S\ > 0 (cf. [12]). Thus,
for V. € LP(R3?) with p > 3/2 and V > 0, according to Lemma , the operator I +
VI2Ry(ANV2 . L2(R3) — L?(R®) is invertible for S\ > 1. This result, derived from the
resolvent identity (2.7), establishes that Ry ()\) : L*(R*) — L*(IR?) is holomorphic for S\ > 1.
Moreover, due to the compactness of VY/2Ry(A\)V1/2 : L2(R%) — L?(R®) as indicated by
Lemma [2.2] the operator Ry (A) : L2(R?) — L*(R?) is meromorphic in S\ > 0, a consequence
of the analytic Fredholm theorem (cf. Theorem [A.1]). Further extension of this meromorphic
behavior to the lower-half complex plane is demonstrated by Theorem when multiplied
by smooth cutoff functions.

Let us define the space C as follows:

C={V:VelIl (R* withp> 3/2 such that the resolvent identity (1.3)) holds}.

comp

From the discussions in Appendix , it is evident that C contains all V' € L2 (R3).

comp
The following resolvent estimate extends the findings presented in [12, Theorem 3.8] and |12,

Theorem 3.10] by Dyatlov and Zworski, transitioning from considerations limited to bounded
potentials to including unbounded L” potentials.

Theorem 1.1. Assume that V € C. Choose a cutoff function p € C3°(R3) such that p = 1
near suppV . Then the operator pRy(N)p : L*(R?) — H'(R®) is meromorphic in the complex
plane C. Moreover, there exist positive constants Cy and M such that pRy(N)p : L*(R3) —
HY(R3) is holomorphic in the domain

Qu={AeC: IAN>—-Mlogl|\|, |\ > Co},
and the following estimate holds for A € Q-

lpRy (N pf e S (N2 V7| fll 2o, (1.1)
where t_ := max{—t,0}, T = diam(suppp), and (\) := (1 + |A[})1/2.

Generally, the operator —A is defined in the Sobolev space H*(R?) and proves to be self-
adjoint on L*(R?). Tt follows from the Fourier transform that

_Av(g) = |£|2@(§)7 v e HQ(Rg)a
which immediately deduces the spectrum of —A:
o(=A) ={z=[¢]*: £ € R’} = [0, +00).

Hence, the resolvent (—A — 2)~! of —A is holomorphic for z € C\[0, +0c0) in the uniform
operator topology of B(L?), where B(L?) denotes the set of all bounded operators acting on
L?(R3).
Let 2z = A2, then the family of operators
Ro()\) == (A =271 LA(R?) — L*(RY)

are holomorphic in the upper-half complex plane Ct :={z € C: Sz > 0}. Given that the
kernel eﬁ%ﬁ of the resolvent Ry(\) exhibits exponential growth in the lower-half complex
plane C~ := {z € C : Qz < 0}, it is typically assumed that A\ € C*. Furthermore, by the
following resolvent identity which connects Ry (A) and Ry(\):

Ry(\) = Ro(A) (I + VRy(\)) ™, (1.2)
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it is also required that A € C* for the investigation of the resolvent Ry (\) : L?*(R?) — L?(R3)
in the presence of a potential function. In scattering theory, a crucial aspect is the study
of the limiting absorption principle, which examines the mapping properties of Ry (\) as A
approaches the positive real axis of C. In the seminal work by Agmon [1], the resolvent
estimate of Ry ()\) was established in weighted L? spaces for a class of short-range potentials.
This result was further extended by Goldberg and Schlag [14] to L” potentials, specifically
V € LP(R?) N L3%(R?) with p > 3/2, in three dimensions.

In [12], Dyatlov and Zworski studied the resolvent of the form pRy (\)p, where p is a fixed
smooth function with compact support. Employing two cutoff functions, they facilitated the
consideration of the meromorphic continuation of the resolvent pRy(\)p : L? — L? from
the upper-half complex plane to the lower-half complex plane. Their findings revealed that
the free resolvent is holomorphic, characterized by the resolvent estimate ||pRo(N)p||r2—r2 =
O(eTBN=/()\)) for all A € C. Notably, the decaying factor of 1/|\| appearing in the resolvent
estimate plays a crucial role in enabling the meromorphic continuation of the resolvent. This
estimate was derived through the application of the Huygens principle for wave propagation in
R", where n > 3 is an odd number. Building upon the resolvent identity and employing
perturbation arguments, it was demonstrated in |12, Theorem 3.8] that pRy(\)p : L? — L?
exhibits meromorphic behavior across the entire complex plane C. It is worth mentioning
that Rp(\) in contributes the crucial 1/|A| decaying factor in the resolvent estimate,
facilitating the application of the analytic Fredholm theorem (cf. Theorem . Moreover, a
resonance-free region was obtained in [12, Theorem 3.10]. However, this result assumed the
potential V' to be in Lgy, . Consequently, it prompts a natural inquiry: can the outcomes
presented in [12] be extended from bounded potentials to include unbounded potentials?

The first part of this work presents an affirmative answer to the preceding query and extends
the findings outlined in [12] to include unbounded L? potentials with p > 3/2. Our focus lies
specifically on exploring the meromorphic continuation of the resolvent into the lower-half
complex plane. This extension allows for the utilization of the contour integral method
to derive long-time asymptotics of the wave equation, consequently leading to resonance
expansions of waves, as elaborated upon in [12]. The assumption V € L3/? emerges as
optimal for the well-posedness of the Dirichlet problem with LP-type potentials in bounded

domains. For instance, the work in [20] demonstrates instances where the Dirichlet problem
3/2

lacks well-posedness for certain V€ L/, .

Additionally, this assumption remains optimal for
the unique continuation property, as outlined in [18]. However, restricting V' solely to Lgéfnp
results in a loss of the crucial decaying factor of 1/|A|-type and a compact embedding result,
both of which are vital for the meromorphic continuation of the resolvent into the lower-half
complex plane. Detailed discussions concerning these aspects are provided in Lemmas [2.1
and . Therefore, the assumption p > 3/2 is both necessary and optimal for investigating
the meromorphic continuation of the resolvent into the lower-half complex plane.

The motivation behind the proof of Theorem originates from [12]. However, the proof
presented in [12] for the L?-based resolvent estimate of pRo(\)p is limited to bounded poten-
tials and cannot be extended to unbounded LP-type potentials. To address unbounded L”
potentials, we utilize the resolvent identity (cf. Appendix :

Ry(\) = Ro(\) — Ry(WVY2(I + VY2RyNVYH V2R (N),  SA > 0. (1.3)

Subsequently, employing Fourier analysis techniques helps us handle singular LP potentials,
leading to an LP-based resolvent estimate of pRy(\)p. We then show that the operator
VI2Ry(N)VY2 . L2 — L? is compact. Crucially, we demonstrate that ||[V/2Ry(AN) V2|12, 12
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exhibits a decaying factor of 1/|A|, requiring a slightly higher regularity assumption: V €
LEyp, P > 3/2. Finally, the proof concludes by applying the analytic Fredholm theorem and
the regularity theory of elliptic equations.

Another important result in the first part of the work concerns the absence of nonzero real
poles for the outgoing resolvent.

Theorem 1.2. Assume that V € C. The outgoing resolvent Ry (X) : L2, (R®) — H (R?)
has no poles on R\ {0}.

The proof of the above theorem aligns with Goldberg—Schlag [14] and Ionescu—Jerison [17].
Utilizing the Tomas—Stein restriction theorem from |29, page 386] applicable to L? potentials,
we establish a result concerning the absence of embedded non-zero eigenvalues for V € L7,
Importantly, it is noteworthy that the Tomas—Stein restriction theorem does not necessitate
the potential function to have compact support.

In the second part of the paper, we study the fractional Schrodinger equation

(=A)u(z) — N*u(z) + V(z)u(r) = f(z), xR’

where 0 < a < 1 and f(z) € LZ,,,(R?). The fractional Laplacian is defined via the Fourier
transform

(=A)"u = FH[EPa(g)}, ue H*(RY).
Alternatively, the fractional Laplacian can also be defined pointwisely through the principle

value integral
u(z) — u(y)
—A)*u=C V. —d

where C'(«) is a normalizing constant [15]. Regarding the self-adjointness of the fractional
Schrodinger operator (—A)® — A\2* + V| further details are provided in Appendix .

Denote the outgoing resolvent of the fractional Schrodinger operator by

Rov(A) = ((—A)* = X+ V)L

Let Rt = [0,400). Given that the spectrum of the fractional Schrodinger operator satisfies
o((—A)*) =R* for 0 < a < 1, the resolvent R, o(A) = ((—A)* — \**)~1: L?(R?) — H**(R?)
is holomorphic in 0 < arg A < . Furthermore, for V- € L35, (R?), Ry v () = ((=A)* = A** +
V)=t L*(R?) — H?*(R?) is also holomorphic in 0 < arg A < I (cf. [22]).

For any fixed 6 € (0, %), we denote the sectorial domain

Seo = {N € Crarg A € [0, 0p] U [ — b, ™ + O], A # 0}.

The following theorem concerns the meromorphic continuation of the resolvent for the frac-
tional Schrodinger operator involving bounded potentials. Let R~ = (—o0o,0]. We select the
branch C \ iR~ such that 2%* is analytic.

Theorem 1.3. Assuming V € L2 (R3) with suppV C Q, where Q is a bounded open set

comp

and 1/2 < a < 1. For any fized p € C(R?) such that p =1 on suppV and suppp C Q, the
outgoing resolvent pRyv(\)p is meromorphic in Sy,. Moreover, pRyv(\)p is holomorphic
and satisfies the following resolvent estimate for X € Qpr N Sy, :

lpRay (Mpll 2@ ms @) S (A)H722ON- (1.4)
where 0 < s < 2a— 1 and
Q= {A: A > —Mlog(|A]), [A| > Co} \ iR.

Here, M < (2ac — 1)/T, T = diam(suppp), and Cy is a sufficiently large constant.
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2a—1
3

Assuming 1/2 <a<land 0 < f < , let us introduce the space

3
F=A{V:V e L2, (R’ with p > % such that the resolvent identity (3.6]) holds}.

For further details regarding the assumption, we direct the reader to the discussions in Ap-
pendix [B]

The following theorem addresses the meromorphic continuation of the resolvent for the
fractional Schrodinger operator with unbounded potentials.

From Theorem 3.1]and Lemmal[3.5} we deduce that I+ V2R, o(\)V/2 1 L2(R?) — L*(R?)
is invertible for [A| > 1 in {\ : QA > 0, A ¢ iRT}. This result, combined with the resolvent
identity

Rov(A) = Rao(A) = RaoNVY2(I 4+ V2R, oMV IR, 6(N),

implies that R, ()\) : L*(R?*) — L*(R?) is holomorphic for [A| > 1in {A: S\ > 0,\ ¢ iRT}.
Additionally, given that V2R, ,(\) VY2 1 L*(R?) — L?*(R®) is compact by Lemma , we
can assert that R,y (\) : L*(R?) — L*(R?) is meromorphic in {\ : S\ > 0,\ € Sp,} by
utilizing the analytic Fredholm theorem (cf. Theorem . When multiplied by the smooth
cutoff functions, the following theorem demonstrates its meromorphic extension to Sy, .

Theorem 1.4. Assuming V € F, let p € C(R?) be such that p = 1 on suppV and
suppp C Q. Then the outgoing resolvent pRyv(N)p @ L?(Q) — HP(Q) is meromorphic in
Sy Moreover, pRav(N)p is holomorphic and satisfies the following resolvent estimate for
AEQuN Sgo :

1pRay (Mol 2o S |A|TH 72T GN - (1.5)

where
Qar = A A > —Mlog(]A]), Al > Co} \ iR
Here, T = diam(suppp), M < (2 — 35 — 1)/T, and Cy is a sufficiently large constant.

The motivations behind the proofs of Theorems and stem from [12] and Theorem
1.1, However, due to our focus on nonlocal fractional operators, the strategies employed
in [12] and Theorem for standard elliptic operators cannot be directly applied to fractional
operators. Notably, the standard elliptic interior regularity might not hold in the context
of fractional operators. Recently, [5] established an interior regularity for solutions of the
fractional Laplacian, showing that for a fractional Laplacian with 0 < a < 1, the solution
exhibits interior H2*~¢ regularity, where ¢ is any small positive number. However, it remains
unknown whether this result represents an optimal characterization. Furthermore, the interior
estimate in [5] requires that the interior H?*~¢ norm should be bounded by the global L2 (R™)
norm of the solution. Here, L?(R™) denotes the standard weighted L? space. Yet, it is
important to note that when A € C~, the solution exhibits exponential growth and does
not fall into the L2(R™) space. There exist several studies on the resolvents of fractional
Schrodinger operators, such as [16,[24,25]. These works concern the family of resolvents in
the upper-half complex plane and explore their limiting absorption principles. However, as
of now, there is no known research addressing the meromorphic continuation of the resolvent
of the fractional Schrodinger operator from the upper-half complex plane to the lower-half
complex plane.

The analysis of the meromorphic continuation of the resolvent for the fractional Schrodinger
operator relies on the following resolvent formula of the free fractional resolvent (cf. [22)
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(5.28)]) for A € {A: QA > 0,\ ¢ iRT}:

N2 20 sinam [T vy — A)7E
—A)* — N2~ = —A =)\t —/ d 1.6
(=4) ) o ( )t T Jo o % — 2y*A\2a cos am + e 7, (1.6)

which establishes a connection between the free resolvent for the fractional Schrodinger op-
erator and the classical one. It is crucial to note that the requirement A\ ¢ iR yielding
A% € C\ R~ is necessary for the integral term in to be well-defined. For detailed in-
sights, refer to [22]. An important observation is the necessity of a 1/|y|-type decay for the
resolvent estimate of p(y—A)~1p for the convergence of the integral in . According to [12],
this is viable due to the resolvent estimate ||p(y — A) "' p|l 22 = O(eTSVI=/|v|1/2) for the
classical free resolvent. Consequently, the meromorphic continuation of the free fractional
resolvent and the related resolvent estimates are derived using interpolation inequalities. The
meromorphic continuation of the fractional resolvent with a bounded potential follows from
a combination of and the perturbation argument in [12]. For an unbounded potential,
a similar argument to the proof of Theorem is employed, utilizing the resolvent identity
(1.3) and interpolation inequalities.

The paper’s structure is as follows. In Section [2, we investigate the meromorphic con-
tinuation of the resolvent of the classical Schrodinger operator featuring an unbounded L?
potential. We obtain a region free of resonances and derive associated resolvent estimates.
Additionally, we provide the LP-based resolvent estimate of pRy(\)p. Section is dedicated to
exploring the meromorphic continuation of the resolvents for fractional Schrodinger operators,
including both bounded and unbounded potentials.

2. THE SCHRODINGER OPERATOR

This section is to address the outgoing resolvent of the Schrodinger operator defined by
Ry(\) :== (=A +V — A\?). We begin with the free outgoing resolvent Ry()\) := (—A — \?).

Building upon [7, Lemma 3.3], originally rooted in [21], the following lemma plays an
important role in achieving the meromorphic continuation of the resolvent. In contrast to the
assumption V € L%?2 in [7], we impose slightly greater regularity on the potential function V/
by requiring V' € LP with p > 3/2. This choice arises from two reasons: Firstly, the resolvent
introduced in [7] primarily serves the construction of complex geometric solutions, divergent
from our objectives. Secondly, we are primarily concerned with the extension of the resolvent
into the lower-half complex plane and the establishment of a region free from resonances.
In contrast, the outcomes presented in [7] only hold outside an indeterminate countable set,
precluding the derivation of an explicit resonance-free region.

Lemma 2.1. Assuming V € L, (R*) with p > 3/2, there exist constants D >0 and F > 0
such that for A\ € Q1p where
Qp:={ € C:3\ > —-Dlog|A|, |\| > F},

the following inequality holds:
1
||V1/2R0()\)V1/2||L2(R3)—>L2(R3) S 5 (21)

Proof. Given the kernel of the outgoing free resolvent Ry()) as

1 6i>\\x—y|
RO()\7$7y) = E |Q3 _ y|
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such that
Ro(va)f = [ Rolh.) )y,
RS

we find that Rg(\) defines a bounded operator Ry()\) : L*(R?*) — L*(R?) for A € C with
IA > 0. On the other hand, for A € C with S\ < 0, the operator Ry()) : L?(R3) — L?*(R?)
is unbounded. However, considering Ro(A) as an operator mapping L2, (R?) onto L (R?),
where for any fixed p € C5°(R?), the operator pRy(A\)p : L*(R?) — L*(R3) is bounded, allows
the extension of the operator Ry()) into a holomorphic family of operators for all A € C. For
any fixed p € C°(R?), pRo(\)p : L*(R?) — L*(R?) is a weak holomorphic family of operators
if the function I(\) := (pRo(A)pg1, g2) 12(rs) is holomorphic in C for any given g1, g» € L*(R?).
Furthermore, the fact that pRo(\)p is weakly holomorphic implies strong holomorphicity, a
concept detailed in [33].
Let p € C5°(R3?) be a fixed cutoff function with p = 1 on suppV. Given
T(SN)—

]p(:c)Ro()\,x,y)p(y)\ < , AE (C>

e
|z — 9|

where T' = diam(suppp), utilizing the Hardy—Littlewood—Sobolev inequality (cf. |28, Theorem
0.3.2]), for A € C, we obtain

RNl 8 gy sy S €7 (22)

Denote m = V2 for simplicity. Considering mRy(A\)m = mpRy(A)pm, from (2.2) and the
Holder inequality, we derive

ImRo(A)mgllze < llmllzsllpRo(N) pmglize < €V |ml|sllmg]l s

< OVl s [[ml| sl gl 2 (2.3)
Let 7 = p — 3/2. We decompose m = m; + my such that m; = myym<ey and my =

MX{|m|>0}, Where 6 = MeTGV- with T and M being two positive constants to be determined

later. Thus, m; € L>®(R?) satisfies
lmallzee < MeTOV= || ps < [lm| .

Let € > 0 be a positive constant such that ¢ < % Through a straightforward calculation, we
can find a sufficiently large M > 0 such that

1/3 27 1/3
malls = ([ wprae) < ([ TivP)
X{lm|>6} 0

X{|m|>6}

1/3 #
< 62;</ |V|3/2+de> / 5 %e%&)\)__
X{|m|>6}

Now, we fix the constant M. For a given g € L?, using the L? estimate ||[pRo(\)pl|r2_sz2 =
O(py) (cf. [12, Theorem 3.1]) and ([2.3), we derive
[mpRo(A)pmgl|rz < [[mapRo(X)pmagllre + [mipRo(A)pmag|| 2 + [mapRo(A) pmgl| 2
S ImallzellpRo(Mpll 2 r2[lmal o[l gl] 22
+ OVl || s ma| sllgl 22 + "V [lma | sl o |9 2

(T+2T)(SN)- 9 .
€ g _21Tyx)\)_
S (3O ) lgle (2.4)
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The implicit constants in (2.4)) are independent of M.

First, select T' to be sufficiently large such that (7' — %) < 0. Subsequently, given \ € Qp,
we have

e(T+2T)(<3A)_ <| )\|D(T+2T)_

Next, we can choose a small enough value for D so that D(T + QT) < 1. Consequently, for
|A| > F, where F' is sufficiently large, we get

€(T+2T)($)\)_ < |>\‘D(T+2T)—1 < E

AT 3
which shows that (2.4)) is bounded by ¢||g||z2. We arrive at (2.1)) due to the condition & < 1
thus concluding the proof. O

The following lemma concerns the compactness of the operator V/2Ry(\)V1/2 : L2(R?) —
L?(R3). The proof draws from the insights presented in [12, Theorem 2.1].

Lemma 2.2. Assume that V € LP(R3) with p > 3/2 and has compact support. Then the
operator V2Ry(\)VY/2 . L2(R3) — L?(R®) is compact.

Proof. Select a cutoff function p € C§°(R?) such that p =1 on suppV. We have

1 N o
3 lp(@)p(y) Bo(A, . y)|dz </ |p(x )\|x_y|eT(“)—dx < TN~
R

and
/ |p(x)p(y) Ro(M, =, y)|dy </ |p(2)p(y)[eCV-1vldy < TN

where Ry(\, z,y) is the Schwartz kernel of the free resolvent (—A—A?)"! and T' = diam(suppp).
By applying Schur’s test (cf. Theorem [A.2), it follows that for any 1 < ¢ < 0o

H,OR()()\)pHLq(RS)HLq(R:S) 5 eT(s)‘)‘ . (25)

We proceed to show

lpRo(M)plloes) s wams) S (A)2em V-, (2.6)
To establish this, we utilize the following elliptic regularity estimate: Given p € C§°(R?) such
that p = 1 near the support of p, we derive from [29, (7.13)] that

HpUHWz,q(R3) < C(HﬁUHLq(RS) + HﬁAUHLq(RS)).
Consequently, we obtain
loRo(MN)pfllwzams) S |pPRo(N)pf | Las) + |PARo(A)pf || Lacrs)-
By (2.5), we deduce pARy(\)pf = pf + pA2Ro(N)pf, satisfying
IPAR(N)pflla S (A2 CV=| £l o

Thus, we establish the estimate ([2.6)).

We continue to prove the compactness. Given V' € LP where p > 3/2, employing Holder’s
inequality yields V/2f € L5+, Consequently, pRo(\)pVV2f € W25+(€), which is compactly
embedded in L%(Q) by Proposition Applying Holder’s inequality once more, we ob-
tain that V/2Ry(MNVY2f = V2pRy(\)pV/2f is also compactly embedded in L?(€2), which
finalizes the proof. O

We are prepared to present the proof of Theorem [L.1]
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Proof. By Appendix [B] the outgoing resolvent formula for V' > 0 is given by
Ry(\) = Ro(\) — Ry(WVY2(I + VI2RyNVYHIWVI2R(N),  SA> 0. (2.7)
Denote the domain
Qu :={A e C:3X>—-Mlogl|A|, |\ > Co}.
By Lemma [2.1] and the Neumann series argument, it follows that there exist M > 0 and

Cy > 0 such that for A € Qy, the operator I +V1/2Ry(A\)VY/2 1 L2(R?) — L?*(R?) is invertible.
Furthermore, it satisfies

I+ VPRV M 2oy remey <2, A € Quy.
Next we prove that pRy (A\)p has the mapping property pRy (A\)p : L?(R3) — H'(R?), where
IpRy (Npllz2sm = O((N)eT V=) with T = diam(suppp).
Based on the resolvent estimate |12, Theorem 3.1], it follows from Proposition that
pRo(N)pf € HY(Q) C L5(Q), where
lpRo(Npll12ze) > rey = O(e V7).
Thus, for f € L?(R?), Hélder’s inequality implies V/2pRo(\)pf € L*(R?), which gives
V(14 V2R MV TIWWI2pRy(\)pf € L3 (R?)
and
VY2 + V2 Ry V)TV pRo (W) pl| o)y oy = O 7).
Using ([2.7) and the resolvent estimate in ([2.2)) yields
pRy(Np : IA(R®) = I(RY)
and
PRy (M) pll L2 ms)— o ms) = O(GT(%)_)- (2.8)

Choose p € C§°(R3) such that p = 1 near suppp. It follows from the standard elliptic
regularity theory |29} (7.13)] that

loRy (N)pfllmws) S [IPARy (N)pflla-1ms) + [[0Rv (A)pfl 2.
Since pARy(MNpf = —pf + VRy(Npf — pA2Ry(N)pf and VRy(Npf € LS° ¢ H™! by
Proposition [A.4] we have
IPARy (Mo f (1) S (A" V= fl2s).
Moreover, as stated in (2.8)), it holds that

ARy (Npfllr2s) S €OV Fll s
for A € Qy,. This concludes the proof of the estimate (|1.1]).
By Lemma , the operator VY/2Ry(\)VY2 : L*(R3) — L?*(R®) is compact. Using the
analytic Fredholm theory stated in Theorem[A.1] we obtain that pRy (\)p : L*(R3) — H'(R?)
is meromorphic in the complex plane C, which completes the proof. O

Remark 2.3. If V € L™? where n > 3 is odd, by replacing the Hardy-Littlewood—Sobolev
inequality (2.2) with the usual uniform Sobolev inequality, as established in Bourgain—Shao—
Sogge—Yao [3] and Kenig—Ruiz—Sogge [19], where || Ro(\) = O(1) for I\ >

0, it is observed that the operator
pRy(Np: L*(R?) — H'(R?)

|| 2n 2n
Ln+2 (Rn)—L7n—2 (R
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is holomorphic in Qu = {\ : |A| > Co, S\ > 0} with ||pRy (MNpllzmm = O(1) and is
continuous up to the real axis, where Cy 1s a sufficiently large constant. However, the domain
of holomorphy is limited to the upper-half complex plane and cannot be extended to the lower-

half complex plane. Consequently, the proof of Theorem relies on the Hardy-Littlewood—
Sobolev inequality (2.2)) in R3 for all X € C.

Next, we prove the absence of nonzero real poles for the outgoing resolvent Ry (\). Denote
by L?(S? du) the L? space on the unit sphere S* with surface measure du. The following
proposition and theorem are crucial in our proof, which can be found |14, Proposition 2.4]
and |17] or [14, Theorem 1.2], respectively.

" 12 _
Proposition 2.4. Let 1 < p < 4/3. For any § < 5 — =, where p = z%’ and for any

f e LP(R3) satisfying f =0 on S* in the L*(S?, du) sense, it holds that
sup (1 + [2)° 72 Ro(1 £ ie) fll 2 S 11w

Theorem 2.5. Consider V € L3%(R?), real-valued, and nonnegative. Assume that u €
HL _(R?) satisfies (—A + V)u = N\?u, where A € R\ {0} in the distributional sense. Further-

loc

more, if ||[(1 4 |z|)°~2ul| 2 < oo for some & > 0, then u = 0.
We proceed to prove Theorem [1.2] employing the argument presented in [14, Lemma 3.2].
Proof. 1t suffices to prove that
I+ VY2R,(WVY2: LA(R3) — L*(R?)

is invertible for every A € R\ {0}. By Lemma [2.2] the operator V/2Ro(\)V1/2 : L2(R?) —

L?(R3) is compact. By employing the Fredholm alternative principle, our objective is to

demonstrate that for each A € R\ {0}, the kernel of the operator I+ V1/2Ry(A\)V'/2 is trivial.
Assume that there exists a function f € L*(R?) such that for some A € R\ {0},

(I +VY2R,(\VYA) f = 0. (2.9)
Thus, letting w = V/2f, we have

w + VRy(AN)w = 0. (2.10)
Next, letting ¢ = Ro(\)w and substituting it into (2.10]) gives
(~A+V = X\)g=0. (2.11)

Let Ro(A\) = (—A—(A+i0)*)"1. From (2.10)), we deduce that (Ry(\)w, w) = —(Ro(N)w, V Ro(AN)w) =
—(g,Vyg), implying (Ro(A)w,w) = 0 since V' is real-valued. According to the Stein-Tomas
theorem (cf. [29]):

S(Ro(N)w, w) = hH(l)J(RO()\-i-IE w,w) = c)\/ [ (NE)|2ds(€),

Where ¢ is some nonzero constant, one has that w(A) = 0 on |A|S2. Given w € L3 (R3) and
§ < 4, we derive from Proposition [2.4] that (1 + |z[)°~*/2Ry(A)w € L*(R?) for some § > 0.
Consequently, we have (1 + |z]) 29 € L2(R3). As w € L3(R?), the Hardy-Littlewood-
Sobolev inequality infers g = Ro(A\)w € L5(R?), which, combined with Hélder’s inequality,
gives Vg € Lg(RP’) Then, it follows from and the standard elliptic regularity theory
that we obtain g € W6/ 5(R3) By the Sobolev embedding theorem in Proposition we

loc
have g € HL_(R?®). Thus, an application of Theorem gives ¢ = 0. Consequently, we
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arrive at f = 0 by (2.9)), which shows that the kernel of the operator I + V/2Ry(A\)V/? is
trivial. Therefore, for each A € R\ {0}, the operator I + V/2Ry(\)V'/2 is invertible, thereby
completing the proof. U

3. THE FRACTIONAL SCHRODINGER OPERATOR

In this section, we explore the meromorphic continuation of the resolvents for the fractional
Schrodinger operators involving bounded and unbounded potentials, respectively.

3.1. Bounded potentials. First, we consider the fractional Schrédinger equation without a
potential function

(—A)u(z) — \**u(z) = f(z), =€R>
Denote the free fractional resolvent by R, () = ((—A)* — A**)~!. Let R~ = (—00,0]. The

branch C \ iR~ is chosen such that z?® is holomorphic, i.e., —5 <argz < 37”

Theorem 3.1. For a fized p € C§(R?), the resolvent pRoo(N)p : L*(Q) — H*(Q) is holo-
morphic in Sy, provided % < a < 1. Moreover, for \ € Sy,, it holds that

1pRa 0Nl 2@s)ms sy S A7, (3.1)
where T' = diam(suppp) and 0 < s < 2a — 1.
Proof. We adopt the resolvent formula (cf. [22, (5.28)]) given by

NP2 sinamr [T Yy —A)L
—A)* — N2l = —A =) / d 2
(=4) ) ( o T Joo %Y — 2y*A\2%cos am + A 7 (32)

which is well-defined and holomorphic for A € Sp,. Consequently,

)\2—201 sin o +o0o ,yap<,y _ A)—lp
Rao(N)p = AN S /
PRao(N)p o 2 ) T y2 — 292 \2@ cos amr + A\
For any fixed p € C5°(R?), we define pR,o(\)p : L*(R?) — L?(R?) as a weak holomorphic
family of operators at A if the function
I(A) = (PRa,O()\)P91792>L2(R3)

/\27204

T (P(_A_/\2)71,091792>L2(R3)

" sin a7 /+OO Y {p(y — A) ' pgr, 92>L2(R3)d
T Jo 7% —29*A2cosam + N1

dry.

is holomorphic at A for any given g1, g» € L*(R?). Furthermore, the weak holomorphicity of
pRao(N)p implies its strong holomorphicity. For further insights into the integral of operators,
we refer the reader to [33].

In the following discussion, we demonstrate the extension of pRy.(A)p to the lower-half
complex plane through multiplication with two smooth cutoff functions. It is clear to note
that the resolvent p(y — A)~!p requires a 1/|y|-type decaying factor for the integral in
to converge. To achieve this, we recall the resolvent estimate (cf. |12, Theorem 3.1]):

1p(=A = Nl oy S (N 1TOY- i =0,1,2,

~

and apply the interpolation inequality

Hs(Q) S 2;59 HUH;F(QV 0 <s< 1,
[v] < Cllvllz2(q)
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which lead us to derive
(=2 = X))l s S )TN0 <s <L (3.3)

We analyze the denominator v2® — 2y*\%® cos ar + A1, If the branch C\ iR~ is chosen such
that 22 is holomorphic, a direct calculation yields that for A ¢ iR, the denominator cannot
be zero for v € [0, 00). To illustrate, consider

Y2 — 29\ cos am + A\ = 0.
By letting v* = t, the above equation reduces to a quadratic form
t2 — 2tA* cos am 4+ A1 = 0.

Applying the quadratic root formula yields

)\ o ,_Yozeilom

resulting in A = £i,/y. Therefore, for A € C \ iR in the complex plane, the denominator
cannot be zero for v > 0.
A straightforward calculation yields

sin /*‘X’ e =B ’
T Jo 72— 29*A\%*cos am + A1

< /+°° Y llp(=A = (iy7)*) "ol 2 ns &
0

|72 — 2y N2> cos am + M@

L2—Hs

< +00 ‘,.)/‘a (1-s)/2
N/O |72 — 292 A2 cos am + Ai@| 4,

Letting # =t and using a change of variables, we obtain

A e C\iR. (3.4)

" < / |)\|2a*(1*8)|t|a7(175)/2
— ™ Jo || A[FetRe — 2| \|2eN2ete cos am + N9

00 |t|a7 (1-s)/2
5 |/\|1+s—2a/
0 |t2e — 2t Mlz“ cos aT + |/\|4a\

|\|*dt

,S |)\‘1+872a7

where the last integral is well-defined for oo + (1 — s)/2 > 1, equivalent to 0 < s < 2a — 1.
This also implies a > 1/2. From (3.3), we have

)\2—2@
|

It remains to demonstrate that there exists a positive constant C' independent of A\ € Sy,

such that
00 ’t‘a— (1-s)/2
/0 |t2a — 2ta X0 cos am + |dt =
‘)\|2a |)\|404

p(=A = N) |l S (A2 0N

~

First, we choose M to be sufficiently large and independent of A such that for ¢ > M,

[t2 — 2t* A cos am + - | > 1t2”
|>\|2a |)\|4a -9

’
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which, given a + (1 — s)/2 > 1, leads to

/oo |t|a7 (1-s)/2 4 /oo |t|a7(lfs)/2d /oo 1 c
—dt< [ B —at<2| —— <
|t2e — 2t 2r Mlz“ cos am + |§|44a\ M %tm o tot(=s)/2

where (] is a constant independent of \.
Moving on to the integral

/M |t|o¢— (1-s)/2
—dt
0 |2 — 2te X |A|2a cos am + |§T4"| ’

we aim to demonstrate that for ¢ € [0, M] and A € Sp,, there exists a constant ¢y > 0
independent of A such that

) )\204 4o
Y — 2t¢ cos am + > ¢p.
A e wm' s
To establish this, let A = 619 where —Z < 0 < 3™ Define

[V
Sey =10 : 0 € [=00, 0] U [ — b0, ™ + 0]}

with 0 € Sy,. The denominator then becomes

12 — 2t%e2 cos a4 €4 = (209 — prelom) (el20f _ reTiom),
Since
2% _ ele™ — cos 200 — t* cos am + i(sin 2a6 — t¥sin ar),
we have
209 — oelom|2 = 1 4 2% _ 2t% cos(20 — o).
Similarly,

|ef200 _preTiom|2 — 1 4 42 _ 24 cos(2a + ar).
This yields
‘tZa . 2to¢€i2a9

cos a + e

= (1 +t** — 2t* cos(2af + an))(1 + t** — 2t* cos(2a0 — ar)) := F(t,0).

According to the previous analysis, the denominator could only be zero when A € iR.
On the other hand, for § € Sy, we have diSt(ggo,{—g, 37}1) > 0. Consequently, given the
continuity of the function F(t,0) for t € [0, M] and 6 € Sp,, there exists ¢, > 0 independent
of X such that F'(¢,0) > 2. Therefore, there exists Cy > 0 independent of A such that

/M |t|a (1—-s)
dt < Cs.
0 |t2e— 2t”w2a cos am + ‘/\|4a|

Thus, the proof is completed. O

Remark 3.2. The necessity of u € H*(2) with 0 < s < 2a — 1 becomes evident for ensuring
convergence of the integral of operators in (3.2)).

The following theorem deals with the meromorphic continuation of the fractional Schrodinger
operator. The proof aligns with the argument presented in |12, Theorem 3.8].
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Lemma 3.3. Assume that V € L3, (R®). For a fived p € C3°(R?) with p = 1 on suppV/,
the resolvent

PRy (Np: L(Q) = LA(Q)
s a meromorphic family of operators with respect to A € Sy, .
Proof. A direct calculation gives

I+ VRaoN) = (I +VRao(N)(L — p))(I + VRap(N)p).

Fix p € C5°(R?) such that p =1 on suppV. For S\ > 1 and A € Sp,, utilizing the resolvent
estimate ((3.1f), we find

Y

DO | —

IV Rao(N)pll L2@)—r20) S |)\’1_QQHV”L°°(R3) <

which implies that the operator I + VR, o(A)p is invertible through a Neumann series ar-
gument. Moreover, since the operator V R, o()\)p is compact on L*(R?) due to the resolvent
estimate (as H*(Q2) with 0 < s < 1 is compactly embedded in L?(Q2) [26, Theorem
7.1]), we have from Theorem that the operator (I + VR,o(N)p)~! : L*(2) — L*() is
meromorphic for A € Sp,. On the other hand, it is easy to verify that

(I +VRao(N(1=p)) =1 =VRao(N)(L - p).

Hence, the operator I +V R, (M) : L2(2) — L?(Q) is invertible for A > 1 and its inverse is
given by

(I +VRao(N)™" = (I +VRao(Np) ™ (I = VRao(N)(1 = p)).

Furthermore, (I +V R,()\))~" is meromorphic for A € Sy, .
By the resolvent identity

Rav(A) = Rao(N) (I + VRao(N) 7,

it can be verified that
pRay(N)p = pRao(N)(I +VRap(Np) ™ (I = VRap(N(1 = p))p. (3.5)
Considering
(I = VRao(N(1 = p))p: L*(Q) — L*(Q)

and

(I +VRap(Np) " L*(Q) — L*(Q),
with 7,7 € C$°(R3) such that np = p, 7m = n, we have

(1 =)+ VRBao(Np) 'n=0, SA>1.

Therefore, by analytic continuation, the above identity also holds for all A € C at which
(I + VRuyo(N)p)~! is analytic.

Finally, since pRao(\)p is analytic for A € Sy, by (3.5)), we conclude that pRa v (A)p :
L*(Q)) — L?*(2) is meromorphic for A\ € Sp,, thereby completing the proof. O

Now, we present the proof of Theorem
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Proof. The fact that pR, v (\)p is meromorphic in Sy, follows directly from Lemma . Con-
sider p € C§°(R?) such that p = 1 on suppV. For A € Qy; and || large enough, we obtain

IV Rao(N)pll r2es)sr2grsy S IV || oo sy A 22 SN

< eT(Mlog(\)\|))/’)\|2afl

1
< —.
-2
Combining (3.5)) and the resolvent estimate (3.1)) of R, o()\) leads to ((1.4]). OJ

3.2. Unbounded potentials. In this section, we analyze the meromorphic continuation of
the fractional resolvent operator denoted as pR,v(\)p : L* — L?, specifically concerning
unbounded potentials. Referring to ((1.3]), we have the resolvent identity

Rov(A) = Rao(N) = Rao N VYT 4+ V2R, oM VY) V2R, 4(N). (3.6)

The following lemma provides an LP-based mapping property of the free resolvent pR, o(\)p,
complementing the one established in Theorem [3.1} which deals with L?.

Lemma 3.4. Fiz a cutoff function p € C(R3) such that p = 1 on suppV. Assume that
0<pB< % and 0 < By < 8. Then the operator

6
pRm()(/\)p : L3261 (Q) — Wﬁ’2+(Q)
is holomorphic in Sp,. Moreover, the following resolvent estimate holds for A € Sy,

, —(20—3B8—1) [ T(SA)_
0 RaoMPl s o s S P TN (37)

Consequently, the operator pRao(N)p : L5 (Q) — Lﬁ(Q) is compact.

Proof. Using the resolvent estimate (cf. [12, Theorem 3.1]) for the classical Laplacian operator
Ip(—=A =X)Ll 122 = O(eTGM-/|)\]) and the Hardy Littlewood-Sobolev inequality (2.2),
and noting for 0 <t <1

D 1 342t 1—-t t 3-2t
6 * 2( ) 6 2 * 6 6
we have from the Riesz—Thorin interpolation theorem (cf. Theorem [A.3)) that
2\—1
||p(—A—/\ ) p||L3TGﬂ_>L3T6ﬂ

S lo(=A = M) pllzt, 2 lo(=A = M) " pll e, s
SIATEDIEN- g <t < 1.
Subsequently, by setting t = 1, it follows that
lp(=A = X*)"pl|
Reiterating the proof for yields
lp(=A = X*)""pll s

6
L3F281 s> 3¥281

_ T(SA)_ /|y ([1-8
LFIE L[5 Oe /AP,
= O\ V),
which implies after using the interpolation that

lp(=A = A"~ p]
Using the interpolation inequality
[vllwss < Cllolllolliye, 0<s<1

— O[OV,

6 1 _6
L3+261 W » 34251
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and letting s = 23, ¢ = we obtain

6
3428717
Ip(=A = X*)"p]|

1
1Al

— O<6T(%/\)_/’)\|172ﬁ7ﬁ1).

L3P WP 3T
At this point, a decay factor of - emerges when 1 — 23 — 1 > 0. This condition holds true
for g < %
Given that 3; < (8, we derive from the Sobolev embedding in Proposition that
6
W2 3251 (Q) € WH2H(Q), resulting in
1
A \2y-1 _ T(SN)_ /[y [1-28—B1 i
o= =)0l g = OO A, o< p<

Furthermore, by following the argument from the proof of Theorem [3.1] we obtain that the
integral in the resolvent formula (3.2)) converges provided g < 2a3_—1 < 1/3, which further
gives (3.7). Additionally, the compactness follows from the fact that W#2+(Q) is compactly

embedded in Lﬁ(ﬁ) according to Proposition U

The following result is a direct consequence of the above lemma.

Lemma 3.5. Assume that V € L2, (R®) where p > 2 with 0 < B < 221 Then the

comp 28 3
operator VY2 R, o(A)VY2 1 L2 — L% is compact for A\ € Sy, and satisfies
VY2 Ro o MNVY2|| oo S [A[TRe387 0TGN N e 5y . (3.8)
2+

Proof. For a given f € L?(R?), considering V'/? € Lémp(R?), the application of the Holder
6
inequality yields VY/2f € L3 for 8, < (. Furthermore, with the selection of a cutoff
function p € C5°(R?) satisfying p = 1 on suppV, Lemma implies that the operator
6
pRao(N)p o L3721 () — L5 (Q) is compact. Its norm satisfies (3.7)), leading to (3.8)) and
establishing the compactness of the operator V2R, o(\)VY/2 : L? — L? through Holder’s
inequality. U

The following lemma addresses the meromorphic continuation of the fractional Schrédinger
operator.

Lemma 3.6. Assuming V € L2, (R3), where p > % with 0 < 5 < , and considering a

2a—1
comp 3

fized p € C(R3) such that p =1 on suppV, the resolvent opertor
pRav(Np s LAQ) = LX(Q)

constitutes a meromorphic family of operators with respect to X € S, .

Proof. Given f € L*(2), we have from Theorem [3.1| that R, o(\)f € H?(Q) C Lﬁ(Q) by
Proposition . Noting V/2 € L3/8(Q) and using Hélder’s inequality, we deduce V2R, o(\) f €
L?(Q2). Moreover, for sufficiently large [A| with A € {\ : SA > 0,\ € Sy, }, we obtain from
Lemma [B.5] that

1
VY2 Ra oWV 12012 < 5,

which indicates that the operator I + V2R, ,(A\)VY2 1 L2(Q) — L2(Q) is invertible via the
Neumann series argument. Considering the compactness of the operator V2R, o(A\)V/? :
L2(Q) — L*(Q) from Lemma [3.5] we have from the analytic Fredholm theorem that (I +
V2R, o(A)VY2)~1 . L2 — [2 is meromorphic. The proof is completed by noting the holo-
morphic nature of Ra () in Sp,, V2R, o(A)f € L*(), and the resolvent identity (3.6). O
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Now, we present the proof of Theorem

Proof. The fact that pR,v(\)p is meromorphic in Sy, comes from Lemma . For A €
Qpr N Sy, and a sufficiently large constant Cj, we have

||V1/2Ra,o()\)V1/2||L2(R3)—>L2(R3)||V||L2a 1P Ra0 (A )p||L3+204—>L362“|| HL%

< eT(Mlog (AD) /|)\’20¢ 38—-1

~

<

w|>—l

which implies that I + V2R, ¢(A\)V/2 is invertible by the Neumann series argument.
From (3.1)), it follows that

[pRao(N)pllL2)—mo @)
Using the resolvent identity (3.6) and the resolvent estimate (3.7) of pR.o(\)p, we derive
(1.5). O

APPENDIX A. USEFUL LEMMAS

S ’)\|1+/372aeT(%)\)_.

The theorem presented below concerns the analytic Fredholm theory, detailed in |12, The-
orem C.8].

Theorem A.1. Assume that Q@ C C is a connected open set and {A(z)}.cq represents a
holomorphic family of Fredholm operators. If A(zo)™' exists at a certain point zy € ), then
the family z — A(2)7%, 2 € Q, constitutes a meromorphic family of operators with poles of
finite rank.

The following theorem, known as the generalized Young’s inequality or Schur’s test, is
referenced in 2, Corollary 1.3].

Theorem A.2. Suppose that K(z,y) is measurable on R™ x R™ and
1 1
o ([ 1KGFay) s ( [1KGrar) <o
T Yy

for some 1 <r < oo. Define
/K z,y)dy.

If1<p<q<oosatisfy + =1— (5 — —) then the following estimate holds:
1T fllza < Cllflzo-

The following result is referred to as the Riesz—Thorin interpolation theorem, as documented
in |2, Theorem 1.1].

Theorem A.3. Let T be a linear map from from LP° N LP' to L% N LY such that
1T fl[pos < M|l fllpes 5 =0,1
with 1 < pj;,q; < oo. If
11—t t 11—t ¢t

?

P Do D1 @ q1
for some t € (0,1), then

1T fllpoe < My~ " M| f]| Loe-
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The following proposition concerns results regarding compact embedding and Sobolev em-
bedding theorems, as detailed in |13, Chapter 7].

Proposition A.4. Let Q) be a bounded conver domain with a smooth boundary in R™. The
following compact embedding holds

WhP(Q) cC LUQ)  forkp <n,q < —L—
n —kp
WEP(Q) C LT (Q) forkp <n,q" = - ﬁpkp‘

APPENDIX B. SELF-ADJOINTNESS AND RESOLVENT IDENTITY

In this section, we prove the self-adjointness of the Schrodinger operators —A + V' and
(—A)* + V with the unbounded potentials, and the resolvent identities (|1.3) and (3.6). We

show that C contains all V € L7, (R?) and F contains all V' € Lz’éﬁlp(RS), with 0 <s < 2a—1
as specified in Theorem [3.1]

First, for V € L] _(R?), V > 0, we demonstrate the self-adjointness of the the Schrodinger
operator —A + V utilizing the quadratic form. The operator —A is self-adjoint on H?(R?)
associated with the quadratic form ¢_a(f) = [zs [V f|?dz. The multiplier operator V :
f — V(z)f is self-adjoint on the set {f € L*(R3) : Vf € L*(R?)} associated with the
quadratic form gy (f) = [zs V| f|*dz. Since both g_a and gy are closed, thus by [30, Theorem
7.5.11], their sum ¢_a + gy is also closed. Consequently, following [30, Proposition 7.5.6],
the Schrodinger operator H := —A 4 V can be defined as a self-adjoint operator associated
with the quadratic form g_a + qy. For the domain of H obtained via the quadratic form, we
refer to [30, Proposition 7.5.6 |, and for further details, we direct attention to Example 7.5.12
in [30].

Secondly, we prove the resolvent identity provided that I 4+ V/2Ry(A\)V/2, S\ > 0
is invertible. The invertibility of the operator I + V/2Ry(\)V'/? is validated by referencing
Lemma [2.1 and employing the Neumann series argument.

For two nonnegative self-adjoint operators A and B, let Q(A) and Q(B) be the form
domains and g4 and g be the associated quadratic forms. Denote the resolvent Rp(z) =
(P — z)~!, where P is an operator. The following lemma (cf. [33, Lemma 6.30]) is useful in
the subsequent analysis.

Lemma B.1. Assuming A —~ > 0, where v is a constant and B is self-adjoint. If Q(A) C
Q(B) and ga + qp is a closed semi-bounded form, then

Rayp(2) = Ra(z) — (|B|"*Rayp(2")) sign(B)| B|'/* Ra(z)
for z € p(A) N p(A+ B). Here, A+ B represents the self-adjoint operator associated with
ga +4B-

In our scenario, let 2 = A2, A = —A, and B = Ty, where Ty, : f — V(x)f is the multiplier
operator. Thus, —A +V = A+ B. We have Q(A4) = H'(R?) and

Q(B) = {f € *(RY) : VI/2f ¢ LR},
For specific details, we refer to page 77 of [33]. We confirm that Q(A) C Q(B). To elaborate,
considering f € H'(R?*) C LY (R?) implies that |f|? € L} (R®). Since V € LF  (R3) with

loc loc comp

p > 3/2, by Hélder’s inequality, we deduce that V1/2|f| € L*(R?) .
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Let Ry(A) = (A 4+ V =A%) "tand Ry(\) = (—A — X*)~!, where S\ > 0. Considering the
range of V1/2Ry()\) contained in Q(B) for V € L% (R?), we employ Lemma to derive

comp
Ry(\) = Ro(\) — Ry(\M)VY2VY2R (). (B.1)
Multiplying both sides of the above identity by V'/2, we obtain
Ry(MV'? = Ry(AVY? — Ry (WV 2V Ry (WV2,
As I + VY2Ry(A\)V1/2 is invertible, we get
Ry (NVY2 = Ry VY2(I + V2R, (AN)VYA) L, (B.2)

Substituting into the second term on the right-hand side of yields the desired
identity.

In a similar manner, we investigate the fractional Schrodinger operator. First, in this
case, we have A = (—A)* and B = Ty, where Ty : f — V(z)f is the multiplier operator.
The self-adjointness of A is evident on H*(R?), while V is self-adjoint on the set {f €
LAR3) : Vf € L*(R*}. The quadratic forms associated with A and B are denoted as
qa(f) = [gs [(=A)*2fdz and qp(f) = [gs V|f|?da, respectively. Hence, the Schrodinger
operator (—A)® + V is self-adjoint associated with ¢4 + ¢p.

Second, we prove the resolvent identity for the fractional Schrodinger operator under
the condition that the operator

I+ V2R, oMV 3> 0,

is invertible. For the invertibility of the above operator, we refer to Lemma 3.5 and the
Neumann series argument. Notably, we have Q(A) = H*(R3) and

QB) ={f € L*(R*) : V'2f € L*(R*)}.
Furthermore, Q(A) C Q(B) due to V2| f| € L*(R?) for f € H*(R?) and V € L (R3) with

loc

p > % and 0 < 8 < 20“3_1. Additionally, it is clear to note that the range of V2R, o(\)

is contained in Q(B) for V € L¥5,(R3), where 0 < s < 2o — 1 is specified in Theorem
B.1] Subsequently, the remainder of the proof aligns with the preceding arguments by using
Lemma Bl
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