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1 Statement(s) of global duality.

Theorem 1. Let f : X → Y be a map of concentrated (= quasi-compact, quasi-separated ) schemes.
Then the ∆-functor Rf∗ : Dqc(X)→ D(Y ) has a bounded-below right ∆-adjoint.

1. If you wish, substitute “noetherian” for “concentrated.”

2. A functor Φ: D(Y )→ Dqc(X) is bounded below if there is an integer d such that for all E ∈ D(Y ) and
all n ∈ Z,

Hi(E) = 0 for all i ≤ n =⇒ Hi(ΦE) = 0 for all i ≤ n− d.

3. A right-∆-adjoint of a ∆-functor Φ is a right adjoint Ψ such that the unit 1 → ΨΦ of the adjunction is
∆-functorial; or equivalently, the counit ΦΨ→ 1 is ∆-functorial.

Corollary 2. When restricted to concentrated schemes, the Dqc-valued pseudofunctor “derived direct image”
has a pseudofunctorial right ∆-adjoint ×××.

Proof. Choose for each f : X → Y a functor f× right-adjoint to Rf∗ : Dqc(X) → Dqc(Y ), with f× the
identity functor whenever f is an identity map. Given g : Y → Z, define df,g : f×g× → (gf)× to be
the functorial map adjoint to the natural composition R(gf)∗f×g× −→∼ Rg∗Rf∗f×g× → Rg∗g× → 1.
This df,g is an isomorphism, its inverse (gf)× → f×g× being the map adjoint to the natural composition

Rg∗Rf∗(gf)× −→∼ R(gf)∗(gf)× → 1.

Verifying the Corollary is now straightforward. Q.E.D.
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Elaboration

Derived category maps are isomorphisms iff they induce homology isomorphisms; and
HnRHom•X(C,D) = HomD(X)(C,D[n]) (n ∈ Z).

Hence the following statement is equivalent to the global duality theorem:

Theorem 3. For f : X → Y as above, there exists a bounded-below ∆-functor f× : D(Y )→ Dqc(X) and
a ∆-functorial map τ : Rf∗f× → 1 such that for all F ∈ Dqc(X) and G ∈ D(Y ), the natural composite
map (in the derived category of abelian groups)

RHom•X(F, f×G) → RHom•X( Lf∗Rf∗F, f×G)

→ RHom•Y (Rf∗F,Rf∗f×G)
τ−→ RHom•Y (Rf∗F, G)

is a ∆-functorial isomorphism.

Indeed, application of the functor H0 to the preceding composite map yields the duality theorem;
and conversely, if (f×, τ) is right ∆-adjoint to Rf∗, whence ∃ a functorial isomorphism

(f×G)[n] ∼= f×(G[n]),

then one checks that for all n ∈ Z, application of the functor Hn to the preceding composite map gives the
natural composite map—an isomorphism by the duality theorem—

HomDqc (X)

(
F, f×(G[n])

)
→ HomD(Y )

(
Rf∗F,Rf∗f×(G[n])

)
→ HomD(Y )(Rf∗F, G[n]).

The preceding isomorphism can also be written as

ExtnX(F, f×G) −→∼ ExtnY (Rf∗F,G)
(
n ∈ Z, F ∈ Dqc(X) G ∈ D(Y )

)
.

Example: smooth maps, Serre duality

Notation for proper maps
For reasons to emerge in a while, when f is proper we set f ! := f×.

For a proper smooth map f : X → Y , with (smooth) fibers of dimension, say, d, and a complex G• of
OY -modules, ∃ a functorial isomorphism

f∗G• ⊗OX
Ωdf [d] −→∼ f !G•

with Ωdf [d] the complex vanishing in all degrees except −d, where it is the sheaf of relative Kähler d-forms.
(To be shown later.)
Then, if Y = Spec(k), k a field, Global Duality specializes to Serre Duality: the existence, for quasi-coherent
OX -modules F , of natural isomorphisms

Homk(Hi(X,F ), k) −→∼ Extd−iX (F, Ωdf )

Pseudofunctoriality, f !g! −→∼ (gf)! reflects the standard isomorphism for smooth maps X f−→ Y
g−→ Z

of respective relative dimensions d, e:
Ωdf ⊗OX

f∗Ωeg −→∼ Ωd+egf
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Remarks: abstract and concrete duality

The preceding example illustrates that there are two complementary aspects to duality theory—abstract
and concrete.
Without the enlivening concrete interpretations, the abstract functorial approach can be rather austere—
though when it comes to treating complex relationships, it can be quite advantageous.
While the theory can be based on either aspect (see e.g., Springer Lecture Notes by Hartshorne (no. 20)
and Conrad (no. 1750) for concrete foundations), bridging the two aspects is not a trivial matter.
For example, as an instructive exercise: identify the pseudofunctoriality isomorphism given by the abstract
theory with the above one for differential forms—even when d = e = 0 (i.e., f and g are finite étale maps)!

2 Neeman’s proof.

The proof of Global Duality in the reference notes is an exposition of Deligne’s proof in the appendix to
Hartshorne’s “Residues and Duality.”
We will describe here a more recent approach, due to Neeman.
Until further notice, schemes are assumed to be concentrated.
Over a scheme X <, a complex E ∈ D(X) is perfect if each x ∈ X has an open neighborhood U such that
the restriction E|U is isomorphic in D(U) to a bounded complex of finite-rank free OU -modules.

Theorem 4 (Neeman, mid 90s, Bondal & van den Bergh, 2003). For a scheme X, the category Dqc(X)
has a perfect generator, that is, there is a perfect E ∈ Dqc(X) such that for every nonzero F ∈ Dqc(X),

HomD(X)(E,F [n]) 6= 0 for some n ∈ Z.
Neeman’s proof, for quasi-compact separated X, uses nontrivial facts about extending perfect complexes from open
sets to X. Bondal and van den Bergh adapted the argument for the quasi-separated case.

Example: If X is any affine scheme, then OX is a perfect generator.

Adjoint functor theorem
Neeman pioneered the application of category-theoretical methods from homotopy theory to algebraic
geometry. The following theorem is a corollary of his reworking of the Brown representability theorem.
First, some preliminary remarks. Let X be a scheme.
1. The usual ⊕ of complexes is a categorical direct sum in D(X) or Dqc(X): for any D(X)-family (Eλ),

Eλ ∈ Dqc(X) ∀λ =⇒ ⊕λEλ ∈ Dqc(X);

and for any E ∈ D(X), the natural map is an isomorphism

HomD(X)(
⊕
λEλ , E) −→∼

∏
λ

HomD(X)(Eλ , E).

2. For any categories D, D′, if a functor Φ: D → D′ has a right adjoint Ψ, then Φ transforms direct sums
in D to direct sums in D′: for any D-family (Eλ), and E′ in D′, there are natural isomorphisms

HomD′
(
Φ
⊕

λEλ , E
′) −→∼ HomD

(⊕
λEλ ,ΨE

′) −→∼ ∏
λ

HomD

(
Eλ ,ΨE

)
−→∼

∏
λ

HomD′
(
ΦEλ , E′

)
.

Conversely:

Theorem 5. Let X and Y be schemes, and Φ: Dqc(X)→ D(Y ) a ∆-functor.
If Φ transforms direct sums in Dqc(X) to direct sums in D(Y ) then Φ has a right adjoint.
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What remains then for establishing Global Duality is to show that for a scheme-map f : X → Y ,
(∗) Rf∗ transforms direct sums in Dqc(X) to direct sums in D(Y ).

Before doing this, we should remark that Neeman actually proves the adjoint functor theorem for an arbi-
trary ∆-functor from a “compactly generated” triangulated category to a triangulated category. Without
explaining these terms, let us just note that consequently the theorem is widely applicable, yielding duality
theorems in the contexts, for example, of formal schemes or diagrams of schemes or D-modules.

3 Derived direct image respects direct sums.

Proof of (∗): sketch

Boundedness of the restriction Rf∗|Dqc allows a reduction to the case of a Dqc -family (Eλ) which is uniformly
bounded-below, i.e, there is an n0 such that HnEλ = 0 for all λ and n < n0 .
Indeed, what is required is that for all n the homology functor Hn transforms the natural map⊕

λRf∗Eλ → Rf∗
⊕

λEλ

into an isomorphism; and boundedness of Rf∗ implies that nothing changes in degree n when each Eλ is
altered by nullifying terms in all degrees < n0 := n− d (and suitably modifying En−dλ ) for fixed d� 0.

In the category of bounded-below OX -complexes E, construct canonical flasque resolutions E → F as follows:
for each q ∈ Z, let 0→ Eq → F 0q → F 1q → F 2q → . . . be the (flasque) Godement resolution of Eq,
set F pq := 0 if p < 0, and let F be “totalization” of the double complex F pq, i.e., Fm := ⊕p+q=mF pq, etc.
Then Fm is flasque, and a standard argument (using that E is bounded below) shows that the family of
natural maps Em → F 0m ⊂ Fm gives a quasi-isomorphism E → F .
There results a quasi-isomorphism ⊕

λEλ →
⊕
λFλ := F

with each Fλ flasque. Since X is concentrated, a result of Kempf shows that F is a bounded-below complex
of flasque sheaves, and hence (well-known) there are natural isomorphisms

Rf∗
⊕
λEλ −→∼ Rf∗F ←−∼ f∗F .

Another result of Kempf gives the second of the isomorphisms

Hn
⊕
λRf∗Eλ −→∼ Hn

⊕
λf∗Fλ −→∼ Hnf∗F −→∼ HnRf∗

⊕
λEλ. QED

4 Sheafified duality—preliminary form.

We move toward a more general sheafified version of duality. This amounts to the behavior of f× vis-à-vis
open immersions U ↪→ Y , a special case of tor-independent base change (next lecture).
Let f : X → Y , f× and τ be as before.
The duality map δ(f, F,G) (F ∈ D(X), G ∈ D(Y )) is the composition

Rf∗RHom•X(F, f×G) −→ Rf∗RHom•X( Lf∗Rf∗F, f×G) (via unit of  Lf∗-Rf∗ adjunction)

−→∼ RHom•Y (Rf∗F,Rf∗f×G) (sheafifed  Lf∗-Rf∗ adjunction)
−→ RHom•Y (Rf∗F, G) (via τ).

Theorem 6. For any E ∈ Dqc(Y ), F ∈ Dqc(X) and G ∈ D(Y ), the map

HomD(Y )(E,Rf∗RHom•X(F, f×G))
δ(F,G)−−−−→ HomD(Y )(E,RHom•Y (Rf∗F,G))

is an isomorphism.
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Corollary 7. If both Rf∗RHom•X(F, f !G) and RHom•Y (Rf∗F, G) are in Dqc(X) then the duality map
δ(F,G) is an isomorphism

Rf∗RHom•X(F, f×G) −→∼ RHom•Y (Rf∗F, G).

The hypotheses in the Corollary are needed because, in the Theorem, E ∈ Dqc(Y ). Eventually, we’ll prove
this Corollary under considerably weaker hypotheses.

Example of sheafified duality

Meanwhile, here is a situation where the hypotheses hold.

(Fairly simple): F ∈ D-
c(X), G ∈ D+

qc(X) =⇒ RHom•(F,G) ∈ D+
qc(X).

(Basic theorem): If f : X → Y is a proper map of noetherian schemes then
Rf∗ preserves coherence of homology.

Thus, Rf∗|Dc
being bounded, Rf∗D-

c(X) ⊂ D-
c(Y ).

From these facts, and the preceding Corollary, one deduces:

Corollary 8. If f : X → Y is a proper map of noetherian schemes then for all F ∈ D-
c(X) and G ∈ D+

qc(Y ),
the duality map δ(F,G) is an isomorphism

Rf∗RHom•X(F, f !G) −→∼ RHom•Y (Rf∗F, G).

Proof of theorem: sketch
Despite the particular notation to be used, the proof can be given entirely in terms of axioms of the
basic duality setup.
Adjunctions forming part of the axioms, as well as the projection isomorphism p2, yield isomorphisms

HomD(Y )

(
E,Rf∗RHom•X(F, f×G)

)
−→∼ HomD(X)

(
 Lf∗E,RHom•X(F, f×G)

)
−→∼ HomD(X)

(
 Lf∗E ⊗

=
F, f×G)

)
−→∼ HomD(Y )

(
Rf∗( Lf∗E ⊗

=
F ), G)

)
−→∼ HomD(Y )

(
E ⊗

=
Rf∗F, G)

)
−→∼ HomD(Y )

(
E,RHom•Y (Rf∗F, G)

)
.

Is this composed map is the same as the one in the theorem?
Of course, yes (QED for theorem), but this must be shown—one of many tedious duality-setup exercises
which arise as the theory develops.
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