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Abstract

A continuation method is presented for solving the inverse medium scattering problem of the
Helmholtz equation in R2. The algorithm requires only single-frequency scattering data. Using
an initial guess from the Born approximation, each update is obtained via recursive linearization
on the spatial frequency of a one-parameter family of plane waves by solving one forward and one
adjoint problem of the Helmholtz equation.

1 Introduction

Consider the Helmholtz equation in two dimensions

∆φ + k2
0(1 + q(x))φ = 0, (1.1)

where φ is the total field, k0 is the wavenumber, and q(x) > −1, which has a compact support, is the
scatterer. The scatterer is illuminated by a one-parameter family of plane waves

φ0(x1, x2) = ei(ηx1+k(η)x2),

where

k(η) =

{ √
k2

0 − η2 for k0 ≥ |η|,
i
√

η2 − k2
0 for k0 < |η|.

The number |η| is the spatial frequency.
The modes for which |η| ≤ k0 correspond to propagating plane waves while the modes with |η| > k0

correspond to evanescent plane waves, which may be generated at the interface of two media by total
internal reflection [5, 9]. These waves are oscillatory parallel to the x1 axis and decay exponentially
along the x2 axis in the upper half plane R2

+ = {(x1, x2) ∈ R2 : x2 > 0}. Evidently, such incident
waves satisfy the homogeneous equation

∆φ0 + k2
0φ0 = 0. (1.2)
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The total electric field φ consists of the incident field φ0 and the scattered field ψ:

φ = φ0 + ψ.

It follows from the equations (1.1) and (1.2) that the scattered field satisfies

∆ψ + k2
0(1 + q)ψ = −k2

0qφ0. (1.3)

Let D be a bounded domain in R2 with boundary ∂D, which contains the compact support of the
scatterer q(x). Denote n the unit outward normal to ∂D. For simplicity, we employ the first order
absorbing boundary condition [11] as

∂ψ

∂n
− ik0ψ = 0 on ∂D, (1.4)

The inverse medium scattering problem is to determine the scatterer q(x) from the measurements
of near-field currents densities, ψ|∂D, given the incident field φ0. The inverse medium scattering
problems arise naturally in diverse applications such as radar, sonar, geophysical exploration, medical
imaging, and nondestructive testing [8]. There are two major difficulties associated with these inverse
problems: the ill-posedness and the presence of many local minima. In this paper, we present an
algorithm which overcomes the difficulties. Our algorithm requires single-frequency scattering data
and the recursive linearization is obtained by a continuation method on the spatial frequency. It first
solves a linear integral equation (Born approximation) at the largest spatial frequency. Updates are
made by using the data at smaller spatial frequency sequentially. For each iteration, one forward and
one adjoint problem of Helmholtz equation are solved. Two new computational examples are pre-
sented. We refer the reader to [4] for a complete description of the algorithm and related analysis. See
also [2, 3, 6, 7] for related stable and efficient continuation methods for solveing the two-dimensional
Helmholtz equation and the three-dimensional Maxwell’s equations in the case of full aperture data.
A homotopy continuation method with limited aperture data may be found in [1].

2 Born approximation

Rewrite (1.3) as
∆ψ + k2

0ψ = −k2
0q(φ0 + ψ). (2.1)

Consider a test function ψ0 = eik0x·~d, ~d = (cos θ, sin θ), θ ∈ [0, 2π]. Hence ψ0 satisfies (1.2).
Multiplying the equation (2.1) by ψ0, and integrating over D on both sides, we have

∫

D
ψ0∆ψdx + k2

0

∫

D
ψ0ψdx = −k2

0

∫

D
q(φ0 + ψ)ψ0dx.

Integration by parts yields
∫

D
ψ∆ψ0dx +

∫

∂D

(
ψ0

∂ψ

∂n
− ψ

∂ψ0

∂n

)
ds + k2

0

∫

D
ψ0ψdx = −k2

0

∫

D
q(φ0 + ψ)ψ0dx.

We have by noting (1.2) and the boundary condition (1.4) that
∫

D
q(φ0 + ψ)ψ0dx =

1
k2

0

∫

∂D
ψ

(
∂ψ0

∂n
− ik0ψ0

)
ds.
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Using the special form of the incident wave and the test function, we then get
∫

D
q(x)ei(η+k0 cos θ)x1ei(k(η)+k0 sin θ)x2dx =

i
k0

∫

∂D
ψ(n · ~d− 1)eik0x·~dds−

∫

D
qψψ0dx. (2.2)

When the spatial frequency |η| is large, the scattered field is weak and the inverse scattering problem
becomes essentially linear. See [4] for an energy estimate of the scattered field. Dropping the nonlinear
(second) term of (2.2), we obtain the linearized integral equation

∫

D
q(x)ei(η+k0 cos θ)x1e(−

√
η2−k2

0+ik0 sin θ)x2dx =
i

k0

∫

∂D
ψ(n · ~d− 1)eik0x·~dds, (2.3)

which is the Born approximation. In practice, the integral equation (2.3) is implemented by using
Landweber iteration in order to reduce the computational cost and instability [10, 13].

When a medium is probed with an evanescent plane wave at a high spatial frequency, only a thin
layer of the medium is penetrated. Corresponding to this exponentially decaying incident field, the
scattered field measured on the boundary contains information of the medium in that thin layer. To
accurately determine the medium, information at lower spatial frequencies of the evanescent plane
waves is needed to illuminate the medium.

3 Recursive linearization

As discussed in the previous section, when the spatial frequency |η| is large, the Born approximation
allows a reconstruction of the thin layer for the true scatterer. Choose a large positive number
ηmax and divide the interval [0, ηmax] into N subdivisions with the endpoints {η0, η1, ..., ηN}, where
η0 = 0, ηN = ηmax, and ηi−1 < ηi for 1 ≤ i ≤ N . We now describe a procedure that recursively
determines qη at η = ηN , ηN−1, ..., η0.

Suppose now that the scatterer qη̃ has been recovered at some η̃ = ηi+1 and that η = ηi is slightly
less than η̃. We wish to determine qη, or equivalently, to determine the perturbation

δq = qη − qη̃.

For the reconstructed scatterer qη̃, we solve at the spatial frequency η the forward scattering
problem

∆ψ̃(j,i) + k2
0(1 + qη̃)ψ̃(j,i) = −k2

0qη̃φ
(j,i)
0 , (3.1)

∂ψ̃(j,i)

∂n
− ik0ψ̃

(j,i) = 0, (3.2)

where the incident wave φ
(j,i)
0 = eiηjx1+ik(ηj)x2 , |j| ≥ i.

For the scatterer qη, we have

∆ψ(j,i) + k2
0(1 + qη)ψ(j,i) = −k2

0qηφ
(j,i)
0 , (3.3)

∂ψ(j,i)

∂n
− ik0ψ

(j,i) = 0. (3.4)
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Subtracting (3.1), (3.2) from (3.3), (3.4) and omitting the second-order smallness in δq and in δψ(j) =
ψ(j,i) − ψ̃(j,i), we obtain

∆δψ(j) + k2
0(1 + qη̃)δψ(j) = −k2

0δq(φ
(j,i)
0 + ψ̃(j,i)), (3.5)

∂δψ(j)

∂n
− ik0δψ

(j) = 0. (3.6)

For the scatterer qη and the incident wave φ
(j,i)
0 , we define the map Sj(qη, φ

(j,i)
0 ) by

Sj(qη, φ
(j,i)
0 ) = ψ(j,i),

where ψ(j,i) is the scattering data corresponding to the incident wave φ
(j,i)
0 . Let γ be the trace operator

to the boundary ∂D. Define the scattering map

Mj(qη, φ
(j,i)
0 ) = γSj(qη, φ

(j,i)
0 ).

For simplicity, denote Mj(qη, φ
(j,i)
0 ) by Mj(qη). By the definition of the trace operator, we have

Mj(qη) = ψ(j,i)|∂D.

Let DMj(qη̃) be the Fréchet derivative of Mj(qη) and denote the residual operator by

Rj(qη̃) = ψ(j,i)|∂D − ψ̃(j,i)|∂D.

It follows from [4] that
DMj(qη̃)δq = Rj(qη̃). (3.7)

Similarly, in order to reduce the computation cost and instability, we consider the Landweber iteration
of (3.7), which has the form

δq = βDM∗
j (qη̃)Rj(qη̃) for all |j| ≥ i, (3.8)

where β is a relaxation parameter and DM∗
j (qη̃) is the adjoint operator of DMj(qη̃).

In order to compute the correction δq, we need some efficient way to compute DM∗
j (qη̃)Rj(qη̃),

which is given by the following theorem. See [4] for the proof.

Theorem 3.1. Given residual Rj(qη̃), there exits a function φ(j,i) such that the adjoint Fréchet
derivative DM∗

j (qη̃) satisfies

[
DM∗

j (qη̃)Rj(qη̃)
]
(x) = k2

0

(
φ

(j,i)
0 (x) + ψ̃(j,i)(x)

)
φ(j,i)(x), (3.9)

where φ
(j,i)
0 is the incident wave and ψ̃(j,i) is the solution of (3.1), (3.2) with the incident wave φ

(j,i)
0 .

Using this theorem, we can rewrite (3.8) as

δq = k2
0β

(
φ

(j,i)
0 + ψ̃(j,i)

)
φ(j,i). (3.10)

So for each incident wave with a transverse part ηj , we have to solve one forward problem along with
one adjoint problem for the Helmhotlz equation. Since the adjoint problem has a similar variational
form as the forward problem. Essentially, we need to compute two forward problems at each sweep.
Once δq is determined, qη̃ is updated by qη̃ + δq. After completing sweeps with |ηj | ≥ η, we get the
reconstructed scatterer qη at the spatial frequency η.
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4 Numerical experiments

In this section, we present two numerical examples to illustrate the performance of the algorithm.
For test of stability, some relative random noise is added to the data, i.e. the electric field takes the
form

ψ|∂D := (1 + σ rand)ψ|∂D.

Here, rand gives uniformly distributed random numbers in [−1, 1] and σ is a noise level parameter
taken to be 0.02 in our numerical experiments. The relaxation parameter β is taken to be 0.01.

Example 1. Reconstruct a scatterer defined by

q1(x1, x2) =

{
2.0 for r ≤ 0.6,

0 for r > 0.6,

inside the domain D = [−1, 1]× [0, 2], where r =
√

x2
1 + (x2 − 1)2. See Figure 1 and Figure 2 for the

surface and image views of the scatterer function. This example is used to examine the invalidity of
Born approximation. In [12], the author derived an explicit error bound of the Born approximation
for inverse scattering problem of the Helmholtz equation at fixed frequency. For the validity of the
Born approximation, one needs a condition of the form

ρk0γ(k0) sup
|x|≤ρ

|q(x)| < 1,

where ρ is the radius of some region containing the compact support of the scatterer q, k0 is the
wavenumber, and γ is a positive constant, which depends on the wavenumber k0. In the context of
Example 1, these parameters are ρ = 0.6, k0 = 15.0, γ = 0.63, and sup|x|≤ρ |q(x)| = 2.0. It follows
from simple calculation that

ρk0γ(k0) sup
|x|≤ρ

|q(x)| = 11.34,

which is beyond the validity of Born approximation. Figure 3 gives the evolution of reconstruction
horizontally across x2 = 1.0. Due to the discontinuity of the given scatterer, the Gibbs phenomenon
appears in the reconstructed scatterer.

Example 2. Reconstruct a scatterer defined by

q2(x1, x2) = 0.5(1 + cos(3πx1)) sin(2.5πx2)

inside the domain D2 = [−1, 1] × [0, 0.4]. This example is used to illustrate the resolution of the
reconstruction using different wavenumbers. The x1-transverse spatial frequency of q2 is 3π, which
accounts for the x1-transverse wavelength about 0.67. Figure 4 shows the images of reconstructions
using different wavenumbers k0 at π, 1.5π, and 3π, corresponding to wavelengths of 2.0, 1.33, and
0.67, respectively. Figure 5 gives the slice of reconstructions at x2 = 0.2 using different wavenumbers.
Figure 4 and Figure 5 present the effect of the wavenumber k0 on the result of reconstruction, which
illustrates clearly that the inversion using a larger wavenumber k0 is better than that using a smaller
one. This result may be explained by Heisenberg’s uncertainty principle [6, 7].
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Figure 1: reconstruction of q1. (a) true scatterer; (b) reconstruction.
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Figure 2: image of reconstruction for q1. (a) true scatterer; (b) reconstruction.
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Figure 3: evolution of slice for the reconstruction q1. Solid curve: true scatterer; dotted curve:
reconstruction. Top row from left to right: reconstruction at η = 14.45; reconstruction at η = 13.60;
reconstruction at η = 12.75; middle row from left to right: reconstruction at η = 10.20; reconstruction
at η = 8.50; reconstruction at η = 6.80; bottom row from left to right: reconstruction at η = 5.10;
reconstruction at η = 2.55; reconstruction at η = 0.0.

7



x
1

(a)

(b)

(c)

(d)

Figure 4: image views of reconstructions for q2 with different wavenumbers. (a) true scatterer; (b)
reconstruction using k0 = π; (c) reconstruction using k0 = 1.5π; (d) reconstruction using k0 = 3π.
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Figure 5: slice of reconstructions for q2 with different wavenumbers. Solid curve: true scatterer; ¤:
reconstruction using k0 = π; x: reconstruction using k0 = 1.5π; ◦: reconstruction using k0 = 3π.
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5 Concluding remarks

We have presented a new continuation method with respect to the spatial frequency of a one-parameter
family of plane waves. The recursive linearization algorithm is robust and efficient for solving the
inverse medium scattering at fixed frequency. Finally, we point out some future directions along
the line of this work. The first is concerned with the convergence analysis. Although our numerical
experiments demonstrate the convergence and stability of the inversion algorithm, no rigorous math-
ematical result is available at present. Another important and interesting project is to investigate
scattering problems in near-field optics since evanescent plane waves can only occur in the near-field
zone. In the case of near-field optics, scattering problems are more appropriate to be formulated in
the configuration of half-space instead of free space. We are currently attempting to extend the ap-
proach in this paper to more realistic models in the half-space geometry and will report the progress
elsewhere.
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