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1 Derived direct- and inverse-image pseudofunctors.

Hom•X denotes the sheaf-Hom functor of OX -complexes:
Hom•X(E,F )(U) := Hom•U (E|U , F |U ) (U ⊂ X open),

the restriction map for U ′ ⊂ U being the obvious one.
This “dynamic” sheafified version of Hom• has a derived functor RHom•, defined as usual via q-injective
resolutions (which always exist!).
Similarly, we have a sheaf-theoretic version of ⊗, and its left-derived functor ⊗

=
, defined via q-flat resolutions.

First, two more examples of derived functors: right-derived direct image and left-derived inverse image.
Most of the lecture is about the formalism of relations between these two and RHom• and ⊗

=
—

all four of which are central characters in Grothendieck duality theory.

Direct image

A ringed space is a pair (X,OX) with X a topological space and OX a sheaf of commutative rings.
For a continuous map of topological spaces f : X → Y , the direct image functor f∗ from (the category of)
sheaves on X to sheaves on Y is such that for any sheaf E on X,

f∗E(U) = E(f−1U) for all open U ⊂ Y.
A map of ringed spaces f : (X,OX) → (Y,OY ) is a pair (f, ϕ) with f : X → Y a continuous map and
ϕ : OY → f∗OX a homomorphism of sheaves of rings. (Often, OX , OY and ϕ are omitted in the notation.)
Given such an (f, ϕ), and an OX -module (sheaf) E, one uses ϕ to make the f∗OX -module f∗E into an
OY -module. There results a left-exact additive functor from the abelian category of OX -modules to the
abelian category of OY -modules, that extends in the obvious way to the respective homotopy categories
K(X) and K(Y ): f∗ produces a left-exact additive functor from K(X) to K(Y ).
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Example 1. Let OX (resp. OY ) be the sheaf of continuous functions on X (resp. Y ). For any continuous
map f : X → Y , and open U ⊂ Y , define

ϕf (U) : OY (U)→ OX(f−1U)

to be composition with f . Varying U , one gets a homomorphism ϕ : OY → f∗OX of sheaves of rings; so
(f, ϕf ) is a map of ringed spaces.

Similar examples can be constructed by assuming X and Y to be, say, differentiable (resp. complex, resp.
algebraic) manifolds, and all maps and functions to be differentiable (resp. holomorphic, resp. rational).
Such geometric situations originally motivated the general definition of f∗.

Inverse image

f∗ has a right-exact left adjoint f∗ : OY -modules→ OX -modules.
The stalk of f∗E at x ∈ X is

(f∗E)x = EY,fx ⊗OY,fx
OX,x.

There results a functor f∗ : K(Y )→ K(X) and an isomorphism

HomK(X)(f∗E,F ) ∼= HomK(Y )(E, f∗F ) (E ∈ K(Y ), F ∈ K(X)).

Example 2. When f : X → Y is the map of affine schemes corresponding to a ring homomorphism R → S,
then the adjoint pair (f∗, f∗) of functors of quasi-coherent sheaves corresponds to the adjoint pair of module-
functors (extension of scalars, restriction of scalars).

Recall: right- and left-derived functors

QA : A → D(A) denotes the canonical functor from an abelian category A to its derived category.
Let A1, A2 be abelian categories, and set Qi := QAi

. Let γ : K(A1)→ K(A2) be a ∆-functor.

A right-derived functor (Rγ, ζ) of γ consists of a ∆-functor Rγ : D(A1) → D(A2) and a ∆-functorial map
ζ : Q2γ → RγQ1 such that
every ∆-functorial map Q2γ → Γ, where Γ: K(A1) → D(A2) takes quasi-isomorphisms to isomorphisms,
factors uniquely as

Q2γ
ζ−→ RγQ1 → Γ.

A left-derived functor (Rγ, ξ) of γ consists of a ∆-functor Lγ : D(A1) → D(A2) and a ∆-functorial map
ξ : LγQ1 → Q2γ such that
every ∆-functorial map Γ → Q2γ, where Γ: K(A1) → D(A2) takes quasi-isomorphisms to isomorphisms,
factors uniquely as

Γ→ LγQ1
ξ−→ Q2γ.
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Relations between direct- and inverse-image functors

1. Derived adjointness of direct- and inverse-image functors.

The left-exact functor f∗ has a right-derived functor Rf∗, the canonical map ζ : f∗C → Rf∗C (more precisely,
QY f∗C → Rf∗QXC) being given for any complex C ∈ D(X) by applying f∗ to a q-injective resolution
C → EC .

The right-exact functor f∗ has a left-derived functor Lf∗, the canonical map ξ : Lf∗D → f∗D (more precisely,
Lf∗QYD → QXf

∗D) being given for any complex D ∈ D(Y ) by applying f∗ to a q-flat resolution FD → D.

With a little care, one “derives” (f∗-f∗)-adjointness:

For any ringed-space map f : X → Y ,
Lf∗ : D(Y )→ D(X) is left-adjoint to Rf∗, i.e., for E ∈ D(Y ), F ∈ D(X),

HomD(X)(Lf∗E,F ) ∼= HomD(Y )(E,Rf∗F ). (∗)

Elaboration

Proposition 3. Let f : X → Y be a ringed-space map, A ∈ D(Y ), B ∈ D(X). Write Hom•X for Hom•D(X).
There is a unique ∆-functorial isomorphism

α : RHom•X(Lf∗A,B) −→∼ RHom•Y (A,Rf∗B)

such that the following natural diagram in D(X) commutes:

Hom•X(f∗A, B) −−−−→ RHom•X(f∗A, B) −−−−→ RHom•X(Lf∗A, B)y' '
yα

Hom•Y (A, f∗B) −−−−→ RHom•Y (A, f∗B) −−−−→ RHom•Y (A, Rf∗B).

Moreover, the induced homology map

H0(α) : HomD(X)(Lf∗A, B) −→∼ HomD(Y )(A, Rf∗B)

is just the adjunction isomorphism (∗).

Further elaboration (sheafification)

Proposition 4. There is a unique ∆-functorial isomorphism

α̃ : Rf∗RHom•X(Lf∗A, B) −→∼ RHom•Y (A, Rf∗B) (
A ∈ D(Y ), B ∈ D(X)

)
such that the following natural diagram commutes:

f∗Hom•X(f∗A,B) −−−−→ Rf∗RHom•X(f∗A,B) −−−−→ Rf∗RHom•X(Lf∗A,B)y' '
yeα

Hom•Y (A, f∗B) −−−−→ RHom•Y (A, f∗B) −−−−→ RHom•Y (A, Rf∗B)

The previous elaboration is obtained from this one by application of the derived functor
RΓ(Y,−) = RHom•Y (OY ,−).
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2. Base change I. To a commutative square of ringed-space maps

X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

associate the map θ = θσ :  Lu∗Rf∗ → Rg∗  Lv∗, adjoint to the natural composition

Rf∗ → Rf∗Rv∗  Lv∗ −→∼ Ru∗Rg∗  Lv∗.
For affine schemes, σ corresponds to a commutative square of ring-maps

S′
v̄←−−−− S

ḡ

x xf̄
R′

σ̄

←−−−−
ū

R

and θσ is the derived upgrade of the usual functorial map R′ ⊗R C → S′ ⊗S C (C ∈M(S)).

Tor-independence

If
X ′

v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

is a fiber square of concentrated (= quasi-compact, quasi-separated) schemes then, with Dqc the full sub-
category of D whose objects are the complexes with quasi-coherent homology,

θσ is an isomorphism of functors on Dqc ⇐⇒ σ is tor-independent,

i.e., for all x ∈ X and y′ ∈ Y ′ such that f(x) = u(y′) = (say) y,

TorOY ,y

i

(
OX,x,OY ′,y′

)
= 0 for all i 6= 0.

Pseudofunctor (a special case of 2-functor)

Formalize behavior of inverse and direct-image functors vis-à-vis composition.

A contravariant pseudofunctor on a category S assigns:

• to each X ∈ S a category X#,

• to each map f : X → Y a functor f# : Y# → X# (with 1# = 1), and

• to each map-pair X
f−→ Y

g−→ Z a functorial “transitivity” isomorphism

df, g : f#g# −→∼ (gf)#

satisfying d1, g = dg,1 = identity, and a kind of associativity: for each triple of maps X
f−→ Y

g−→ Z
h−→ W

the following diagram commutes:

(hgf)#
df,hg←−−−− f#(hg)#

dgfh

x xdg,h

(gf)#h# ←−−−−
df,g

f#g#h#

Covariant pseudofunctor is similarly defined, with arrows reversed. It means contravariant functor on Sop.
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Examples: Derived inverse-image (contravariant). Derived direct-image (covariant).

S := category of ringed spaces

X# := D(X)
(
derived category of {OX -modules})

f# := Lf∗ resp. f# := Rf∗

Compatibility of pseudofunctoriality and adjointness

For ringed-space maps • f−→ • g−→ •, the following natural diagram of functors, involving three different counit
maps and two transitivity isomorphisms, commutes:

1 −−−−→ f∗f
∗ −−−−→ f∗(g∗g

∗f∗)y ∥∥∥
(gf)∗(gf)∗ ˜−−−−→ f∗g∗(gf)∗ ˜−−−−→ f∗g∗g

∗f∗

Equivalently (categorically), the “dual” diagram commutes:

1 ←−−−− g∗g∗ ←−−−− g∗(f∗f∗g∗)x ∥∥∥
(gf)∗(gf)∗ ˜←−−−− g∗f∗(gf)∗ ˜←−−−− g∗f∗f∗g∗

Similar commutativity relations hold with f∗ (resp. f∗) replaced by Rf∗ (resp. Lf∗).

2 Interaction with tensor product: symmetric monoidal categories.

Continue to formalize the behavior of the four basic operations.
Axiomatic properties of ⊗

=
are summarized in the following definition:

A symmetric monoidal category C = (C,⊗,O, α, λ, ρ, γ) consists of:
a category C, a “product” functor ⊗ : C×C→ C, an object O of C, and functorial isomorphisms,

α : (A⊗B)⊗ C −→∼ A⊗ (B ⊗ C) (associativity)
λ : O ⊗A −→∼ A ρ : A⊗O −→∼ A (left and right units)

γ : A⊗B −→∼ B ⊗A (symmetry)

(with A,B,C in C), such that γ2 = 1 and the following diagrams commute:

(A⊗O)⊗B α−−−→ A⊗ (O ⊗B)

ρ⊗1

y y1⊗λ

A⊗B A⊗B

O ⊗A γ−−−→ A⊗O

λ

y yρ
A A

((A⊗B)⊗ C)⊗D α−−−→ (A⊗B)⊗ (C ⊗D) α−−−→ A⊗ (B ⊗ (C ⊗D))

α⊗1

y y1⊗α

(A⊗ (B ⊗ C))⊗D α−−−−−−−−−−−−−−−−−−−−−−−→ A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ C α−−−→ A⊗ (B ⊗ C)
γ−−−→ (B ⊗ C)⊗A

γ⊗1

y yα
(B ⊗A)⊗ C α−−−→ B ⊗ (A⊗ C)

1⊗γ−−−→ B ⊗ (C ⊗A)
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Examples

Example 5. Let S be a commutative ring, let C be the category of S-modules,
let ⊗ be the usual tensor product over S, and let OS := S.

Example 6. Let (X,OX) be a ringed space, C := D(X) (derived category of {OX -modules}),
⊗ := ⊗

=
X (derived tensor product over X), and O := OX .

The first example requires a few straightforward verifications.
For the second example, verifications are slightly less straightforward—
one has to work with q-flat resolutions of OX -complexes.

3 Adjoint monoidal pseudofunctors.

Symmetric monoidal functors

Let X, Y be symmetric monoidal categories.

A symmetric monoidal functor f∗ : X→ Y is a functor f∗ : X→ Y together with two functorial maps

f∗A⊗ f∗B −→ f∗(A⊗B)
OY −→ f∗OX

(where ⊗ is in X or in Y, as appropriate), compatible with α, λ, γ (and hence ρ), in that the following
natural diagrams commute:

(f∗A⊗ f∗B)⊗ f∗C −−−−→ f∗(A⊗B)⊗ f∗C −−−−→ f∗((A⊗B)⊗ C)

α

y yf∗(α)

f∗A⊗ (f∗B ⊗ f∗C) −−−−→ f∗A⊗ f∗(B ⊗ C) −−−−→ f∗(A⊗ (B ⊗ C))

f∗OX ⊗ f∗A −−−−→ f∗(OX ⊗A) f∗A⊗ f∗B −−−−→ f∗(A⊗B)x yf∗(λX) γY

y yf∗(γX)

OY ⊗ f∗A −−−−→
λY

f∗A f∗B ⊗ f∗A −−−−→ f∗(B ⊗A)

Examples

1. Let f : R→ S be a ring homomorphism, and let f∗ be the “restriction of scalars” functor from {S-modules}
to {R-modules} (see above), monoidalized by the obvious maps.

2. Let f : (X,OX)→ (Y,OY ) be a map of ringed spaces, and f∗ the direct-image functor from {OX -modules}
to {OY -modules}, monoidalized by the map e : f∗A⊗ f∗B −→ f∗(A⊗B) obtained by passage to associated
sheaves from the obvious composed presheaf map (where U ⊂ X is open)

(f∗A)(U)⊗ (f∗B)(U) =A(f−1U)⊗B(f−1U)→ (A⊗B)(f−1U) = f∗(A⊗B)(U).
One shows that e is adjoint to the natural composition

f∗(f∗A⊗ f∗B) −→∼ f∗f∗A⊗ f∗f∗B → A⊗B.
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3. For f as in 2, one has the right-derived direct image functor Rf∗ : D(X)→ D(Y ), monoidalized by the map
Rf∗A⊗

=
Rf∗B → Rf∗(A⊗

=
B)

adjoint to the natural composition

Lf∗(Rf∗A⊗
=

Rf∗B) −→∼ Lf∗Rf∗A⊗
=

Lf∗Rf∗B → A⊗
=
B

with Lf∗(C ⊗
=
D) −→∼ Lf∗C ⊗

=
Lf∗D defined via q-flat resolutions of C, D.

Monoidality and Pseudofunctoriality

Now suppose we have a covariant pseudofunctor on a category C,
assigning a monoidal category X∗ to each object X in C and a monoidal functor f∗ : X∗ → Y∗ to each map
f : X → Y in C.
We say this is a monoidal pseudofunctor if for every composition X

f−→ Y
g−→ Z, the following natural

diagrams commute, for all A,B ∈ X∗ :
OZ −−−−→ (gf)∗OXy y
g∗OY −−−−→ g∗f∗OX

(gf)∗A⊗ (gf)∗B −−−−−−−−−−−−−−−−−−−−−→ (gf)∗(A⊗B)

'
y y'

g∗f∗A⊗ g∗f∗B −−−−→ g∗(f∗A⊗ f∗B) −−−−→ g∗f∗(A⊗B)

3. Adjoint monoidal pseudofunctors

Assume further that each of the symmetric monoidal functors f∗ has a left adjoint f∗ : Y∗ → X∗.
There are then natural maps, for all A, B ∈ Y∗,

f∗(A⊗B)→ f∗A⊗ f∗B, f∗OY → OX
adjoint respectively to the two maps

A⊗B → f∗f
∗A⊗ f∗f∗B → f∗(f∗A⊗ f∗B), OY → f∗OX ,

that, one shows, make the opposite functor

(f∗)op : (Y∗)op → (X∗)op

monoidal.
There is, furthermore, a unique way to make these f∗ into a
contravariant pseudofunctor with X∗ = X∗ for all X ∈ C and such that for all • f−→ • g−→ • in C, the following
diagram commutes.

1 −−−−→ f∗f
∗ −−−−→ f∗(g∗g

∗f∗)y ∥∥∥
(gf)∗(gf)∗ ˜−−−−→ f∗g∗(gf)∗ ˜−−−−→ f∗g∗g

∗f∗

(We saw this diagram before, as a natural expression of the relation between

adjunction and pseudofunctoriality.)

Such a family of pairs (f∗, f∗) is called an adjoint pair of monoidal pseudofunctors.
One could (but we won’t) add further conditions relating to ∆-structures.
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4 Further interaction, with Hom : closed categories.

A closed category is a symmetric monoidal category R as above,
together with a functor, called internal hom:

[−,−] : Rop ×R→ R

(where Rop is the dual category of R) and a functorial isomorphism

π : HomR(A⊗B, C) −→∼ HomR(A, [B,C ]) .

Example 7. X a ringed space, R := D(X), ⊗ := ⊗
=

, [−,−] := RHom•(−,−).

For π use the sheafified version of RHom•–⊗
=

adjunction.

We assume further, axiomatically, that

ν : f∗(E ⊗R F )→ f∗E ⊗S f∗F is an isomorphism.

This holds in the example, and also in most other cases of interest.

Example: commutative algebra

Let S be a ring and R := M(S).
For S-modules E and F , let ⊗ be the usual tensor product,
and [E,F ] := HomS(E,F ).
This makes M(S) into a closed category.
For a ring homomorphism f : R→ S, let f∗ and f∗ be the module-functors restriction and extension of scalars.
There results an adjoint pair of monoidal closed-category-valued pseudofunctors

For a ring homomorpism f : R→ S, one has, as before, S-module maps

S ← f∗R, f∗E ⊗S f∗F
ν←− f∗(E ⊗R F ) (E,F ∈ R).

with ν adjoint to the natural composite map

E ⊗R F → f∗f
∗E ⊗R f∗f∗F

µ−→ f∗(f
∗E ⊗S f∗F ).

In fact (check!) , ν is just the standard isomorphism

S ⊗R (E ⊗R F ) −→∼ (E ⊗R S)⊗S (F ⊗R S).

Ditto (without explicit mention) for what follows.

Example: Ringed spaces

Here is the focal point of this lecture, summarizing the basic relations among four “Grothendieck operations.”
It underlies all of the sequel.

Let C be the category of ringed spaces. For each object X ∈ C, set X∗ = X∗ := D(X) (the derived category of the
category of OX -modules),
a closed category with ⊗:= ⊗

=
and [−,−]:= RHom(−,−).

For X
f−→ Y in C, write

f∗ for Lf∗ : Y∗ → X∗,

f∗ for Rf∗ : X∗ → Y∗ .

There results an adjoint pair of monoidal closed-category-valued pseudofunctors on C.
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5 Let the games begin.

The formalism of adjoint monoidal closed-category-valued pseudofunctors which we have introduced to study relations
among the four basic operations is very rich. Relations among operations are expressed by commutativity of diagrams
of maps constructed from the axioms.
Many such diagrams force themselves on you when, for example, you delve into Grothendieck duality theory. Here
we just scratch the surface.

• There is a functorial map f∗[A,B ] −→ [f∗A, f∗B ] corresponding under π to the composed map

f∗[A,B ]⊗ f∗A
µ−→ f∗

`
[A,B ]⊗A

´ f∗tAB−−−−→ f∗B .

where tAB is the unit map associated to ⊗ - [ , ] adjunction.

• For fixed A the functorial isomorphism ν : f∗(C ⊗ A) → f∗C ⊗ f∗A induces a conjugate “internal adjunction”

isomorphism on right adjoints, namely [A, f∗B ] ←−∼
ξ

f∗[f
∗A,B ].

For ringed spaces one gets the “sheafified elaboration” of Rf∗-Lf
∗ adjunction.

• There is a functorial map f∗[A,B ] −→ [f∗A, f∗B ], adjoint to

[A,B ] −→ [A, f∗f
∗B ]

ξ−1

−−→ f∗[f
∗A, f∗B ] .

A first step in getting familiar with such maps is to interpret them in the commutative model—modules over rings—
where they all turn out to be standard maps. Of course we are interested also in other contexts...

Here’s an instructive example, involving all four operations.
Working through it is a key to the motivation behind this lecture.

Example 8 (Exercise). Establish (from axioms) a natural commutative diagram

f∗
`
f∗[f

∗F, G ]⊗ F
´
−−−−−→ f∗

`
[F, f∗G]⊗ F

´
−−−−−→ f∗f∗G??y ??y

f∗f∗[f
∗F, G]⊗ f∗F −−−−−→ [f∗F, G]⊗ f∗F −−−−−→ G

Interpret this in the context of rings.

For comparison, work directly in the ringed-space derived-category context, using the definitions of the operations via
resolutions.

Projection map

Here is another ubiquitous character.

For any f : X → Y in C, E ∈ X∗, F ∈ Y∗, one has the composite projection map

p(E,F ) : f∗E ⊗ F −→ f∗E ⊗ f∗f∗F −→ f∗(E ⊗ f∗F ).

We’ll assume, axiomatically, that p is an isomorphism.

This assumption holds in the most interesting models.

For example, in the commutative-algebra context, where f : R→ S is a ring-homomorphism, E an S-module and F
an R-module, p(E,F ) is just the usual isomorphism E ⊗R F −→∼ E ⊗S (S ⊗R F ). (Check!)

More generally, in the context of quasi-compact quasi-separated scheme-maps and quasi-coherent complexes, p turns
out to be an isomorphism (next lecture).
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Interaction of Projection and Base Change

Example 9 (Exercise). For a commutative C-square, with h = fv = ug,

X ′
v−−−−−→ X

g

??y ??yf
Y ′

σ

−−−−−→
u

Y

θ = θσ : u∗f∗ → g∗v
∗ adjoint to f∗ → f∗v∗v

∗ −→∼ u∗g∗v
∗, and C ∈ Y∗ = Y∗, D ∈ X∗ = X∗,

the following diagram commutes:

u∗C ⊗ u∗f∗D
ν←−−−−− u∗(C ⊗ f∗D)

u∗(p)−−−−−→ u∗f∗(f
∗C ⊗D)

1⊗θ
??y ??yθ

u∗C ⊗ g∗v∗D g∗v
∗(f∗C ⊗D)

p

??y ??yν
g∗(g

∗u∗C ⊗ v∗D) f−−−−−→ g∗(h
∗C ⊗ v∗D) f←−−−−− g∗(v

∗f∗C ⊗ v∗D)
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