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Apology

There is time only for the theory, and not applications, such as:

• resolution of singularities of 2-dimensional schemes,

• Briançon-Skoda theorems,

• Cohen-Macaulayness in graded algebras,

+ many, many more. . .
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1 Cohomology with supports.

Local cohomology

• R: a commutative ring

• M(R): the category of R-modules.

• I: an R-ideal.

ΓIM := {m ∈M | for some s > 0, Ism = 0 },

viewed as a subfunctor of the identity functor of M(R).

Choose for each M ∈M(R) an injective resolution, i.e., a complex of injective R-modules

E•M : · · · → 0→ 0→ E0
M → E1

M → E2
M → · · ·

together with an R-homomorphism M → E0
M such that the sequence

0→M → E0
M → E1

M → E2
M → · · ·

is exact.

Then define the local cohomology modules

Hi
IM := Hi(ΓIE

•
M ) (i ∈ Z).

Each Hi
I may be viewed as a functor from M(R) to M(R),

a higher derived functor of ΓI ∼= H0
I .

To each “short” exact sequence of R-modules

(σ) : 0→M ′ →M →M ′′ → 0

there are naturally associated connecting R-homomorphisms

δiI(σ) : Hi
IM
′′ → Hi+1

I M ′ (i ∈ Z),

varying functorially (in the obvious sense) with the sequence (σ), and such that the resulting
“long” cohomology sequence

· · · → Hi
IM
′ → Hi

IM → Hi
IM
′′ δi−→ Hi+1

I M ′ → Hi+1
I M → · · ·

is exact.
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A sequence of functors (Hi
∗)i≥0, in which H0

∗ is left-exact, together with connecting maps δi∗ taking short
exact sequences functorially to long exact sequences, as above, is called a cohomological functor.

Local cohomology is characterized up to canonical isomorphism as being a universal cohomological extension
of ΓI—there is a functorial isomorphism H0

I
∼= ΓI , and for any cohomological functor (Hi

∗, δ
i
∗), every functorial

map φ0 : H0
I → H0

∗ has a unique extension to a family of functorial maps (φi : Hi
I → Hi

∗) such that for any
short exact (σ) as above,

Hi
I(M

′′)
δiI(σ)−−−−→ Hi+1

I (M ′)

φi(M ′′)

y yφi+1(M ′)

Hi
∗(M

′′) −−−−→
δi∗(σ)

Hi+1
∗ (M ′)

commutes for all i ≥ 0.
Like considerations apply to any left-exact functor on M(R).
Example 1 (Hom and Ext). For a fixed R-module N the functors

ExtiR(N,M) := HiHomR(N,E•M ) (i ≥ 0)

with their standard connecting homomorphisms form a universal cohomological extension of HomR(N,−).

From ΓIE
•
M = lim−→s>0 HomR(R/Is, E•M ) one gets the canonical identification of cohomological functors

Hi
IM = lim

s>0
−→ExtiR(R/Is, M).

Local cohomology has a global analogue:
Example 2 (Cohomology with supports). For an abelian sheaf M on a topological space X, and a closed
Z ⊂ X, let ΓZ(X,M) be the sheaf associating to an open U ⊂ X the group

ΓZ(M)(U) := {m ∈M(U) | m vanishes on U \ Z }.

The universal cohomological extension of the functor ΓZ is the sequence (Hi
Z)i≥0—cohomology sheaves

supported in Z.
When we restrict to quasi-coherent sheaves over schemes, with Z defined by the quasi-coherent ideal I, then

ΓZ(M)(U) = {m ∈M(U) | for some s > 0, Ism = 0 }

2 Generalization to complexes.

Terminology:

An R-complex C• = (C•, d•) is a sequence of R-module maps

· · · d
i−2

−−−→ Ci−1 di−1

−−−→ Ci
di−−→ Ci+1 di+1

−−−→ · · · (i ∈ Z)

such that didi−1 = 0 for all i. (The differential d• is often omitted in the notation.)

The i-th cohomology HiC• is ker(di)/im(di−1).

The translation (or suspension) C[1]• of C• is the complex such that

C[1]i := Ci+1 and diC[1] : C[1]i → C[1]i+1 is −di+1
C : Ci+1 → Ci+2.

Clearly, Hi(C[1]•) = Hi+1(C•).

3



Terminology (ct’d).

A map of R-complexes ψ : (C•, d•)→ (C•∗ , d
•
∗) is a family of R-homomorphisms (ψi : Ci → Ci∗)i∈Z such that

ψi+1di = di∗ψ
i for all i.

· · · −−−−→ Ci
di−−−−→ Ci+1 di+1

−−−−→ · · ·

ψi
y yψi+1

· · · −−−−→ Ci∗ −−−−→
di∗

Ci+1
∗ −−−−→

di+1
∗

· · ·

Such a map induces R-homomorphisms Hi(ψ) : HiC• → HiC•∗ .
ψ is a quasi-isomorphism if Hi(ψ) is an isomorphism for all i ∈ Z.

Homotopy.

A homotopy between R-complex maps ψ1 : C• → C•∗ and ψ2 : C• → C•∗ is a family of R-homomorphisms
(hi : Ci → Ci−1

∗ ) such that
ψi1 − ψi2 = di−1

∗ hi + hi+1di (i ∈ Z).

· · · −−−−→

←−−
−−−
−
Ci

di−−−−→

←−−
−−−
−
Ci+1 −−−−→ · · ·

hi ψi1−
yψi2 hi+1

· · · −−−−→ Ci−1
∗ −−−−→

di−1
∗

Ci∗ −−−−→ · · ·

ψ1 and ψ2 are homotopic if such hi exist. This is an equivalence relation, preserved by addition and
composition of maps.
Hence the R-complexes are the objects of an additive category K(R) whose morphisms are the homotopy-
equivalence classes.

Cohomology functors.

Homotopic maps induce identical maps on homology. So it is clear what a quasi-isomorphism in K(R) is.

Each Hi can be thought of as a functor from K(R) to M(R), taking quasi-isomorphisms to isomorphisms.

q-injective complexes.

An R-complex C• is q-injective if any quasi-isomorphism ψ : C• → C•∗ has a left homotopy-inverse, i.e.,
∃ψ∗ : C•∗ → C• such that ψ∗ψ is homotopic to the identity map of C•.

Equivalently:

(#): for any K(R)-diagram
C•∗

quasi-isomorphism ψ

x
X• −−−−→

φ
C•

there exists a unique φ∗ : C•∗ → C• such that φ∗ψ = φ.

q-injectivity is often called K-injectivity. (“q” connotes “quasi-isomorphism.”)
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Example 3. Any bounded-below injective complex C• (i.e., Ci is an injective R-module for all i, and Ci = 0
for i� 0) is q-injective.

And if C• vanishes in all but one degree, say Cj 6= 0, then C• is q-injective ⇐⇒ this Cj is an injective
R-module.

q-injective resolutions.

A q-injective resolution of an R-complex C• is a quasi-isomorphism C• → E• with E• q-injective.

Such exists for any C•, with E• the total complex of an injective Cartan-Eilenberg resolution of C•.

Example 4. An injective resolution of an R-module M is a q-injective resolution of the complex M• such
that M 0 = M and M i = 0 for all i 6= 0.

In fact a q-injective resolution exists for any complex in an arbitrary Grothendieck category, i.e., an abelian
category with exact direct limits and having a generator. In this generality—for example, in categories of
abelian sheaves on topological spaces—Cartan-Eilenberg resolutions don’t suffice.

Local (hyper)cohomology

After choosing for each R-complex C• a specific q-injective resolution C• → E•C , we can define the local
cohomology modules of C•:

Hi
IC
• := Hi(ΓIE

•
C) (i ∈ Z).

(#) above =⇒ for any K(R)-diagram with ψ1, ψ2 q-injective resolutions,

C•1
ψ1−−−−→ E•C1

φ

y
C•2 −−−−→ψ2

E•C2

there is a unique φ∗ : E•C1
→ E•C2

in K(R) such that φ∗ψ1 = ψ2φ.

Hence Hi
I can be viewed as a functor from K(R) to M(R), independent (up to canonical isomorphism) of

choice of resolution, and taking quasi-isomorphisms to isomorphisms.

Long exact sequences

It will be explained below, in the context of derived categories, how a short exact sequence of complexes in
M(R), i.e., a sequence C•1 → C• → C•2 with 0→ Ci1 → Ci → Ci2 → 0 exact for every i,
gives rise functorially to connecting maps

Hi(C•2 ) −→ Hi+1(C•1 ) (i ∈ Z)

such that the resulting functorial cohomology sequence

· · · → Hi
IC
•
1 → Hi

IC
• → Hi

IC
•
2 → Hi+1

I C•1 → Hi+1
I C• → · · ·

is exact.
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(Hyper)Ext

Similar considerations lead to the definition of Ext functors of complexes:

ExtiR(D•, C•) := HiHom•R(D•, E•C) (i ∈ Z)

where for two R-complexes (X•, d•X), (Y •, d•Y ),

the complex Hom•R(X•, Y •) is given in degree n by

Homn
R(X•, Y •) :=

{
families of R-homomorphisms f = (fj : Xj →Y j+n)j∈Z

}
with differential dn : Homn

R(X•, Y •)→ Homn+1
R (X•, Y •) specified by

(dnf)j := dj+nY ◦fj − (−1)nfj+1◦d
j
X (j ∈ Z).

Xj+1
fj+1

// Y j+1+n

Xj

djX

OO

(dnf)j
88qqqqqqqqqqq

fj
// Y j+n

dj+nY

OO

Local cohomology and Ext (hyper)

As before, from ΓIE
•
C = lim−→s>0 HomR(R/Is, E•C) one gets the canonical identification, compatible with

connecting maps,
Hi
IC
• = lim

s>0
−→ExtiR(R/Is, C•)

where R/Is is thought of as a complex vanishing outside degree 0.

3 Derived categories.

View relations among homologies as shadows of a more basic reality involving complexes (cf. Plato).
Leads to derived category D(R) of M(R) (or in general, of any abelian category):

1. Factor out homotopy (which respects homology), i.e., start with K(R).
2. Make quasi-isomorphisms into isomorphisms (since they “preserve” homology), by formally adjoining
an inverse for each such map. (Cf. localization in commutative algebra.)

Get a new category D(R), same objects as K(R), but a morphism C → C ′ is an equivalence class,
denoted f/s, of K(R)-diagrams C s←− X f−→ C ′ with s a quasi-isomorphism, the equivalence relation being
the least such that f/s = fs1/ss1 for all f , s, and quasi-isomorphisms s1 : X1→X.

For details, in particular how to compose “fractional morphisms,” see, e.g., the reference notes.
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Characterization of D(R) by a universal property.

∃ a canonical functor Q : K(R)→ D(R) taking any complex to itself, and the K(R)-map f : C → C ′ to the
D(R)-map f/1C (1C := identity of C).
Q takes any quasi-isomorphism f to an isomorphism: (f/1C)−1 = 1C/f .
(D(R), Q) has the following universal property:

For any category L, F 7→ F ◦ Q is an isomorphism of the category of functors from D(R) to L onto the
category of functors from K(R) to L that take quasi-isomorphisms to isomorphisms.

(If F : K(R)→ L takes quasi-isomorphisms to isomorphisms then the corresponding functor FD : D(R)→ L
satisfies FD(f/s) = F (f)◦F (s)−1.)
D(R) has a unique additive-category structure such that Q is additive.
To add two maps f1/s1 , f2/s2 with same source and target, rewrite them with a common denominator—
always possible—then add the numerators.
The universal property of (D(R), Q) stays valid when restricted to additive functors into additive categories.

Cohomology functors from D(R) to M(R).

Example 5. The cohomology functors Hi take quasi-isomorphisms to isomorphisms and may therefore be
viewed as additive functors from D(R) to M(R).

Then, in accordance with the initial motivation, one has

A D(R)-map α is an isomorphism ⇐⇒ the homology maps Hi(α) (i ∈ Z) are all isomorphisms.

Example 6. If T : K(R) → K(R) is the functor taking C to C[1], then T respects homotopy and takes
quasi-isomorphisms to isomorphisms (since HiC[1] = Hi+1C), whence QT takes quasi-isomorphisms to
isomorphisms.
The universal property ensures there is a functor T : D(R)→ D(R) taking C to C[1] (i.e., TQ = QT ).

More examples

One can embed M(R) into D(R):

Example 7. The functor taking any R-module M to the complex that is M in degree zero and 0 elsewhere,
and doing the obvious thing to R-module maps, is an equivalence of M(R) with the full subcategory of D(R)
having as objects the complexes with homology vanishing in all nonzero degrees.
A quasi-inverse for this equivalence is given by the functor H0.

Example 8. When R is a field, any R-complex (C•, d•) is D(R)-isomorphic to

· · · 0−→ Hi−1C
0−→ HiC

0−→ Hi+1C
0−→ · · ·

Hence, the functor C 7→ ⊕i∈Z HiC from D(R) to graded R-vector spaces
is an equivalence of categories.
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4 Triangles.

As we’ve seen, exact sequences of complexes play an important role in the discussion of derived functors.
But D(R) is not an abelian category, so it does not support a notion of exactness.
Instead, D(R) carries a supplementary structure given by certain diagrams of the form E → F → G→ E[1],
called triangles, occasionally represented in the typographically inconvenient form

G
+

��~~
~~

~~
~

E // F

__@@@@@@@

Mapping cone

Specifically, triangles—in K(R) or D(R)—are those diagrams which are isomorphic (in the obvious sense)
to diagrams of the form

X
α−→ Y ↪→ Cα � X[1]

with α an ordinary map of R-complexes and Cα the mapping cone of α: as a graded group, Cα := Y ⊕X[1],
and the differential Cnα → Cn+1

α is
the sum of the differentials dnY and dnX[1], plus αn+1 : Xn+1 → Y n+1.

Cn+1
α Y n+1 ⊕ Xn+2

Cn+1
α

dCα

OO

Y n

dY

OO

⊕ Xn+1

−dX

OO

α

ccGGGGGGGGG

Long exact sequence of a triangle

For any exact sequence

0→ X
α−→ Y

β−→ Z → 0 (τ)

of R-complexes, the composite map of graded groups Cα � Y
β−→ Z turns out to be a quasi-isomorphism of complexes,

and so becomes an isomorphism in D(R). Thus we get a D(R)-triangle

X → Y → Z → X[1].

Up to isomorphism, these are all the triangles in D(R).

Applying the i-fold translations T i (i ∈ Z) to a triangle

E → F → G→ E[1] (4)

and then taking homology, one gets a long homology sequence

· · · → HiE → HiF → HiG→ HiE[1] = Hi+1E → · · ·

This sequence is exact, as one need only verify for mapping cones.

If (4) is the triangle coming from the exact sequence (τ), then this homology sequence is, after multiplication
of the connecting maps HiG→ Hi+1E by −1, just the usual long exact sequence associated to (τ).
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Triangle-preserving functors

Let A1, A2 be abelian categories. From these, one gets triangulated derived categories D(A1), D(A2),
in the same way as D(R) from M(R).
Denote the respective translation functors by T1 , T2.
A ∆-functor Φ: D(A1) → D(A2) is an additive functor which “preserves translation and triangles,” in the
following sense:

Φ comes equipped with a functorial isomorphism

θ : ΦT1 −→∼ T2Φ

such that for any triangle
E

u−→ F
v−→ G

w−→ E[1] = T1E

in D(A1), the corresponding diagram

ΦE Φu−−→ ΦF Φv−−→ ΦG θ◦Φw−−−−→ (ΦE)[1] = T2ΦE

is a triangle in D(A2).

Summary

The derived-category functors that appear in what follows can always be equipped in some natural way with
a θ making them into ∆-functors.

If Φ: D(A1)→ D(A2) is a ∆-functor, then to any short exact sequence of complexes in A1

0→ X
α−→ Y

β−→ Z → 0 (τ1)

there is naturally associated a long exact homology sequence in A2

· · · → Hi(ΦX)→ Hi(ΦY )→ Hi(ΦZ)→ Hi+1(ΦX)→ · · · ,

that is, the homology sequence of the triangle in D(A2) gotten by applying Φ to the triangle given by (τ1).

5 Right-derived functors. RHom and Ext.

Local cohomology as a ∆-functor

Here’s an example of lifting focus from homology functors to ∆-functors.

Example 9. For each R-complex C, choose a q-injective resolution qC : C → EC . Set

RΓIC := ΓIEC .
Then

Hi
IC = HiRΓIC.

The point is that RΓI can be made into a ∆-functor from D(R) to D(R).
For, q-injective resolutions are D(R)-isomorphisms, whence any D(R)-map φ/ψ : C → C ′ is isomorphic
to a D(R)-map Φ/Ψ: EC → EC′ ; and the characterization (#) of q-injectivity implies that taking φ/ψ to
ΓIΦ/ΓIΨ: RΓIC → RΓIC

′ is a well-defined operation. This operation respects identities and composition,
making RΓI into a functor.
The ∆-structure on RΓI is left to the reader,
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5. Right-derived functors

Elaborating on the preceding example, extend ΓI to a ∆-functor from K(R) to K(R). (Recall, triangles
in K(R) are diagrams isomorphic to those coming from mapping cones, which are preserved by additive
functors.)
There is a ∆-functorial (i.e., commuting with the respective ∆-structures) map ζ : QΓI → RΓIQ such that
for each C ∈ K(R),

ζ(C) = QΓI(qC) : ΓIC → ΓIEC .

The pair (RΓI , ζ) is a right-derived ∆-functor of ΓI , characterized up to canonical isomorphism by the
initial-object property:
every ∆-functorial map QΓI → Γ, where Γ: K(R) → D(R) takes quasi-isomorphisms to isomorphisms,
factors uniquely as QΓI −→ζ RΓIQ→ Γ.

Informally, among such Γ, RΓIQ is the one nearest (on the right) to QΓI .
Similarly, one has via q-injective resolutions a right-derived (RF, ζF ) for any ∆-functor F : K(R)→ K(R).
Such F arise most often as extensions of additive functors from M(R) to M(R).

RHom and Ext

In the foregoing, ΓI can be replaced by any additive functor between arbitrary abelian categories—though
for existence one needs further assumptions, for example that the source be a Grothendieck category.

Example 10. For any R-complex D one has the functor RHom•R(D,−) with

RHom•R(D,C) = Hom•R(D, EC)

and then,
ExtiR(D,C) = HiRHom•R(D,C).

With some caution regarding signs, RHom•R(D,C) can also be made into a contravariant ∆-functor in the
first variable.

Exts as derived-category maps

Another characterization of q-injectivity of an R-complex E is that

for every R-complex D the natural map is an isomorphism

HomK(R)(D, E) −→∼ HomD(R)(D, E).

Example 11. There are simple natural isomorphisms

HiHom•(D, C) ∼= H0Hom•(D, C[i]) ∼= HomK(R)(D, C[i]).

Replacing C by EC , one gets natural isomorphisms

ExtiR(D, C) = HiRHom•(D, C) = HiHom•(D, EC)
∼= HomK(R)(D, EC [i])
∼= HomD(R)(D, EC [i]) ∼= HomD(R)(D, C[i]).
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