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1 Formal duality setup.

Let there be given, on a category C, a pair (*, *) of adjoint monoidal closed-category-valued pseudofunctors.

Thus, to each object X ∈ C is associated a closed category DX , with unit object OX ;

and to each C-map ψ : X → Y , adjoint monoidal functors DX
ψ∗←−−−→
ψ∗

DY .

There are also, as before, compatibilities—expressed by commutative diagrams—among adjunction, pseudo-
functoriality, and monoidality.
The maps giving the monoidal structure on ψ∗ are denoted

eψ(E,E′) : ψ∗E ⊗ ψ∗E′ → ψ∗(E ⊗ E′)
(
E,E′ ∈ DX

)
,

νψ : OY → ψ∗OX .

Adjoint to the natural composition

F ⊗ F ′ → ψ∗ψ
∗F ⊗ ψ∗ψ∗F ′

e−→ ψ∗(ψ∗F ⊗ ψ∗F ′) (F, F ′ ∈ DY )

(resp. to νψ : OY → ψ∗OX) we have maps

dψ(F, F ′) : ψ∗(F ⊗ F ′)→ ψ∗F ⊗ ψ∗F ′,
µψ : ψ∗OY → OX .
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For E ∈ DX and F ∈ DY the composite map

p1(E,F ) : ψ∗E ⊗ F
natural−−−−−→ ψ∗E ⊗ ψ∗ψ∗F

e−−→ ψ∗(E ⊗ ψ∗F )

and the map deduced from it by application of the symmetry isomorphism

p2(F,E) : F ⊗ ψ∗E
natural−−−−−→ ψ∗ψ

∗F ⊗ ψ∗E
e−−→ ψ∗(ψ∗F ⊗ E)

are called projection maps.

Axioms

• For X = Y and ψ = 1X the identity map of X, (1X)∗ is the identity functor of DX .

• The map µψ is an isomorphism ψ∗OY −→∼ OX .
• For all F,G ∈ DY , the map dψ is an isomorphism ψ∗(F ⊗G) −→∼ ψ∗F ⊗ ψ∗G.

• For all E ∈ DX and F ∈ DY the projection maps are isomorphisms

p1 : ψ∗E ⊗ F −→∼ ψ∗(E ⊗ ψ∗F ), p2 : F ⊗ ψ∗E −→∼ ψ∗(ψ∗F ⊗ E).

• The functor ψ∗ : DX → DY has a right adjoint ψ#.

So there is a duality isomorphism
HomDY (ψ∗E, F ) −→∼ HomDX(E,ψ#F ) (E ∈ DX , F ∈ DY ).

Example: Commutative algebra

C := opposite of the category of commutative rings.
For R ∈ C, DR := {R-modules}, with the obvious closed structure: ⊗ is the usual tensor product, and
[E,F ] := HomR(E,F ).
For ψ : S → R (a ring-homomorphism R→ S), ψ∗ : DS → DR is restriction of scalars: for any S-module E,
ψ∗E is the naturally resulting R-module E; and eψ : E ⊗R E′ → E ⊗S E′ the natural map.
ψ∗ : DS → DR is extension of scalars: for any R-module F , ψ∗F is the S-module S ⊗R F .

One verifies that
µψ : S ⊗R R −→∼ S,

dψ : S ⊗R (F ⊗R G) −→∼ (S ⊗R F )⊗S (S ⊗R G)

are the usual isomorphisms; and that p1 is the natural R-isomorphism

E ⊗R F −→∼ E ⊗S (S ⊗R F ) (E ∈ DS , F ∈ DR).

Finally, a right adjoint ψ# of ψ∗ is given by ψ#F := HomR(S, F ).

Remarks

In the preceding example, one can substitute derived categories and functors for ordinary ones. Then, at least
in the noetherian case, the existence of the right adjoint ψ# is a consequence of the local duality isomorphism
from Lecture 2, with J the unit ideal:

HomD(R)(ψ∗RΓJ E, G) −→∼ HomD(S)(E, ψ#
J G).

One can deal with arbitrary J in a similar way, but at the cost of further elaborating the basic setup.
Globalizing (as we are about to do in the unit-ideal case) then leads to duality over formal schemes.
Thus we have a common framework for local and global duality.
Such “topological” generalizations are beyond the scope of the present lectures. But several papers dealing
with formal schemes are available at www.math.purdue.edu/˜lipman
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Globalization: Noetherian schemes

C := category of noetherian schemes.1

For any X ∈ C, DX := Dqc(X), the full subcategory of D(X) whose objects are complexes with quasi-
coherent homology. Together with the derived tensor product, this is a monoidal category.
To make it closed, set [E,F ] := QXRHom(E,F ), where

QX is a right adjoint to the inclusion functor DX ↪→ D(X).

(Existence of such a right adjoint—a derived quasi-coherator —is a very special case of the duality theorem
to be discussed later.)
Indeed, using derived adjoint associativity, one has, for all E,F,G ∈ DX ,

HomDX

(
E⊗

=
F, G

)
= HomD(X)

(
E⊗

=
F, G

)
∼= HomD(X)

(
E,RHom(F,G)

)
∼= HomDX

(
E,QXRHom(F,G)

)
.

Noetherian schemes (continued)

For each f : X → Y in C, one shows that Rf∗Dqc(X) ⊂ Dqc(Y );2 we denote this functor simply by
f∗ : DX → DY .
Also, one shows (easily) that Lf∗Dqc(Y ) ⊂ Dqc(X); we denote this functor simply by f∗ : DY → DX .

As in the main example of the preceding lecture, this gives us
an adjoint pair of closed-category-valued pseudofunctors.

The first three of the above axioms are easy to check.

The fourth, that the projection maps are isomorphisms, will be discussed below.

The fifth, one of the basic facts of duality theory, is the existence of a right adjoint for Rf∗,
to be discussed in a subsequent lecture.

2 Projection isomorphisms.

Theorem 1. Let f : X → Y be a map of noetherian schemes, F ∈ Dqc(X), G ∈ Dqc(Y ). Then the projection
maps are isomorphisms

p1 : (Rf∗F ) ⊗
=
G −→∼ Rf∗(F ⊗= Lf∗G), p2 : G ⊗

=
Rf∗F −→∼ Rf∗(Lf

∗G ⊗
=
F ).

Sketch of proof
A key fact is that Rf∗ : Dqc(X)→ Dqc(Y ) is a bounded-above functor:
there is an integer d such that for all E ∈ Dqc(X) and all n ∈ Z,

Hi(E) = 0 for all i ≥ n =⇒ Hi(Rf∗E) = 0 for all i ≥ n+ d.

This is shown by induction on the least number of affines covering X and Y .

Turning to the theorem, we treat only p1. (p2 can be handled similarly, or by symmetry.)
The question is local on Y , so we may assume Y affine.

1Much of what follows applies, with some elaborations, to arbitrary quasi-compact quasi-separated schemes.
2Showing that E ∈ Dqc(X) =⇒ Rf∗E ∈ Dqc(Y ) involves only standard arguments when HiE = 0 for all i � 0, but is

somewhat trickier otherwise.
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Sketch of proof (continued)

Suppose first that both F and G are bounded-above complexes. Then boundedness of Rf∗ implies that the
source and target of

p1 : (Rf∗F ) ⊗
=
G −→∼ Rf∗(F ⊗= Lf∗G) ,

are, for fixed F , bounded-above functors of G.
This allows us to use inductive “way-out” methods to reduce the question to where G is a single free OY -
module G0, whence Lf∗G is isomorphic to the free OX -module f∗G0.
One verifies that everything in sight commutes with direct sums, so we have a further reduction to the case
G = OY .
In that case, p1 is isomorphic to the identity map of Rf∗F .

The unbounded case requires additional considerations, omitted here. (Full details in the reference notes.)

Remark: An example in the reference notes shows that quasi-coherence of homology is necessary
for the theorem to hold.

3 Independent squares.

We describe a certain class of commutative squares which will play an important role later on, in connection
with a fundamental base-change theorem for the right adjoint of Rf∗.

Recall that to a commutative C-square
X ′

v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

one associates the map
θ = θσ : u∗f∗ → g∗v

∗,

adjoint to the natural composition f∗ → f∗v∗v
∗ −→∼ u∗g∗v

∗.

Similarly, one has the map
θ′σ : f∗u∗ → v∗g

∗

Example 2. In the commutative algebra situation, σ corresponds to a commutative square of ring-maps

S′
v̄←−−−− S

ḡ

x xf̄
R′

σ̄

←−−−−
ū

R

and θσ is the usual functorial map, for S-modules M ,
R′ ⊗RM → S′ ⊗S M ,

while θ′σ is the usual functorial map, for R′-modules N ,
S ⊗R N → S′ ⊗R′ N .

In the more significant scheme-theoretic context, with u∗ standing for Lu∗,
f∗ for Rf∗. . . , one replaces M and N by q-flat quasi-coherent complexes.
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Künneth map

For a commutative C-square X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

setting h := fv = ug, define the functorial Künneth map

ησ(E,F ) : u∗E ⊗ f∗F → h∗(g∗E ⊗ v∗F ) (E ∈ DY ′ , F ∈ DX)

to be the natural composition

u∗E ⊗ f∗F → h∗h
∗(u∗E ⊗ f∗F )→ h∗(g∗u∗u∗E ⊗ v∗f∗f∗F )→ h∗(g∗E ⊗ v∗F ).

Example 3. 1. When X = X ′ = Y , and v, g are identity maps (so that u = f), then
η = ef : f∗E ⊗ f∗F → f∗(E ⊗ F ).

2. When X = Y , X ′ = Y ′, and f , g, are identity maps (so that u = v),
η = p1 : u∗E ⊗ F → u∗(E ⊗ u∗F ).

Example 4. In the commutative algebra situation, σ corresponds to a commutative square of ring-maps

S′
v̄←−−−− S

ḡ

x xf̄
R′

σ̄

←−−−−
ū

R

and ησ is the usual functorial map, for R′-modules M , and S-modules N ,

M ⊗R N → (M ⊗R′ S′)⊗S′ (S′ ⊗S N).

In the corresponding scheme-theoretic context, with u∗ standing for Lu∗, f∗ for Rf∗. . . ,
one replaces M and N by q-flat quasi-coherent complexes.

Equivalent definitions of independence

Theorem 5. Let X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

be a fiber square of quasi-compact quasi-separated schemes (i.e., σ commutes and the associated map is an
isomorphism X ′ −→∼ Y ′ ×Y X ). Set h := fv = gu.
The following conditions are equivalent—and when they hold we say that σ is an independent square:
(i) For all E ∈ Dqc(X), θσ is an isomorphism

 Lu∗Rf∗E −→∼ Rg∗  Lv∗E.
(i)′ For all F ∈ Dqc(Y ′), θ′σ is an isomorphism

Lf∗Ru∗E −→∼ Rv∗  Lg∗E.
(ii) For all E ∈ Dqc(X) and F ∈ Dqc(Y ′), ησ is an isomorphism

Ru∗E ⊗Rf∗F −→∼ Rh∗( Lg∗E ⊗  Lv∗F ).
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Theorem-definition (continued)

(iii) The square σ is tor-independent, that is, for all pairs of points y′ ∈ Y ′, x ∈ X such that y := u(y′) = f(x),

TorOY,yi (OY ′, y′ , OX,x) = 0 for all i > 0.

or, equivalently, for any affine open neighborhood Spec(A) of y and affine open sets Spec(A′) ⊂ u−1Spec(A),
Spec(B) ⊂ f−1Spec(A), TorAi (A′, B) = 0 for all i > 0.

Remarks. (a) Condition (iii) holds if either f or u is flat.
(b) When f and g are identity maps, then of course (iii) holds, and so the implication (iii)⇒ (ii) amounts
to saying that the projection map p1 is an isomorphism. But actually this latter fact is used in proving
that (iii)⇒ (ii).

Outline of proof

That either (i) or (i)′ implies (ii) results from commutativity of the following natural diagram, for any
E ∈ Dqc(Y ′) and F ∈ Dqc(X), the proof of which is a formal exercise on adjoint monoidal pseudofunctors:

u∗(E ⊗ u∗f∗F ) ˜←−−−−p1
u∗E ⊗ f∗Fyη

˜−−−−→p2
f∗(f

∗u∗E ⊗ F )

u∗(1⊗θ)
y yf∗(θ′⊗1)

u∗(E ⊗ g∗v∗F ) f∗(v∗g
∗E ⊗ F )

u∗(p2)

y' '
yf∗(p1)

u∗g∗(g∗E ⊗ v∗F ) ˜−−−−→ h∗(g∗E ⊗ v∗F ) ˜←−−−− f∗v∗(g
∗E ⊗ v∗F )

For the rest, one first treats the case where all the schemes in σ are affine. To reduce to this case, by means
of suitable affine covers, one needs to know that the conditions (i), (i)′, and (ii) are local. For this, one needs
the behavior of independence under “concatenation of squares”:

For each one of the following C-diagrams, assumed commutative,

X ′′
v1−−−−→ X ′

v−−−−→ X

h

y g

y yf
Y ′′

σ1

−−−−→
u1

Y ′

σ

−−−−→
u

Y

Z ′
w−−−−→ Z

g1

y yf1
X ′

v−−−−→

σ1

X

g

y yf
Y ′

σ

−−−−→
u

Y

if σ and σ1 satisfy (i) (resp. (i)′, resp. (ii)) then so does the rectangle σ0 enclosed by the outer border.

This is shown via transitivity relations for θ, θ′ and η. For instance, the θs for σ, σ1 and σ0 are related
by commutativity, for any G ∈ DX , of the following C-diagram, a formal consequence of previously stated
axioms:

(uu1)∗f∗G
θσ0(G)

−−−−−−−−−−−−−−−−−−−−→ h∗(vv1)∗G

'
y y'

u∗1u
∗f∗G −−−−−→

u∗1θσ(G)
u∗1g∗v

∗G −−−−−→
θσ1(v

∗G)
h∗v
∗
1v
∗G
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