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Introduction

The existence of a right adjoint for Rf∗—Global Duality—is the first basic theorem in Grothendieck duality
theory.

The second, Tor-independent Base Change, has to do with the behavior of this right adjoint with respect to
certain independent fiber squares.

For simplicity, we assume throughout that all schemes are noetherian.

The following abbreviations will be used, for a scheme-map h or a scheme Z:

h∗ := Rh∗ , h∗ := Lh∗,

HZ := RHom•Z , HZ := RHom•Z ,
⊗Z := ⊗

=
Z , ΓZ(−) := RΓ(Z,−).

As in the global duality theorem, h×(= h! when h is proper) is right-adjoint to h∗, and τ : h∗h× → 1 is the
canonical map.
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1 Base change map for independent squares.

Recall that a commutative square σ of scheme-maps

X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

is (tor-)independent if σ is a fiber square (i.e., the natural map is an isomorphism X ′ −→∼ X ×Y Y ′) such
that the functorial map θσ : u∗f∗ → g∗v

∗ adjoint to the natural composition f∗ → f∗v∗v
∗ −→∼ u∗g∗v

∗ is
an isomorphism.
Remark: Formally, σ is an ordered 4-tuple (u, g, f, v) with ug = f v.
That is not the same as the ordered 4-tuple σ′ := (f, v, u, g).
σ′ is the “reflection of σ in the upper-left to lower-right diagonal.”

But, as we’ve seen, σ is independent ⇐⇒ so is σ′.

Definition: base change map

For an independent σ = (u, g, f, v), the functorial base change map

βσ : v∗f× → g×u∗

is the map adjoint to the natural composition

g∗v
∗f×

θ−1
σ−−→ u∗f∗f

× u∗τ−−→ u∗.

Here is another way of getting βσ, via “conjugate base change.”

Exercise. Let σ = (u, g, f, v) be a fiber square. Show that the map

φσ : v∗g
× → f×u∗

(between functors from Dqc(Y ′) to Dqc(X)) that is adjoint to the composition f∗v∗g
× −→∼ u∗g∗g

× → u∗, is
right-conjugate to θσ.

Deduce that σ is independent ⇐⇒ φσ (or φσ′) is an isomorphism.

(b) Show that when σ is independent the map βσ is adjoint to the composition

f×
natural−−−−→ f×u∗u

∗ via φ−1
σ−−−−→ v∗g

×u∗.

2 Base change theorem

Definition 1. A scheme-map u : Y ′ → Y has finite tor-dimension or finite flat dimension
if the functor Lu∗ : D(Y )→ D(Y ′) is bounded, i.e., ∃d ∈ Z such that
for every OY -complex F and n ∈ Z such that HiF = 0 for all i > n,
it holds that H jLu∗F = 0 for all j > n+ d.

Equivalently (exercise): For each y ∈ Y ′, ∃ an exact OY ,u(y)-module sequence

0→ Pd → Pd−1 → · · · → P1 → P0 → OY ′, y → 0

with Pi flat over OY ,u(y) (0 ≤ i ≤ d).
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Theorem 2 (Base change—BC). Suppose one has an independent square of maps of noetherian schemes

X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

with f (hence g) proper and u of finite tor-dimension.
Then for any G ∈ D+

qc(Y ), the base change map is an isomorphism

βσ : v∗f !G −→∼ g!u∗G.

The case of Theorem BC where u (hence v) is an affine map (resp. an open immersion) is labeled BCaf

(resp. BCo).

Counterexample for unbounded G

BCo need not hold for unbounded G. Neeman gave a simple counterexample, with

X := Spec(Z[T ]/T 2),Y := Spec(Z),Y ′ := Spec(Z[ 12 ]), G :=
∏∞
n=0 Z[n],

based on noncompatibility of localization and infinite products.

3 Base change and sheafified duality.

Recall from Lecture 3 the map
ν(f, F,G) : f∗[F,G]→ [f∗F, f∗G].

It is a formal exercise to show that this map factors naturally as

f∗[F,H]→ f∗[f∗f∗F,H] −→∼ [f∗F, f∗H].

In the latter form, ν appeared in Lecture 5 as part of the duality map for proper f :

δ(f, F,G) : f∗HX(F, f !G) ν−→ HY (f∗F, f∗f !G) τ−→ HY (f∗F,G).

Remark. With ΓY the derived global section functor, the map

ΓY δ : ΓY f∗HX(F, f !G)→ ΓYHY (f∗F,G)
can be identified with the global duality map

HX(F, f !G)→ HY (f∗F,G).

In the course of the proof of BC, BCo will be shown equivalent to:
Theorem 3 (Sheafified duality—SD). If f : X → Y is a proper scheme-map then for all F ∈ Dqc(X)
and G ∈ D+

qc(Y ), the duality map δ(f, F,G) is an isomorphism

f∗HX(F, f !G) −→∼ HY (f∗F,G).

The version of this theorem in Lecture 5 had the restriction F ∈ D-
c(X). That version is labeled SDc .

SDc having been proved, the strategy is to establish the following implications:

SDc =⇒ (BCaf + BCo) =⇒ BC =⇒ BCo ⇐⇒ SD.

Some indications of how to do this follow. The aim is to suggest the flavor of what’s involved, and in
particular to bring out the role played by purely formal considerations—that is, arguments based solely on
the axioms of basic duality setups. (Full details are in the reference notes.)
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4 Proof of base change.

We begin with the implication SDc =⇒ (BCaf + BCo).
In the formal context of Lecture 3, we saw a canonical map

ρ(u,A,B) : u∗[A,B]→ [u∗A, u∗B].

Proposition 4. Let u : Y ′ → Y be a scheme-map of finite tor-dimension, let E ∈ D-
c(Y ) and H ∈ D+(Y ).

Then the map ρ(u,E,H) is an isomorphism

u∗HY (E, H) −→∼ HY ′(u∗E, u∗H).

If u is an open immersion the same holds (more or less trivially) for any E,H ∈ D(Y ).

We’ll also need the following relation among the maps ρ, ν and θ.

For any commutative diagram of scheme-maps

X ′
v−−−−→ X

g

y yf
Y ′

σ

−−−−→
u

Y

and E, H ∈ D(X), the following diagram commutes:

u∗f∗HX(E,H) ν−−−−−−−−−−−−−−−−−−−−−−−→ u∗HY (f∗E, f∗H)

θσ

y yρ
g∗v
∗HX(E,H) HY ′(u∗f∗E, u∗f∗H)

ρ

y yθσ
g∗HX′(v∗E, v∗H) −−−−→

ν
HY ′(g∗v∗E, g∗v∗H) −−−−→

θσ
HY ′(u∗f∗E, g∗v∗H)

The proof of commutativity is formal: with patience, one finds a decomposition of the diagram into ones
which are sufficiently small that their commutativity is given by axioms, or by other previously established
commutativities. (It would really be nice to get a computer to take over such tedium.)
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In the preceding, after replacing E by G and H by f !H, one derives, formally, the commutative diagram

u∗f∗HX(G, f !H)
u∗(δ)−−−−→ u∗HY (f∗G, H)

θσ

y yρ
g∗v
∗HX(G, f !H) HY (u∗f∗G, u∗H)

ρ

y yθσ
g∗HX′(v∗G, v∗f !H) HY ′(g∗v∗G, u∗H)

ν

y xτ
HX′(g∗v∗G, g∗v∗f !H) −−−−→

θ−1
σ

HX′(g∗v∗G, u∗f∗f !H)

If G ∈ D-
c(X), so that, f being proper, f∗G ∈ D-

c(Y ), then by the above proposition, the maps labeled ρ
are isomorphisms, as is u∗(δ) by the assumption SDc, whence so is λ := τ θ−1

σ ν.
To be proven is that the base change map βσ is an isomorphism when u (hence v) is either an open immersion
or an affine map; in both these cases it is easily seen to suffice that v∗β be an isomorphism.
Let G ∈ D-

c(X), so that v∗G ∈ D-
c(X ′). From the definition of β, one derives, formally, a commutative

diagram
f∗HX(G, v∗v∗f !H)

via v∗β−−−−→ f∗HX(G, v∗g!u∗H)

f∗eα−1

y' '
yf∗eα−1

f∗v∗HX′(v∗G, v∗f !H)
via β−−−−→ f∗v∗HX′(v∗G, g!u∗H)y' '

y
u∗g∗HX′(v∗G, v∗f !H) ˜−−−−→

u∗λ
u∗HY ′(g∗v∗G, u∗H)

where the isomorphism α̃ is the sheafified expression of v∗–v∗ adjointness (see Lecture 3), and the right
column is an isomorphism by SDc (for g). Thus the top horizontal map “via v∗β ” is an isomorphism.

The desired implication results then from the following Key Fact (proof omitted):

If f : X → Y is a finitely presented scheme-map, then a D+
qc(X)-map φ is an isomorphism if and only if

so is the D(Y )-map f∗HX(G, φ) for every G ∈ D-
c(X).
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The implication (BCo + BCaf) =⇒ BC results from a simple formal “transitivity” property of θ (hence β)
with respect to horizontal composition of fibre squares, a property which, along with BCo, allows a reduction
to the case where Y and Y ′—and hence u—are affine, so that BCaf applies.
As for the implication BCo =⇒ SD, when u is an open immersion, the columns of the following—previously
derived—diagram are isomorphisms:

u∗f∗HX(G, f !H)
u∗(δ)−−−−→ u∗HY (f∗G, H)

θσ

y yρ
g∗v
∗HX(G, f !H) HY (u∗f∗G, u∗H)

ρ

y yθσ
g∗HX′(v∗G, v∗f !H) −−−−→

λ
HY ′(g∗v∗G, u∗H)

Moreover, one checks that λ = δ(g∗, v∗G, v∗f !H) ◦ g∗HX′(v∗G, β), where β is, by BCo, an isomorphism.
Then since ΓY ′δ can be identified with a global duality isomorphism, one sees that ΓY ′λ is an isomorphism.
Hence ΓY ′u∗(δ) is an isomorphism for all open immersions u : Y ′ → Y ; and SD follows. QED

Using the “Key Fact” one deduces similarly that SD =⇒ BCo.
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