
Shape Reconstruction of Inverse Medium Scattering for the
Helmholtz Equation

Gang Bao∗ and Peijun Li†

Abstract

Consider a time-harmonic electromagnetic plane wave incident on a medium enclosed by a
bounded domain in two dimensions. In this paper, existence and uniqueness of the variational
problem for direct scattering are established. An energy estimate for the scattered field is
obtained on which the Born approximation is based. Fréchet differentiability of the scattering
map is examined. A continuation method for the inverse obstacle scattering problem, which
reconstructs the shape of the inhomogeneous mediums from boundary measurements of the
scattered wave, is developed. The algorithm requires multi-frequency data. Using an initial
guess from the Born approximation, each update of the shape, represented by the level set
function, is obtained via recursive linearization on the wavenumber by solving one forward
problem and one adjoint problem of the Helmholtz equation.
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1 Introduction

Consider the Helmholtz equation in two dimensions

∆ψtot + κ2εψtot = 0, (1.1)

where ψtot is the total electric field, κ > 0 is the wavenumber, and ε is the relative electric permit-
tivity. Rewrite ε = 1 + q(x) and q(x) > −1, which has a compact support, is the scatterer.

The total electric field ψtot consists of the incident field ψinc and the scattered field ψ:

ψtot = ψinc + ψ.

Assume that the incident field is a plane wave

ψinc(x) = eiκx·d, (1.2)
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where d ∈ S1 = {x ∈ R2 : |x| = 1} is the propagation direction. Evidently, such an incident wave
satisfies the homogenous equation

∆ψinc + κ2ψinc = 0. (1.3)

It follows from the equations (1.1) and (1.3) that the scattered field satisfies

∆ψ + κ2(1 + q)ψ = −κ2qψinc. (1.4)

In addition, the scattered field is required to satisfy the following Sommerfeld radiation condition

lim
ρ→∞

√
ρ

(
∂ψ

∂ρ
− iκψ

)
= 0, ρ = |x|,

uniformly along all directions x/|x|. In practice, it is convenient to reduce the problem to a bounded
domain by introducing an artificial surface. Let Ω be the compact support of the scatterer q(x).
Assume that R > 0 is a constant, such that the support of the scatterer, Ω, is included in the open
ball B = {x ∈ R2 : |x| < R}. Let S be the sphere of the ball, i.e., S = {x ∈ R2 : |x| = R}. Denote
n the outward unit normal to S. A suitable boundary condition then has to be imposed on S. For
simplicity, we employ the first order absorbing boundary condition [16] as

∂nψ − iκψ = 0, on S. (1.5)

Given the incident field ψinc, the direct scattering problem is to determine the scattered field
ψ for the known scatterer q. Based on the Lax–Milgram lemma, the direct problem is shown to
have a unique solution for all but possibly a discrete set of wavenumbers. Furthermore, an energy
estimate for the scattered filed, with a uniform bound with respect to the wavenumber κ, is given in
the case of low frequency. The estimate provides a theoretical basis of the linearization algorithm.
Properties on continuity and Fréchet differentiability of the scattering map are also examined. For
analysis of the direct scattering in open domain, the reader is referred to [1, 8] and references
therein. The relative permittivity or the scatterer is assumed to be constant with a known value
inside inhomogeneities. The inverse obstacle scattering is to determine the number, shapes, sizes
and locations of these inhomogeneities from the measurements of near field current densities, ψ|S,
given the incident field.

Our goal of this work is to present a recursive linearization method that solves the inverse ob-
stacle scattering problem of Helmholtz equation in two dimensions. The reader is referred to [2, 6]
and [3, 4] for recursive linearization approaches for solving inverse medium scattering problems in
two dimensions and three dimensions, respectively. The algorithm requires multi-frequency scatter-
ing data, and the recursive linearization is obtained by a continuation method on the wavenumber
κ. It first solves a linear equation (Born approximation) at the lowest κ, which maybe done by using
the Fast Fourier Transform (FFT). Updates are subsequently obtained by using higher and higher
wavenumber κ from the level set representation. Using the idea of Kaczmarz method [10,11,22,23],
we use partial data to perform the nonlinear Landweber iteration at each stage of the wavenumber
κ. For each iteration, one forward and one adjoint state of the Helmholtz equation are solved.

The level set method was originally developed for describing the motion of curves and surfaces
[25]. Since then, it has found application in a variety of quite different situations [24, 26]. The
idea of using level set representation as part of a solution scheme for inverse problems involving
obstacles can be found in [5,11,15,21,27]. For related results on the inverse obstacle problem, the
reader is referred to [7, 9, 14, 18–20] and references therein. See [8] for an account of the recent
progress on the general inverse scattering problem.

The plan of this paper is as follows. The analysis of the variational problem for direct scattering
is presented in Section 2. The well-posedness of the direct scattering is proved, and important energy
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estimate is given, and the Fréchet differentiability of the scattering map is examined. Section 3
is devoted to the numerical study of the inverse obstacle scattering, and a regularized iterative
linearization algorithm is proposed. Numerical examples are presented in Section 4. The paper is
concluded with some remarks and directions for future research in Section 5.

2 Analysis of the scattering map

For convenience, denote the inner products

(u, v) =

∫
B

u · v̄, and ⟨u, v⟩ =
∫
S

u · v̄,

where the bar denotes the complex conjugate.
To state our boundary value problem, we introduce the bilinear form a : H1(B)×H1(B) → C

a(u, v) = (∇u,∇v)− κ2(εu, v)− iκ⟨u, v⟩,

and the linear functional on H1(B)

b(v) = κ2(qψinc, v).

Then, we have the weak form of the boundary value problem (1.4) and (1.5): Find ψ ∈ H1(B)
such that

a(ψ, ξ) = b(ξ), for all ξ ∈ H1(B). (2.1)

Throughout the paper, C stands for a positive generic constant whose value may change step
by step, but should be always be clear from the contexts.

Lemma 2.1. Given the scatterer q ∈ L∞(B), the direct scattering problem (1.4)–(1.5) has at most
one solution.

Proof. It suffices to show that ψ = 0 in B if ψi = 0 (no source term). From the Green’s formula

0 =

∫
B

(ψ∆ψ̄ − ψ̄∆ψ) =

∫
S

(
ψ∂nψ̄ − ψ̄∂nψ

)
= −2iκ

∫
S

|ψ|2,

we get ψ = 0 on S. The absorbing boundary condition on S yields further that ∂nψ = 0 on S. By
the Holmgren uniqueness theorem, ψ = 0 in R2 \ B. A unique continuation result [17] concludes
that ψ = 0 in B.

Theorem 2.1. If the wavenumber k is sufficiently small, the variational problem (2.1) admits a
unique weak solution in H1(B). Furthermore, it holds the estimate

∥ ψ ∥H1(B)≤ Cκ ∥ q ∥L∞(B)∥ ψinc ∥L2(B), (2.2)

where the constant C is independent of the wavenumber κ.

Proof. Decompose the bilinear form a into a = a1 + κ2a2, where

a1(ψ, ξ) = (∇ψ,∇ξ)− iκ⟨ψ, ξ⟩,
a2(ψ, ξ) = −(εψ, ξ).

3



We conclude that a1 is coercive from

|a1(ψ, ψ)| ≥ C
(
∥ ∇ψ ∥2L2(B) +κ ∥ ψ ∥2L2(S)

)
≥ Cκ ∥ ψ ∥2H1(B), for all ψ ∈ H1(B),

where the last inequality may be obtained by applying standard elliptic estimates [13].
Next we prove the compactness of a2. Define the operator K : L2(B) → H1(B) by

a1(Kψ, ξ) = a2(ψ, ξ), for all ξ ∈ H1(B),

which gives
(∇Kψ,∇ξ)− iκ⟨Kψ, ξ⟩ = −(εψ, ξ), for all ξ ∈ H1(B).

Using the Lax–Milgram lemma, it follows that

∥ Kψ ∥H1(B)≤ Cκ−1 ∥ ψ ∥L2(B), (2.3)

where the constant C is independent of k. Thus K is bounded from L2(B) to H1(B), and H1(B)
is compactly imbedded into L2(B). Hence K : L2(B) → L2(B) is a compact operator.

Define a function u ∈ L2(B) by requiring u ∈ H1(B) and satisfying

a1(u, ξ) = b(ξ), for all ξ ∈ H1(B).

It follows from the Lax–Milgram lemma again that

∥ u ∥H1(B)≤ Cκ ∥ q ∥L∞(B)∥ ψinc ∥L2(B) . (2.4)

Using the operator K, we can see that the problem (2.1) is equivalent to find ψ ∈ L2(B) such that

(I + κ2A)ψ = u. (2.5)

When κ is sufficiently small, the operator I +κ2K has a uniformly bounded inverse. We then have
the estimate

∥ ψ ∥L2(B)≤ C ∥ u ∥L2(B), (2.6)

where the constant C is independent of κ.
Rearranging (2.5), we have ψ = u − κ2Kψ, so ψ ∈ H1(B) and, by the estimate (2.3) for the

operator K, we have
∥ ψ ∥H1(B)≤∥ u ∥H1(B) +Cκ ∥ ψ ∥L2(B) .

The proof is completed by combining (2.6) and (2.4).

Remark 2.1. The energy estimate of the scattered field (2.2) provides a criterion for weak scat-
tering. From this estimate, it is easily seen that fixing any two of the three quantities, i.e., the
wavenumber κ, the compact support of the scatterer Ω, and the L∞(B) norm of the scatterer, the
scattering is weak when the third one is small. Especially, for the given scatterer q(x), i.e., the
norm and the compact support are fixed, the scattering is weak when the wavenumber κ is small.

Remark 2.2. For a general wavenumber κ, from the equation (2.5), the existence follows from
the Fredholm alternative and the uniqueness result. However, the constant C in the estimate (2.2)
depends on the wavenumber.
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For a given scatterer q and an incident field ψinc, we define the map S(q, ψinc) by ψ = S(q, ψinc),
where ψ is the solution of the problem (1.4)–(1.5) or the variational problem (2.1). It is easily seen
that the map S(q, ψinc) is linear with respect to the incident field ψinc but is nonlinear with respect
to q. Hence, we may denote S(q, ψinc) by S(q)ψinc.

Concerning the map S(q), we have the following regularity results. Corollary 2.1 gives the
boundedness of S(q) and directly follows from Theorem 2.1; while a continuity result for the map
S(q) is presented in Lemma 2.2.

Corollary 2.1. Given q ∈ L∞(B), the scattering map S(q) is a bounded linear map from L2(B)
to H1(B). Moreover, there is a constant C depending on κ and B such that

∥ S(q)ψinc ∥H1(B)≤ C ∥ q ∥L∞(B)∥ ψinc ∥L2(B) . (2.7)

Lemma 2.2. Assume that q1, q2 ∈ L∞(B). Then

∥ (S(q1)− S(q2))ψ
inc ∥H1(B)≤ C ∥ q1 − q2 ∥L∞(B)∥ ψinc ∥L2(B), (2.8)

where the constant C depends on κ,B, and the bound of q2.

Proof. Let ψ1 = S(q1)ψ
inc and ψ2 = S(q2)ψ

inc. It follows that for j = 1, 2

∆ψj + κ2(1 + qj)ψj = −k2qjψinc.

By setting w = ψ1 − ψ2, we have

∆w + κ2(1 + q1)w = −κ2(q1 − q2)(ψ
inc + ψ2).

The function w also satisfies the boundary condition (1.5).
We repeat the procedure in the proof of Theorem 2.1 to obtain

∥ w ∥H1(B)≤ C ∥ q1 − q2 ∥L∞(B)∥ ψinc + ψ2 ∥L2(B) .

Using Corollary 2.1 for ψ2 yields

∥ ψ2 ∥H1(B)≤ C ∥ q2 ∥L∞(B)∥ ψinc ∥L2(B),

which gives
∥ (S(q1)− S(q2))ψ

inc ∥H1(B)≤ C ∥ q1 − q2 ∥L∞(B)∥ ψinc ∥L2(B),

where the constant C depends on B, κ, and the bound of q2.

Let γ be the restriction (trace) operator to the boundary S. By the trace theorem, γ is a bounded
linear operator from H1(B) onto H1/2(S). We can now define the scattering map M(q) = γS(q).
Next is to consider the Fréchet differentiability of the scattering map.

Recall the map S(q) is nonlinear with respect to q. Formally, by using the first order perturba-
tion theory, we obtain the linearized scattering problem of (1.4)–(1.5) with respect to a reference
scatterer q,

∆v + κ2(1 + q)v = −κ2δq(ψinc + ψ), in Ω, (2.9)

∂nψ − iκv = 0, on S, (2.10)

where ψ = S(q)ψinc.
Define the formal linearization T (q) of the map S(q) by v = T (q)(δq, ψinc), where v is the

solution of the problem (2.9)–(2.10). The following result is concerned with the boundedness for
the map T (q). A proof by be given by following step by step the proofs of Theorem 2.1 and Lemma
2.2. Hence we omit here.
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Lemma 2.3. Assume that q, δq ∈ L∞(B), and ψinc is the incident field. Then v = T (q)(δq, ψinc) ∈
H1(B) with the estimate

∥ T (q)(δq, ψinc) ∥H1(B)≤ C ∥ δq ∥L∞(B)∥ ψinc ∥L2(B), (2.11)

where the constant C depends on κ,B, and q.

The next lemma is concerned with the continuity property of the map.

Lemma 2.4. For any q1, q2 ∈ L∞(B), and an incident field ψinc, the following estimate holds

∥ T (q1)(δq, ψinc)− T (q2)(δq, ψ
inc) ∥H1(B)≤ C ∥ q1 − q2 ∥L∞(B)∥ δq ∥L∞(B)∥ ψinc ∥L2(B), (2.12)

where the constant C depends on κ and B.

Proof. Let vi = T (qi)(δq, ψ
inc), for i = 1, 2. It is easy to see that

∆(v1 − v2) + κ2(1 + q1)(v1 − v2) =

− κ2δq(ψ1 − ψ2)− κ2(q1 − q2)v2,

where ψi = S(qi)ψ
inc.

Similar to the proof of Theorem 2.1, we get

∥ v1 − v2 ∥H1(B)≤ C
(
∥ δq ∥L∞(B)∥ ψ1 − ψ2 ∥H1(B) + ∥ q1 − q2 ∥L∞(B)∥ v2 ∥H1(B)

)
From Corollary 2.1 and Lemma 2.2, we obtain

∥ v1 − v2 ∥H1(B)≤ C ∥ q1 − q2 ∥L∞(B)∥ δq ∥L∞(B)∥ ψinc ∥L2(B),

which completes the proof.

The following result concerns the differentiability property of S(q).

Lemma 2.5. Assume that q, δq ∈ L∞(B). Then there is a constant C dependent of κ and B, for
which the following estimate holds

∥ S(q + δq)ψinc − S(q)ψinc − T (q)(δq, ψinc) ∥H1(B)≤ C ∥ δq ∥2L∞(B)∥ ψinc ∥L2(B) . (2.13)

Proof. By setting ψ1 = S(q)ψinc, ψ2 = S(q + δq)ψinc, and v = T (q)(δq, ψinc), we have

∆ψ1 + κ2(1 + q)ψ1 = −κ2qψinc,

∆ψ2 + κ2(1 + q + δq)ψ2 = −κ2(q + δq)ψinc,

∆v + κ2(1 + q)v = −κ2δqψ1 − κ2δqψinc.

In addition, ψ1, ψ2, and v satisfy the absorbing boundary condition (1.5).
Denote U = ψ2 − ψ1 − v. Then

∆U + κ2(1 + q)U = −κ2δq(ψ2 − ψ1).

Similar arguments as in the proof of Lemma 2.1 gives

∥ U ∥H1(B)≤ C ∥ δq ∥L∞(B)∥ ψ2 − ψ1 ∥H1(B) .

From Lemma 2.1, we obtain further that

∥ U ∥H1(B)≤ C ∥ δq ∥2L∞(B)∥ ψinc ∥L2(B),

which is the estimate.
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Finally, by combining the above lemmas, we arrive at

Theorem 2.2. The scattering map M(q) is Fréchet differentiable with respect to q and its Fréchet
derivative is

DM(q) = γT (q). (2.14)

3 Inverse medium scattering

In this section, a regularized recursive linearization method for solving the inverse obstacle scat-
tering problem of Helmholtz equation in two dimensions is proposed. The algorithm, obtained by
a continuation method on the wavenumber κ, requires multi-frequency scattering data. At each
wavenumber κ, the algorithm determines a forward model which produces the prescribed scatter-
ing data. At low wavenumber κ, the scattered field is weak. Consequently, the nonlinear equation
become essentially a linear one, known as the Born approximation. The algorithm first solves this
nearly linear equation at the lowest κ to obtain low-frequency modes of the true scatterer. The
approximation is then used to linearize the nonlinear equation at the next higher κ to produce a
better approximation which contains more modes of the true scatterer. This process is continued
until a sufficiently high wavenumber κ where the dominant modes of the scatterer are essentially
recovered. At each update, a level set representation is used to keep track of shapes of the scatterer.

3.1 shape reconstruction

We formulate the inverse obstacle scattering as shape reconstruction problem, and cast it in a form
which makes use of the level set representation of the domains. To start with we introduce some
useful notations.

Definition 3.1. Assume that we are given a constant q̃ > 0 and an open ball B ⊂ R2. We call a
pair (Ω, q), which consists of a compact domain Ω ⊂⊂ B and q ∈ L∞(B), admissible if we have

q(x) =

{
q̃, if x ∈ Ω,
0, if x ∈ R2 \ Ω.

In other words, a pair (Ω, q) is admissible if q has a compact support of Ω with preassigned
value q̃ inside. For an admissible pair (Ω, q), and for given q̃, the scatterer q is uniquely determined
by Ω.

It is essential for the success and efficiency of the inverse obstacle scattering to have a good and
flexible way of keeping track of the shape evolution during the reconstruction process. The method
chosen in our reconstruction algorithm is a level set representation of the shapes [27].

Definition 3.2. A function ϕ : R2 → R is called a level set representation of Ω if

ϕ|Ω ≤ 0 and ϕ|R2\Ω > 0. (3.1)

For each function ϕ : R2 → R there is a domain Ω associated with ϕ by (3.1) which is called
scattering domain and denoted as Ω[ϕ]. It is clear that different functions ϕ1, ϕ2, ϕ1 ̸= ϕ2, can be
associated with the same domain Ω[ϕ1] = Ω[ϕ2], but different domains cannot have the same level
set representation. Therefore, we can use the level set representation for specifying a domain Ω by
any one of its associated level set functions. The boundary of a domain Ω[ϕ], represented by the
level set function ϕ, is denoted Γ = ∂Ω[ϕ].
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Definition 3.3. We call a triple (Ω, q, ϕ), which consists of a domain Ω ⊂⊂ B and q, ϕ ∈ L∞(B),
admissible if the pair (Ω, q) is admissible in the sense of Definition 3.1, and ϕ is a level set repre-
sentation of Ω.

For an admissible triple (Ω, q, ϕ), and for given q̃, the pair (Ω, q) is uniquely determined by ϕ.
The shape of the scatterer is then recovered from the representing level set function. We use these
definitions to reformulate our inverse obstacle scattering problem: Given a constant q̃ and boundary
measurements of the scattered field ψ|S. Find a level set function ϕ such that the corresponding
admissible triple (Ω, q, ϕ) reproduces the data.

A continuation method is proposed to recursively determine the triple (Ωk, qk, ϕk) at k =
κ1, κ2, ... with increasing wavenumber. For finding this series, we only need keep track of ϕk and
qk, but not of Ωk. The function qk is need in each step for solving a forward and a corresponding
adjoint problem. The final level set function is used to recover the final shape of the scatterer.

3.2 Born approximation

For starting the shape reconstruction method, an initial guess is needed which is derived from the
Born approximation. Rewrite (1.4) as

∆ψ + κ2ψ = −κ2q(ψinc + ψ), (3.2)

where the incident wave is taken as ψinc = eiκx·d1 . Consider a test function ψ0 = eiκx·d2 , where
d2 ∈ S1. Hence ψ0 satisfies (1.3).

Multiplying (3.2) by ψ0, and integrating over B on both sides, we have∫
B

ψ0∆ψ + κ2
∫
B

ψ0ψ = −κ2
∫
B

q(ψinc + ψ)ψ0.

Integration by parts yields∫
B

ψ∆ψ0 +

∫
S

(
ψ0∂nψ − ψ∂nψ0

)
+ κ2

∫
B

ψ0ψ = −κ2
∫
B

q(ψinc + ψ)ψ0.

We have by noting (1.3) and the boundary condition (1.5)∫
B

q(ψinc + ψ)ψ0 =
1

κ2

∫
S

ψ (∂nψ0 + iκψ0) .

Using the special form of the incident wave and the test function, we then get∫
B

q(x)eiκx·(d1+d2) = iκ−1

∫
S

ψ(n · d2 + 1)eiκx·d2 −
∫
B

qψψ0. (3.3)

From Theorem 2.1, for small wavenumber κ, the scattered field is weak and the inverse scattering
problem becomes essentially linear. Dropping the nonlinear (second) term of the equation (3.3),
we obtain the linearized integral equation∫

B

q(x)eiκx·(d1+d2) = iκ−1

∫
S

ψ(n · d2 + 1)eiκx·d2 , (3.4)

which is the Born approximation.
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Since the scatterer q(x) has a compact support, we use the notation

q̂(ξ) =

∫
B

q(x)eiκx·(d1+d2),

where q̂(ξ) is the Fourier transform of q(x) with ξ = κ(d1 + d2). Choose

dj = (cos θj, sin θj) , j = 1, 2,

where θj is the incident angle. It is obvious that the domain [0, 2π] of θj, j = 1, 2, corresponds
to the ball {ξ : |ξ| ≤ 2κ}. Thus, the Fourier modes of q̂(ξ) in the ball {ξ : |ξ| ≤ 2k} can be
determined. The scattering data with the higher wavenumber κ must be used in order to recover
more modes of the true scatterer.

Define the data

G(ξ) =

{
iκ−1

∫
S
ψ(n · d2 + 1)eiκx·d2 , for |ξ| ≤ 2κ,

0, otherwise.

The linear integral equation (3.4) can be reformulated as∫
R2

q(x)eix·ξdx = G(ξ). (3.5)

Taking the inverse Fourier transform of the equation (3.5) leads to

(2π)−2

∫
R2

e−ix·ξ[∫
R2

q(y)eiy·ξdy
]
dξ = (2π)−2

∫
R2

e−ix·ξG(ξ)dξ.

By the Fubini theorem, we have

(2π)−2

∫
R2

q(y)
[∫

R2

ei(y−x)·ξdξ
]
dy = (2π)−2

∫
R2

e−ix·ξG(ξ)dξ.

Using the inverse Fourier transform of the Dirac Delta function

(2π)−2

∫
R2

ei(y−x)·ξdξ = δ(y − x),

we deduce ∫
R2

q(y)δ(y − x)dy = (2π)−2

∫
R2

e−ix·ξG(ξ)dξ,

which gives

q(x) = (2π)−2

∫
R2

e−ix·ξG(ξ)dξ. (3.6)

In practice, the integral equation (3.6) is implemented by using the Fast Fourier Transform
(FFT). We are now ready to define the initial triple (Ω, q, ϕ).

Choose a threshold value 0 < τ < 1 and define

q0 := τ max
x∈B

|q(x)|.

The level set zero of ϕ is denoted as {x ∈ B : |q(x)| = q0}. This means that all points of B where
the reconstruction |q(x)| has exactly the value q0 are mapped to zero by the level set function ϕ.
The level set function is then defined as

ϕ(x) = σ(q0 − |q(x)|),

where σ is some scaling factor. The initial scattering domain Ω and the scatterer are defined as

Ω = Ω[ϕ], q = Λ(ϕ).

Together with ϕ they form an admissible triple (Ω, q, ϕ).
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3.3 Recursive linearization

As discussed in the previous section, when the wavenumber κ is small, the Born approximation
allows a reconstruction of those Fourier modes less than or equal to 2κ for the function q(x).
We now describe a procedure that recursively determines the triple (Ωk, qk, ϕk) at k = kj for
j = 1, 2, ... with the increasing wavenumber. At each stage of the wavenumber κ, using the idea
of Kaczmarz method, we use partial data, corresponding to one incident wave, to perform the
nonlinear Landweber iteration. Suppose now that the pair (Ωk̃, qk̃) has been recovered at some
wavenumber κ̃, and that κ > 0 is slightly larger than κ̃. Since only the ϕk and qk need to be kept
track, we wish to determine the ϕk and qk, or equivalently, to determine the perturbation

δϕ = ϕk − ϕk̃, and δq = qk − qk̃.

For the reconstructed scatterer qk̃, we solve at the wavenumber κ the forward scattering problem

∆ψ̃ + κ2(1 + qk̃)ψ̃ = −κ2qk̃ψ
inc
j , (3.7)

∂nψ̃ − iκψ̃ = 0, (3.8)

where ψinc
j is the incident wave with the incident angle θj = 2πj/J, j = 1, 2, ..., J . For the scatterer

qk, we have

∆ψ + κ2(1 + qk)ψ = −κ2qkψinc
j , (3.9)

∂nψ − iκψ = 0. (3.10)

Subtracting (3.7), (3.8) from (3.9), (3.10) and omitting the second-order smallness in δq and in
δψ = ψ − ψ̃, we obtain

∆δψ + κ2(1 + qk̃)δψ = −κ2δq(ψinc
j + ψ̃), (3.11)

∂nψ − iκδψ = 0. (3.12)

For the scatterer qk, and the incident wave ψinc
j , we define the map S(qk, ψ

inc
j ) by

S(qk, ψ
inc
j ) = ψ,

where ψ is the scattering data at the wavenumber k . Let γ be the trace operator to the boundary
S. Define the scattering map

M(qk, ψ
inc
j ) = γS(qk, ψ

inc
j ).

For simplicity, denote M(qk, ψ
inc
j ) by Mj(qk). By the definition of the trace operator, we have

Mj(qk) = ψ|S.

Let DMj(qk̃) be the Fréchet derivative of Mj(qk), and denote the residual operator

Rj(qk̃) = ψ|S − ψ̃|S.

It follows from Theorem 2.2 that
DMj(qk̃)δq = Rj(qk̃). (3.13)

Given a constant q̃. Then, with each level set function ϕ a uniquely determined scatterer Λ(ϕ)
is associated by putting

Λ(ϕ)(x) =

{
q̃, for ϕ(x) ≤ 0,
0, for ϕ(x) > 0.

10



In [27], it is shown that the infinitesimal response δq in the scatterer q(x) to an infinitesimal change
δϕ(x) of the level set function ϕ(x) has the form

δq(x) = −q̃ δϕ(x)

|∇ϕ(x)|

∣∣∣∣
x∈∂Ω[ϕ]

.

The Fréchet derivative of Λ is then defined [11]

[DΛ(ϕ)δϕ](x) = −q̃ δϕ(x)

|∇ϕ(x)|
δΓ(x),

where δΓ(x) denotes the Dirac delta distribution concentrated on Γ = ∂Ω[ϕ].
Define the forward operator

Fj(ϕ) =Mj(Λ(ϕ)) = ψ|S, (3.14)

where ψ is the scattered field with scatterer Λ(ϕ). It is easily seen that the Fréchet derivative of
the forward operator can be expressed as

DFj(ϕ)δϕ = DMj(Λ(ϕ))DΛ(ϕ)δϕ,

which gives by noting (3.13)
DFj(ϕ)δϕ = Rj(Λ(ϕ)). (3.15)

Using the Landweber iteration of (3.15) yields

δϕ = βkDF
∗
j (ϕ)R(Λ(ϕ)),

which gives
δϕ = βkDΛ∗(ϕ)DM∗

j (Λ(ϕ))Rj(Λ(ϕ)), (3.16)

where βk is a relaxation parameter.
In order to calculate (3.16), we will need practically useful expressions for the adjoint of the

Fréchet derivatives. First, a simple calculation gives the following theorem.

Theorem 3.1. The adjoint operator DΛ∗(ϕ) is given by

[DΛ∗(ϕ)δq] (x) = −q̃ δq

|∇ϕ|
δΓ(x). (3.17)

Theorem 3.2. Given residual Rj(qk̃), there exits a function φj such that the adjoint Fréchet
derivative DM∗

j (qk̃) satisfies[
DM∗

j (qk̃)Rj(qk̃)
]
(x) = k2

(
ψ̄inc
j (x) + ¯̃ψ(x)

)
φj(x), (3.18)

where the bar denotes the complex conjugate, ϕinc
j is the incident wave with incident angle θj, and

ψ̃j is the solution of (3.7), (3.8) with the incident wave ψinc
j .

Proof. Let ψ̃j be the solution of (3.7), (3.8) with the incident wave ψinc
j . Consider the equations as

follows

∆δψ + κ2(1 + qk̃)δψ = −κ2δq(ψinc
j + ψ̃), (3.19)

∂nδψ − iκδψ = 0. (3.20)
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and the adjoint equations

∆φj + κ2(1 + qk̃)φj = 0, (3.21)

∂nφj + iκφj = Rk(qk̃). (3.22)

The existence and uniqueness of the weak solution for the adjoint equations follow from the same
proof of Corollary 2.1, we omit here.

Multiplying equation (3.19) with the complex conjugate of φj, integrating over B on both sides,
we obtain ∫

B

φ̄j∆δψ + κ2
∫
B

(1 + qk̃)δψφ̄j = −κ2
∫
B

δq
(
ψinc
j + ψ̃

)
φ̄j.

Integration by parts yields∫
S

(
φ̄j∂nδψ − δψ∂nφj

)
= −κ2

∫
B

δq
(
ψinc
j + ψ̃

)
φ̄j.

Using the boundary condition (3.20), we deduce∫
S

δψ
(
∂nφj − iκφ̄j

)
= κ2

∫
B

δq
(
ψinc
j + ψ̃

)
φ̄jdx

It follows from (3.13), and the boundary condition (3.22)∫
S

[
DMj(qk̃)δq

]
Rj(qk̃) = κ2

∫
B

δq
(
ψinc
j + ψ̃

)
φ̄j

We know from the adjoint operator DM∗
j (qk̃)∫

B

δqDM∗
j (qk̃)Rj(qk̃) = κ2

∫
B

δq
(
ψinc
j + ψ̃

)
φ̄j.

Since it holds for any δq, we have

DM∗
j (qk̃)Rj(qk̃) = κ2

(
ψinc
j + ψ̃

)
φ̄j.

Taking the complex conjugate of the above equation yields the result.

Finally, combining Theorems 3.1 and 3.2, It follows that (3.16) can be rewritten as

δϕ = −q̃κ2βk
(ψ̄inc

j + ¯̃ψj)φj

|∇ϕ|
δΓ(x). (3.23)

In practice, for a given level set function ϕ, let Γ = ∂Ω[ϕ] and Bρ(Γ) = ∪y∈ΓBρ(y) a small finite
width neighborhood of Γ. In our numerical experiment, the constant ρ is chosen about 2-3 grid
cells. Equation (3.23) is updated with

δϕ = −q̃κ2βk
(ψ̄inc

j + ¯̃ψj)φj

|∇ϕ|
χBρ(Γ)(x), (3.24)

where βk is some suitable parameter and χBρ(Γ)(x) is defined as

χBρ(Γ)(x) =

{
1, for x ∈ Bρ(Γ),
0, for R2 \Bρ(Γ).

12



Table 1: Recursive linearization reconstruction algorithm.

1 Initialization
2 k = k0
3 (Ωk0 , qk0 , ϕk0) given from the Born approximation
4 Reconstruction loop
5 do k = kmin : kmax march over wavenumber
6 do j = 1 : J perform J sweeps for incident angles

7 δϕjk = −q̃κ2βk
(ψ̄inc

j +
¯̃
ψj)φj

|∇ϕjk|
χBρ(Γ)

8 ϕjk := ϕjk + δϕjk
9 qjk := Λ(ϕjk)
10 end do
11 ϕk := ϕJk
12 qk := Λ(ϕk)
13 end do
13 (Ω, q, ϕ) := (Ωkmax , qkmax , ϕkmax) final reconstruction

So for each incident wave with incident angel θj, we have to solve one forward problem (3.7),
(3.8), and one adjoint problem (3.21), (3.22). Since the adjoint problem has a similar variational
form with the forward problem. Essentially, we need to compute two forward problems at each
sweep. Once δϕj is determined, ϕη̃ is updated by ϕk̃+ δϕj. After completing the Jth sweep, we get
the reconstructed level set function ϕη at the spatial frequency η. Then, the scatterer is updated
by qk = Λ(ϕk).

Remark 3.1. For a fixed wavenumber κ, the stopping index of nonlinear Landweber iteration (3.16)
could be determined from the discrepancy principle. However, in practice, it is not necessary to
do many iterations. Numerical results show that the iterative process for different incident angles
ϕj, j = 1, ...,m, is sufficient to obtain reasonable accuracy.

The recursive linearization for shape reconstruction of inverse medium scattering can be sum-
marized in Table 1.

4 Numerical experiments

In this section, we discuss the numerical solution of the forward scattering problem, and the com-
putational issues of the recursive linearization algorithm.

As for the forward solver, we adopt the Finite Element Method (FEM). As we know, the FEM
usually leads to a sparse matrix. The sparse large-scale linear system can be most efficiently solved
if the zero elements of coefficient matrix are not stored. We used the commonly used Compressed
Row Storage (CRS) format which makes no assumptions about the sparsity structure of the matrix,
and does not store any unnecessary elements. In fact, from the variational formula of our direct
problem (2.1), the coefficient matrix is complex symmetric. Hence, only the lower triangular portion
of the matrix needs be stored. Regarding the linear solver, both BiConjugate Gradient (BiCG)
and Quasi-Minimal Residual (QMR) algorithms with diagonal preconditioning are tried to solve
the sparse, symmetric, and complex system of the equations, with the QMR more efficient.

In the following, we present three numerical examples where the number of incident wave J = 10
and the relaxation parameter βk = 0.1/κ. For stability analysis, some relative random noise is added
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to the date, i.e., the electric field takes the form

ψ|S := (1 + σ rand)ψ|S.

Here, rand gives normally distributed random numbers in [−1, 1], and σ is a noise level parameter,
taken to be 0.02 in our numerical experiments.

Example 1. Reconstruct a U-shaped scatterer in the domain D = [−1, 1] × [−1, 1]. Figure
1 shows the exact scatterer and the evolution of reconstructions at different wavenumbers varying
from the Born approximation with wavenumber κ = 1.0 to highest wavenumber κ = 7.0. As can be
seen, better reconstructions are obtained when higher wavenumber is used for the inversion. Under
the lowest wavenumber, the Born approximation can only generate an average of the scatterer;
no detailed features are able to be resolved. The concave part of the scatterer can be gradually
resolved by using higher and higher wavenumbers; while the concave part of the scatterer can not be
fully recovered at the low wavenumber. This result may be explained by Heisenberg’s uncertainty
principle [6]. We point out that the method is not sensitive to the noise and the step size of the
wavenumber, which suggests that large step size of the wavenumber may be used to speed up the
convergence. Figure 2 shows the negative of the level set function −ϕ, which clearly presents the
U shape of the reconstructed scatterer.

Example 2. Reconstruct a cross-shaped scatterer in the domain D = [−1, 1]× [−1, 1]. Figure
3 shows the exact scatterer and the evolution of reconstructions at different wavenumbers varying
from the Born approximation with wavenumber κ = 1.0 to highest wavenumber κ = 7.0. Similarly,
better reconstructions are obtained when higher wavenumber is used for the inversion. Under the
lowest wavenumber, the Born approximation can only generate an average of the scatterer; no
detailed features are able to be resolved. The cross shape the scatterer can be gradually resolved
by using higher and higher wavenumbers. Figure 4 shows the negative of the level set function −ϕ,
which clearly presents the cross shape of the reconstructed scatterer.

Example 3. Finally, we consider a scatterer which has three disjoint components. This scat-
terer is difficult to recover due to the three nearby components. Again, Figure 5 shows the exact
scatterer and the evolution of reconstructions at different wavenumbers varying from the Born
approximation with wavenumber κ = 1.0 to highest wavenumber κ = 7.0. Similarly, better recon-
structions are obtained when higher wavenumber is used for the inversion and three components
can be separated. Under the lowest wavenumber, the Born approximation can only generate an av-
erage of the scatterer; the three disjoint parts can not be resolved. The three parts of the scatterer
can be gradually separated by using higher and higher wavenumbers. Figure 6 shows the negative
of the level set function −ϕ, which clearly presents the three parts of the reconstructed scatterer.

5 Concluding remarks

A new continuation method with respect to the spatial frequency of the evanescent plane waves
is presented. The recursive linearization algorithm is robust and efficient for solving the inverse
medium scattering with the fixed frequency scattering data. Finally, we point out two important
future directions along the line of this work. The first is concerned with the convergence analysis.
Although our numerical experiments demonstrate the convergence and stability of the inversion
algorithm, its analysis needs to be done. Another important project is to consider the case of data
with partial measurements at fixed frequency. Without the full measurements, the ill-posedness
and nonlinearity of the inverse problem becomes more severe, which will be reported else where.
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Figure 1: Evolution of scatterer in Example 1. Left column from top to bottom: true scatterer;
Born approximation; reconstruction at κ = 2.5; right column from top to bottom: reconstruction
at κ = 4.0; reconstruction at κ = 5.5; reconstruction at κ = 7.0..
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Figure 2: Final level set function −ϕ for Example 1.
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Figure 6: Final level set function −ϕ for Example 3.
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