
RINGS WITH DISCRETE DIVISOR CLASS GROUP: 

THEOREM OF DANILOV-SAMUEL 


Introduction. In [3], Danilov has studied normal noetherian do- 
mains A for which the canonical map of divisor class groups i*: C?P(A)-
C?P(A[[T]]) is bijective; such A are said to have discrete divisor class group 
(abbreviated DCG).' One of Danilov's main results [3, p. 374, Theorem 11 
is 

(D-S). If the normal noetherian domain A is such that the localiza- 
tion A, has DCG at every prime ideal p for which depth(A,) = 2, then A 
itself has DCG. 

This result generalizes a theorem of Samuel [lo, p. 5, Theorem 3.21. 
(Danilov states [3, p. 3681 that Samuel's proof is incomplete.) Danilov's 
proof, in which certain additional mild restrictions are placed on A,  uses 
difficult cohomological results of Grothendieck [5]. The purpose of this 
note is to give a proof of (D-S) which uses nothing deeper than a well- 
known theorem of Rees on the connection between depth and Ext, and 
moreover needs no additional hypotheses on A. 

Actually we obtain somewhat more than (D-S). Danilov defines a 
map j* :  C?P(A[[T]])- (?!(A) such that j *  i* = identity (cf. [4, p. 109, o 

Theorem 18.81, or else just use the equivalent definition given in Section 1 
below); so A has DCG o j * is injective. But in fact Danilov's definition 
works more generally to give a map j ~ , ,: CP(B) - C?P(B/tB) for any noethe- 
rian normal ring B and nonunit t E B such that B/tB is also normal. [Thus 
the DCG property begins to look like one of "Lefschetz type," i.e., it has 
to do with the comparison of something on Spec(B) to the corresponding 

t Supported by NSF grant GP 29216. 
'All rings are understood to be commutative. The definition of i* can be found, e.g., in 

[4, Sect. 6 (cf. especially pp. 29-31,35)]. A survey of the theory of rings with DCG is given in 
[8, Sects. 1-31. 

he converse "A has DCG * AM has DCG for every multiplicative set M in A" is an 
open question. (For an aftinnative answer in case A is an excellent Q-algebra, cf. 13, p. 371, 
Prop. 41.) 
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thing on the "hypersurface section" Spec(B/tB). This indicates why 
Danilov finds [5] so useful.] This being so, what we show is 

(D-S) '. Let B be a normal noetherian domain and t a regular ele- 
ment (= nonzerodivisor) in the Jacobson radical of B such that the ring 
A = B/tB is a normal domain. Suppose that for every prime idealp in A 
such that depth(A,) = 2, there exists a normal noetherianflat B-algebra 
C such that 

C/tC s A, (isomorphic as A-algebras) 

and such t h a t j ~ , ~ :  eP(C) - eP(A,) is injective. ThenjB,,: CP(B) - CP(A) 
is injective. 

(Taking B =A[[T]], t = T, C = A,[[T]] in (D-S)', we get (D-S).) 
Using a familiar interpretation of CP(A) as being the group of iso- 

morphism classes of reflexive rank one A-modules-an interpretation 
which, for lack of convenient references, we review briefly in Section O-
we reformulate the injectivity of CP(B) - CP(B/tB) as a simple statement 
about free modules. This gives us a straightforward reduction of (D-S) ' to 
Theorem 1 (Section 2), which is the main result. (This reduction is carried 
out in Section 1; Theorem 1and its proof (Section 2) are independent- 
except for motivation-of anything which precedes them.) 

As a corollary of Theorem 1, we obtain a generalization of a result of 
[5], including the following statement: 

I f  B is a noetherian local ring of depth r 4 and if t is a regular 
nonunit in B, then B/tB parafactorial * B parafactorial. 

0. Reflexive Modules and the Divisor Class Monoid. Let A be a 
noetherian integral domain. For any A-module E, let E* be the A-module 
H o m ~(E, A). Write E ** for (E  *)*. Recall that E is said to be reflexive if 
the canonical map a :  E -E ** is bijective. {[a(x)]( f )  =f(x) for all x E E, 
f E E*.} 

Let K be the field of fractions of A. We shall say that an A-module E 
has rank one if E is finitely generated over A and the K-vector space 
E @A K is one-dimensional. If E has rank one, then so does E*; and if 

In (D-S) ', ifjc,,is injective then so is jBq,,,where q is the inverse image of p in B. So 
the hypothesis in (D-S) ' could be changed to: "Suppose t h a t , i ~ ~ , ~is injective for allprime 
ideals q containing t and such that depth(Bq) = 3." 



two A-modules El and E2 both have rank one, then so does El @AEl. For 
any rank one reflexive A-module E, the canonical map E -E @AK is in- 
jective, and so E is isomorphic to an A-submodule of K. 

If EI and E2 are rank one A-submodules of K, then any A-homo- 
morphism of EI into E2 extends uniquely to a K-homomorphism of 
El @A K (=K)  into E2 @AK (=K);  it follows that we can identify 
H o m ~(El ,  E2) with the A-module 

The canonical map El - El** is then identified with the inclusion of El 

into A :(A:E1). So El is reflexive if and only if El = A:(A :El), i.e. if and 
only if El is a divisorial fractiona y ideal of A (cf. [2, Section 1.1, Defini- 
tion 2 and Proposition 11). And El is A-isomorphic to E2 if and only if 
there is an x f 0 in K such that xEl  = El, i.e. EI and E2 determine 
equivalent divisors [2, Section 1.2, Proposition 41. 

With this in mind, it is now straightforward to see that the elements 
of the divisor class monoid-denoted (%'(A)-as defined in [2, Section 
1.21, are in one-to-one correspondence with the isomorphism classes of 
reflexive rank one A-modules. 

The monoid structure on eP(A) can be described as follows (verifica- 
tion left to the reader): For any rank one A-module E let 

[E]A= (isomorphism class of E**) E C!,P(A). 

(We may write [El for [E]A if no confusion results.) Multiplication in 
CP(A) is such that 

for any two rank one A-modules El, E2.So multiplication is determined 
by 8(even though the tensor product of two reflexive A-modules need not 
itself be reflexive!). The identity element of C?P(A) is [A]. One checks that 
[El] = [Ez] if and only if El*and E2*are isomorphic; in particular, [El is 
the identity element of CP(A) o E *  is free. 

1. Reformulation of (D-S) '. Let B, t, A be as in the statement of 
(D-S) '. It is easily seen t h a t j ~ , , :  eP(B) - eP(A) is such that for each rank 



one reflexive B-module F, 

[Since the localization B, of B at the prime ideal q = tB is a U.F.D., 
therefore the reflexive rank one Bq-module F O BBq is free, and so the 
dimension of 

over the field Bq/qBq is one, i.e. F/tF is a rank one A-module (not 
necessarily reflexive!).] In view of the characterization of the identity ele- 
ment of C?Q(A) given at the end of Section 0, we conclude that j ~ , ~is injec- 
tive o the following condition holds: 

(*)B,r. With A = B/tB, if F is any reflexive rank one B-module such 
that HornA (F/tF, A) is a free A-module, then H o m ~  (F, B) is a free 
B-module (i.e. F itself is free). 

Next, we need a simple observation: 
LEMMA. Let B, t, A, p, C be as in (D-S) '. Let Fbe a reflexive rank 

one B-module such that H o m ~  (F/tF, A )  is a free A-module. Then 
(F/tF) @A Ap is a free A,-module. 

Proof. Since C is flat over B , therefore Fc = F @ C is a reflexive 
rank one C-module [2, Section 4.2, Proposition 81. Furthermore 

whence 

and so H o m ~ ,  (Fc/tFc, A,) is a free A,-module. Since by assumption jc,, 
is injective, therefore (*)c,, holds, and we conclude that Fcis free over C, 
whence (F/tF) @A Ap (= Fc/tFc) is free over A, (=C/tC). Q.E.D. 

One final remark: B, t, A being as above, if F is any finitely generated 
reflexive B-module then F is torsion-free (in other words, if 0 # f E Fand 
b is a regular element of B, then bf # 0); and furthermore F/ tF is a 
torsionrfree A-module. (Proof left to reader; the only hypothesis really 



needed is that F = H o m ~(G, B) for some B-module G.) It follows that i fp 
is a prime ideal of depth I 1 in the normal noetherian domain A,  then 
(F/tF) @A A, is a free A,-module. 

It should now be evident-and up to this point nothing very substan- 
tial has been done-that (D-S) ' follows from Theorem 1 below. 

2. The Basic Result. 

THEOREM1. Let B be a noetherian ring and let t be a regular ele- 
ment in the Jacobson radical of B. Let Fbe aJinitely generated B-module 
such that t is not a zero-divisor in F. Set A = B/tB, E = F/tF, and sup- 
pose that 

(i) H o m ~(E, A) is a free A-module, and 
(ii) E, = E @A A, is a free A,-module for every prime ideal p in A 

such that depth(A,) I 2. 

Then H0mB (F, B) is a free B-module. 
Prooj Consider the exact sequence 

- E ~ t ' g  (F, B)  A E x ~ ' B(F, B)  - ExtlB(F,A)  

(obtained from the short exact sequence 0 - B A B -A - 0). If we can 
show that ExtlB (F, A )  = 0 ,  then E x t ' ~  (F, B)  = t(Ext ' B  (F, B)), so by 
Nakayama's lemma [I, Chapter 2, Section 3.2, Proposition 41, E x ~ I B(F, B) 
= 0, whence 

H o m ~(F, B) / t (Hom~ (F, B)) 2 H o m ~  = (E,A);(F,A) H O ~ A  

since HomA (E,A) is a free A-module, it follows from [I,Chapter 2, Sec- 
tion 3.2, Proposition 51 (applied to the ideal tB) that H o m ~  ( E  B) is free 
over B, as required. 

Now E x t ' ~  (F, A )  is canonically isomorphic to E x t ' ~  (E,A).  [This can 
be seen-for example-as follows: Let G .  = . . . - G2 - GI  - GO- 0 

4 0 n e  can check, using [7, p. 879, Proposition 2.21, that (ii) can be replaced by the 
following two weaker conditions: 

(ii) ' E, is a torsion-free Ap-module whenever depth(Ap) = 1; 
(ii) " Epis a reflexive Ap-module whenever depth(Ap) = 2. 

[(ii)' is automatic if F is reflexive.] 



be a projective resolution of the B-module F(so that F = Ho(G.)). A brief 
examination of the long exact homology sequence of the exact sequence of 
complexes 

shows that G./tG. is an A-projective resolution of the A-module E. (It 
should be kept in mind here that, by assumption, multiplication by t in 
Ho(G.) is an injective map.) Hence, for all i 1 0, and any A-module M 

ex ti^ (E, M )  =fl( H o ~ A(G. /tG., M)) 

=Hi(HOmB (G., M)) = E x t ' ~(F, MI.] 

Let us show then that Ext l A (E, A ) = 0. 
Let a: E - E** be the canonical map of E into its "bidual" (over A) 

(cf. Sect. O), and let K, I, C be the kernel, image, and cokernel (respec- 
tively) of a. From the exact sequences 

we obtain exact seqences 

+E x ~ ~ A(I, A)  E x ~ ' A(E, A)  - E x ~ ' A(K,A), 


E x ~ ' A(EX*, A )  - E x ~ ' A(I,A)  - Ext2,4 (C, A). 


SinceE* is free (by assumption), alsoE** is free, and E x t ' ~  (E**, A)  = 0. 
So it will be enough to show that 

~ ~(C, A )  =2 (K,A)  =t ~ 0.E x ~ ~ A  

Now for any primep in A, there is a natural identification of aOAA, 
with the canonical map of E @A A, into its bidual (over A,). [Indeed, 
for any A-algebra R ,  we have a natural commutative diagram 



where /3 is the natural map of E @A R into its bidual (over R); y is ob- 
tained by applying H o m ~  ( ., R) to the natural map 

and 6 is WE*. And if R isflat over A,  then y and 6 are isomorphisms [ I ,  
Chapter 1, Section 2.10, Proposition 111.1 

Thus if depth(Ap) I2, so that E @A Ap is free, then a @A Ap is bi- 
jective, i.e. Kp = Cp = 0. By a theorem of Rees ([9, p. 31, Theorem 1.31 
or also [5, p. 33, Proposition 2.9]), this means that 

Ext' (K, A) = Exti (C,A) = 0 ( i  I2 ) .  Q.E.D. 

We note, in closing, the following generalization of [5, p. 133, 
Lemma 3.161: 

COROLLARY.Let B, t, and A be as in Theorem 1 [so that Spec (A) 
can be identified with the closed subscheme t = 0 of Spec (B)]. Let 
X be an open subset of Spec (B), let Y C X be an open subset of 
Spec (A) such that depth (A,) 2 3 for all prime ideals p in Spec (A) -
Y,  and let i :  Y -- X be the inclusion map. If 5 is any locallyj+ee co- 
herent sheaf on X with i"3 z O rn ,  then 3 z Ox".In particular, the 
canonical map Pic ( X )  - Pic (Y)is injective. 

Proof. There exists a finitely generated B-module Fsuch that, if F-
is the corresponding coherent sheaf on Spec (B), then F - ( X  = 5 [6, p. 
318, Cor. (6.9.5)]. We may replace F by its bidual, i.e. we may assume 
that F is reflexive. (In particular, t is not a zero-divisor in F.) We shall 
show that E = F/tF satisfies conditions (i) and (ii) of Theorem 1; then 
H o m ~(F, B) is free, so F itself, being reflexive, is free, and the Corollary 
results. 

For (i), let j :  Y - Spec (A) be the inclusion map. Since Y contains all 
primes p such that depth (A,) I 1, we have that: for any finitely 
generated free A-module G,  with associated sheaf G-  on Spec (A), the 
canonical map G-  - j j * G - is an isomorphism (cf. for example [5, p. 
37, C O ~ .  3.51). Applying H o m ~  ( ., A) to a finite presentation of E ,  we ob- 
tained an exact sequence 

his means precisely that H O ( Y ,  O y )  =A and H'(Y, (3 y )  = 0. 



with GI and G2 finitely generated free A-modules; in the resulting com- 
mutative diagram (with exact rows) 

we see then that d) is an isomorphism. But 

and hence 

Applyingj,, we conclude that E*- G (An)- , so E*is free. 
As for (ii), if depth(A,) 5 2, thenp E Y; but then E, is just the stalk 

a t p  of i*S ,  so E, is free. Q.E.D. 
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