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INTRODUCTION

In proposing a construction for the local Picard scheme of a complete local ring
of mixed characteristic (with perfect residue field), Grothendieck has raised the following
problem (?):

Let R be a local Artin ring with perfect residue field k of characteristic p>o, and let
f:X — Spec(R) be a proper map. Give a natural construction of a group-scheme P locally of
Sfinite type over k, together with an embedding

Pic(X) — P(&)

which is bijective if k is algebraically closed.

(%) Supported by National Science Foundation grant GP-29216 at Purdue University.
(?) Quoted from a letter to the author dated September 196g9.
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16 JOSEPH LIPMAN

Under certain conditions the local Picard scheme should be obtained by factoring
out a discrete group from an inverse limit of such P’s (cf. [SGA 2, pp. 189-191]) (}).

If the usual Picard functor Picyp of X over R is an R-scheme, then we can take P
to be Greenberg’s realization of Picyy over & (cf. [Gr, § 4]). In the application to
local Picard schemes, however, the maps of the above type f: X - Spec(R) which
appear are very far from being flat, so we cannot expect Picyy to be a scheme.
Grothendieck’s idea is that, even so, the fppf sheaf associated to the realization of Picyy
might still be a k-scheme. 'This turns out to be correct, and therein lies the theme of
this paper.

Example. — Let T be a three-dimensional regular local ring with regular parameters u, v, w, and algebraically
closed residue field %; let S=T/(u®+v3+w?); let Z be the desingularization of S obtained by blowing up the
maximal ideal M of S; let R =S5/TM? and let X=Z®gR. Then Y=X_, is the projective plane cubic curve
over k defined by the equation U34-V34+W3=0, and it can be shown that the fppf sheaf associated to the realization P’
of Plex/p is Pieyy,. For any k-algebra A, we find that P’(A)= Picy;,(R(A)/TMR(A)), R being the Greenberg
algebra associated to R (cf. Appendix A). P’ is an étale sheaf, but P’ is not equal to its associated fppf sheaf Picyy;,
(there is a natural surjective map R(A)/TMR(A)—> A whose kernel is nilpotent, but not, in general, zero). Thus
P’ is not a k-scheme, and consequently Piex g is not an R-scheme (%).

A detailed discussion of the main results is given in § 1. (At first sight it will
seem that the functor P which we study is not the one just described; this apparent
anomaly is set straight in Remark (1.8).) Our basic results and methods are motivated
by the classical theory of the Picard functor of a scheme over a field. (In fact, in the
special case when pOy =(0), so that X is actually a &-scheme, our functor P becomes
identical with Picy,.) However there are new difficulties to be dealt with. For
example, as in the classical case, a number of questions about P are treated by
““ linearizing ”’ them; but whereas in the former case the linearized questions are trivial,
this is hardly so in the present situation. Indeed, the solutions of the linear problems,
as exemplified by Theorems (2.4) and (8.1), constitute the main methodological
novelty (3).

A weaker version of parts I and IT was distributed as a preprint in late summer, 1971.
Part I in its present form was worked out during a visit to Harvard University in the
fall semester of 1971, and the results were presented there at a seminar held in
January, 1972.

It remains to thank Professor Grothendieck for the generous communication, in
the above-mentioned correspondence, of his ideas on the local Picard scheme, and for
his subsequent encouragement.

(*) Boutot [Bt] gives a different type of construction (equicharacteristic case).

(%) To prove the assertions in this example, I need Corollary (0.2), Proposition (A.1), Corollary (C.6),
and considerations of the type found in the first half of § 2.

(®) Our results are further developed in [L)], where they are used in proving (for example) that for a
complete local ring A with algebraically closed residue field, if A is factorial then so is the formal power series ring A[[T]].
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THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 17

o. Preliminaries (sheaves; Witt vectors).

All rings are understood to be commutative, with identity; * subring” means
‘“subring containing the identity”; all homomorphisms of rings preserve identity
elements.

Let & be a perfect field of characteristic p>o0. There is a fully faithful embedding
of the category of k-schemes into the category of covariant (set-)functors of k-algebras:
to the scheme Z is associated the functor

hy(A) =Hom,(Spec(A), Z).

We may therefore think of certain functors (viz. those which are, up to isomorphism,
of the form %,) and their morphisms as schemes and morphisms of schemes. For example
we shall say that a functor F is an algebraic (resp. locally algebraic) k-scheme if F ~h;, where
Z is a scheme of finite type (resp. locally of finite type) over 2. If] in addition, F is a
functor into the category of groups (equivalently: Z is a group-scheme) then we say
that F is an algebraic (resp. locally algebraic) k-group.

We shall use freely the language of topologies and sheaves on the category of k-algebras,
as presented in [DG, chap. III, § 1]. Here we review briefly a few pertinent points.
For a k-algebra A, a finite family (B,);o; of A-algebras is said to cover A for the fpgc
(resp. fppf; resp. étale; resp. Zariski) topology if the B, are flat over A (resp. flat and
finitely presented; resp. étale; resp. rings of fractions of the form A ,=A[1/f], feA)
and if furthermore the union of the images of the Spec(B,) in Spec(A) is all of Spec(A).
A covariant set-valued (or group-valued, or ring-valued) functor F of k-algebras is said
to be a sheaf (for a fixed one of the above topologies) if the following condition holds:

For any k-algebra A and any covering family (B,); o the canonical diagram

F(A) > IIF(B) 2 [TF(B®,B)

15 exact.

For a fixed topology, there is associated to any functor F—into the category of
sets, or of groups, or of rings—a sheaf F™~ —into the same category—and a morphism
of functors F—»F™ such that any morphism of functors F—-G with G a sheaf factors
uniquely through F»F~. F7 is obtained from F by ¢ pasting together elements which
agree locally”. More precisely, for a k-algebra A we say that &;, £,eF(A) agree locally
if there exists a family (B;);-; covering A such that the canonical images of &; and &,
in F(B,) are the same for each i€l; this defines a functorial equivalence relation R(A)
on F(A), whence a quotient functor Fy=F/R, and F~ (A) is the direct limit of the
kernels of the diagrams

H FO(Bi) = H FO(Bz‘@ABj)
+ %J

as (B;);e; runs through “all” covering families of A. F;(A) can be identified
(functorially) with the image of the canonical map F(A) - F™ (A).
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18 JOSEPH LIPMAN

The abelian functors (i.e. functors into the category of abelian groups) and their
morphisms form an abelian category, and the abelian sheaves are the objects of a full
abelian subcategory [DG, p. 331, (3.5)]. The functor F»F™ from the category of
abelian functors to the category of abelian sheaves is exact; its right adjoint, the inclusion
functor of the category of sheaves into that of presheaves, is left exact [ibid., (3.6)].

The following observation will be very useful:

Lemma (0.1). — Let B be a k-algebra.  Then there exists a filtered inductive system (B,), <
of B-algebras such that each B, is a free finitely generated B-module, and such that if

B=1imB,
=

then B? =B (i.e. the Frobenius endomorphism x—>x® of B is surjective).
(Note that B is a flat B-algebra, and that Spec(B) - Spec(B) is surjective, since
B is integral over B; so B is faithfully flat over B.)

Progf. — If the system (B,),.; has the required properties, relative to B, and
if B’ is a homomorphic image of B, then clearly the system (B,®pB’), ; has the required
properties relative to B’.  Thus it suffices to treat the case B=~%[(X,)], where (X,), cq
is a family (not necessarily finite) of independent indeterminates. In this case, let Q
be an algebraic closure of the field of fractions of B, and for each pair a«=(L, n), where
L is a finite subset of G and 7 is a positive integer, set

«=Bl(XF )yerl Q.

The B, form, in an obvious way, an inductive system (in which the maps are just inclusion
maps), and one checks that this is as desired. Q .E.D.

Corollary (0.2). — Let F—>G be a morphism of functors of k-algebras, such that
F(B) —>G(B) s bijective whenever B is a k-algebra with BP=B. Then the associated morphism
of fpgc sheaves ¥~ — G~ is an isomorphism. The same is true for the associated morphism
of fopf sheaves, provided that ¥ and G commute with filtered direct limats.

Progf. — Using Lemma (o0.1) (and the ‘“ note > following it) we see that associated
Jbge sheaves can be constructed (as before) entirely out of covering families (B;);c; in
which, for all ¢, B?=B; (for if Bf+B,, then by Lemma (0.1) we can replace B; by
a faithfully flat B-algebra B; with Bf =B,); the assertion of (0.2) for fpgc sheaves results.

From the method of construction of associated fppf sheaves, the second asseriion
is a straightforward consequence of the following two facts:

(1) For any k-algebra B, if &, £,eF(B) have the same image in G(B), then there
exists a B-algebra B’ such that B’ is a free finitely generated B-module—and hence a
flat finitely presented B-algebra [EGA o1, p. 136, Cor. (6.3.7)]—and such that &
and &, have the same image in F(B’).

18



THE PICARD OF GROUP A SCHEME OVER AN ARTIN RING 19

(Proof: Let B be as in Lemma (0.1); then F(B)—>G(B) is bijective, so &, &, have
the same image in F(B); but F commutes with direct limits...)
(ii) For any k-algebra B, if neG(B), then there exists B’ as in (i), and £eF(B’)

whose image in G(B’) is the same as that of v. (Proof: similar to that of (i).)

*
L I J
We shall make frequent use of the Witt vectors; all the facts we need concerning

them are immediate consequences of those few which we now review. (For details

cf. (for example) [S, pp. 45-53].)
Let % be, again, a perfect field of characteristic p>o. The k-ring-scheme W of

Witt vectors has as its underlying scheme Spec(k[X,, X, X,, ...]) (where (X;);>, is
a family of independent indeterminates). Addition and multiplication are defined by
certain polynomials

S;(Y,Z), P(Y, ZL)ek[Yy, Yy, -y Y0, 2o, Zy, ..., Z] (120)
so that for any k-algebra A, addition in
W(A)={(ay, ay, a5, ...)|4€A, i>0}
is given by
(@gs g, @9y .. .)+(ag, ay, a3, -..)
=(Sq(ao, ay), S1(ay, a1, ay, a1), Sy{ag, a1, Ay, ay, a3, a3)s - - .)

and similarly for multiplication, with P; in place of S;. As for explicit formulae, we
will need only the following three:

(i) So(Yo: Zo) =Yo‘l‘Zo

(i)  plao, a1, @5, .. .)=(0, a5, af, a4, ...)
see 2
(111) (a> 0,0,0, .. -)(ao, Qs dgs - - ')Z(aam ab @, a? ag, - - )

The ring W(k) is a complete discrete valuation ring whose maximal ideal is
generated by p and whose residue field is 2. For any complete local ring R, with perfect
residue field K, and any homomorphism %2-—>K, thereis a uniqgue homomorphism W(k) —-R
making the following diagram commute:

W) — R
Lo
P — K

If R is an Artin ring, with maximal ideal m, and if [K :Z]<co, then the preceding
map W(k)—>R makes R into a W(k)-module of finite length. (Consider the filtration
Romom?zom®=...)

19



20 JOSEPH LIPMAN

Let N be an integer>o0. The &-ring-scheme Wy of Witt vectors of length N is such
that for any k-algebra A

wN(A) ={(a0, g5 .- ax_y) laiEA’ 0_<_i<N},

addition and multiplication being given by the above polynomials S;, P; (o <:<N).
As a scheme, then, Wy is the affine space Spec(k[X,, X;, ..., Xy_1])- W (A) is
canonically isomorphic to A (this follows from (i) and (iii) above). We have a * trunc-

ation ”’ homomorphism of ring schemes py : W—>Wy given by
on(Gg> @1y oy - oy @yy oo ) =(ag, Gy, G,y ..y Gy _y)-
on(A) : W(A) > Wy(A) is surjective for all k-algebras A, and from (ii) above we see that
ker(px(A)) 2 Y W(A),
with equality if AP =A.
Similarly, if M >N, we have a truncation map pyy : Wy—Wy, and clearly

PN = PNMOPM-

1. Discussion of results.

In this section we describe, and comment on, the main results of the paper.

Let us say that a scheme X (with structure sheaf Oy) is complete if the following
two (equivalent) conditions hold:

a) H'(X, 0x) is an Artin ring, and the canonical map X— Spec(H%(X, 0y))
is proper.

b) There exists an Artin ring R and a proper map X—Spec(R).

In what follows we consider a triple (X, k, 1) with

— X a complete scheme,

— k a perfect field of characteristic p>o,

— k> H¥X, 0x),q a ring homomorphism zia which H®(X, 0y), 4 is a finite
k-algebra.

(For any ring S, we set S,,==S/(nilradical of S).)

X and % being as above, there is another way of looking at . which is actually the
point of view we will take throughout most of the paper. HO(X, @) is a product of
local Artin rings whose residue fields are finite over %, so ¢ lifts uniquely to a homomorphism
from the Witt vectors W(&) to H%(X, 0), and by this lifting H%(X, @) becomes a
finite W(%)-algebra (cf.§0). Composing the finite map Spec(H°(X, 0y)) — Spec(W (%))
with the natural map X — Spec(H%(X, 0y)), we get a map

£t X > Spec(W(E))

20



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 21

and clearly:

(1) f is proper;

(i1) f(X) is supported in the closed point of Spec(W(k)); .. there exists an
integer N>o0 such that pN0Oy=(0) (so that X is proper, via f, over the ring Wy(k)
of Witt vectors of length N).

Itis easily checked that in this way we obtain a one-one correspondence between triples (X, &, )
as above and triples (Y, %, g) with Y a scheme and g : Y — Spec(W(%)) a proper map
such that g(Y) is supported in the closed point of Spec(W(%)).

For any scheme Z, Pic(Z) denotes, as usual, the group of isomorphism classes of
invertible 0,-modules (). Using inverse images of invertible sheaves, one makes Pic(Z)
into a contravariant functor of schemes, which can be identified via Cech cohomology
with the functor HY(Z, @3) (0 =sheaf of units of ¢,;) [EGA o1, pp. 124-126].

Our basic goal is, roughly speaking, to endow Pic(X) with some natural structure — depending
on v— of locally algebraic k-group.

One way of doing this is given by Theorem (1.2) just below. There are other
reasonable, and seemingly different, approaches but they lead to the same result
(cf. remarks (1.7) and (1.8) at the end of this section).

For any k-algebra A, let

X, =Xy W(A)

(X being a W(k)-scheme via the above f, and W(A) being a W(%)-algebra in the obvious
way). X, —and hence Pic(X,)—varies functorially with A.

Definition (x.1). — The (covariant) functor P=P(X, %, ) from k-algebras A to
abelian groups is the fpgc sheaf associated to the functor Pic(X,).

Theorem (x.2). — P is a locally algebraic k-group.

The proof of (1.2) occupies §§ 2-4; briefly, it goes as follows. Let A" be the
Nilradical of Oy, let X, (n>0) be the subscheme of X defined by the Oy-Ideal 4™
(so that X, =X for large n), and let P, be the fpgc sheaf associated to the functor
Pic(X,, 4)=Pic(X, Oy W(A)). We proceed by induction on n. To begin with,
P, turns out to be the usual Picard functor of the scheme X;=X . over the field k;
so by a well-known theorem of Murre and Grothendieck, P, is a locally algebraic &-group.
Then, to pass from P,_, to P, we use the truncated exponential map x—1-+x to reduce
the problem to one of representing a functor defined in terms of cohomology of coherent
sheaves: more specifically, to proving Theorem (2.4) (for details cf. § 2). Section 3
is devoted entirely to Proposition (g.1), which allows us in § 4 to apply some simple
facts about Greenberg modules (Appendix A) to complete the proof.

(1) Pic(Z) is a set because, for example, every invertible @z-Module is isomorphic to a subsheaf of the sheaf G
given by G(U)= II @5 ., (U open in Z).
zcU

21



22 JOSEPH LIPMAN

The foregoing inductive process also yields some information about the relation
of P to P,: for example, the canonical homomorphism P—P, is quasi-compact, with
unipotent kernel and cokernel. (For this, and other related results, cf. (2.5), (2.7)
and (2.11) in § 2.)

* ¥ %

For Theorem (1.2) to be useful, we need more information about the relation
between Pic(X,) and P(A), for k-algebras A. More precisely, we want to know some-
thing about the kernel and cokernel of the canonical map Pic(X,) - P(A). In partII
(88 6, 7) we obtain results in this direction under the assumption that AP= A (i.e. the Frobenius
endomorphism x>x? of A is surjective). In particular—and probably most signifi-
cantly—these results apply when A is a perfect field.

The main result of this sort is Theorem (7.5):

If AP=A, then, with ky =H(X, Ox),a, there is a natural exact sequence

0> Pic(k,®,A,) - Pic(X,) > P(A) - Br(k,®,A,,) - Br(X,)

(Here ““ Br > denotes * cohomological Brauer group .)

Theorem (7.5) contains most of the results of § 6 as corollaries. These corollaries
have to be proved independently, however, because they are used, to a large extent,
in the proof of (7.5). Specifically, what is needed is Corollary (6.11): if P®* is the
étale sheaf associated to the functor Pic(X,), then the canonical map

P*(A)—>P(A)

is bijective whenever AP =A.

(We also mention here that the proof of (7.5) uses (via Corollary (C.6) of
Appendix C) the following remarkable property of Witt vectors (Lemma (C.2)): ¢f
B is an étale A-algebra (A being a k-algebra) then W, (B) is an étale W (A)-algebra (m>1).)

Here is another example (further indications about § 6 are given in the remarks
at the beginning of part II):

If K is a normal algebraic field extension of k such that every connected component of X .4
has a K-rational point, and if A is a perfect field containing K, then Pic(X,)—>P(A) is bijective.

(By (6.9), X;eq®xK has a section over %, ®,K, so the assertion is a special case of (6.7). To derive it

from (7.5) we need to see that the map Br(k,®; A)—> Br(X,) is injective; this map is defined in § 7 to be xof1,
where a, B are as in the canonical commutative diagram

Br(H(X;, 0x,)) —> Br(Xy)
Bl &

Br(k ®; A) __Y_> Br(Xpa ®1 A);

but because of the above mentioned section, y is injective, whence so is aof3™1.)

22



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 23

*
k%

Part III (§§ 8, 9) deals with the Lie algebras of various k-groups. An upper bound
for the dimension of the &-group P is given by the dimension of its Lie algebra, Lie(P);
this latter dimension is shown in Theorem (g.1) to be

(1.3) AHEY(X, 0X))+t§0)\(00ker(vt))

where “ A’ denotes the length of a W(k)-module, and v, is the canonical map
v+ HY(X, p/0x) - H'(X, p'Ox[p'+* Ox).

What we actually show in § g is that Lie(P) has the same dimension as Lie(H), where
H is the linear version of P, i.e. the fpgc sheaf associated to the functor HY(X,, O,)
of k-algebras A. (By Theorem (2.4) H is an affine algebraic k-group.) The above
given dimension (1.3) can then be read off from the complete description of Lie(H)
contained in Theorem (8.1). This dimension is > A(HYX, O)), with equality if and
only if the k-scheme H is reduced.

In the classical case, when X is a scheme over & (i.e. p0x=(0)), the well-known
and easily proved fact is that Lie(P) is naturally isomorphic to H}(X, 0x). In contrast,
the proof of Theorem (g.1) is long and tedious, depending on many other results in
the paper; and I could not find a natural isomorphism between Lie(P) and Lie(H).
Hopefully this state of affairs can be improved upon.

As one consequence of Theorems (8.1) and (g9.1) we have (cf. Proposition (8.5)):

If B3(X, p'Ox/p't10x)=0 for all t>o0 (for example if dim X=1) then P is
smooth, of dimension N(HY(X, O)).

-
To further acquaintance with the functor P, we add here some remarks concerning

the dependence of P on (X, &, 1).

(1.4) Let X1, X2 ..., X™ be the connected components of X. For each j=i,
2,...,m, X’is open and closed in X, so X’ is a complete scheme and X=Ir,X;

j
Let . )
P =P(X' &, o)

where 7' is the projection map

o HO(X: 0X)red=jl;llHo(Xj: @Xf)red - HO(Xi: 0Xi)red'
There is then a natural map

P—>_1;I1Pi

which is easily seen to be an isomorphism.
So we may, at our convenience, assume that X s connected. In this case HY(X, Oy) is
a local Artin ring, and H°(X, 0y) 4 is a finite field extension of & (via 1).

23



24 JOSEPH LIPMAN

(r.5) P=P(X, %, 1) varies functorially with (X, k,1), in the following way.
Let (X', ', V') be another triple satisfying the same conditions as (X, &, 1), and let
P'=P(X', k', ). Suppose we are given (g, 8) such that g:X’'—+X is a morphism of
schemes and 6 :%k—%" is a homomorphism of fields for which the following diagram
commutes:

HY(X, 0x)p = HYX, Oy)

red

k 4
8

g° being the map induced by g. (It amounts to the same thing to require that the
corresponding diagram

X ¢ X’
(%)
S
Spec(W(k)) <o Spec(W(#'))

commute.) Let X*=X®y,; W(£’), and let
v R HO(X, O4.)
correspond to the projection map f* : X* — Spec(W(%’)). (Note that f* is proper, and
that p¥Oy =(0) implies p™ Oy =(0), whence HY(X*, Ox.),o is finite over %', via * (1).)
Let P*=P(X*, #’,"). Then:
i) P*=0"(P)=P® %
(i.e. the functor P* is the restriction of P to k'-algebras);
(i) there is a natural homomorphism
P*>P.

red

To check (i), let A’ be any k’-algebra, and observe that
Xir =X Qwp)W(A) = (X Owy W (2)) Owi ) W(A) = X Qs WA) =Xy 3
thus the functor Pic(X}) of &’-algebras A’ is the restriction to A’-algebras of the functor Pic(X,) of %-algebras A,
and since restriction commutes with passage to associated fpqc sheaves, (i) follows. As for (ii), (¥) gives a natural
W (% )-morphism X'~ X*, from which we obtain, in succession, the functorial maps (for %-algebras A’):
XA!-—) er
Pic(X}) — Pic(X))
P*—>P.

(1) In fact, since W(%’) is flat over W(&), it is easily seen that
HO(X*, 0X*)red =H(X, O%)red ®kk,

24



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 25

(x.6) Notation remains as in the preceding remark (1.5). For any functor
F of k’-algebras, the functor 0,F of k-algebras A is defined by

0,.F(A)=F(k"®,A).
To the above homomorphism P*—P’ there corresponds a homomorphism
P—->0,P
as follows: for any k-algebra A, the natural map A—%'®, A determines, by functoriality,
a map
P(A) > P(F'®,A)=P* (k' ®,A)
(cf. (i) above) which can be composed with
P*(#®,A) > P (F®,A)=0,P'(A)
to give the desired functorial map
3, : P(A) - 6,P'(A).
For each A, then, setting A’=£%'®, A, we have the natural commutative diagram

Pic(X,) — Pic(X}.)

P(A) — 2 5 P'(A)=06,P'(A)
In Corollary (6.13) we show:
If X=X' and g is the identity map, then the above homomorphism P—0,P' s an
isomorphism.
In particular, if X=X" is connected, if #'=H%X, 0x),,q and 06 =1, then we have

P(Xa k, L) = "*(P(Xa K, Ik'))
(1=identity map). In view of remark (1.4), this should allow us, whenever it seems

advantageous, to assume that X is connected, #=H%(X, 0x),4, and t=identity.

%
x %
Finally, we describe two other definitions of the functor P.

(x.7) In practice, X may be presented to us as a scheme proper over some parti-
cular local Artin ring R whose residue field—call it 2—is perfect of characteristic p>o.
(v: 2> HY(X, O),q can then be taken to be the map induced by R — H(X, O):
note that H(X, 0) is finite over R.) In this case, a reasonable candidate for the Picard
functor (indeed the one suggested by Grothendieck, cf. Introduction) is the following:
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R is naturally a W(Z)-algebra of finite length (§ 0) and so we have a corresponding

Greenberg algebra R together with an isomorphism of W(k)-algebras R—z>R(k)
(Appendix A, Proposition (A.1)). For any k-algebra A let

Xﬁ =X ® pes) R(A)

and let P¥ be the fppf sheaf associated to the functor Pic(X¥). The proof of Theorem (1.2),
slightly modified (§ 5), shows that P¥ is a locally algebraic k-group.

How is this P¥ related to the previously defined P? Well actually they are
isomorphic (so that P# depends only on X, % and t!). To see this note first that P¥ is
also the fpgc sheaf associated to Pic(X¥) (because Pic(X¥) and P# clearly have the same
associated fpgc sheaf; but P¥ being a scheme, is an fpgc sheaf). Now since R is (canoni-
cally) a W-algebra, we have, for all k-algebras A, a functorial map

X§ =X @iy R(A) > X @y WA) =X,

which is an isomorphism if AP=A (since then R(A)=R(k)®y,, W(A) (Prop-
osition (A.1) (ii)); hence there is a functorial homomorphism
Pic(X,) — Pic(X¥)

which is bijective if A* =A; so by Corollary (o.2) there results an isomorphism of associated

Jbgc sheaves
P(X, k1) > P%

It may be observed that the proof that P is a A-group is somewhat neater than
the corresponding proof for P#, because P does not take into account certain  finiteness
features. On the other hand, the fppf result is stronger (for example, as we have just
seen, it implies that P is isomorphic to P¥). Another bonus for working with the fppf top-
ology is that for any algebraically closed field extension K of &, we know without further
ado that the canonical map

Pic(X%) - P¥(K)
is bijective [DG, p. 291, Remark 1.15].

(x.8) Let X, R, R, 2 be asin (1.7) above. What about the usual Picard functor
of X over R, namely the étale sheaf Picyy associated to the functor Pic(X®yT) of
R-algebras T? In general, of course, Picypis not an R-scheme. (Cf. [FGA, p. 232-06];
for the applications we have in mind (cf. Introduction) X will not even be flat over R.)
Still, by a theorem of Greenberg [Gr, p. 643], if Picky does happen to be an R-scheme,
then the functor Picy g (R(A)) of k-algebras A is a k-scheme; and this suggests that we look
more closely at the functor Picyz(R(A)), even when Picyy is not an R-scheme.

As it turns out, however, Corollary (C.6) implies that Picyy(R(A)) s the étale
sheaf associated to the functor Pic(X§) of remark (1.7). Hence (cf. (1.7)) the fppf sheaf
associated to the functor Picyp(R(A)) is P¥ (=P).
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Furthermore, when AP=A then every étale A-algebra B satisfies B’=DB
(Lemma (6.12)), so that X§=X; (cf. (1.%)); hence Picyz(R(A))=P*(A), where
P is the élale sheaf associated to the functor Pic(X,), and so (6.11) says: if AP=A,
then the canonical map

Picx(R(A)) - PHA)=P(A)

is bijective.

I. — REPRESENTABILITY OF THE FUNCTOR P

2. Linearization.

In this section we ¢ linearize ”” Theorem (1.2), i.e. we reduce the problem of
representing P to one of representing functors defined in terms of cohomology of coherent
sheaves. The technique is quite similar to that of Oort [O].

We begin with some preliminaries. Consider a triple (Y, 0, #), where Y is any
topological space, 0 is a sheaf of rings (commutative, with identity) on Y, and # is an
0-Ideal (sheaf) such that #?=(0). Setting 0=0/¢, we have the exact sequence

o— ¢ —>0—>0—o.
Also if ¢ (resp. 0™) is the sheaf of units of @ (resp. @), there is an exact sequence of
(multiplicative) abelian sheaves

1>14+F >0 >0 —>1
(0*—@* is surjective because #2=/(0).)

The two resulting long exact cohomology sequences (contra-)vary functorially with
the triple (Y, 0, #): given a second such triple (Y', ¢’, #’) and a morphism

Y, 0,7~ %,0.7),

i.e. a pair (¢, ¢) where ¢ : Y=Y is a continuous map and ¢ : ¢*(0)— @ is a homo-
morphism of sheaves of rings such that ¢ (" #) =_¢’, we obtain canonical homomorphisms
of the two cohomology sequences defined as above for (Y, ¢, #) into the corresponding
sequences for (Y, @', #') (cf. [G, Prop. (3.2.2)]); and if (Y", 0", #") > (Y', O, ¢
is another morphism of triples, then these cohomology homomorphisms satisfy obvious
transitivity relations vis-a-vis

Y, 0, 2") >, 0,7) > (Y, 0, 7).

The “ truncated exponential ”” map exp from the (additive) abelian sheaf _¢ to
the (multiplicative) abelian sheaf 14 _# is defined by

exp(a)=14+a (acT'(U,_#); U any open subset of Y).
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Since #2=(0), itis immediate that exp is an isomorphism of abelian sheaves. One checks
that exp varies functorially with (Y, 0, #): given (§,9) : (Y, 0, #)~ (Y, 0, #) as
above, the resulting diagram

) Y P+ g =1+ F)
5 10

eXp

commutes.
*
* %k
Now let us return to the situation of Theorem (1.2), where we have a proper
map f:X — Spec(W(%)). Let A4 be the Nilradical of 0y, and for n>1 let X, be
the subscheme of X whose underlying topological space is the same as that of X and

whose structure sheaf is 0,= 0Ox/A4"". For n>2 let f£,=A""1/A" so thatfor any
k-algebra A we have an exact sequence of sheaves on X, , =X, @y, W(A):

Oﬁfn@n,Aﬁ @n,A—> Op_1,a—>0
(On, s being the structure sheaf on X, ,, m>1). Since #2=(0), we can apply the

preceding considerations to the triple (X, 4, 0, 4, #,0, ;) to obtain, for n>2 and
t>0, exact sequences (of abelian groups) which vary functorially with the k-algebra A:

(z-1) HY(0,,4) > (O, _y, ) > H 1 (£,0, ,) > H*Y(0, ) ~H*(0,_, )
(2.2) B -1, ) = HH (£, ) = Pic(X,, ) = Pic(X, g ) > HA( 7,0, )

(The cohomology is taken on the topological space |X, ,|=|X,|. In (2.2) we have
identified 1+£,0, , with #,0, , (via exp), and H'(G}, ,) with Pic(X,, ,), m>1.)

The proof of Theorem (1.2) will be by induction on n. The inductive step from
n—1 to n will be achieved by applying the next lemma to the exact sequences of fpgc sheaves
associated to (2.1) and (2.2).

Lemma (2.3). — Let
F,-F,—~F->F,—F,
be an exact sequence of abelian sheaves on the category of k-algebras with the fpqc (resp. fppf) topology.
Assume that ¥, ¥y, ¥y, F, are schemes, with ¥, and ¥, affine and algebraic over k. Then F

s a scheme, and the morphism F—¥g s affine. If, in addition, ¥y is locally algebraic over R,
then so is F.

Proof. — Let C be the fppf cokernel of F,—F,. Then C is an affine algebraic
k-group [DG, p. 331, (3.5) and p. 342, (5.6)]. Consequently, C is its own associated
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Jbge sheaf, so that C is also the fpgc cokernel of F,—F,. So in either case (fppf or fpgc)
if K is the kernel of F;—F, (i.e. the inverse image in F, of the zero-section Spec(k)—F,),
then we have an exact sequence of sheaves

0—>C—>F—>K-—o.

K is a closed subscheme of Fy, and if F, is locally algebraic over % then so is K. The
conclusion follows now from [DG, p. 363, (1.8) and (1.9) (mutatis mutandis, cf. p. 297

(3.3))]- Q .E.D.

To be able to use Lemma (2.3), we need to know that certain sheaves are schemes.
In §§ 3, 4 we shall prove:

Theorem (2.4). — With notation as in Theorem (1.2), let F be a coherent Ox-Module.
Then for all i>o0, the fpgc sheaf associated to the functor HY(X,, F®,_0x,) of k-algebras A
s an affine algebraic k-scheme.

This being granted, we can complete the proof of Theorem (1.2) in the
following way.

First, the sequence (2.1) may be viewed as an exact sequence of functors of
k-algebras. The corresponding sequence of associated fpge sheaves is exact, and according
to Theorem (2.4) (with X=X, or X, ,, F=0, or ¢,_,) all the sheaves in this
sequence, other than the middle one, are affine algebraic A-schemes. From Lemma (2.3),
we conclude that the middle term (i.e. the sheaf associated to the functor H'**( £,0, ,) (i>0))
ts also an affine algebraic k-scheme.

Next, look at the sequence (2.2). Let H* be the fpgc sheaf associated to the
functor H(¢;_, ,). We want to show that H* is affine and algebraic over k. By
Theorem (2.4) the fpge sheaf—call it H—associated to the functor H°(G, _, 4) is an
affine algebraic k-scheme, and clearly H is a ring-scheme over k. It is easily seen that
for any k-algebra A

H*(A) = {group of units in the ring H(A)}.

It follows that H* is isomorphic to the inverse image, under the multiplication map
Hx,H—-H, of the 1-section of H (the isomorphism being induced by the first projection
of Hx,H onto H). Thus H* may be identified with a closed subscheme of Hx H,
and so H* is indeed an affine algebraic Z-scheme.

Now, let P, be the fpge sheaf associated to the functor Pic(X, ,). For large n,
X,=X, and so P,=P. For any n>2, we see, by the foregoing remarks, and by
Lemma (2.3) applied to the exact sequence of fpgc sheaves associated to (2.2), that
if P, is a locally algebraic k-scheme, then also P, ts a locally algebraic k-scheme.

Thus we are reduced to studying P,. But P, is just the usual Picard functor Picy j
of the reduced scheme X, over k, i.e. the fpge sheaf associated to the functor Pic(X,®,A).
Indeed, by definition, P, is the sheaf associated to

Pic(X, @ W(A)) = Pic(X,8,W(A) (£));
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but there is a functorial map (induced by the truncation p, of § o)
W(A)/(p) > A=W (A)

which is byective if AP =A; hence there exists a functorial map
Pic(X;®, W(A)/(p)) - Pic(X,®,A)

which is bigective if AP=A; by Corollary (0.2) we have therefore an isomorphism of
associated sheaves:

P, 3 Picy,.

Since Picy ; is a locally algebraic k-group [M; SGA 6, Exposé XII; A, § 7], we are
done (modulo Theorem (2.4)).

-

Theorem (2.4)—and hence Theorem (1.2)—being taken for granted, we add here
some remarks on the ‘ Néron-Severi” group =, (P) (cf. (2.%)), and on the relation
of Pto P,=P(X,, %, 1), where now ‘XI —X is an arbitrary nilpotent immersion (cf. (2.5)
and (2.11)). These results will not be needed elsewhere in this paper, but will prove

useful in future applications. We retain the preceding notation, except that 4" may
now be any nilpotent coherent @y-Ideal.

Proposition (2.5) (cf. [SGA 6, Exposé XII, (3.5) and (3.6)]). — The canonical
map u PP, is of the form vow, where v is a closed immersion, and w s affine, faithfully
flat and finitely presented. The kernel and (fppf) cokernel of u are unipotent algebraic k-groups.

Proof. — For the first assertion, and the fact that the fppf cokernel of u is a locally
algebraic k-group, it suffices that » be affine [SGA 3, p. 315]. Arguing as above we
see that the canonical map u, : P,—P,_, is affine (n>2), whencesois u=uzo0uz0...

Next, consider the sequence

P,,, 3 P, % P,_, (n>2).

We shall see in the following two paragraphs that if the kernel and ( fppf) cokernel of
both %, , and %, are unipotent, then so are the kernel and cokernel of #,0u, ;. Note
that all of these kernels and cokernels are in any case locally algebraic k-groups (since
U, .1, U,, and w,ou, , are affine maps) so if they are unipotent (hence—by defi-
nition—affine, hence quasi-compact) then they are algebraic over 2. To complete the
proof of (2.5) by induction, it will then suffice to show that the kernel and cokernel
of u, are indeed unipotent.

So suppose that ker(u, ;) and ker(xs,) are unipotent. We have a natural exact
sequence of fppf sheaves

Un i1

o — ker(u, , ,) - ker(u,ou, ;) —> ker(u,).
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From the commutative diagram

,
Yn il

ker(u,ou, ) —> ker(u,)

¥n 1
Pn+1 — P

n

in which the vertical arrows are closed immersions, we see that the map u, ,, is affine,
so that ker(u,ou, ,) is affine and there exists a commutative diagram

ker(u,0t, ;) —*3 ker(x,)

N A
w;l+1\ \/u;l+1

Cc

in which v, ., is a closed immersion, and w;, , , is an epimorphism of abelian k-groups. Since
ker(u,) is unipotent, so is G [DG, p. 485 (2.3)], and by loc. cit. the exact sequence
o—ker(u, ,,) —ker(u,0u, ) =3 C—>o0
shows then that ker(u,ou,,,) is unipotent.
Suppose that coker(w,,,) and coker(s,) are unipotent. From the natural exact
sequence

rr

coker(u, , ) z coker(u,ou,_ ) — coker(u,) >0

we obtain an exact sequence

o— K —coker(u,ou, ;) — coker(x,) —-o

where K =-coker(u, ,)/ker(s,’) is an affine algebraic k-group [DG, p. 342, (5.6)].
By (2.3), coker(u,ou,_,)is affine. Since coker(y,,,) is unipotent, so is its quotient K;
as above, it follows that coker(u,0%,,,) is unipotent.

Let us show now that the kernel and cokernel of #, are unipotent. We have
previously established an exact sequence

H1—>Pnu—ﬂ>Pn_1—>H2

where H' (i=1,2) is the fpgc sheaf associated to the functor H'(Z,0, ,). As before,
Theorem (2.4) implies that H! is an affine algebraic k-group; hence, clearly, H' is a
Greenberg module (cf. remarks immediately preceding Appendix A), and so H' is unipotent
and connected [DG, p. 6o1, (1.2)]. Ker(y,) is a quotient of H, so it is unipotent
(cf. preceding argument about K). We will show in a moment that coker(x,) is quasi-
compact (hence algebraic over k) ; thus [DG, p. 249, (5.1) (b)] coker(,) is a closed subgroup
of H?, and so is unipotent.
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We show now that coker(s,) is quasi-compact. For convenience, we write ““u >
instead of “ u, ”.  For any locally algebraic k-group Q , let Q° be the connected component
of the identity, and let m,(Q ) be the étale k-group Q[Q° (cf. [DG, chap. II, § 5, n° 1],
from which we will take, tacitly, a number of facts).

Let

u’: Py — P} g+ o (Py) = mo(Pyy)

n—1>
be the maps induced by u. We have an exact (*‘serpent ) sequence of fppf sheaves
(2.6) o— ker(u%) — ker(u) 5 ker (u,) £ coker (u%) = coker (u) 5 coker(u,) — o.

Since u is quasi-compact (in fact affine) it follows easily that «° and u, are quasi-compact,
and hence all the sheaves in (2.6) are locally algebraic 2-groups. CGoker(u%) is, moreover,
connected and algebraic over %; hence ker(3)~coker(u®) /ker(y) is a connected subgroup
of coker(u). Since coker(u,) is an étale k-group, we have that (coker(x))° is a subgroup
of ker(3), and consequently (coker(u))?=ker(3). It follows that

mo(coker(u)) ~ coker(u,).

So to prove that coker(u) is quasi-compact, it will suffice to show that the étale 2-group
coker (u,) is quasi-compact, i.e. that coker (u,) (k) is a finite group (k—=algebraic closure of &).

Note that coker(x) is annihilated by p‘ for some #>o, since, as above, coker(u)
is a subsheaf of H?, and H? has a composition series consisting of subgroups of the additive
group W, [DG, p. 487, (2.5) (vi))]. So p'coker(yy)=o0, and we need only show

that coker(u,) (%) is a finitely generated abelian group; since coker(x,) (%) is a homomorphic
image of ,(P,_,) (%), the conclusion follows from the next proposition (with X=X _,):

Proposition (2.7). — wo(P)(E) is a finitely generated abelian group (k=algebraic
closure of k).

Proof. — For this proof only, take 4" to be the Nilradical of 0y, and let us show
by induction on 7z that m,(P,)(%) is finitely generated for all n>1. (For large n, we
obtain the desired result.) When z=1, this is the theorem of Néron-Severi [SGA 6,
Exposé XIII, Théoréme (5.1)]. For the inductive step from n—1 to », recall that
(with notation as in (2.6)) %, Is a quasi-compact map, so that ker(u,) is quasi-compact;

but ker(u,) is étale over %, so ker(uy)(k) is a finite group, and the desired conclusion
follows from the exact sequence

0~ ker () (k) — 75 (P,) (B) — 70 (Py_y) (£).
This completes the proof of (2.7) and of (2.5).

We can extract more information from the preceding arguments. We first observe
that (with the notation of (2.6)):

(2.8) u® and uy are affine maps.
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(Proof: For u° this follows immediately from the fact that » is affine. We have just
remarked that u, is quasi-compact and that ker(u,) is finite over %; from this it follows
easily that u,=v,0w,, where v, 1s a closed immersion and u,is a finite faithfully flat map;
thus u, is even a finite map.)

Furthermore:

(2.9) ker(u®) and coker(u®) are unipotent.

(Proof: As above, ker(u), being a quotient of the connected group H, is itself connected,
whence ker(u)=ker(x°), so that ker(«°) is unipotent. Furthermore we deduce that,
in {2.6), B maps ker(u,) isomorphically onto ker(y), so ker(y) is finite over k, whence
v 1is a finite map; and since coker(«) is affine, so therefore is coker(¢?). By [DG, p. 501,
(1.1)] coker(«?) is the direct product of a multiplicative group M and a unipotent
group U. The composed map

M o coker(«°) - coker(x) < HZ

must be trivial [DG, p. 486, (2.4)], so M is a subgroup of ker(y)~ ker(x,), and therefore
M is étale over k. But M is a quotient of the connected group coker (), so M is connected,
and hence M=o. Thus coker(u?)=U.)

(2.10) ker(u,) and coker(u,) are unipotent.

(Proof: As above, ker(u,) is isomorphic to a closed subgroup of coker(«?), and coker(u?)
is unipotent; so ker(u,) is unipotent. As for coker(x,), we have already shown it to
be a finite étale k-group annihilated by g’ for some ¢>o, so it is unipotent [DG, p. 485,
(2.2) (b), and p. 488, (2.6)].)

In view of (2.8), (2.9), (2.10), the proof of (2.5) can be copied, mutatis mutandis,
to give:

Corollary (2.xx). — Let u : PP, be as in Proposition (2.5), and let u°: P°—PY,
Uy : w(P) —> w0y (P,)  be the induced maps. Then the conclusions of (2.5) hold with either u®
or uy in place of u. In particular, the kernel and cokernel of u, are finite étale k-groups which are
annihilated by some power of p.

3. On the homology of bounded complexes (!).

The key to the representability theorem (2.4) is the following elementary result
on complexes, inspired by [EGA, oy, (11.9.2)].

As usual, for a ring A, a bounded complex P,=(P;, 3,);c z of A-modules is a sequence
of A-modules and A-homomorphisms

841 3
...——>P'~+1—>P‘-—>P,-_1—>...

(1) The notation in this section is completely independent of notation in other sections.
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with 8;08; ;=0 for all ¢, and P,=(o) for all but finitely many i. The kernel and
image of §; are denoted respectively by Z,(P,) and B;_,(P,), and the homology
modules H;(P,) (ieZ) are defined by

H(P.)=Z,(P.)/B;(P.).

Proposition (3.x). — Let A be a ring of the form D|m™, where D is a discrete valuation
ring with maximal ideal m, and n>o0 is a positive integer. Let te A be a generator of the maximal
ideal of A, and let P,=(P;, &;);c 7 be a bounded complex of A-modules. Foreach r=o,1,2,...,n
we have then a subcomplex t'P,=(t'P;, 8,);cq of P.; assume that for each i, r as above, the
homology module H;(¢"P,) s finitely generated over A. Then there exists a bounded complex of
finitely generated A-modules Q.=(Q;, d));cz and an A-homomorphism u :Q ,—P, of
complexes, such that for any A-module M the following condition holds:

(%) The homology maps

H(Q.®.M) ~ H(P.&, M)  (ieZ)
induced by u®1y :Q . ®, M- P,® M are all isomorphisms.
(Here, of course, P,®, M is the complex
85 ®1y

PRI _)P'i@AM——) Pi-—1®AM_)‘ .y

and similarly for Q,®, M.)
Proof (Y). — We begin by noting that: if Q, is any complex of A-modules and
u:Q,—~P, is an A-homomorphism of complexes inducing isomorphisms of homology

(3-2) H(rQ.) S H(r'P), ieZ; o<r<n,

then (%) holds for any A-module M. Indeed, from the commutative diagram (with
exact rows)

0>'Q,~>Q.>Q.®,(A/f) >0

bk

o—>tP, > P, > P®,(Alf) >0

we obtain the commutative diagram with exact rows
s i (0QL) > Hi1(Q) — By QU8 (A1) > Hi(#7 QL) — Hi(QL) —- ..

! ! ! ! !

> H (P > H, (P) — H,,(P.®,(Alf)) - H(t'P) —H(P,) —...

from which we see, using the ¢ five-lemma ”, that (*) holds for M=A/f" (0<r<n);
it follows that (%) holds whenever M is a finitely generated A-module, since such an M

(1) It is not necessary to read this proof to understand the rest of the paper.
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is a direct sum of A-modules of the form AJf" (0o <r<u); finally, since any A-module
is the inductive limit of its finitely generated submodules, and since ¢ inductive limit
commutes with both tensor product and homology, we see easily that (*) holds for all
A-modules M.

Accordingly, we shall proceed by induction to construct a bounded complex Q . of finitely
generated A-modules, and an A-homomorphism u : Q ,—P, such that the resulting homology
maps (3.2) are all isomorphisms.

By assumption P, is bounded, so there exists an integer 4 such that P,=(o) for
all ¢<b (). Letj be an integer > b —1, and suppose that we have found a complex
Q.=0QW=(Q,, d);cg of finitely generated A-modules, and an A-homomorphism
u=u9: QY 5P, suchthat Q,=(0) if :<b—1 orif i>j, and such that the following
conditions hold:

(L) For ¢<;j and 0o<r<n the homomorphism
H(rQ.) — Hy#'P.)
induced by # is an isomorphism.

(IL) For o<r<n the composed homomorphism
b+ Z(FQ.) — Z,(¢'P) =S H(#'P,)

Jr
is surjective.

(IIT;) Let N; be the kernel of ;. Then for 0<r<n the kernel of v, is #'N;.
(IV,;) (For 0<r<n and any A-module E, set
E=(o) : <E

r

i.e. ,E is the submodule of E consisting of all elements which are annihilated by ¢".)

Each member of H; , ,(#P,) is the homology class of an element #peZ; ,(#'P,) with

35+1(P~)€”5(rNj)'

Remarks. — (i) There is one and only one complex Q®~Y as above, namely take
Q,=(o) for all ieZ.

(ii) What we are going to do is to construct, under the above conditions, a finitely
generated A-module Qf.; and A-homomorphisms 4, ,:Q%,;—N,cZ(Q,) and
%44t Q41— Py such that the middle square in the following diagram commutes:

ar d;
- 7+1 7
>0 — Q5 5 Q> Q, — ...

(3.3) “j+zl “f+1l “Jl U1
\

8 8 8
1+2 T+l g
vee > P, S Py S5 P — P — ...

(1) Actually, all we need in what follows is that A is a noetherian ring, that t€A satisfies t"=o0 and that
H;(#7P,)=(0) for all i<h and o=<r=n.
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Since d+1 maps Q%41 into Z;(Q.), we have dod’ ,=o0. Thus we may replace
Q;11=(0), dy,andu; by Q. d7 0], respectlvely, to get a new complex QY+
and an A-homomorphism #U*Y : QU+FY P as depicted in (3.3). The construction
will be such that for Q*% and «*¥ the conditions (I, ,), (IL,,), (11T, ) and (IV,,,)
are satisfied.

(iii) Starting with j=b—1 (cf. remark (i)), and repeating the construction
described in remark (ii), we eventually obtain # : Q¥ ->P, where j is an integer
with the property that P,=(o) for all ¢>j (such a j exists because P, is bounded).
Then Z,P,)—~>H;(P,) 1s an isomorphism; hence u(N;)=(0), and we have a
commutative diagram

T
P;

Setting Q% ,=N;, d’ ;=inclusion map of N; into Q;, and u,,=zero-map, we
can form the complex Q' *% and the A-homomorphism #*% as in remark (ii). From (I;),
(IL) and (ILIL) (for Q, %) we obtain (I, ,) (for Q¥+Y, 4U+1), and it follows at once
that for (Q,,u)=(QU*Y 4+ all the homology maps (3.2) are isomorphisms as
desired (%).

It remains then to carry out the construction described in remark (ii). Q% ; will be given
as a submodule of the A-module

Ry =N;Xp; Py ={(%2)eN; X P, 1 [5;(x)=8; ., (0)}

The mappings 4, ;, ., are taken to be the projections, namely

molusxon

8,1

(0)=PF;,; =

(2 )=x, . (x,9)=),

and then obviously (8.3) will be commutative, as required.
To build up Q3 , we begin by constructing three finite subsets of R; ;. First,
, being an A-submodule of Q ;, is finitely generated; let {i;,2;, ..., 7} be a basis
of N;. N is the kernel of v;, so #;(N;) B;(P,); hence we can choose A, %, ..., A
in P such that

w(h) =3 1N  (B=1,2,...,p)
i.e. (Mo M)ER; L.

P

(f) Of course we are interested ultimately in condition (I;), the other conditions being necessary only to
carry out the inductive procedure. Since these conditions may appear rather involved, we should point out that
they are unavoidable in the sense that we have the (easily checked) implications

(Ij) = (IIIJ_I) and (Ij) = (IIJ—I) = (IVJ'_Z).

This is not to say that there could not exist a less complicated proof of Proposition (3.1)!
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Second, for each r with 0<7r<#n choose a finite set of elements
{0 wars T oy o os £y )

in Z; ,(¢"P.) whose homology classes generate H; ,(#"P,). By (IV;) we may make
the choice so that

Siv1lur) =4(us)  with  ppe N, (f=1,2,...,¢);
thus (urs ) €R; 4.
Third, for each r with 0<r<n choose a finite set of elements
{trvlr’ tr"zn MR trvs,r}
in Z; , ,(¢"P,) whose homology classes generate H, ,(t'P,). We have

uj(0)=O=8j+1(8j+2(vm1)) (m=1,2,...,5,)

ie. (0, & o (Vmr)) ER 4.
Next, let Q5 ., be the A-submodule of R;,; generated by all the elements
(M M) (k=1,2,...,p)
(a2 5 ther) (o<r<m t=1,2,...,¢)

(0, 8 1 o(Vm))  (0Z7<n, m=1,2,...,5,).

Define Q4 to be Qj ., +E, where E is a finitely generated submodule of R;,; which
is chosen in accordance with Lemma (3.5) below in such a way that the following is
true: let

B=(0)xB;,(P.) ENjXPij+1=R'+1;

J
then for all r with o<r<n,
(3.4) Q:j+1n(B+er+1)=(Q:j+1nB)+rQ;'+1-

We can now easily verify (L,,), (IL,), (IIL,) and (IV;,,) for QU+Y, 46+
(cf. remark (ii) above).

(Lisq): A, oo A, generate N, and &7 (0, N)=x (k=1,2,...,p); thus 4,
maps Q. surjectively onto N;, and so for 0<r<n
4 () =1'N;.
Now (I;,,) follows at once from (IL) and (IIL).
(IL;,): We have uj,eN;, so
0="1"pp =, (' (s ter))
Le. £ (> ) € Z; (£ QEHY).

Since # (¢ (uers te,))=1"tb,, (IL; ) results from the definition of y,,.
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(IIL,,): Chasing through the definitions, we come down to showing:
f x=1t(y,z), with (y,2)eQ;,, suchthat t'y=o0 and t'2eB, (('P,), then x=1(o, '),
with (o, 2)e Q% such that z’eB; ,(P,).
This can be rephrased as follows:
f (9, 2)eQ5.y, and (), 2)et’B, then ¢'(y, 2)et’(Q5.4 N B).
But this last statement is just another form of (3.4).
(IV;,,): Since t'v,,€Z; ,(f'P,), we have
£7(05 8.1 5 (Vr)) = (0, 3; 1 2(7v)) = (0, 0).
It follows that (o, §; ,4v,,)€,N;, 4, and hence
Sj+2(vmr)eu_;+1(rNj+1)'

From this—and the definition of v, —(IV;,,) is immediate.
The following lemma will complete the proof:

Lemma (3.5). — Let R be an A-module and let Q) and B be two submodules of R, with Q
Sfinitely generated.  Then there exists a finitely generated submodule E of R such that, if Q'=Q+E,
then, for all r with o<r<n
(3-6) QL nB+,R)=(Q nB)+,Q.

Proof. — We proceed by descending induction. (3.6) is obvious for any QF if
r>n, since then R=R and ,Q*=Q' It evidently suffices therefore to show: for
Sixed s, if

QNB+,R)=(QNB)+,Q
Jor all r>s, then there exists a finitely generated submodule E of R such that, if Q'=Q+E, then
(3.6) holds for all r>s.

Now since Q is finitely generated, so also is its submodule Q N(B—+,R), and
hence we can find a finitely generated submodule E of R such that

(3-7) Qn(B+,R)sB+E.

Let Q*=Q+E and let yeQ*n(B+ ,R) for some fixed r>s. Set y=g¢g+¢ (¢eQ,
¢cE). Since ¢e R< R, we have

(3.8) g=y—ecQN(B+,R).
If r>s, then we conclude that
9¢(QNB)+,Q

and since ¢, E<,Q*<c (), therefore
y=q+ee(QNB)+,Q+,Q"=(Q nB)+,Q.
Hence (3.6) holds if r>s.
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If r=s, then we conclude from (3.7) and (3.8) that ¢geB+E, ie. ¢g=b-+t¢
(beB, ¢'€E); hence

b=qg—e'sQ*nB

and y=q+e=b+(+e)e(Q'nB)+,Q
Hence (3.6) holds when r=s. Q .E.D.
Remark (3.9). — We can augment (3.1) as follows (this will be used only in

Theorem (8.1) in order to prove that a certain map is natural):

Let S,=(S;, 8,);cz be a bounded complex of finitely generated A-modules, and let v : S,—P,
be an A-homomorphism of complexes (A, P, as before). Then Q) and u can be chosen as in (3.1),
and with the additional property that v=uow for some A-homomorphism w :S,—Q,.

Proof. — In the proof of (3.1), we introduce an additional inductive datum; let
S¥) be the complex obtained from S, by annihilating S; for all ¢>>j, and let

w—=ul: S > QW

be an A-homomorphism such that #?cw{) =p;, for all i<j.
In passing from j to j+1, what we will then need is an A-homomorphism
Wiys S > QG
such that
U 1oWip1=Tj4y

* o
and df jow; 1 =wW;00

(cf. remark (ii) in the proof of (3.1)). But it is immediate that
(0 415 41) € N;

J

so that we have the map

4 . —_—
Wiyt S5~ NjXPij+1 =R,

given by w;+1(5)=(wj(aj+1~‘)s vj+1(5))-

Thus all we have to do is to modify the construction of Q% , so as to have
w1 1(5;41) EQ:;‘H'

This is accomplished simply by replacing Q) ; by Q/

Q:jl+1:Q,;'+1+wJ{+1(sj+1)'

+1, where

4. Representing the cohomology of a coherent sheaf.

Let f: X — Spec(W(k)) be a proper morphism, as before, with
S(X) ={closed point of Spec(W(k))},
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and let &# be a coherent Ox-Module. With the aid of Proposition (g.1), we will now
prove Theorem (2.4) concerning the functor of k-algebras

Hi(XAa %) (i.>_0> XA: X®W(k)w(A)> %:g(@wx 0xA)-

This functor can be computed by Cech cohomology, as follows. X is quasi-compact,
so there exists a finite affine open covering of X, say U=(U}); ;.. Let C.=C,(U, )
be the corresponding Cech complex:

ce.»>0>C)>C_,»>C_,»>...»>C_,—»o0—>...
(We put the Cech complex in this form to accord with § g; for the usual form set CG'=C_;.)
The argument on p. 94 of [EGA III] gives an A-functorial isomorphism of W (A)-modules
H_(C.OyuyW(A)) > HI(X,, #) ().

To get the functor H_;(G ®y, W(A)) into manageable form we use Prop-
osition (3.1). Fix an integer N>o0 such that pNOy=o0, so that X is proper over
Spec(Wy (%)) (Wy(k)=W(E)/(#Y)). Then C, is a bounded complex of Wy(k)-modules,
and for any integer r>0 and any ¢cZ, the homology modules

H_;(#"C)=H_,(C.(W, ' F))=H'(X, p' F)

are finitely generated over Wy(k), since X is proper over Wy(%) and p"# is a coherent
Ox-Module. Hence (Proposition (3.1)) there exists a complex Q, of finitely generated
Wy (k)-modules, and a homomorphism of complexes QQ ,—C, which produces for each
W (k)-module M and each ¢eZ an isomorphism

H—i(Q.-@wN(k) M) :; H—i(C-®WN(k) M)'

Taking M=W(A)/(p"), A being a k-algebra, we get an isomorphism
H_(Q.OupW(A)) = H_;(C,®y;, W(A)),

and clearly this is an A-functorial isomorphism of W (A)-modules.

Note that each Q, (teZ) is a W(k)-module of finite length. Thus, to prove
Theorem (2.4), it suffices now to show:

Proposition (4.1). — Let E, F, G be W(E)-modules of finite length. Let « :E—F,
B:F—>G be W(k)-module homomorphisms such that Boa=o. For any k-algebra A set
E,=EQ®y,W(A)
Fy=F Oy W(A)
G,= G®W(k)w(A)

() [EGA III, p. 94] contains a reference to [EGA 0., (12.1.4.2)] whose proof (as given) seems incomplete:
what is the map TI'(¢*(W, ¢*F)) »> I'(Y*£*)? Never mind; we can use instead the homotopy-commutative

diagram
rgreu, #) — L@ W, " #)

T %) —— [(£"™).
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ay By > Fy=a®yu (1ww)  (Tway=identity map of W(A)).
Ba: Fu—> Gy =BOyu (1ww)

1, =image of o,

K, =kernel of B, (21,(since B0, =0))

H,=K,/[I, (=homology of{(EiFiG) Owry W(A)}).

Let @ be any one of the functors
A—E, (resp. Fy, G, 1,,K,, H,)

and let ® be the associated fpqc sheaf. Then O is an affine algebraic k-scheme.

Progof. — For ®=(A - E,, F, or G,), the result is given by Proposition (A.1) (i)
(Appendix A).

Since K, is the kernel of F,—~G,, therefore (K,)™ (the sheafassociated to (A—K,))
is the kernel of (F,)~—(G,)™, so (K,)™ is a closed subscheme of (F,)™.

We have an exact sequence

(4-2) 01, > F;~>(F/I), =(F/I) ®wy W(A)
(I=a(E)), whence (I,)~ is the kernel of (F,)~ —((F/1),)""; as above, ((F/I),)~ is an

~

affine algebraic k-scheme, so (I,)™ is a closed subscheme of (F,)~.
Similarly, from the exact sequence

(4-3) o0—>H,—~F /I, =(F/1),~>G,

we conclude that (H,)™ is a closed subscheme of ((F/I),)~. Q .E.D.
This completes the proof of Theorem (2.4), and of Theorem (1.2).

*
* ok

Later on, we will make use of the following observation:

Corollary (4.4). — With the notation of (4.1), if AP=A, then the canonical map
O(A) > D™ (A)
is bijective.
Proof. — For ®(A)=E,, F, or G,, this is contained in Proposition (A.1) (ii).
For ®(A)=K,, use the commutative diagram (with exact rows)

o — K, E, G,

0o — (K)7(A) — (F)7(A) — (G)7(A)
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in which, as we have just remarked, the last two vertical arrows are bijective. The
proofs for ®(A)=1, and ®(A)=H, are similar (cf. (4.2) and (4.3)).

5. Definition of P as an fppf sheaf.

As in remark (1.7), we consider a local Artin ring R, with residue field %, and
a scheme X proper over R. Let R be the Greenberg algebra, over &, associated to R;
for each k-algebra A set X}=X®p, R(A); and let P* be the fppf sheaf associated to
the functor Pic(X%). Except for the changes indicated below, the proof of Theorem (1.2)
given in §§ 2-4 applies more or less verbatim (with * fpgc’ replaced by * fppf”’, and
W by R, so that X, becomes X%, etc.) to show that P¥ is a locally algebraic k-group.

The canonical map R—>HYX, 0y) gives rise to a homomorphism
v kB> HYX, Of)

red *

As in remark (1.7), we deduce an isomorphism of functors

P(X, k, ) S Pt
*
*® ok

In order to apply to P¥#, the proof of Theorem (1.2) must be modified in two places.

First, to begin the inductive argument, we need to know (cf. middle of § 2): if
X=X,, i.e. if X ts reduced (so that X is actually a k-scheme) then there is an isomorphism

(5-1) P# E;Picx/k.
To establish such an isomorphism, note that we have a ring homomorphism, functorial
in A

R(A) > W,(A)=A
obtained by passage to associated fpge sheaves from the functorial map

Ry W(A) > k@ gy W(A),
cf. Proposition (A.1). From this we deduce a homomorphism of functors
(5.2) Pic(X®gpR(A)) - Pic(X®,A)
which is bijective if A” = A, since then R(A)=R(k)®y, W(A) (Prop. (A.1) (ii)) and
A=W(A)/(p), so that

X@pyR(A)=XO®y;, WA) =X A,
Now the functor R, being isomorphic as a scheme to some affine space (Prop. (A.1) (i)),
commutes with filtered direct limits. [EGA IV, (8.5.2) and (8.5.5)] shows then
that the functor Pic(X®gyR(A)) commutes with such limits, as does Pic(X®,A).

From Corollary (o.2), it follows that (5.2) gives rise to an isomorphism of associated
JSbpf sheaves, and this is the desired isomorphism (5.1).
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Secondly, as in § 4, we want to show that the fppf sheaf associated to the functor
H_;(C.®gy,R(A)) is an affine algebraic k-scheme. To apply the result of § 3, we
note that if N is an integer with p¥"R=(0), then R is a Wy-algebra, and there is a
functorial homomorphism

gy : H—i(C-®WN(k)wN(A)) ‘*H—i(c.®n(k)R(A))

which, as above, is bijective if A=A ; since both homology and tensor products commute
with direct limits, as do the functors Wy and R, Corollary (0.2) shows that the homo-
morphism of fppf sheaves associated to ¢, i1s an isomorphism; in other words, we may
replace R by Wy. We have, as in § 4, a functorial isomorphism

H_i(Q. Owypy Wi(A)) = H_i(C. @y Wi(A))

and we are then reduced to proving Proposition (4.1), with “ W ”* replaced by ““ Wy ”
and ““ fpgc” by “fppf>’. The proof is practically the same (use (A.2) in addition
to (A.1) (1)).

Remark (5.3). — Corollary (4.4) holds with fpgc replaced by fppf. The proof
is the same, with (A.2) in place of (A.1) (ii).

II. — RELATION OF P(A) TO Pic(X,) WHEN A?=A

In this part IT we obtain some information about the kernel and cokernel of the
canonical map Pic(X,)—P(A), under the assumption that the k-algebra A satisfies
A?P=A (Corollaries (6.7), (6.8); the most general result along these lines is
Theorem (7.5), but we need some of the results of § 6 to prove it). Asin § 2 (cf. also
[SGA 6, Exposé¢ XII, Corollaire (3.3)]) the underlying idea is to use ¢ dévissage ” to
reduce to the case of Picard functors of schemes over fields (Proposition (6.2)). We
find that when AP=A  P(A) is related to Pic(X,)—in the classical way—by Galois
descent {(Corollary (6.10)) or via the étale topology (Corollary (6.11)). We also elucidate
the dependence of P=P(X, %,1) on %k and . (Corollary (6.13)).

Throughout f: X — Spec(W(R)) and P will be as in § 1; we also set X, =X
k=H(X,, Ox).

rods and

6. Determination of P(A) (A?=A).
It is convenient to begin with a simple observation:

Lemma (6.1). — Let
S - T
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be a commutative diagram of homomorphisms of abelian groups, and let the resulting map
6: S>TxyU={(t, ) e TXU|3(t)=7v(u)}
be defined, as usual, by
o(s)=(a(s), Bls)) ~ (s€8).
Then the following conditions are equivalent:
(1) o is an tsomorphism.
(ii) The map ker(a)—>ker(y) induced by B is bijective, and the map coker(a)—coker(y)
induced by 8 1is injective.
(Here “ ker ”=rkernel and  coker = cokernel.)

(i1)" The map ker(B) —>ker(d) induced by o ts bijective, and the map coker(B)—coker(3)
tnduced by v is injective.

Proof. — By symmetry it suffices to prove the equivalence of (i) and (ii). This

is straightforward; the necessary verifications are left to the reader.

Proposition (6.2). — Let P, be the fpgc sheaf associated to the functor
Pic(X; )= Pic(X;®yrn W(A))
of k-algebras A. If AP =A, then the natural commutative diagram
Pic(X,) —> Pic(X, ,)

P(A) — > P,(A)

gives rise (cf. Lemma (6.1)) 0 an isomorphism .
Pic(X,) = Pic(Xy, 4) Xp ) P(A)
Proof. — Let 4% be the Nilradical of Oy, and for n>2 let X, be the closed

subscheme of X defined by #/F. Asin § 2 (cf. (2.2)) we have an exact A-functorial
sequence

0—>E,(A) > Pic(X,, ,) > Pic(X,_1,4) > F.(A)
where: E,(A)=cokernel of H(C,_, ,) - H}( 2,0, )
F,(A)=H4,0,4)-
Denoting associated fpge sheaves with ™, we shall show:
(6.3) F,(A) > F, (A) is injective (AP =A).

(6.4) There is an isomorphism of functors
{kernel of (HY(0), ,) - H(0,_,,))} = E,(A).
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Now we have a commutative diagram

o — E(A) — Pic(X, ,) LN Pic(X,_;,) — F,(A)

n

o — EY(A) — P,(A) —— P,_(A) —— FJ(A)

in which the top row is, as above, exact, and the bottom row, obtained from the top
row by passing to associated fpgc sheaves and * evaluating * at A, is exact except perhaps
at P,_,(A). Since anyway toy=o0, we find from (6.3) above that § induces an
injective map coker(«) — coker(y). Furthermore, since A?=A, (4.4) shows that if
H, is the fpqc sheaf associated to the functor HY@, ,) (i, m>1) then the canonical
map HY0, ,) > HL(A) is bijective (read through § 4 to see why (4.4) is applicable);
it follows then from (6.4) above (cf. proof of (4.4)) that E,(A) -E7(A) is bijective.
So Lemma (6.1) gives us an isomorphism

Pic(X,, 4) > PiC<Xn—1,A)XPn_1(A)Pn(A)
Since X,=X for large n, Proposition (6.2) follows by induction on x.

Proof of (6.3). — We have a commutative diagram
H1<0n,A) - H1<0n—-1,A) —> Fn<A) —> H2<0n,A)

HiA) —> H_(A) —%— FJ(A) —> H2(A)

in which the top row is exact and the bottom row is obtained from the top row by
evaluating associated fpgc sheaves at A (so that vop =0 and poAr=o0). As above, the
vertical arrows other than ¢ are bijective. So by diagram chasing, we can conclude
that ¢ is injective, as desired, provided that the kernel of w equals the image of X. But if I
is the image, in the category of fpgc sheaves, of the canonical map A : Hi —H_,, then
L, is the kernel of H._,—~F,”  (since passage to associated sheaves is an exact functor),
and so I (A) is the kernel of u; thus we need to show that A (=2A(A)) maps HL(A)
onto I (A). Since, by § 4, A is a homomorphism of Greenberg modules, therefore the
kernel of A is a Greenberg module and hence a connected unipotent algebraic Z-group

[DG, p. 6o1, (1.2)]. So the conclusion results from the following lemma:

Lemma (6.5). — Let

o—-E—-H->I->o0
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be an exact sequence of abelian sheaves on the category of k-algebras with the fpqc topology. Suppose
that E s a connected unipotent algebraic k-group. Then for any k-algebra A such that AP = A,
the resulting sequence

o0—E(A)->H(A)—>I(A)—o

s exact.

Proof. — It suffices to show that H!(A, E)=(o) (the cohomology being taken
with respect to the fpgc topology). The long exact cohomology sequence associated
to the exact sequence

o—~>E_ ;—~>E—->EJE_,—>o0

shows that we may assume that E is either smooth or infinitesimal.

In the smooth case, E has a composition series whose quotients are isomorphic
to the additive group W, [DG, p. 495, (3.9)]. In the infinitesimal case, since any
closed subgroup and any quotient group of an infinitesimal unipotent k-group is again
infinitesimal and unipotent, E has a composition series whose quotients are isomorphic
to ,W,, the kernel of the Frobenius endomorphism § of W; [DG, chap. IV, § 2, no. 2].
So we need only treat the cases E=W,;, E=W,.

By descent theory

HY(A, W,)=(0)
(cf. [DG, p. 383, (6.6)] or [SGA 4, Exposé VII, remarque (4.5)]). From the exact

sequence
o—>pW1—>W1i§>W1—>o
we deduce then that
HY(A, W)~ A/A? =(0).
This completes the proof of Lemma (6.5), and of (6.3).
Proof of (6.4). — We use an argument due essentially to Oort [O, § 6].

With notation as in the beginning of § 2, we can associate to each triple (Y, 0, #)
a diagram with exact rows

Ho(0) > HY(@) —> H(¢) —s HY(0) —s HY(0)
e = H'(exp)

H() s HI(14¢) — HYO") —> HY(E)

which varies functorially with the triple (Y, 0, #). Suppose that # <.A4", where 4 is
some (-Ideal with the properties:
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a) A is a Nil-ideal (i.e. for each yeY the stalk .#} consists entirely of nilpotent
elements of 0,).

b) N F=(0).
¢) In the canonical diagram
HY(0) —> HY(0)=H(0/#)
H(0]A)
the maps # and % have the same image in H°(0/A4"). (c) holds, for instance, if # is

surjective.)
Since the kernel of u is HO(A7[#), ¢) is equivalent to:

¢) H(0/7)=~(H*(0)) +H* (A7)
With these assumptions, we will show that:

(%) ¢(image of 3)=(image of 3*).

(%) implies that e induces an isomorphism of coker(3) (=ker(HY(0) — HY(0))) onto
coker 8*. Thus, granting (%), to prove (6.4), we have only to check that ), 5) and ¢)
hold for Y=X,, 0=0,,, F=AZ"'0, ,, /'=AH30, ,. Let us do this.

Since A% is the Nilradical of Oy, and 0, , = Oy, [A#% Ox,, a) and b) are obvious.

As for ¢), it is enough to show that u is surjective, and this results from the next
lemma (with X=X).

Lemma (6.6). — For any k-algebra A, the canonical map
uy, : HY(X,, Oy,) — HO(Xy, 45 @xl,A)
is surjective.

Proof. — We have a natural commutative diagram

H°(X, @x)®w(k)w(A) — HY(X,, @xA)

lu/‘ ®1 luA

HY(X,, 0x1)®W(k)w(A) PN HO(Xl,A’ @xl,A)

HY(X,, Ox,) &, W(A) [(2)

Since X, ,=X;®,W(A)/(p), o is bijective [EGA III, (1.4.15)]. So it suffices to
show that
u, : HO(X, 0y) - H(X,, O%,)

is surjective, i.e. that HO(X, Oy),.s =H*X,, 0x,).
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Let % be an algebraic closure of %, and let X:X@w(k)W(E). % being perfect,
we have that

X, = X1®w(k)W(E) =X,®,k

is reduced, and hence

Xl = }_(red

Since, clearly, W(k) is flat over W(k), therefore [EGA III, (1.4.15)]

Wk
HY(X, 05)=H(X, Ox) @yuy W(k)
HY(X, 0

and hence HO(X, 0%),.a=HX, Ox),.:®; %

Consequently
[HO(X, O) 00 : k]=[HX, 0),, : k]=number of connected components of X,

and similarly
[H(X,, Ox,) : k]=[H%X,, Ox,);0q : k]=number of connected components of X;.
Thus [HO(X, Ox)req * £]=[H(Xy, Ox,) : £]

and the conclusion follows. Q..E.D.

Finally, we prove (x).

Since we are dealing only with H® and H! we can use Cech cohomology. If
geH%(0)=H(0/#), then, by ¢') above, g=y(k)+n, with AcH®(0) and reH®(A#),
and so 8g=23n. Let{U;} be an open cover of Y such that z|U, lifts to #eI'(U,, 4).
Then 3n is represented by the cocycle {n;}, with

(n| U;nU) —(n| U;nU)e(U;n T, 7).

Also, 1+n7eH%(0/#)") (since # is a Nil-ideal, cf. a) above), and & (1+=n) is
represented by the cocycle {nj}, with
1+7,|U;nT;

N AT, TR

(The second equality holds because A =0 (cf. b) above), so that (| U;nUjn,;=o).
Thus ¢(8n)=28"(1+n), and so we have

e(im(3)) Cim(3*).
Conversely, suppose that geH°(0*). As above, g=v(h)+7, and now y(h)=g—n
is a unit in H(®) since g is a unit and 7 is locally nilpotent. Since y has nilpotent

kernel H°( #) (#2=(0)), it follows that # is a unit in H%(@#). Hence, if n'=n/y(h),

we have
8(g) =8"(y(B)(1+n'))=8"(1+n")=¢(n")
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(cf. preceding paragraph), and so
im(8*) Ce(im(3)).
This completes the proof of (6.4), and of Proposition (6.2).

Corollary (6.7). — Let B be a k-algebra such that X,®,B has a section over k,®,B
(ky=H(X,, Ox)). Then for any B-algebra A such that AP=A, the canonical map
Pic(X,) —>P(A) is surjective, its kernel being (functorially) isomorphic to Pic(Spec(k,®,A)).

Proof. — By (6.2) (and in view of (6.1)), we may assume that X =X,. Then P

can be identified with the usual Picard functor Picg, (cf. middle of § 2), so it will suffice
to show that the natural sequence

o— Pic(Spec(;®, A)) - Pic(X®,A) - Picy,(A) »o

is exact whenever A is a B-algebra. But then X®,ZA has a section over £,®,A, and
HO(X®, A, Oxg,0) =HX, Ox)®, A=k ®,A

[EGA III, (1.4.15)]; so from [FGA, p. 232-05, Cor. (2.4)] it follows that the sequence
o— Pic(Spec(k;®, A)) - Pic(X®, (k,®,A))—~Picy, (k;®,A)—o0

H

Pic(X®,A)

is exact; and the desired conclusion is given by [FGA, p. 232-15, Prop. (6.1)], which
tells us that Picy, (k,®,A) is functorially isomorphic to Picy,(A).

(No proof of the cited Prop. (6.1) is given, but one can proceed (for example) as
in the proof of Corollary (6.13) below.)

Corollary (6.8). — Let k' be a ky-algebra such that k' is a free ky-module of finite rank r,
and such that X,®, k' has a section over '.  Then for any k-algebra A such that A= A, the
cokernel of Pic(X,)—P(A) s annihilated by 1.

In particular, if X is connected, so that &, is a field, then this cokernel is annihilated by the
greatest common divisor of the degrees (over ki) of all the zero-cycles on X,.

Proof. — As in the proof of (6.7), we may assume that X=X, and P=Picy,;
and furthermore, since then Pic(X,) - Picy,(A) can be identified with
Pic(X®, (k,®;,A)) — Picy, (£ ®,A),
we are reduced to a well-known statement about Picy,: with B=%,®,A, if
£ePicy, (B), then the image of § in Picy, (B') (B'=B®, k') is given by an invertible
sheaf # on X'=X®, B’ (since X’ has a section over B’=H(X’, 0x.)), and one checks
that 7§ is given by the norm of #, which is an invertible sheaf on X®, B [EGA 1I,

§ 6.5]. Q .E.D.
We see next (Corollary (6.10)) how P(A) can be described by ¢ Galois descent .
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Lemma (6.9). — Let Y be a reduced scheme proper over a field ¥, and set F,=HO(Y, Oy).
Let K be a Galots field extension of ¥ such that each connected component Z of Y has a K-rational
point (i.e. there exists an F-morphism Spec(K)—~Z). Then Y®;K has a section over F,®,K.

Proof. — We reduce at once to the case where Y is connected, so that F, is a finite
field extension of F. Then we have, by assumption, an F-morphism Spec(K)—Y,
which, composed with the canonical map Y —Spec(F,), gives rise to an F-homomorphism
F,—-K; so we may identify F, with a field between F and K.

It will suffice to show the existence of an F,-homomorphism K—>F ® K, ie an
F,-morphism Spec(F,®;K) — Spec(K); for then, composing with Spec(K)—Y, we will
have an F;-morphism Spec(F,;®;K) Y, whence a section of Y®;K (=Y®; (F;®;K))
over F,®,K, as desired.

Since F, is a subfield of finite degree of the Galois extension K/F, we have that

F,=F[X]/(P(X)), where P(X)eF[X]
is a polynomial which splits into linear factors over K; hence F,® K is a direct product
of [F, : F] F,-algebras K; (i=1, 2, ..., [F; : F]), each of which is F-isomorphic to K.

But since K is Galois over F, each K, is actually F;-isomorphic to K, and consequently
there exists an F-homomorphism K—F,®;K. Q .E.D.

Corollary (6.10). — Let K be a Galois field extension of k such that each connected component
of X, has a K-rational point. Let A be a k-algebra such that A*=A, and set Ax=A®, K.
Then:

(i) The canomical map Pic(X, )—>P(Ag) s surjective, with kernel isomorphic to
Pic(Spec(k,®,Ag)).

(i1) The obvious map P(A)—>P(Ag) takes P(A) isomorphically onto the subset of P(Ag)
consisting of those elements which are invariant under the natural action of the Galois group of K|k,

Proof. — (i) follows from (6.9) and (6.7).
(i1) is given, when [K :Z]<c, by a standard—and straightforward—interpreta-
tion of the exactness of the diagram
P(A) - P(Ag) = P(Ax®, Ag).
(Exactness holds because P is a sheaf and Ay is faithfully flat over A.) If K is not finite
over K, the conclusion follows easily from the facts that K=Ilim K, as K, runs through

all Galois subfields of K/ finite over %, and that P commutes with filtered direct limits
(for example because P is locally algebraic over 2, by Theorem (1.2)).

Corollary (6.11). — Let P* be the étale sheaf associated to the functor Pic(X,). If
AP =A, then the canonical map
P*(A) >P(A)
is bijective.
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Proof. — Let K be as in (6.10), with [K :£]<co. For any k-algebra A, A®, K
is an étale A-algebra, Spec(A®,K) —> Spec(A) is surjective, and (A®,K)?=A® K.
It follows easily, since P* and P are both étale sheaves, that in proving (6.11) we may
assume that A is a K-algebra. Then, by (6.9) and (6.7), Pic(X,)—>P(A) is surjective,
so the same is true of P*(A)—>P(A). For injectivity we need:

Lemma (6.312). — If AP=A and B is an étale A-algebra, then BP =B.
Granting this for the moment, we see, by (6.9) and (6.7), that there is a B-functorial

exact sequence
0-> Pic(Spec (£, ®, B)) -> Pic(X;) -> P(B)

(B an étale A-algebra), and passing to associated étale sheaves, we see that the kernel
of P*(A)—>P(A) is P*(A), where P* is the étale sheaf associated to the functor

B Pic(Spec(k,®,B)).
But any element of Pic(Spec(k,®,B)) is locally trivial on Spec(B), even for the Zariski
topology [EGA 1V, (21.8.1)]. Thus P*=o0, and so P*(A)—P(A) is injective.

Proof of (6.12). — Since A=AP, the structure map A—B factors through B?
A
7N

B <~ B

and since B is étale (i.e. flat, unramified, and finitely presented) over A, it follows that

B is unramified over B?, and that B is a finitely generated BP-algebra, hence a finite
B?-module (since B is integral over B?). Localizing at the maximal ideals of B? and

using Nakayama’s Lemma, we find then that BP =B. Q .E.D.
For the last result in this section, we consider, as in remark (1.5), a commutative
diagram
X X
(%) f r
Spec(W(k)) <y Spec(W(#))

where 6 : k—%" is a homomorphism of fields. The corresponding commutative diagram
0

R ——— F=(WE)/(t")ea (8"0x=(0)) ()

(*) For any k-algebra A let L, be the kernel of the truncation W(A)—A. Writing (as we may)
(0 15 895« )=p(a}?, &3P, ...),

we find easily that LI =pL,, whence LY*'=p 1, for any N>o. Thus Apg=(W(A)/(#"))red-
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shows that &’ is a finite algebraic extension of & (so that &’ is perfect of characteristic p),
and that HY(X, 0)_, is a finite Z'-module via . So we can set

P'=P(X, %', ') =fpgc sheaf associated to the functor
B Pic(X®yy W(B)) of k'-algebras B.
Then for any £-algebra A, setting A’=#%'®; A, we have an A-functorial map (as described
in remark (1.6))
3, : P(A) - 6,P'(A)=P'(A").
As is easily seen, since 6,P’ is an fpgc sheaf, & : P—0,P’ is the unique map such that
the following diagram commutes for all A:

Ya

Pic(X®yyy W(A)) — Pic(X®y,W(AY)

A

P(A) —2— P'(A)
Here v, is defined in the obvious way; and the vertical arrows are the canonical maps.
Ya p

Corollary (6.13). — The above map 3, is bijective for all k-algebras A. (In other words
P=oP=IlP
¥k

where 1!'_/[1: is Weil’s “ restriction of scalars ”.)

Proof. — Since P and 0, P’ are fpgc sheaves, we may assume that A?=A (Cor-
ollary (0.2)). As in the proof of (6.11), we may further assume that there exist exact
sequences

0> Pic(Spec(k;®,A)) > Pic(X® gy W(A)) S P(A) >0

0> Pic(Spec (k@ A") — Pic (X® gy W(A')) 3 P/(A") 0.
Since A=A, we have X®y; W(A)=X®y 4 Wy(A) where N is such that PN Ox=(0);
similarly X ®yg W(A) =X @y ) Wy(A'). Now Theorem (G.5) (Appendix C),
shows that Wy(A’) is canonically isomorphic to Wy(k') ®y, 4 Wx(A), and so v, is an

isomorphism. One checks that y, maps the kernel of A, isomorphically onto the kernel
of A, (since %A, A=k® kK& A=k®, A"). The conclusion follows.
7. An exact sequence.

The point of this section is to establish the exact sequence (7.5), which carries
much information about the difference between Pic(X,) and P(A) when A=A

52



THE PICARD GROUP OF A SCHEME OVER AN ARTIN RING 53

(cf. remark (7.7)). This exact sequence is deduced from the exact sequence (7.4),
which is essentially well-known (cf. Corollaire (5.3) in Grothendieck’s exposé ¢ Groupe
de Brauer III” [G,]). For the convenience of the reader (and to satisfy the author)
we begin by reviewing the derivation of (7.4), elaborating on some details which are
taken for granted in loc. cit.

Let % :X — Spec(R) be a proper map, where R is a local Artin ring. The
category Aff/R of affine R-schemes and the category Sch/X of schemes over X can
both be given the étale topology, and then % defines a morphism of sites

Spec(T) » Xp=X®; T

(T an R-algebra) (1). We have the left-exact functor 4, from étale sheaves G on Sch/X
to étale sheaves on Aff/R, namely

1, G(Spec(T)) = G(Xy).

The category of sheaves on Aff/R is contained in the category of presheaves; let v be
the corresponding (left-exact) inclusion functor. Let s#" (resp. #£") be the n-th right
derived functor of v (resp. vo#,). For any abelian sheaf F on Aff/R, #"F can be thought
of as a covariant functor of R-algebras T, namely

#"F(T)=H"(Spec(T), F)=H*(T, F)

(where H” denotes étale cohomology). Similarly for an abelian sheaf G on X we
can write

2"G(T) = H"(X,, G).

The étale sheqf associated to #£"G is just the higher direct image R*4,G. In particular
(take X =Spec(R) and k=identity) the sheaf associated to S "F vanishes for n>1. (For
more details cf. (for example) [A,, chap. IL, § 4].)

Let Gy be the multiplicative group on Sch/X, i.e. the étale sheaf given by

Gy (Y—>X)=HO(Y, 03).

The spectral sequence for the composite functor vok, gives rise to the exact sequence
of presheaves on Aff/R (i.e. of covariant functors of R-algebras)

0 — #1(h,Gx) - #(Gy) > R4, (Gy)
(7.1)
— H*h,Gx) > #*(Gx).
Let us make more explicit the terms in this sequence.

According to the above remarks, #£"Gx(T)=H"(X;, Gx) and in particular
A Gy (T) = HY Xy, Gx) = Pic(Xy)

(1) On Aff/R, the étale topology can be described, as in § o, in terms of covering algebras; and “ locally
the same is true for Sch/X.
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(the equality being functorial in T, cf. [A,, chap. IV, p. 102, Prop. (1.2)]), and
A2 Gy (T) = H*(Xy, Gy) =Br(Xy)
(where “ Br > denotes “ cohomological Brauer group ).
Furthermore the map ~ : #*(Gy) — R, (Gy) in (7. 1) can be identified with the canonical
map of the presheaf R (Gy) into its associated étale sheaf (which we will denote, as before, by

Picyz). (Proof: Denoting associated sheaves with “ ™, we obtain from (7.1) a
commutative diagram

Hh,Gx) —> BYGy) — R4, (Gx) — #%(h,Gy)

l l l

(#1(hGx)~ — (B(Gx))~ > (R'A4(Gy))~ — (#*(hGx)~

o o

where the vertical maps are canonical maps of presheaves into their associated sheaves.
The top row is exact in the category of presheaves, so the bottom row is exact in the
category of sheaves, i.e. v~ is an isomorphism of sheaves; our assertion follows.)
Next look at the functor
H"(h,Gy) (T) =H"(T, h, Gy).

For any R-algebra S, let S,=H%Xj, Ox). Then % ,G4(S) is the group of units S§
in Sg. If T is an R-algebra and S is an étale T-algebra then S;=S®,T, [EGA III,
(1.4.15)], and so we see that the restriction of %, Gy to the site T,, consisting of spectra
of étale T-algebras (with the étale topology) is equal to Ay, Gy , where Gy is the multi-
plicative group on (T,),, and #, : Spec(T,) - Spec(T) is the canonical map. Hence
we have natural homomorphisms

Hﬂ(Ta k, GX) :HH(T: }IOt GT.,) - Hn(To, GT,,)-

These homomorphisms are bijective. (Indeed, by [SGA 4, VIII, Cor. (5.6)] it is enough
to check that T, is integral over T since

H(Xy, Ox,) =li§I§ HO(Xs, Ox,)

as S runs through all finitely generated R-subalgebras of T [EGA IV, (8.5.4)], we
may assume that T is finitely generated over R; in this case T is noetherian, and since
Xy is proper over T, T is actually a finite T-module.) Moreover, the edge homomorphisms
H(h.Gx)(T) > #(Gx)(T)  (i=1,2)
in (77.1) can be identified with the usual cohomology maps
HY(Ty, Gy,)  H{(Xy, Gy)
(cf. [EGA o, (12.1.7)]).
We have, finally:
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Lemma (77.2). — For any ring S, let Gg be the multiplicative group on the site S,,. If
3 is a nilideal in S, then the canonical maps
H(S, Gg) - H'(S/3, Ggs) (r2>1)
are bijective.

Proof. — By [SGA 4, VIII, Cor. (1.2), or Cor. (5.6)] we have isomorphisms
H"(S, ige(Ggyg)) > HY(S/3, Ggpa)
where iy :Spec(S/J) — Spec(S) is the inclusion map. Since, clearly

Loy (GS/S) = hTH; iJ*(GS/J)

as J runs through all finitely generated ideals of S contained in J, and since cohomology
on §,, commutes with direct limits [SGA 4, VII, Prop. (3.3)] it will suffice to show
that the natural map

(7-3) H"(S, Gg) > H'(S, 13:(Gy5))  (n21)

is bijective whenever J is finitely generated; so we may assume that JN=(0) for some
integer N. By an obvious induction, we need only consider the case J2=(o).
For any étale S-algebra S’ we have an exact sequence of multiplicative abelian
groups
1 —1+35 — (8) — (§'/IS") —> 1
| Il
Gs(5)  (1(Gga))(S)

Since J%=(0), the truncated exponential map x—1-+x gives an isomorphism of the
additive group IS’ onto the multiplicative group 1-+3S’. Thus we have a surjective
homomorphism of sheaves Gg—iy(Ggy) whose kernel is isomorphic to the sheaf 3
given as a functor by §(S')=SS’, S’ as above. The bijectivity of (7.3) follows now
from the fact that H"*(S, §)=(o) (n>1) [SGA 4, VII, Cor. (4.4)]. Q .E.D.

In summary: for a proper map h: X — Spec(R), with R a local Artin ring, we have an
exact sequence of functors of R-algebras T

0 —> Pic(T, 1) — Pic(Xy) —2> Picy(T)
(7-4) .,
—> Br(Ty, o) —> Br(Xy)
where
— To=H(Xy, Ox,)
— Ty, eg=Tp/(nilradical of T,)
— Pic(T, ,.q) = Pic(Spec(Ty, 1)), and similarly for Br(T, )
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— Br =cohomological Brauer group=H;,(-, G,)

— a« and vy are the natural maps arising from the map Ty—T, ., (which induces
isomorphisms of cohomology, cf. Lemma (7.3)), and from Xq— Spec(T,).

— B is the natural map of the functor Pic(X;) into its associated étale sheaf.

*
*k %k

We shall apply (7.4) in the case R=Wy(k) (N>1), where % is, as usual, a
perfect field of characteristic p>o. We need two non-trivial observations. First of
all, Corollary (C.6) (ii) (Appendix C) shows that the functor of k-algebras

A—Picgr(Wy(A))

is the étale sheaf associated to the functor
A—Pic(X®; Wy (A)).

Secondly, it follows, by Corollary (6.11), that if AP =A, then the canonical map
Picypr(Wy(A)) > P(A)

is byjective.  (Let f: X — Spec(W(k)) be obtained from £ : X — Spec(R) = Spec(Wg(%))

in the obvious way; and note that when A’=A, then X®y 4, Wy(A)=X®y, W(A),

and furthermore if B is an étale A-algebra then B?=B (Lemma (6.12)); consequently,
with notation as in (6.11)

Picyr(Wy(A))=P¥(A).)
Now, as in § 6, we set

ky=HX, Ox)0q =H"(X,q, @xred)

(cf. proof of Lemma (6.6)), and for any k-algebra A, we set
Xy =XOyuuW(A)(=X®; Wy(A) when AP=A)
A=A_;=A/(nilradical of A).

Theorem (7.5). — If AP=A, then we have an exact A-functorial sequence
0— Pic(k,®,A) — Pic(X,) - P(A)
— Br(k,®,A) — Br(X,).
Proof. — In view of the preceding remarks, (7.5) follows from (7.4) (with
R =Wy(k), T=Wy(A)) as soon as we can show that
HY(X,, Ox,) s =F1 ® A,
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But by Lemma (6.6) and its proof, we have a surjective homomorphism
B(Xy, Ox,) > 2.®, (W(A)[(£)) =k @A,

with nilpotent kernel; hence we have a surjective map, with kernel consisting of nilpotent
elements:
HY(X,, Oy,) -k ®,A.

Since %, and A are reduced, and % is perfect, therefore %,®,A is reduced, and the proof
is complete.

Corollary (77.6). — Let K be as in Corollary (6.10). Then, for AP =A, the cokernel
of Pic(X,) —P(A) is naturally contained in the kernel of Br(k,®,A)— Br(k,®,K®,A).

Remark (77.7). — The main results of § 6 are all easy consequences of Theorem (7. 5).
(But note that (6.11)—and hence, via (6.7), (6.2)—was used in the proof of (7.5)!)

III. — SOME LIE ALGEBRAS

8. The Lie algebra of H; conditions for H and P to be smooth.

The main result of § 8 is Theorem (8.1), which describes completely the Lie
algebra of the Greenberg module defined in Theorem (2.4). We deduce sufficient
conditions for the smoothness of P (Proposition (8.5)); in case X is a scheme over %
(i.e. pOx=(0)), these conditions reduce to the classical condition HZ?*X, Ox)={(0).

Let 7 be a fixed integer, let # be a coherent Ox-Module, and let H=H(X, %, i)
be the fpge sheaf associated to the functor H(X,, F®, 0y,) of k-algebras A. Asin§ 4,
H is a Greenberg module, and (Corollary (4.4)) H(A)=H(X,, #®, Oy,) whenever
AP=A. By Proposition (A.3) (Appendix A) the dimension of H as a k-scheme is equal
to the length of the W(k)-module H(k)=H!(X, #). (But in general H is not a reduced
scheme, cf. Corollary (8.4).) As in Appendix B, we have a natural grading

Lie(H) = t@o Lie?' (H).

For any k-vector space V, and t>o0, V=% will denote the k-vector space with
the same underlying abelian group as V, the V=%-product of ack and veV being v
(the product, in the vector space V, of ¢? ‘ and ). Any basis of V is also a basis of V=%,
so V and V=9 are isomorphic (but not canonically!). Vi»V©¥ is clearly an exact
functor.

In the next theorem, we will refer to the following canonical commutative diagram
of W(k)-module homomorphisms (where H(%F)=H X, %), etc.):
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Hi<pt+1‘g:) Hs'(pl+132:)
Ayl
’
A

H~YF [P F) — H(PF) ——— H(F) ——— H(F|p'F)

Vi Oi1

H-F|pF) 5 B FpoF) — B(F P F) — BF)F)

Theorem (8.1) (Y). — With the preceding notation, there exists a natural (functorial in X, F)
tsomorphism of k-vector spaces

(i) o ¢ Lie(H) 5 im(u)~9=ker(p)"

which induces

(ii) Lie? (H,,) > im(g,0v) ™" = (im(A) fim (A4 1)) "7
and

(iii) Lie?(H/H,,,) = Lie?(H) [Lie? (H.;) > coker(v)="

(Note that im(w,)(=image of ) is a W(k)-module annihilated by p, hence a
k-vector space, so the notation makes sense. Note also that H 4 is a Greenberg sub-
module of H, cf. proof of Proposition (A.3).)

Progf. — To begin with, the equality in (ii) holds because

im(},) 2im(, ) =ker(o,, )
and so im(g,ov)=1im(o; , ;0A) = im(r) /im(x, ;).

The equality in (iii) will come out explicitly from the proof of (ii) (2). For the

isomorphism in (iii), once (i) and (ii) have been established we need only note that
ker () =im (3,) Sim(v)
so that im(y,) /im(y,ov,) = coker(v,).

Let us now define the isomorphism ¢ in (i). Let Ui be a finite affine open covering
of X, and let C,=C, (1, #) be the corresponding Cech complex. As in § 4, there

(*) A more comprehensive statement describing H itself is given in remark (8.8) below.
(%) More generally, with the notation and assumptions of Lemma (6.5), if E is also smooth, then

Hi(k, E)=HI(c], E)=(0) (e=o0),
and it follows easily that Lie(I)= Lie(H)/Lie(E).
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exists a complex Q, of finite-length W(&)-modules, and a W(%)-homomorphism of
complexes u : Q,—C, which induces, for k-algebras A, an A-functorial isomorphism
of W(A)-modules

H—-i(Qo®W(k)w(A)) > H—-i(C-®W(k)w(A)) = H‘.(XA: ,97®0x wa)-
Furthermore, the construction of Q , and u is such that the homology maps induced by
H Q) —>H_(#C) (=20

are isomorphisms (cf. first two paragraphs in the proof of Proposition (3.1)). Using the
“ five-lemma °, we deduce isomorphisms, for s>r>o0

(8.2) H_,(#'Q./p°'Q.) S H_(" C.Ip C) = Hi(X, p F |p* F)
where the equality holds because
p G CzC U, p F[p° F).
For convenience, we denote the piece
Q it17Q_i—>Q_;,
of Q. by ESFLG so that, with I=a«(E), (8.2) becomes:
(8.3) (PEAB PGNP F+p ) SHX, pFIpF)  (s2r2o0).
As in the proof of (4.1), we see that if F'=F/I, so that there is a natural map
B’ : ¥'—>G induced by B, then our functor H is just the kernel of the corresponding

map of Greenberg modules B’ : F’—G. In view of Proposition (B.2) (Appendix B),
we have therefore the isomorphisms

Lie? (H) xker((p'F' o1 F') =9 — (4G p'*1G)=Y)
z(ker(PF+I)/(p'*F+1I) > p'Glp' 1 G)) =
=((#'Fap ' (f*1G)+I)/(p' T F+I))="
= im(p,) "

where the last isomorphism results easily from (8.3). This gives us the desired ¢
(depending, for the moment, on the choice of U, Q ., and u).
To check (ii), we set J=p(F)=p'(F') and show that
H,,,=ker(F'—J).
(Replacing G by J in the preceding paragraph, we see then that

o(Lie” (H,,)) = ((p'FO(p' ' F+877(0)) + 1) /(4 F4I))

whence, using (8.3), we find that

o(Lie? (H,yy)) = im(p,0v) "

as desired.) Setting K=ker(B’), we obtain, for any &-algebra A, an exact A-functorial

Sequence
K®w(k)W(A) — F'®w(k)W(A) —>J®w(k)W(A) -0
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and then, upon passage to associated fpgc sheaves, an exact sequence
K—>F-—>J-—»o.
So the kernel H, of F'—J, being a homomorphic image of the smooth Greenberg
module K, is itself smooth. Moreover, since H=ker(F'—~G), we have that
H/H, > ker(J—>G).
But since J(&)—>G(k) is just the inclusion map of J into G, we have that
(H/H,) (k)=o)
so that H/H, is wfinitesimal [DG, p. 601, (1.2)]. Thus H=H
Finally, we have now, as above
Lie? (H/H,,) = Lie”(H/H,) =ker (4] [p' *1])"= " — (#'G[#'+'G)\=Y)
=ker((#'F'[p"+ )"0 — (p'G[p'+1G)=7) [ker((p'F' [p' *1F')0
= (BT
= Lie?(H) /Lie? (H,,,),

1, and (ii) is proved.

and this completes the proof of (iii).

It remains to be shown that ¢ is natural. Let (Y, ¥) be a pair satisfying the
same conditions as (X, &), let ¢ : Y—>X be a W(&)-morphism, and let 0: F >, ¥
be a homomorphism of Ox-modules. Choose a finite affine open covering U’ of Y,
and, as before, a map of complexes

' Q,—>C =C, U, 9),
and let ¢’ be the isomorphism defined as above, but relative to (W', Q’,, #’). Next,
choose a finite affine open covering U of Y which refines botk W' and ¢~'(N). Then,
if C'=C,(U", %) we get a W(k)-homomorphism of complexes C,—C.’, unique up
to homotopy. Similarly, via (¢, 6), we get a map C,(=C,(U, F))—C.’, unique up
to homotopy. Hence we have a composed map

v: QeQ,>CeC —»al.

Now according to remark (3.9), we can choose #' : Q") —C.’ satisfying the usual

conditions, and such that furthermore v=u""ow for a suitable w:Q . €Q’ —~Q’. So
we have a diagram

Q. — C

Lo
Q. — CI
oo
Q, — C
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by means of which we can relate the isomorphisms ¢, ¢’ to the isomorphism ¢’ (defined
as before, relative to (U, Q’/, «’")). In this way we can reach the desired conclusion;
details are left to the reader. Q .E.D.

Remark. — The following consequence of (8.1) seems worth noting. Is there a simple direct proof?
For each t=o, let Hy=H(X, F[p'F,i), and let Ky be the kernel of the obvious map Hyq—>H. Then the
canonical sequence
0 — Lie(Ky) — Lie(Hy4q) — Lie(Hy) — o

is exact, and has a natural splitting; furthermore we have natural isomorphisms

Lie(Ky) = Lie?* (H) = (Ky(k))(~0,

Corollary (8.4). — H is smooth (as a scheme) if and only if for all t>o0 the canonical map

o;: HI(X, F) - H{(X, F/pF)
is surjective.

Progf. — Since H/H,_; is connected, therefore:
H/H ;=(o) (i.e. H is smooth)
< Lie(H/H_,)=(0) [DG, p. 236, (1.4) (V)]
< v, 1s surjective for all ¢t>o0 (cf. (8.1) (iii))
< HH Y (pH1F) - H Y Y(pF) is injective for all >0
< HP (P F) - H Y (F) is injective for all >0

< 6,,, is surjective for all ¢>o. Q .E.D.

Proposition (8.5). — P is smooth if any one of the following (equivalent) conditions hold:
(i) For all t>o0, H(p'0x)=H*(Ox[p'Og)=(0).
(i) For all t>o0, HX(p'Ox[p'T10x)=(0).
(iii) The scheme H'=H(X, Oy, 1) is smooth and the scheme P =H(X, O, 2) is
trivial (i.e. isomorphic to Spec(k)).
Remark. — If the conditions of Proposition (8.5) hold, then:
dimension of P=dimension of the &-vector space Lie(P)

=AaH'(0x)) (cf. Theorem (g9.1)).

where “A” denotes the length of a W(%)-module.
Corollary (8.6). — a) If the dimension of X is 1, then P is smooth, of dimension A(H(0y)).
b) If the dimension of X is 2, and if H?(Ox) =(0), then P is smooth, of dimension \(H(0x)).

(Progf: If dim. X=1, then condition (ii) of (8.5) clearly holds. The same is
true if dim. X=2 and H?2(0y)=o0, since p'0Ox/[p' T Ox is a homomorphic image of 0y.)
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Proof of (8.5). — We first show that (i), (ii), and (iii) are equivalent.
(i) = (ii): It suffices to show that for all s with o<s<t
(%) HP (" Ox[p'* 1 Ox) — HP(p" 1 Oxjp' + 7 Ox)
is injective; or, equivalently,
(%%) HY(p* = O [p 7 Ox) - H'(p*~ Ox Jp" O)
is surjective; since (*) holds by assumption when ¢ is large enough (so that p**t'0y =(0))

so then does (*x), and it follows that (**) holds for all .
(if) = (1): For o<s<t¢ we have an exact sequence

H2(p° Ox [p Ox) — F(p° 1 Ox [p' Ox) — H(p° 1 O [p° Oy).
Hence, by induction on ¢—s, we find that
H*(p* Ox [p Ox) =(0).

(iii)<>(i). Since dim.H?=A(H?*(0x)), Corollary (8.4) shows that H? is trivial
if and only if H?*(Ox/p'0x)=(0) for all t>o0. We also deduce from (8.4) that H!
is smooth if and only if H?(p'0Ox) — H*(0) is injective for all ¢>o0; the equivalence
of (i) and (iii) follows.

Now, assuming that (iii) holds, we show that P is smooth, i.e. for every k-algebra A
and every A-ideal J with 3J2=(0), the canonical map P{A)—>P(A/J) is surjective
(cf. (for example) [DG, p. 238, (2.1) (vii)]).

Let us show, to begin with, that if AP=A then the canonical map Pic(X,) — Pic(X,s)
is surjective. Indeed, if # is the kernel of Oy, — O WL then we have an exact sequence

HY(0x,) — H' (0, ) — H*(#) -~ H(0%,);
since AP=A, this sequence can be written
H!(A) > HY(A/3) ~ H}(#) > HY(A)

(cf. remark (4.4)); since H! is smooth, = is surjective, and since H?is trivial, H?(A)=(o0);
thus H2?( #)=o0. But #2=(o) (Lemma (8.7) below) and so via the truncated expo-
nential map we have an exact sequence

Pic(X,) — Pic(X,,5) - H(#),

whence the assertion.
Next, consider the fpgc sheaf P; defined on the category of A-algebras B by
P,(B)=P(B/3IB).
There is a canonical homomorphism of sheaves ¢ :P—>P;, and, I claim, this is

surjective. For, by (0.1) and (6.10) (i), we can find, for any B, a faithfully flat B-algebra B
such that BP=B, and such that there exists a commutative diagram, with exact rows
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Pic(Xz5) —— P(B) — o

Pic(Xg95) —> Py(B) — o

But, as we have just seen, « is surjective, whence so is B, so that indeed ¢ is surjective.
We wish, finally, to show that

e(A) : P(A) - Py(A)
is surjective. For this it will suffice to show that Hj (A, L)=o0, where L=ker(ep).
But for any A-algebra B, we have a canonical isomorphism

L(B)~3B®, Lie(P)
(cf. [DG, p. 208]). If, furthermore, B is flat over A, then clearly

L(B)~B®,L(A).
Since only flat A-algebras enter into the determination of Hj, (A, L), descent theory
shows that H! (A, L)=o, as desired [SGA 4, Exposé VII, remarque 4.5]. Q .E.D.

frge
In the preceding proof, and also in § g, we need:

Lemma (8.7). — Let A be a k-algebra, let 3 be an A-ideal with J%*=(0), and let ¢ be

the kernel of the natural map 0XA—+0XA/3' Then:
(i) pF=(0).
(i) fF2=(o).

Proof. — # is generated, as an Oy, -Ideal, by the kernel of W(A) >~ W(A/3J),
.e. by the W(A)-ideal

W(I)={(xg, %1, %3, ...)eW(A)|x;€J for all ¢}.
So it suffices to show that pW(JI)=W(J)2=(o0).
That pW(JI)=(o) follows at once (since J2=(0)) from the identity
D%y, %y, X, ... )=(0, 28, xP, xF, .. .).

Now if (Uy, Uy, U, ..0), (Vy, Vi, V,, ...) are Witt vectors with indeterminate
entries, then their product can be expressed in the form

(Up, Up, Uy, .. ) (Vo, Vi, Vy, o )= (P (U, V), P, (U, V), P, (U, V), . ..)
where the P (U, V) are polynomials in

U=U,,U,,U,,... and V=V, ,V, V,,.
such that
P,(U,0)=P,0,V)=0 (v=0);
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thus each term in P, is divisible by at least one U; and at least one V;; specializing
U;—x, Vj")’j (xi’ijI)

we conclude, since J2=(0), that
(%05 %15 %9y o) (Pos V15 Y2y +--)=(0,0,0, ...).

Hence W(J)2=(o). Q .E.D.

*
% %

Remark (8.8). — What follows will not be needed elsewhere; but it serves to put the results of § 8 in better
perspective.

There is a structure theorem for the category of Greenberg modules, due to C. Schoeller [Seh, § 5]. Schoeller’s
theorem can be reformulated in terms of Dieudonné modules. First, some notation. Let W be the ring W(k). For
any w=/{(w,, w;, Wy, ---)EW, and any integer ¢, we set

W) =(f’, Wl ...).

The Dieudonné ring & (over k) is the (non-commutative) ring generated by W and by two indeterminates F and V
subject to the relations

Fu=uwlP)F, wV=Valr) (weW)
FV=VF=p.

For a left P-module S, a direct product decomposition of W-modules

S=1II 8
nZO"

will be called a cograding on 8 if there exist maps
Vns1:8001—> 8y, Fp:8,—> 8, (n20)
such that for (sq, 5,55, 53, --.)ES, we have
8.9 V(50,515 835 535 e0e)=(Vy8, Vo553, Vgsz, ...)
F(sgs S35 525 S35 e0e)=(0, Fgsq, Fy51, Fos5, ...).

A morphism @ : I;[ S, —> I;[ T, ofsuch cograded Z-modules is a family of maps ¢, : S, — T, (1= o) satisfying
n>0 n=>0

certain obvious conditions. We say that the cograding on S is of cofinite type if S, is a W-module of finite length
for all n, and furthermore there is an ny such that V, ., is bijective for n =n,.

To each Greenberg module M, we can associate a cograded 2-module S(M) of cofinite type, as follows. Let
K be the fraction field of W, and for any W-module M let M’ be the W-module

M’ = Homy (M, K/W).

Also, for any integer ¢, let M) be the W-module with the same underlying abelian group as M, and with scalar
multiplication * given by

wrm=wPlm (weW, meM).
S(M) is defined to be the W-module
S(M)= [ (Homy(M, Wy} = II S,(M)
n>0 n>0

together with the maps F,, V,+, (n=0) given by
Fu (@) =Fen+1,n+2°9)
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(fES,(M); @:M—>Wp,o; and ppiq, pn+s:Wpez—> Wpyy is the truncation map)
(Vin+18) ) =8(Tn+e,n+1°9)

(g€Syp(M); ¢ :M—>Wy q; and Tntz, ni1 : Woe1—> Wy o is the unique map such that Tn+2, n+1°Pn+1, n+a
= multiplication by p in Wp o). Multiplication by F and V in S is defined by (8.9). S(M) varies functorially
with M.

Strugture theorem. — The functor S is an equivalence from the category of Greenberg modules to the category of cograded
D-modules of cofinite type (1).
Complements. — It can be shown that:
a) The kernel of V:S(M)—SM) is a k[F] (= 2/9V)-module, and (with (V4 : Sy —> (0))=null-map)
ker(Vi= II ker(V,)= @ ker(V,).
n>0 n>0

(Since S(M) is of cofinite type, ker(V,)=(o) for large n.) There exist natural isomorphisms of k-vector spaces
ker(V)~ Lie(M) (t=o0)

vie which multiplication by F in ker(V) corresponds to the standard p-th-power operation in Lie(M) [DG, p. 273].
b) There is a natural map

6p t M(R) — S, (M)
where, for xeM(%) and @cHomy(M, Wy 44)
(on(x))(p)=image of x under the composite map
ME 2w, ) X prrwiw S Kw.
For all n=o0, we have
Sp(Mreq) = 6, M(%) < S,(M).

Now let us determine S(H) for H as in Theorem (8.1). If M is a W-module of finite length, and M is the
associated Greenberg module, then (Proposition (A.1) (iii)), there are canonical isomorphisms
Homy(M, Wy 1) = Homw (M, Wyyq(F) (22 0).

The isomorphisms ~
Whi(B) > p"TWWS KW
give isomorphisms ~
Homy (M, Wy 4()) = (M/p"+1M)".
From this we find that
Sn(MD) = (Mp"+ 1 M){=n)
Vyper i Mp"H2M — M/p"+ 1M is the canonical map
Fp, :M/p"+*1M — M/p"*+2M is the map induced by multiplication by $ in M.
Arguing as in the proof of Theorem (8.1) we deduce that
Sp(H) = (H(F[pn +15)){-™)
V being induced by the natural maps
Fp I F > FpnF
and F by the composed maps
FINF B pFp 1 F & Fpn+1F,

This, then, describes the * structure® of the Greenberg module H. Theorem (8.1) and Corollary (8.4) follow
easily now from a) and b) above.

(1) Cf. also remark (8.10) at the end of this section.
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*
* ok

(8.10) We end with an observation which may make the Structure Theorem seem more appealing. The
W-module S(M)’ can be made into a Z-module in a natural way [DG, p. 622, (5.2 b)], and one can construct a
natural isomorphism of D-modules from S(M)’ to the Z-module # associated (as in [DG, chap. V, § 1, no. 4]) with
the unipotent algebraic k-group underlying M. Thus #=S(M)’ is a @-module of finite type; and there is further-
more a grading of W-modules

A=5M)'= D S,M)y= D .4,
n>0 n>0

such that multiplication by F (resp. V) in .# takes .#,, into .#}, ., (resp. .4}, . into .#,). So we have also an anti-
equivalence from the category of Greenberg modules to the category of graded (as above) 2-modules of finite type.

Informally speaking, putting a Greenberg module structure on a unipotent algebraic 2-group U is equivalent to
putting a grading (as above) on the Z-module associated with U.

9. The dimension of Lie(P).
This section is devoted entirely to the proof of:

Theorem (9.1). — For each t>o0, let v, be the canonical map
HY(X, §05) — HY(X, §' Oy ' +105).
Let 0> denote the length of a W(k)-module. With this notation, the dimension of the k-vector
space Lie(P) is
AHNX, O0%))+ § A(coker(v,)).
>0

Proof. — For any k-vector space V, let dim,(V) be the dimension of V over %.
Note that dim,(V)=dim,(V=%) (cf. paragraph preceding Theorem (8.1)). Taking
i=1, =04 in Theorem (8.1), so that H=H(X, 0, 1), we see that

dim, (Lie(H)) = dimy(Lie(H,;)) + dim,(Lie(H/H, ,))
=MH!(X, 0y)+ T A(coker(v)).

(The fact that dimy(Lie(H,;))=*H'(X, 0)) can also be established by noting that
H_,, is smooth, of dimension A(H'(X, 0)), cf. beginning of § 8.) So Theorem (g.1)
asserts that Lie(P) and Lie(H) have the same dimension (where, again, H is the fpgc sheaf
associated to the functor H(X,, Oy,) of k-algebras A) (1).

Let X’ be the closed subscheme of X defined by the Oy-Ideal p@y. Let P’
(resp. H') be the fpge sheaf associated to the functor Pic(Xj) (resp. HY(X], 0x;)) of
k-algebras A (X} =X'®y,, W(A)). X’isascheme over %, and, as in the middle of § 2,
there is an isomorphism of functors

P Picxllk.

(1) A more satisfying result would be that there is a natural isomorphism between Lie(P) and Lie(H). I have
not been able to prove—or disprove—this. (Cf. however remark 5) at the end of § g.)
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It is well-known (and not hard to prove) that there is an isomorphism of k-vector spaces
Lie(Picy,,)xH' (X', Ox). Similarly (or by Theorem (8.1)) Lie(H')~H (X', 0y.).
Thus
(9-2) dim,(Lie(H')) = dim,(Lie(P’)).
(Actually, a proof of (g.2) will fall out at the end of the proof of (9.5) and (g.6) below.)
From the exact sequences

0 —>pOy, — Oy, —Ox, —0

1 —>14pOx, — O%, — Ox, — 1
we deduce the exact sequences of fpgc sheaves

0—->~C—>D->H->H'

(9-3) 0o—>C*'>D*>P>P

where C, D, C*, D* are fpgc sheaves associated to certain functors of k-algebras A, viz:
C—to the cokernel of H°(0y,) — H°(0x;,)

D —to H(p0x,)

C*—to the cokernel of H°(0y,) - H°(0%:)

D*—to H(1+ p0y,).

Arguing as in § 2, we find that C, D, C*, D* are all affine algebraic 2-groups. We will

show below that:

(9.4) C and C* are smooth algebraic k-groups, and their dimensions are equal (whence
dim,(Lie(C)) = dim,(Lie(C"))).

(9.5) Lie(D) and Lie(D*) are naturally isomorphic.

(9.6) The following two sequences of R-vector spaces (derived from (9.3)) are exact:
0 — Lie(C) — Lie(D) - Lie(H) — Lie(H') >0
o — Lie(C") - Lie(D") — Lie(P) — Lie(P’) > o.

In view of (9.2), (9.4) and (9.5), (9.6) implies that
dim,(Lie(H)) = dim,(Lie(P))

as required.

Proof of (9.4). — Let A" be the Nilradical of 0y, and let X, =X ,=X!,. We
have a commutative A-functorial diagram

o — HY(AOx,) —> HO(QXA) —_— Ho(@xl,A) —> 0

(9-7)

o — HYA0Oy) — H(Oy,) —> Ho(@xl’.‘) —> 0
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with exact rows (cf. Lemma (6.6)), from which we see that G is also the fpgc sheaf
associated to the cokernel of HO(A"0y,) - H(A 0x,). So “ sheafification” of the
exact sequence

o — HO(p0x,) — H(A"O4,) - H(AN 0O4,)
gives rise to an exact sequence of fpgc sheaves
(9.8) 0>F>G—>G —>C—o.
Each of F, G, G’ is an affine algebraic k-group. (To see that G is affine algebraic, sheafify
the first row of (9.7) and use Theorem (2.4); for G’ do the same with the second row
of (9.7); finally, note that F is the kernel of G—>G’.) Furthermore, G’ is smooth:
indeed, since X; =X'® W(A)/(p), we have
HY(A Ox,) = HO (AN Ox.) ®, W(A) [(#)
=H0('/V0X’)®W(k)w(A);
so G’ is isomorphic, as a scheme, to some affine space (Proposition (A.1) (i), Appendix A).
Since C is a quotient of G’, G is smooth. From (9.8), we have
dim(C) =dim(F) — dim(G) 4 dim(G’).
Similarly, we have an exact sequence
o -—)F. -—)G‘ -—)G" -—)C‘ —>0
where F* (resp. G, resp. G'*) is the fpgc sheaf associated to the (multiplicative) group-
functor HO(14-p0,) (resp. HO(14A4"0%,), resp. H(14.470,)). As set functors,
H(p0x,) and H°(1+4p0x,) are clearly isomorphic; hence, as k-schemes, F and F* are

isomorphic. Similarly, G~G*, and G'~G’*. So G'* is smooth, and as above, we
deduce that C* is smooth; furthermore,

dim(C*) =dim(F*) —dim(G") + dim(G'*)
= dim(F) —dim(G) + dim(G’)
=dim(C),
and this proves (9.4). (Note: Since Lie(Q) is isomorphic to the Zariski tangent space
at the origin of G (cf. Appendix B), and since G is smooth, we have
dim,(Lie(C)) = dim(C),
and similarly for CG*.)

Proofs of (9.5), (9.6), and (9.2). — Let A be a k-algebra and let J be a non-zero
ideal in A such that J®=(0). Assume that:

(i) AP=A (whence (A/J)?P=A/3J), and
(ii) the canonical maps Pic(X,) - P(A), Pic(X}) > P'(A),
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are surjective, with kernels isomorphic to
Pic(Spec(k,®;A)), where &k =H(X, 0y )=H(X' Oy );

and similarly for Pic(X,s) - P(A/3J), Pic(Xjq5) — P'(A/3J).

(For example, if K is a normal algebraic field extension of £ such that every
connected component of X has a K-rational point, if B is a £-algebra and J+ (o) (*) is
a B-ideal with J%==(0), then we can take A to be a faithfully flat B®,K-algebra with
A?=A (Lemma (0.1)), and J to be JA. Then (ii) follows from (6.9) and (6.%).)

For convenience, set
Oy= 0XA 0A/3 = 0xu3
Oh=0x,  Oys=0Oxys
and let 03, 0, etc., be the corresponding sheaves of units. (These are all sheaves on

the topological space underlying X, .)
For any locally algebraic k-group Q there exists a natural isomorphism

Lie(Q)®,3 = ker(Q(A) - Q(A/3))

(cf. [DG, p. 208]). Owur first chore, which will be rather dreary, is to show that with
(A, J) as above we have natural isomorphisms:
a) Lie(D)®,J3xker(H(p0,) — H(p0,,5))
b) Lie(H)®,Jxker(HY(0,) - H(0,5))
¢) Lie(H')®,Jxker(HY(0,) — HY0O}5))
d) Lie(D*)®,Ixker(H 1+ p0,) - H (14 p0y5))
¢) Lie(P)®,JIxker(Pic(X,) = Pic(X,5))
f) Lie(P")®,Ixker(Pic(X}) - Pic(X}/q)).

b) holds because H(0,)=H(A) and H0,5)=H(A/J), cf. (4.4). ¢) holds
for a similar reason. As for a), we have (cf. proof of (9.4)) a commutative diagram

BY(AC) — HA(ANC) — HYpO,) — HO) —> HY(0Oy)

¥ ¥ ¥
G(A) —2 > G'(A) —° > D(A) ——> H(A) —> H'(A)

in which the vertical arrows arise from canonical maps of functors (of k-algebras A)
into their associated fpgc sheaves. All these vertical arrows, except possibly for v, are
bijective (cf. (4.4) and its proof, and note, for example, that H°(A4"0x,) is the kernel
of HO(0x,) - H%0Ox,.,) --.); what we need to show s that v ts bijective too. (A similar

(1) Here—and below—distinguish between “ J ” (gothic ¢ I ") and “ I (gothic “ J ).
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argument will show that H!(p0, 4) ad D(A/3J).) Thetop rowis exact,and the composition
of any two successive maps in the bottom row is zero; if, furthermore, the bottom row
is exact at G’(A) and at D(A), then by simple diagram chasing y can be seen to be bijective.

For proving exactness at G’(A), let F be the kernel of G—G’ and let IcG’ be
the image of this map (in the category of fpgc sheaves). Since G—G’ is actually a
homomorphism of Greenberg modules (cf. proof of (9.4)), therefore F and I can themselves
be regarded as Greenberg modules, so they are connected and unipotent [DG, p. 601,
(1.2)]. Since F is connected and unipotent, Lemma (6.5) shows that G(A)—I(A)
is surjective; but I(A) is the kernel of 8 (I being the kernel of G’—D), so we have the
desired exactness at G'(A). Similarly since the kernel I of G’—~D is connected and
unipotent, exactness holds at D(A). This completes the proof of a).

¢) and f) follow from condition (ii) above, because as in the second half of the proof
of Lemma (7.2) (), the canonical map Pic(X,) - Pic(X,,y) takes Pic(Spec(k ®,A))
isomorphically onto Pic(Spec(k,®,A[J)). As for d), we begin as in the preceding proof
of a): there is a commutative diagram

H(14+4°0,) —> BO14+40,) —> H(1+p0,) —> Pic(X,) —> Pic(X})

G*A) — > G*(A) — > D*(A) — > P(A) — > P'(A)

and we need to show that y*is bijective. o and = are surjective, and Pic(X,) — Pic(X})
maps the kernel of o isomorphically onto the kernel of = (cf. (ii) above). p is bijective.
(For, if E (resp. E) is the fpgc sheaf associated to the functor H°(0,) (resp. H%(0,),
0=0y,.,) then E is a k-ring scheme, the group of units E* is the fpgc sheaf associated
to HO(@}), and since H®(0,) — E(A) is bijective (cf. (4.4)), so also is H°(0}) — E*(A);
and similarly H°(0}) — E*(A) is bijective; but H°(14.470,) is the kernel of

H(0}) — H(05),
and G*(A) is the kernel of E*(A) - E*(A) ...) Similarly ¢’ is bijective. So, as in the
proof of a), diagram chasing reduces us to showing exactness of the bottom row at G’*(A)
and at D*(A), and this can be done by showing that the kernel F* and the image I" of
G'—>G’* are connected unipotent k-groups.

Let us show that F* is connected and unipotent. (A similar proof shows that

G’ is connected and unipotent, whence so is its quotient I*.) As in the proof of (9.4),
F* is isomorphic, as a k-scheme, to F, and we have already noted that F, being a Greenberg
module, is connected. As for unipotence, we have a filtration

F =F'oFoFo...

(1) Here we can even replace the étale topology by the Zariski topology.
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where ' (i>1) is the fpgc sheaf associated to the functor H°(1+44'0,). The quo-
tient F'/F'*! is then the fpgc sheaf associated to the (multiplicative) group functor

HO(1+ ' 0x,) [H(1+p** 1 Ox,).
But this functor is isomorphic (via the truncated logarithm (1+x)=x) to the (additive)
group functor
HO(p' Ox,) HO(p'+ O,),
whose associated fpgc sheaf is a Greenberg module, hence is a unipotent algebraic £-group.
Since all the quotients F!/F'*! are unipotent, so therefore is F* [DG, p. 485, (2.3)].
This completes the proof of d).

*
* %k

Let # (resp. #') be the kernel of the natural surjective map 0,— 0,5 (resp.
0,—0,5). Note that #'~ 2/(p0, N #). In view of a), b), ¢), d), ¢), f) above, we
have the natural commutative diagrams, with exact rows:

HO(p0,5) —> HY(p0O, 0 F) —> Lie(D)®,3 —> o

! ! !

(9-9) Ho(Oys) — HY(JF) Lie(H)®,3 — o

! ! !

HO(0y,5) — HI( ) Lie(H)®,3 —> o

H(1+$0y5) —> H(1+(p0,0F)) —> Lie(D")®,3 —> o

! ! !

(9.10) H°(0}5) — H(1+.9) Lie(P)®,J3 —> o

! ! !

HO(0py) —= > HY{(1+.£) Lie(P)®,3 —> o

A closer look at these diagrams and some relations between them will yield the desired
proofs.

We begin with the proof of (9.6). — Since G is the kernel of D—H, it is immediate
that Lie(C) is the kernel of Lie(D) — Lie(H). Similarly, Lie(C*) is the kernel of
Lie(D*) — Lie(P).

Next observe that the map « in (g.9) is the zero map; in other words, the canonical
map B :HY(0O,) - H°(0,,5) is surjective. (This is because (X’ being a scheme over &)
B can be identified with the canonical map

HY(X', Ox) ©,W(A)/(p) -~ HY(X', Ox) ©,W(A[J)/(#)
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which is clearly surjective.) It follows easily that the third column of (g.g) is exact.
Similarly g*: H(0)) — H(0y5) is surjective (since B is), i.e. the map « in (g.10)
is the zero-map, and so the third column in (g.r10) is exact. Consequently (since
I+ (o)) the sequences

Lie(D) — Lie(H) — Lie(H’)

Lie(D*) — Lie(P) — Lie(P’)
are exact,

Finally, Theorem (8.1) shows that Lie(H) — Lie(H’) is surjective; and this implies
that in (9.9) the map HI(#) —H?(#’) is surjective (recall that a=0). Since _#2=(0)
(cf. Lemma (8.7)), therefore the truncated exponential x>1--x maps # (resp. #’)
isomorphically onto 14, ¢ (resp. 14, #’); hence the map H(14 ¢) > H(14 ¢")
in (g.10) is also surjective, whence Lie(P)®,3 — Lie(P')®,J is surjective, 1.e.

Lie(P) — Lie(P)

is surjective. 'This completes the proof of (g.6).
As for (9.5) (1), the truncated exponential induces an isomorphism

H(p0, 0 #) = HY(1+(p0, 0 F)).
Imitating the proof of (*) following Lemma (6.6) (keeping in mind that p#=(o),
cf. Lemma (8.7)), we see that this isomorphism takes the image of 8 (cf. (g9.9)) onto
the image of & (cf. (9.10)). We obtain thereby an isomorphism of groups
Lie(D)®,3~Lie(D*)®, S,
and this isomorphism varies functorially—in the obvious sense—with the pair (A, 3J).

We wish to deduce an isomorphism of k-vector spaces Lie(D) = Lie(D*). For this
purpose, consider the category of pairs (B, J), with B a k-algebra and J a B-ideal such
that J+ (o) and J?=(0). (A morphism (B,, J;)—(Bs, Js) of such pairs is a k-algebra
homomorphism ¢ : B,—B, such that ¢(J;) =3J,.) On this category define the group-
valued functors 2, 2%, by

2(B, 5)—Lic(D)®,3
7"(B, 3)=Lic(D")8,3.

I claim that the functors 2, 2* are isomorphic.

(From this it will follow that Lie(D) and Lie(D*) are isomorphic as k-vector spaces;
for, if ack, then multiplication by a in Lie(D)= 2(k[¢], ¢k[c]) (e2=0) is induced by
the morphism of pairs

@, © (B[e], ek[e]) — (R[], ek[€])
given by plx+ye)=x-4yae (x, yek)

and similarly for multiplication by « in Lie(D*) (cf. [DG, p. 208, (3.6)]).)

(1) Cf. Remark a) at the end of this section.
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To see that 2 and Z* are isomorphic, note that if (B, J) is a pair as above and
if A is a faithfully flat B-algebra, then the following canonical diagrams are exact:

2(B, 3) ~ D(A, FA) 3 D(ASA, J(AG,A))
2°(B,3) - 2'(A, JA) = F'(A® A, J(A®5A)).

But such an A can always be chosen so that, with I=JA, the conditions (i) and (ii)
at the beginning of this proof are satisfied (cf. remark immediately following (i) and (ii)).
Simple considerations show then that for proving 2 and 2" isomorphic we may restrict
our attention to pairs (B, J)=(A, J) where (A, J) satisfies (i) and (ii). But for such pairs,
we have already given a functorial isomorphism 2(A, J) - 2°(A, J). (9.5) is now
proved.

The proof of (g9.2) is similar, and simpler, being based on the isomorphism

B )=H' (1+7)

induced by the truncated exponential. (Recall that the maps « and «* are zero-maps,
so that H'(#')~Lie(H)®,J, and H(1+_¢')=Lie(P)®,3J.)
This completes the proof of Theorem (g.1).

Remarks. — a) For p>2, a much simpler proof of (g9.5) is obtained by observing
that the abelian sheaves pOy,, 14 pOy, are naturally isomorphic (so that the functors D, D*
themselves are isomorphic!).

Indeed, for n>o0, we can write p"/n!=p"q [b , where a,, b, are integers not
divisible by p, and where f(n)>o0 ftends to infinity with n. Hence on the category of
Wy (k)-algebras S (N a fixed integer) we can define a natural group-isomorphism

E: pS—>1+4pS

M8

by E(ps) (p"/nh)s®  (se8; p"s=o0 if m>N).

n

(The inverse L of E is given by

[

L(+p5)= Z (=12 (7fn)s")

b) We have canonical maps
w : Lie(D) - Lie(H), w : Lie(D*) — Lie(P)
and, by (9.5), a canonical isomorphism
v : Lie(D) — Lie(D").
If we could show that v(ker(un))=ker(p*), then we could deduce from (9.9) and (g.10)

that there is a natural isomorphism Lie(H) — Lie(P) (induced by the truncated expo-
nential #—>1+4¢).
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APPENDICES ON GREENBERG MODULES

We present in these appendices the facts on Greenberg modules needed in the
body of the paper. (The definition of “ Greenberg modules > is given immediately
below.) The material in appendices A and B is either well-known or straightforward,
but convenient references seem to be lacking.

As always, let £ be a perfect field of characteristic p>o0. We say that a functor Q
of k-algebras has a module (resp. algebra) structure over a k-ring-scheme S, or simply that
Q is an S-module (resp. algebra), if there is given for each k-algebra A an S(A)-module
(resp. algebra) structure on Q (A), the structure varying functorially with A. Homo-
morphisms of S-modules or algebras are defined in the obvious way.

We define a Greenberg module (resp. algebra) over £ to be an affine k-scheme
of finite type together with a module (resp. algebra) structure over the Witt vectors W.

The category of Greenberg modules and their homomorphisms is abelian. (Use
the corresponding fact for commutative affine k-groups.)

Appendix A. The Greenberg module associated to a W(k)-module.

Proposition (A.x1). — Let M be a W(k)-module (resp. algebra) of finite length, let M
be the fpqc sheaf associated to the functor of k-algebras

A MOy, W(A)
and for any k-algebra A let
$p: MOy, W(A) -~ M(A)
be the canonical map. Then:
(1) M is isomorphic, as a set-valued functor of k-algebras, to the affine space
Spec(B[Xy, Xg, .. -5 X,]),
(A=length of M; X, X,, ..., X,—tndependent indeterminates). Thus, with its natural
W-module (resp. algebra) structure, M is a Greenberg module (resp. algebra).

(1) ¢, s surjective for every A, and even bijective if AP=A.

(iil) If N is an fpgc sheaf with a W-module (resp. algebra) structure, then for any
W(k)-homomorphism ¢ : M—N(k) there exists a unique W-homomorphism < : M—N
such that

¢=(k)ody

Proof. — There exists a W(&)-module isomorphism

Mz W, (k) =(w) 1M, (>0).

1
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Then clearly M =II;_,M, (as W-modules), so for proving (i) and (ii) we may assume
that M =W_(k) for some n>o. In this case we have a canonical surjective
A-functorial map

M® i, W(A) =W(A)[(#7) > W,(A)
which is bijective if AP=A. Hence by Corollary (0.2), Mx~W,, and (i) and (ii)

are proved.

(iii) follows at once from the obvious fact that there is a unique A-functorial
W(A)-homomorphism

¢y 0 MOyuW(A) - N(A)
such that ¢,=¢. Q .E.D.
Corollary (A.2). — If R s a W(k)-algebra of finite length, and M 1is a finitely generated
R-module, and R, M, { are as in (A.1), then M s naturally an R-module, and for any k-algebra A,

the map
M®g;R(A) -~ M(A)

(obtained by extension of scalars from M ﬂe>M(k) —M(A)) is surjective, and even bijective if
AP=A. Hence M is the fppf sheaf associated to the functor A M®g, R(A).

Progf. — From the natural R®y,, W(A)-module structure of M®y, W(A), we
obtain, by passage to associated fpgc sheaves, an R-module structure on M. The next
assertion results, in view of (A.1) (ii), from the following commutative diagram:

M®gp ROy W(A)) = MOy, W(A)

M®guR(A) —— M(A)

The final assertion results from Corollary (o.2) if we show that the functors M®g, R(A)
and M(A) of k-algebras A commute with filtered direct limits. But this follows easily
from (A.1) (i). Q .ED.

Proposition (A.3). — Let MM be any Greenberg module, and let M be the W (k)-module MM (k).
Then M is of finite length (say) A, and as a k-scheme

Myog = SPCC(k[Xl, Koy oo X3)-
(Xy, Xgy o ooy X, independent indeterminates).

Progf. — For the fact that A is finite cf. [DG, top of p. 602]. Now, % being perfect,
we have that I, %, M,a and WX, M, are reduced schemes, so that the ¢ addition ”
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map P, P — MW induces M3 X, Mg > M4, and similarly  scalar multiplication
W I — W induces WX, M 4 —>M,4; in other words, M _; is a Greenberg submodule
of M. Since clearly M =M ,4(k), we may assume that MN=IM,,,.

By Lazard’s theorem [DG, p. 536, (4.1)], it suffices to show that, as a k-group,
I has a composition series of length A with quotients isomorphic to the additive group W,.
This can be done in many ways. We proceed by induction on A. If A=o there is
nothing to prove. If A=1, then there is a W(%)-isomorphism 25 M, which must
come from a W-homomorphism k=W,—>IM (cf. (A.1) (iii)); the cokernel € of this
map is infinitesimal [DG, p. 601, (1.2) ¢) and d)]; but since M is reduced, this means
that €=o, and hence MW, as a k-group (cf. [DG, p. 483, (1.1)]). Finally, if
x>1, let N be a submodule of M such that M /N has length 1; by (A. 1) (iii), the inclusion
map N—>M comes from a W-homomorphism N-—9t, whose cokernel € is reduced
and such that €'(£) (= M/N) has length 1 [DG, p. 6o1, (1.2) ¢)]; the conclusion follows.

Appendix B. Lie algebras of Greenberg modules.

We discuss next, for a Greenberg module M, the associated functor Lie(M) of
k-algebras A. First we recall the definition: let X be an indeterminate, set

Ale]=A[X]/(X?),
and let =, : A[e]—>A be the A-algebra homomorphism such that =,(¢)==0; then
Lie(M)(A)=kernel of M(x,) : M(A[e]) > M(A).
To begin with, we think of Lie(M) as a functor into the category of abelian groups.
Next, for each ae A=W,(A), the homomorphism u, : A[c] > Alz] defined by
u,(a+Be)=a+Pac  (a, PeA)
gives rise, via the commutative diagram
M(AL]) = M(A[])
N N
M(A)

to an endomorphism of the abelian group Lie(M)(A); in this way, Lie(M) becomes
a W,-module, varying functorially with M. The W,(%) (=£)-vector space

Lie(M) = Lie(M) (k)

is canonically isomorphic to the Zariski tangent space Hom,(m/m? &) at the zero-
point oy of M (m = maximal ideal of the local ring of oy on M). More generally, there
are isomorphisms of A-modules, functorial in both A and M,

Lie(M)(A) ~Hom,(m/m?, A)~Lie(M)®,A.
(cf. [DG, p. 208, (3.6)]).
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Furthermore, the canonical map A—Ale] gives a map W(A) -W(A[e]), via
which M(A[e]) is a W(A)-module, and then M(=,) and M(x,) are both W(A)-module
homomorphisms. Consequently Lie(M)(A) is a W(A)-submodule of M(A[e]), and the
action of W(A) on Lie(M)(A) commutes with the above action of A. Thus we obtain
a ring homomorphism, functorial in A

(B.1) W(A) - End,(Lie(M)(A))=End, (Lie(M)®,A)
(End, = A-endomorphisms).
Since p(Lie(M)(A))=(o), therefore the kernel of the truncation map W(A)->W,(A)

annihilates Lie(M)(A) (to verify this we may assume that A=A (cf. Lemma (0.1))...);
in other words (B.1) factors uniquely as

W(A) >W,(A)=A 2 End,(Lie(M) ®,A).

The maps p, constitute a linear representation of the ring-scheme W, in Lie(M), varying
functorially with M ().

By [DG, p. 176, Example 1] (with I'==monoid of non-negative integers) we have
then that

Lie(M) = @OLie"(M)

where
Lie"(M)={xeLie(M)|for all k-algebras A and a€A, p,(a)(x® 1) =x®a"}.

Let A be the field 2(a, b) where @ and & are independent indeterminates over k. Since
pala+b)=ps(a)+ es(b), we get for xeLie"(M)
x@(a+b)"=xQa" + 1" =x® (a" + b").
It follows, if x<o0, that
(a+b)"=a"+b"
Writing n=g¢ff, (g,p)=1 or ¢=o0, we have
(a® + b7")7 = (a"")1 4 (b7")¢
which is possible only if g=1. The conclusion is that if n is not a power of p, then
Lie"(M)=o.
In summary:
The W-module structure on M determines a grading, as above, on the k-vector space Lie(M):

Lie(M) = g%o Lie?' (M).

This grading is natural, i.e. it varies functorially with M.

(1) Equivalently, we can interpret the pj : A —> Endy(Homg(m/m?, A)) as being a representation of W,
inm/m?  Actually, in the general case when M is not necessarily algebraic over &, one must use this last interpretation,
so that (cf. following paragraph) the natural grading appears on m/m? rather than on its dual Lie(M).
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Now let M be the Greenberg module associated, as in Appendix A, to a
W(k)-module M of finite length (so that

M=M= W,(#) and Mz IIW,).

1=

In this case we can give an explicit description of the graded Z-vector space Lie(M)
in terms of M. For this purpose, we need some notation. For a k-vector space V,
and any integer ¢, we denote by V¥ the k-vector space obtained from V by pull-back

through the automorphism aba? of k. (So V® is the vector-space whose underlying

abelian group is the same as that of V, and whose multiplication pf :kx V-V is
given by

u(a, v)=a*'v.)
Clearly any basis of V is also one of V%, so that V and V% have the same dimension.
Proposition (B.2) (Y). — If M=.1_'11w,,i, then for each t> o, there is a natural
wsomorphism of k-vector spaces .
o+ Lie” (M) = (p(M(R)) [p+1(M(%))) ="
Progf. — There are canonical isomorphisms

e_al Lie?(W,) 5 Lie?(M) 3 1 Lie” (W)

and (with W, =W, (%))
DPW =W, 5 pMB) [+ M(E)) > TLHW, [0+ W,,.

Using these isomorphisms (and the fact that ,T:ani:EB::ani) we reduce the

problem to defining <p‘wtl (r>1) and to checking that for any W-homomorphism
¢ : W, —>W,_ . the resulting diagram

Lie” (W,) ——> (#'W,/p+W,)~

Pwp
(B-3)
Lie?(W,) ——> (#W,/p' 1 W,)="
P
commutes.

(}) For a stronger result (without proof) cf. remark (B.3) below.
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For any k-algebra A, we have
Lie(W,)(A)={(cay, cay, ..., ca,_,) | €A, ¢ as before}.
Nowif X=(Xg, X;, ..., X,—1), Y=(Y,,Y,,...,Y,_,) are two families of independent
indeterminates, then, in W (k2[X, Y]) we have
Koy + -0y Xp )+ Yoy« Yol ) =(86(X, V), ..., $,_4(X, Y))
where S, ..., S,_; are polynomials such that
S(X,0=X; S0, V)=Y, (0<i<n)
Le.
S,(X,Y)=X;+Y, +(terms of degree> 2).
By specializing X;—>¢q;, Y;—>ceq/ (g;,a;€A), and since e2=o0, we deduce that
(€a0> MR san—l) +(€a(l)a RS ] sarlz—l) :(s(ao—‘f_a(’)), ct s(an—l +a;z—1))'
Furthermore, for acA, the homomorphism W, (»,) (see above) takes (eqy, ..., cq,_;)

to (eaay, ..., caa,_;). Thus the A-module Lie(W,)(A) is (functorially) isomorphic to
the direct product A"

If (b, by, ...)eW(A), then, either directly, or because we know (as above) that
Lie(W_)(A) is annihilated by the kernel of W(A)—>W,(A), we see that

(boy b1y « .. )(eag, ey, - ..y ea,_1)=(by, 0,0, ...)(eay, cay, ..., ca, ;)
—(eboaq, cbPay, ..., cbT" a, _ ).
From these formulas it is immediate that
Lie? (Wy) ={(exo, €%y, ..., %, _,) e Wy(E[e]) | ;=0 for i+¢}.

Since, for t<n, p'W, (resp. p'*'W,) is the kernel of the surjective truncation
map W,—>W, (resp. W,—»W,_ ), therefore

PW, [P 1W, ~kernel of (W, ,—»W,) (t<n).
Hence ptwn/pH-an;{(oJ 0, ...,0, x)ewt+1}
with scalar multiplication given by
¢(0,0, ..., 0,%)=(0,0, ..., c?'x) (cek).
We can then define ¢y : Lie?(W,) - ($'W, [ *1W, ) 0:

P, (%05 « -5 1) =(0,0, ..., 0,%) (t<n)
=0 (t_>_7l).

It is easily verified now that the diagram (B.3) commutes. Q .E.D.

Remark (B.3). — Let M be a W(k)-module of finite length. We say that a filtration of M by W(k)-submodules
M=M'>M!DM?2>...
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is a p-filtration if

(i) pMEcS M1 for all ¢=o0, and
(ii) Mf=(o) for some ¢ (so that M"=(o) for n=t).
Homomorphisms of p-filtered W (k)-modules are defined in the obvious way (compatible with filtrations).

From the structure theorem of remark (8.8), one can deduce the following structure theorem for smooth Greenberg
modules:
For each smooth Greenberg module M, let M®=M(k) be filtered by its submodules

M!={xeM(%) | for all W-module homomorphisms ¢ : M — W;, xEker(p(k) :M(%) — W(k))} (> o).

In this way, we obtain an equivalence from the category of smooth Greenberg modules to the category of p-filtered W (k)-modules
of finite length,

Furthermore:
There are natural isomorphisms of k-vector spaces
Lie? (M) 3 (M{MH+D)(-) (= 0).

Via these isomorphisms, the p-th-power map [DG, p. 273] in Lie(M) = t@oLieP'(M) corresponds lo the additive endomorphism
of t@ (MYMH)Y) induced by multiplication by p in M(E). -
20

Appendix C.

Greenberg modules and étale algebras.

The main result in this appendix is Theorem (C. 5), which follows quite directly from
its special case Lemma (C.2). In the paper, (C.5) is used mainly via Corollary (C.6).

Let p be, as usual, a positive prime number. Let A be a ring such that pA=(o),
and let B be an A-algebra, with structural homomorphism g : A—B. For any positive
integer m, the truncation map p=gp,, : W, >W, gives the commutative diagram

o(A)

w,(A) 2 wa)=A

Wm(g) g

2
W,(B) > W,(B)=B

whence a homomorphism
(C.1) W, (B)®y_yA—>B.

Lemma (C.2). — With the preceding notation, if B is an étale A-algebra then W (B)
is an étale W (A)-algebra (via Wy, (g)), and the map (G.1) is bijective.

Proof. — We proceed by induction on m. There being nothing to prove when
m=1, let us prove the Lemma for m=n-1 assuming that it holds for m=n (n>1).
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Let 3, (resp. 8,) be the kernel of the truncation map W, (A)—>W,(A) (resp.
Woii(A) > A):
J.={(0,0, ...,0,a)|acA} (n zeros)
Ky ={(0,ay,a,, ...,a,)|aecA for 1<i<n}.
Let J;, 8 be similarly defined (with respect to B). Then W, (2)(3,) < Js;

W..1(9)(]) =8g; and (C.1) is bijective (for m=n41) <« K =8, W_,,(B).
We have

I8, =(0).
(To prove this, we may assume that A?=A (by Lemma (0.1), for example), and then
Ji " Wais(A), R, SpWou(A), so JR, <" 'W, (A)=(0).) Consequently the

W.,1(A)-module structure on J, is the pull-back of an A (=W_,,(A)/R,)-module
structure, the multiplication A X3J,—3J, being

(g, (0,0, ...,0,a)) b (0,0, ...,0,a a).

Thus, if A" is the ring A together with its structure of A-algebra for which the structural
map A->A"™ is the n-th iterate &} of the Frobenius endomorphism &, of A (F,(x) ="
for x in A), then the map ¢, : AW—3, given by

pala)=(0,0,...,0,a) (acA)

is an dsomorphism of A-modules. (To check that ¢, preserves addition, we may assume
again that AP=A and write (0,0, ...,0,a)=p"a"", 0, ...,0), etc.) There is a
similarly defined isomorphism of B-modules ¢y : B" —J;, and a commutative diagram
of A-module homomorphisms (where B-modules are made into A-modules by means of g)

Am 7 B

(ISR Q| %8
¥

Iy —— I
A Wn41(9) B

Hence, by extension of scalars, we have a commutative diagram of B-module homomorphisms

AW@,B —%» BW
(C.3) 2A®@aB | R Q|98

in which the vertical arrows are isomorphisms.
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The key point is that « s bijective (whence, so is ). A proofis given by C. Houzel
in [SGA 5, Exposé XV, p. 5, Prop. 2 ¢)]. The idea of the proof is as follows: In the
first place, a is actually the unique ring-homomorphism for which the following diagram
commutes:

B
Yl % Y(6)=1®b
A(")®AB Z > B®™
hT 7 h(a)=a®1
Am

It follows easily that Spec(a) : Spec B™ — Spec(A™®,B) is a radicial morphism;
furthermore since A™ is radicial over A, therefore A™®,B is radicial over B, so that
Spec(y) is injective, and since Spec(y)oSpec(a)=Spec(F%s) is surjective, also Spec(a)
is surjective; finally « is an A™-homomorphism of étale A™-algebras, and so Spec(«)
is an étale morphism [EGA IV, (17.3.5)]; thus Spec(«) is étale, radicial, and surjective,
t.e. [EGA IV, (17.9.1)] Spec(a)—and hence a—is an isomorphism.

Now since B in (C.3) is surjective, we see that

Jp =T Wort(B) SR, W, (B);

since the kernel of the truncation map W, (A) A is clearly 8, W (A), the bijectivity
of (G.1) for m=n implies that the truncation map W (B)—~B has kernel &, W (B);
hence (since W, (B)=W,_,,(B)/3g)

K=, W,,1(B) + T =R, W,,,(B);
thus (C.1) is bijective for m=n-1.
Furthermore, since J, &, =(0), we have that
1 Owy 1) War1(B) 2 3@y (Wiy i (B) /R, W,,,.4(B))
~3,9,B.
Since B in (G.3g) is bijective, we conclude that the natural map
Sa®w, 44 Wast (B) > 3y W,y (B)
is bijective. Since J=(0), and since
Wit (B) /3y Wy 1 (B) =W,1.4(B) /35 =W, (B)
is, by assumption, étale—and hence flat—over W, (A)/J, (=W,(A)), therefore
[B, p. 98, Th. 1] shows that W, (B) is flat over W, (A).

The proof is completed by the following lemma (with R=W_,,(A), S=W_,,(B),
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Lemma (C.4). — Let R be a ring, and let 3 be a nilpotent ideal in R (i.e. J1=(0) for
some integer ¢>>o0). For an R-algebra S, the following conditions are equivalent:

(1) S i an étale R-algebra.
(ii) S 25 flat over R and S[3IS is an étale R [I-algebra.

Progf. — (i) = (ii) is left to the reader. Assume that (ii) holds. Then [EGA IV,

(18.1.2)] there exists an étale R-algebra T together with an R /J-isomorphism

6: T/IT — S/3S.
6 lifts to a homomorphism of R-algebras 6 : TS [EGA IV, (17.1.1)]. To show
that 6 is an isomorphism—whence (i) holds—it suffices to show that the induced map
gre0 : gryT — gryS is bijective. (Here gryT is the graded ring

(T/IST)@ (IT/RT)... (I 1T/HT),
and similarly for gr4S.) We have a natural commutative diagram

gr3R®R/5 T/3T —> gryT

4@8 | » grgy6

v
graR®; S/IS —— gryS

(where “id ” is the identity map of gryR, so that id®6 is bijective); since T and S
are flat over R, the horizontal arrows are bijective [B, p. 98, Th. 1], and so gry6 is
bijective. Q .E.D.

From Lemma (C.2) we now deduce a more general statement (Theorem (C.5)
below). Let & be a perfect field of characteristic p, and let M be a finitely generated
W_(k)-module (m>1), with corresponding Greenberg module M (Appendix A).
Let A be a k-algebra and let B, C be two A-algebras. From the canonical map C—+B®,C
we obtain, by functoriality, a homomorphism ¢ : M(C) -~ M(B®,C). We have a
commutative diagram

A — B

oo

¢ — B®,C
whence, by functoriality, a commutative diagram

W, (A) > W,(B)

[oH Wy

¥ ¥
W, (C) — W,(B®,C).
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M(C) is a W, (A)-module via wz, M(B®,C) is a Wy (B)-module via w, and a
W, (A)-module via wz00;=w,00;. The map ¢ is a homomorphism of W, (A)-modules,
and hence by extension of scalars we obtain a W (B)-homomorphism

{1 Wy(B)®y_yM(C) > M(B®, C).

Theorem (C.5). — With the preceding notation, if B is an étale A-algebra, then:

(1) ¢ s bijective.
(1) If M is a W (R)-algebra (so that M is naturally a W -algebra (Corollary (A.2)),
then M(B®, C) 1is an étale M(C) algebra (1).

Proof. — The second assertion follows from the first because W, (B) is étale
over W (A) (Lemma (C.2)) and because ¢ is a homomorphism of M(C)-algebras if
M is a W (%)-algebra.

For the first assertion we may assume that M =TI =1Wmi, (m;<m). This reduces
us immediately to the case M =W, (n<m). Since B is étale over A, B®,C is étale
over G, and Lemma (C.2) shows then that ¢ (with M =W,) is a homomorphism of
étale W, (C)-algebras. Now the kernel K of the truncation W, (C)—GC satisfies K"==(0)
(to see this, we may assume that C?=C (Lemma (0.1)), in which case K =pW,(C)),
so by [EGA IV, (18.1.2)], { is bijective if and only if ¢®y ,C is bijective. But,
in view of (C.2)

W, (B) ®wm(A) W, (C) ®wn(0) CxW,(B) ®Wm(A) A®,C
~B®, C
' :_:Wn(B®A G) ®wn(C) Cl,

and modulo these isomorphisms, we find that $®y G is the identity map of B®, C.
Q .E.D.

Corollary (G.6). — Let R be a local Artin W (k)-algebra such that the natural map of k
into the residue field of R is bijective, and let R be the corresponding W ~algebra. Then for any
k-algebra A:

(i) The functor B->R(B) is an equivalence from the category Et, of étale A-algebras
to the category Etn( a of €tale R(A)-algebras.

(ii) If F is any functor of R(A)-algebras, with associated étale sheaf ¥~ ', then F~oR
(together with the map FoR — F~ oR induced by the canonical map F—>F~) is
the étale sheaf associated to the functor FoR of A-algebras, i.e.

(FoR)~=F~,R.

() Theorem (C.5) remains valid for any Greenberg module M annihilated by p™: this follows from (C.5)

as stated and the fact that (W), > o is a cogenerating family for the category of Greenberg modules (cf. [Seh, §5.3,
proof of Théoréme]).
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Proof. — Let o :R—% be the natural map, and let p, : W (A) A be the
truncation map. We have a commutative diagram

ROy u»Wa(A) —> R(A)
c®pa CA

E®A ——> A

in which the right side is obtained from the left by passing to associated fppf sheaves
(Corollary (A.2)). Since o®p, is surjective, so is o,. Furthermore, the kernel of
c®p, is nilpotent, and by Corollary (A.2), t is surjective; hence the kernel of the surjective
map o, is nilpotent.

Now by [EGA 1V, (18.1.2)], the functor E»>E®p, A from EtR(A) to Kt, is fully
Saithful. Moreover, for any étale A-algebra B, (G.5) (with M =R and C=A) shows
that R(B) is étale over R(A), and that

R(B)®gy AW, (B)®y R(A)®gyAxB  (cf. (G.2)).
This proves (i).
(i1) follows in a straightforward way from (i) in view of the following observations:

a) Since an equivalence of categories takes (categorical) direct sums into direct
sums, therefore for any two étale A-algebras B, C we have

R(B®, C)=2R(B)®g, R(C).
(This also follows directly from (C.5)).

b) Since for any étale A-algebra B, oy : R(B) —B has nilpotent kernel, therefore
a family (B)); . of étale A-algebras covers A (cf. § o) if and only if the family (R(B;))

iel
covers R(A). Q .E.D.
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