RINGS WITH DISCRETE DIVISOR CLASS GROUP: THEOREM OF DANILOV-SAMUEL

By Joseph Lipman[†]

Introduction. In [3], Danilov has studied normal noetherian domains A for which the canonical map of divisor class groups i^* : $\mathbb{C}\ell(A) \rightarrow \mathbb{C}\ell(A[[T]])$ is bijective; such A are said to have *discrete divisor class group* (abbreviated DCG).¹ One of Danilov's main results [3, p. 374, Theorem 1] is

(D-S). If the normal noetherian domain A is such that the localization A_p has DCG at every prime ideal p for which depth $(A_p) = 2$, then A itself has DCG.²

This result generalizes a theorem of Samuel [10, p. 5, Theorem 3.2]. (Danilov states [3, p. 368] that Samuel's proof is incomplete.) Danilov's proof, in which certain additional mild restrictions are placed on A, uses difficult cohomological results of Grothendieck [5]. The *purpose of this note* is to give a proof of (D-S) which uses nothing deeper than a well-known theorem of Rees on the connection between depth and Ext, and moreover needs no additional hypotheses on A.

Actually we obtain somewhat more than (D-S). Danilov defines a map j^* : $\mathbb{C}\ell(A[[T]]) \to \mathbb{C}\ell(A)$ such that $j^* \circ i^* =$ identity (cf. [4, p. 109, Theorem 18.8], or else just use the equivalent definition given in Section 1 below); so A has $DCG \Leftrightarrow j^*$ is injective. But in fact Danilov's definition works more generally to give a map $j_{B,t}$: $\mathbb{C}\ell(B) \to \mathbb{C}\ell(B/tB)$ for any noetherian normal ring B and nonunit $t \in B$ such that B/tB is also normal. [Thus the DCG property begins to look like one of "Lefschetz type," i.e., it has to do with the comparison of something on Spec(B) to the corresponding

[†]Supported by NSF grant GP 29216.

¹ All rings are understood to be commutative. The definition of i^* can be found, e.g., in [4, Sect. 6 (cf. especially pp. 29-31, 35)]. A survey of the theory of rings with DCG is given in [8, Sects. 1-3].

² The converse "A has DCG $\Rightarrow A_M$ has DCG for every multiplicative set M in A" is an open question. (For an affirmative answer in case A is an excellent **Q**-algebra, cf. [3, p. 371, Prop. 4].)

thing on the "hypersurface section" Spec(B/tB). This indicates why Danilov finds [5] so useful.] This being so, what we show is

(D-S)'. Let B be a normal noetherian domain and t a regular element (= nonzerodivisor) in the Jacobson radical of B such that the ring A = B/tB is a normal domain. Suppose that for every prime ideal p in A such that depth $(A_p) = 2$, there exists a normal noetherian flat B-algebra C such that

 $C/tC \cong A_p$ (isomorphic as A-algebras)

and such that $j_{C,t}$: $\mathbb{C}\ell(C) \to \mathbb{C}\ell(A_p)$ is injective. Then $j_{B,t}$: $\mathbb{C}\ell(B) \to \mathbb{C}\ell(A)$ is injective.³

(Taking B = A[[T]], t = T, $C = A_p[[T]]$ in (D-S)', we get (D-S).)

Using a familiar interpretation of $\mathbb{C}\ell(A)$ as being the group of isomorphism classes of reflexive rank one A-modules—an interpretation which, for lack of convenient references, we review briefly in Section 0 we reformulate the injectivity of $\mathbb{C}\ell(B) \to \mathbb{C}\ell(B/tB)$ as a simple statement about free modules. This gives us a straightforward reduction of (D-S)' to Theorem 1 (Section 2), which is the main result. (This reduction is carried out in Section 1; Theorem 1 and its proof (Section 2) are independent except for motivation—of anything which precedes them.)

As a corollary of Theorem 1, we obtain a generalization of a result of [5], including the following statement:

If B is a noetherian local ring of depth ≥ 4 and if t is a regular nonunit in B, then B/tB parafactorial \Rightarrow B parafactorial.

0. Reflexive Modules and the Divisor Class Monoid. Let A be a *noetherian integral domain.* For any A-module E, let E^* be the A-module Hom_A (E, A). Write E^{**} for $(E^*)^*$. Recall that E is said to be *reflexive* if the canonical map $\alpha: E \to E^{**}$ is *bijective.* $\{[\alpha(x)](f) = f(x) \text{ for all } x \in E, f \in E^*.\}$

Let K be the field of fractions of A. We shall say that an A-module E has rank one if E is finitely generated over A and the K-vector space $E \otimes_A K$ is one-dimensional. If E has rank one, then so does E^* ; and if

³ In (D-S)', if $j_{C,t}$ is injective then so is $j_{Bq,t}$, where q is the inverse image of p in B. So the hypothesis in (D-S)' could be changed to: "Suppose that $j_{Bq,t}$ is injective for all prime ideals q containing t and such that depth $(B_q) = 3$."

two A-modules E_1 and E_2 both have rank one, then so does $E_1 \otimes_A E_2$. For any rank one reflexive A-module E, the canonical map $E \to E \otimes_A K$ is injective, and so E is isomorphic to an A-submodule of K.

If E_1 and E_2 are rank one A-submodules of K, then any A-homomorphism of E_1 into E_2 extends uniquely to a K-homomorphism of $E_1 \otimes_A K$ (=K) into $E_2 \otimes_A K$ (=K); it follows that we can identify Hom_A (E_1, E_2) with the A-module

$$E_2:E_1 = \{x \in K | xE_1 \subseteq E_2\}.$$

The canonical map $E_1 \rightarrow E_1^{**}$ is then identified with the inclusion of E_1 into $A:(A:E_1)$. So E_1 is reflexive if and only if $E_1 = A:(A:E_1)$, i.e. if and only if E_1 is a divisorial fractionary ideal of A (cf. [2, Section 1.1, Definition 2 and Proposition 1]). And E_1 is A-isomorphic to E_2 if and only if there is an $x \neq 0$ in K such that $xE_1 = E_2$, i.e. E_1 and E_2 determine equivalent divisors [2, Section 1.2, Proposition 4].

With this in mind, it is now straightforward to see that the elements of the *divisor class monoid*—denoted $\mathbb{C}\ell(A)$ —as defined in [2, Section 1.2], are in one-to-one correspondence with the *isomorphism classes of reflexive rank one A-modules*.

The monoid structure on $\mathbb{C}\ell(A)$ can be described as follows (verification left to the reader): For any rank one A-module E let

 $[E]_A = (\text{isomorphism class of } E^{**}) \in \mathbb{C}\ell(A).$

(We may write [E] for $[E]_A$ if no confusion results.) Multiplication in $\mathbb{C}\ell(A)$ is such that

$$[E_1][E_2] = [E_1 \otimes_A E_2]$$

for any two rank one A-modules E_1 , E_2 . So multiplication is determined by \otimes (even though the tensor product of two reflexive A-modules need not itself be reflexive!). The *identity element* of $\mathbb{C}\ell(A)$ is [A]. One checks that $[E_1] = [E_2]$ if and only if E_1^* and E_2^* are isomorphic; in particular, [E] is the identity element of $\mathbb{C}\ell(A) \Leftrightarrow E^*$ is free.

1. Reformulation of (D-S)'. Let B, t, A be as in the statement of (D-S)'. It is easily seen that $j_{B,t}: \mathbb{C}\ell(B) \to \mathbb{C}\ell(A)$ is such that for each rank

one reflexive B-module F,

$$j_{B,t}([F]_B) = [F \otimes_B A]_A = [F/tF]_A.$$

[Since the localization B_q of B at the prime ideal q = tB is a U.F.D., therefore the reflexive rank one B_q -module $F \otimes_B B_q$ is free, and so the *dimension* of

$$(F/tF) \otimes_A (B_q/qB_q) = (F \otimes_B B_q) \otimes_{B_q} (B_q/qB_q)$$

over the field B_q/qB_q is one, i.e. F/tF is a rank one A-module (not necessarily reflexive!).] In view of the characterization of the identity element of $\mathbb{C}\ell(A)$ given at the end of Section 0, we conclude that $j_{B,t}$ is injective \Leftrightarrow the following condition holds:

(*)_{*B*,*t*}. With A = B/tB, if *F* is any reflexive rank one *B*-module such that Hom_{*A*} (*F*/*tF*, *A*) is a free *A*-module, then Hom_{*B*} (*F*, *B*) is a free *B*-module (i.e. *F* itself is free).

Next, we need a simple observation:

LEMMA. Let B, t, A, p, C be as in (D-S)'. Let F be a reflexive rank one B-module such that Hom_A (F/tF, A) is a free A-module. Then $(F/tF) \otimes_A A_p$ is a free A_p -module.

Proof. Since C is *flat* over B, therefore $F_C = F \otimes_B C$ is a reflexive rank one C-module [2, Section 4.2, Proposition 8]. Furthermore

$$F_C/tF_C = (F \otimes_B C) \otimes_C (C/tC) = (F \otimes_B A) \otimes_A (C/tC) = (F/tF) \otimes_A A_p$$

whence

$$\operatorname{Hom}_{A_p}(F_C/tF_C, A_p) = \operatorname{Hom}_A(F/tF, A) \otimes_A A_p,$$

and so $\operatorname{Hom}_{A_p}(F_C/tF_C, A_p)$ is a free A_p -module. Since by assumption $j_{C,t}$ is injective, therefore $(*)_{C,t}$ holds, and we conclude that F_C is free over C, whence $(F/tF) \otimes_A A_p$ ($= F_C/tF_C$) is free over A_p (= C/tC). Q.E.D.

One final remark: B, t, A being as above, if F is any finitely generated reflexive B-module then F is torsion-free (in other words, if $0 \neq f \in F$ and b is a regular element of B, then $bf \neq 0$); and furthermore F/tF is a torsion-free A-module. (Proof left to reader; the only hypothesis really

206

needed is that $F = \text{Hom}_B(G, B)$ for some *B*-module *G*.) It follows that if *p* is a prime ideal of depth ≤ 1 in the normal noetherian domain *A*, then $(F/tF) \otimes_A A_p$ is a free A_p -module.

It should now be evident—and up to this point nothing very substantial has been done—that (D-S)' follows from Theorem 1 below.

2. The Basic Result.

THEOREM 1. Let B be a noetherian ring and let t be a regular element in the Jacobson radical of B. Let F be a finitely generated B-module such that t is not a zero-divisor in F. Set A = B/tB, E = F/tF, and suppose that

(i) $\operatorname{Hom}_A(E, A)$ is a free A-module, and

(ii) $E_p = E \otimes_A A_p$ is a free A_p -module for every prime ideal p in A such that depth $(A_p) \le 2$.

Then $\operatorname{Hom}_{B}(F, B)$ is a free B-module.⁴ Proof. Consider the exact sequence

$$0 \rightarrow \operatorname{Hom}_{B}(F, B) \xrightarrow{i} \operatorname{Hom}_{B}(F, B) \rightarrow \operatorname{Hom}_{B}(F, A)$$
$$\rightarrow \operatorname{Ext}_{B}^{1}(F, B) \xrightarrow{i} \operatorname{Ext}_{B}^{1}(F, B) \rightarrow \operatorname{Ext}_{B}^{1}(F, A)$$

(obtained from the short exact sequence $0 \to B \stackrel{\iota}{\to} B \to A \to 0$). If we can show that $\operatorname{Ext}_{B}^{1}(F, A) = 0$, then $\operatorname{Ext}_{B}^{1}(F, B) = t(\operatorname{Ext}_{B}^{1}(F, B))$, so by Nakayama's lemma [1, Chapter 2, Section 3.2, Proposition 4], $\operatorname{Ext}_{B}^{1}(F, B) = 0$, whence

 $\operatorname{Hom}_{B}(F, B)/t(\operatorname{Hom}_{B}(F, B)) \cong \operatorname{Hom}_{B}(F, A) = \operatorname{Hom}_{A}(E, A);$

since $\text{Hom}_A(E, A)$ is a free A-module, it follows from [1, Chapter 2, Section 3.2, Proposition 5] (applied to the ideal tB) that $\text{Hom}_B(F, B)$ is free over B, as required.

Now $\operatorname{Ext}_{B}^{1}(F, A)$ is canonically isomorphic to $\operatorname{Ext}_{A}^{1}(E, A)$. [This can be seen—for example—as follows: Let $G_{1} = \cdots \rightarrow G_{2} \rightarrow G_{1} \rightarrow G_{0} \rightarrow 0$

 $^{^4}$ One can check, using [7, p. 879, Proposition 2.2], that (ii) can be replaced by the following two weaker conditions:

⁽ii) ' E_p is a torsion-free A_p -module whenever depth $(A_p) = 1$;

⁽ii)" E_p is a reflexive A_p -module whenever depth $(A_p) = 2$.

^{[(}ii)' is automatic if F is reflexive.]

be a projective resolution of the *B*-module F (so that $F = H_0(G_{\cdot})$). A brief examination of the long exact homology sequence of the exact sequence of complexes

$$0 \to G_{\star} \stackrel{t}{\to} G_{\star} \to G_{\star}/tG_{\star} \to 0$$

shows that G_{\cdot}/tG_{\cdot} is an A-projective resolution of the A-module E. (It should be kept in mind here that, by assumption, multiplication by t in $H_0(G_{\cdot})$ is an injective map.) Hence, for all $i \ge 0$, and any A-module M

$$\operatorname{Ext}_{A}^{i}(E, M) = H^{i}(\operatorname{Hom}_{A}(G, /tG, M))$$
$$= H^{i}(\operatorname{Hom}_{B}(G, M)) = \operatorname{Ext}_{B}^{i}(F, M).]$$

Let us show then that $\operatorname{Ext}_{A}^{i}(E, A) = 0$.

Let $\alpha: E \to E^{**}$ be the canonical map of E into its "bidual" (over A) (cf. Sect. 0), and let K, I, C be the kernel, image, and cokernel (respectively) of α . From the exact sequences

$$0 \to K \to E \to I \to 0, \qquad 0 \to I \to E^{**} \to C \to 0$$

we obtain exact seqences

$$\operatorname{Ext}_{A}^{1}(I, A) \to \operatorname{Ext}_{A}^{1}(E, A) \to \operatorname{Ext}_{A}^{1}(K, A),$$
$$\operatorname{Ext}_{A}^{1}(E^{**}, A) \to \operatorname{Ext}_{A}^{1}(I, A) \to \operatorname{Ext}_{A}^{2}(C, A).$$

Since E^* is free (by assumption), also E^{**} is free, and $\operatorname{Ext}_A^1(E^{**}, A) = 0$. So it will be enough to show that

$$\operatorname{Ext}_{A}^{2}(C, A) = \operatorname{Ext}_{A}^{1}(K, A) = 0.$$

Now for any prime p in A, there is a natural identification of $\alpha \otimes_A A_p$ with the canonical map of $E \otimes_A A_p$ into its bidual (over A_p). [Indeed, for any A-algebra R, we have a natural commutative diagram

208

where β is the natural map of $E \otimes_A R$ into its bidual (over R); γ is obtained by applying Hom_R (\cdot, R) to the natural map

$$\omega_E: \operatorname{Hom}_A(E, A) \otimes_A R \to \operatorname{Hom}_R(E \otimes_A R, R);$$

and δ is ω_{E^*} . And if *R* is *flat* over *A*, then γ and δ are isomorphisms [1, Chapter 1, Section 2.10, Proposition 11].]

Thus if depth $(A_p) \le 2$, so that $E \otimes_A A_p$ is free, then $\alpha \otimes_A A_p$ is bijective, i.e. $K_p = C_p = 0$. By a theorem of Rees ([9, p. 31, Theorem 1.3] or also [5, p. 33, Proposition 2.9]), this means that

$$Ext^{i}(K, A) = Ext^{i}(C, A) = 0$$
 (*i* ≤ 2). Q.E.D.

We note, in closing, the following generalization of [5, p. 133, Lemma 3.16]:

COROLLARY. Let B, t, and A be as in Theorem 1 [so that Spec (A) can be identified with the closed subscheme t = 0 of Spec (B)]. Let X be an open subset of Spec (B), let $Y \subset X$ be an open subset of Spec (A) such that depth $(A_p) \ge 3$ for all prime ideals p in Spec (A) – Y,⁵ and let i: $Y \to X$ be the inclusion map. If \mathfrak{F} is any locally free coherent sheaf on X with $i^*\mathfrak{F} \cong \mathfrak{O}_Y^n$, then $\mathfrak{F} \cong \mathfrak{O}_X^n$. In particular, the canonical map Pic (X) \to Pic (Y) is injective.

Proof. There exists a finitely generated B-module F such that, if F^{\sim} is the corresponding coherent sheaf on Spec (B), then $F^{\sim}|X \cong \mathfrak{F}[6, p. 318, \text{Cor. } (6.9.5)]$. We may replace F by its bidual, i.e. we may assume that F is reflexive. (In particular, t is not a zero-divisor in F.) We shall show that E = F/tF satisfies conditions (i) and (ii) of Theorem 1; then Hom_B (F, B) is free, so F itself, being reflexive, is free, and the Corollary results.

For (i), let $j: Y \to \text{Spec}(A)$ be the inclusion map. Since Y contains all primes p such that depth $(A_p) \leq 1$, we have that: for any finitely generated *free* A-module G, with associated sheaf G^- on Spec (A), the canonical map $G^- \to j_*j^*G^-$ is an isomorphism (cf. for example [5, p. 37, Cor. 3.5]). Applying Hom_A (\cdot, A) to a finite presentation of E, we obtained an exact sequence

$$0 \to E^* \to G_1 \to G_2$$

⁵This means precisely that $H^0(Y, \mathcal{O}_Y) = A$ and $H^1(Y, \mathcal{O}_Y) = 0$.

JOSEPH LIPMAN

with G_1 and G_2 finitely generated free A-modules; in the resulting commutative diagram (with exact rows)

we see then that ϕ is an isomorphism. But

$$j^*E^- = i^*\mathfrak{F} \cong \mathfrak{O}_{Y''}$$

and hence

$$j^*E^{*} \cong \mathfrak{O}_Y^n \mathcal{O} \qquad [=j^*(A^n)^{\sim}].$$

Applying j_* , we conclude that $E^{*} \cong (A^n)^{\sim}$, so E^* is free.

As for (ii), if depth $(A_p) \le 2$, then $p \in Y$; but then E_p is just the stalk at p of $i^*\mathfrak{F}$, so E_p is free. Q.E.D.

PURDUE UNIVERSITY

REFERENCES

- 1. N. BOURBAKI, "Algebre Commutative," Chapters 1 and 2, Act. Sci. Ind. No. 1290, Hermann, Paris, 1961 (English translation, 1972).
- 2. _____, Chapter 7, Act. Sci. Ind. No. 1314, Hermann, Paris, 1965.
- 3. V. I. DANILOV, "Rings with a discrete group of divisor classes," Math. USSR Sb. 12 (1970), pp. 368-386 (Mat. Sb. 83(125) (1970), pp. 372-389).
- R. M. FOSSUM, "The Divisor Class Group of a Krull Domain," Ergeb. der Math., Bd. 74, Springer-Verlag, Berlin and New York, 1973.
- 5. A. GROTHENDIECK, "Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux," North-Holland Publ., Amsterdam, 1968.
- A. GROTHENDIECK and J. DIEUDONNE, "Elements de geometrie algebrique," Springer-Verlag, Berlin and New York, 1971.
- 7. J. LIPMAN, "Free derivation modules on algebraic varieties," Amer. J. Math. 87 (1965), pp. 874-898.

- 8. _____, "Unique factorization in complete local rings," Proc. Symp. in Pure Math., 29, American Math. Soc., Providence, 1975, pp. 531-546.
- 9. D. REES, "The grade of an ideal or module," Proc. Cambridge Philos. Soc. 53 (1957), pp. 28-42.
- 10. P. SAMUEL, "On unique factorization domains," Illinois J. Math. 5 (1961), pp. 1-17.