RINGS WITH DISCRETE DIVISOR CLASS GROUP:
THEOREM OF DANILOV-SAMUEL

By Josepu Lipmant

Introduction. In [3], Danilov has studied normal noetherian do-
mains A for which the canonical map of divisor class groups i *: C{(A4) —
CL(A[[T]]) is bijective; such A are said to have discrete divisor class group
(abbreviated DCG).! One of Danilov’s main results [3, p. 374, Theorem 1]
is

(D-S). If the normal noetherian domain A is such that the localiza-
tion A, has DCG at every prime ideal p for which depth(A,) = 2, then A
itself has DCG.?

This result generalizes a theorem of Samuel [10, p. 5, Theorem 3.2].
(Danilov states [3, p. 368] that Samuel’s proof is incomplete.) Danilov’s
proof, in which certain additional mild restrictions are placed on A4, uses
difficult cohomological results of Grothendieck [S]. The purpose of this
note is to give a proof of (D-S) which uses nothing deeper than a well-
known theorem of Rees on the connection between depth and Ext, and
moreover needs no additional hypotheses on A.

Actually we obtain somewhat more than (D-S). Danilov defines a
map j*: CLA[[T]]) — CL(A) such that j* o i* = identity (cf. [4, p. 109,
Theorem 18.8], or else just use the equivalent definition given in Section 1
below); so A has DCG & j* is injective. But in fact Danilov’s definition
works more generally to give a map js,: C{(B) — C{(B/tB) for any noethe-
rian normal ring B and nonunit ¢ € B such that B/¢B is also normal. [Thus
the DCG property begins to look like one of “Lefschetz type,” i.e., it has
to do with the comparison of something on Spec(B) to the corresponding
" tSupported by NSF grant GP 29216.

U All rings are understood to be commutative. The definition of i* can be found, e.g., in

[4, Sect. 6 (cf. especially pp. 29-31, 35)]. A survey of the theory of rings with DCG is given in
[8, Sects., 1-3].
2The converse “A has DCG = A has DCG for every multiplicative set M in 4 is an
open question, (For an affirmative answer in case A is an excellent Q-algebra, cf. 13, p. 371,
Prop. 4].)
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thing on the ‘“‘hypersurface section” Spec(B/tB). This indicates why
Danilov finds [S] so useful.] This being so, what we show is

(D-S)'. Let B be a normal noetherian domain and t a regular ele-
ment (= nonzerodivisor) in the Jacobson radical of B such that the ring
A = B/tB is a normal domain. Suppose that for every prime ideal p in A
such that depth(A,) = 2, there exists a normal noetherian flat B-algebra
C such that

C/tC = A, (isomorphic as A-algebras)

and such that jc,: CL(C) — CU(A,) is injective. Then jp,: CU(B) — CL(A)
Is injective.?

(Taking B = A[[T]],t = T, C = A,[[T]] in (D-S)’, we get (D-5).)

Using a familiar interpretation of C{(A) as being the group of iso-
morphism classes of reflexive rank one A-modules—an interpretation
which, for lack of convenient references, we review briefly in Section 0—
we reformulate the injectivity of C¢(B) — C{(B/tB) as a simple statement
about free modules. This gives us a straightforward reduction of (D-S) ' to
Theorem 1 (Section 2), which is the main result. (This reduction is carried
out in Section 1; Theorem 1 and its proof (Section 2) are independent—
except for motivation—of anything which precedes them.)

As a corollary of Theorem 1, we obtain a generalization of a result of
[S], including the following statement:

If B is a noetherian local ring of depth = 4 and if t is a regular
nonunit in B, then B/tB parafactorial = B parafactorial.

0. Reflexive Modules and the Divisor Class Monoid. Let A be a
noetherian integral domain. For any A-module F, let E * be the A-module
Homy (£, A). Write E** for (£ *)*, Recall that E is said to be reflexive if
the canonical map a: E — E **is bijective. {[a(x)]( f) =f(x)forallx € E,
feE®}

Let X be the field of fractions of A. We shall say that an A-module £
has rank one if E is finitely generated over A and the K-vector space
E ®4 K is one-dimensional. If E has rank one, then so does E *; and if

3In (D-S)’, if jc is injective then so isqu_,, where g is the inverse image of p in B. So
the hypothesis in (D-5)" could be changed to: “‘Suppose that jg,.: is injective for all prime
ideals g containing t and such that depth(B,) = 3.”
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two A-modules E; and E; both have rank one, then so does E; ®4 E. For
any rank one reflexive A-module E, the canonical map £ — E &4 K is in-
jective, and so E is isomorphic to an A-submodule of K.

If E; and E, are rank one A-submodules of X, then any A-homo-
morphism of E; into E, extends uniquely to a K-homomorphism of
E, ®4 K (=K) into E2 ®4 K (=K); it follows that we can identify
Homy (£, E;) with the A-module

E;:E, = {x € K|xE, € E,}.

The canonical map E; — E;** is then identified with the inclusion of E,
into A:(A:E). So E| is reflexive if and only if E; = A:(A:E}), i.e. if and
only if E is a divisorial fractionary ideal of A (cf. [2, Section 1.1, Defini-
tion 2 and Proposition 1]). And E, is A-isomorphic to E; if and only if
there is an x # 0 in K such that xE; = E,, i.e. E; and E, determine
equivalent divisors [2, Section 1.2, Proposition 4].

With this in mind, it is now straightforward to see that the elements
of the divisor class monoid—denoted Cf{(A)—as defined in [2, Section
1.2], are in one-to-one correspondence with the isomorphism classes of
reflexive rank one A-modules.

The monoid structure on C?{(A) can be described as follows (verifica-
tion left to the reader): For any rank one A-module E let

[E]a = (isomorphism class of E*¥) € Cl(A).

(We may write [E] for [E]4 if no confusion results.) Multiplication in
C?(A) is such that

[E\][E:] = [Ey @4 E))

for any two rank one A-modules E, E,. So multiplication is determined
by & (even though the tensor product of two reflexive A-modules need not
itself be reflexive!). The identity element of C¢(A) is [A]. One checks that
[E\] = [E,] if and only if E\* and E,* are isomorphic; in particular, [E] is
the identity element of CU(A) & E* is free.

1. Reformulation of (D-S)’'. Let B, t, A be as in the statement of
(D-S)'. It is easily seen thatjg,: CZ(B) — Cf(A) is such that for each rank
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one reflexive B-module F,

JaA[Flg) = [F ®p Ala = [F/tF]a.

[Since the localization B, of B at the prime ideal ¢ = ¢B is a U.F.D.,
therefore the reflexive rank one B,-module F & 3 B, is free, and so the
dimension of

(F/tF) ® 4 (B,/qB,) = (F @5 B,) ®35,(B,/qB,)

over the field B,/qB, is one, i.e. F/tF is a rank one A-module (not
necessarily reflexive!).] In view of the characterization of the identity ele-
ment of Cf(A4) given at the end of Section 0, we conclude that gz, is injec-
tive & the following condition holds:

(*)s,. With A = B/tB, if F is any reflexive rank one B-module such
that Hom, (F/tF, A) is a free A-module, then Homp (¥, B) is a free
B-module (i.e. F itself is free).

Next, we need a simple observation:

LEmMA. Let B, t, A, p, C be as in (D-S)'. Let F be a reflexive rank
one B-module such that Homu (F/tF, A) is a free A-module. Then
(F/tF) ®4 A, is a free A,-module.

Proof. Since C is flat over B, therefore Fc = F (X 5 C is a reflexive
rank one C-module [2, Section 4.2, Proposition 8]. Furthermore

Fc/tFe =(F®5C) ®c(C/tC) = (F @A) ®a(C/tC) = (F/tF) ®a A,
whence

Homy, (Fc/tFc, Ap) = Homy (F/tF, A) ® a4 Ap,
and so Homy, (Fc/tFc, A,) is a free A,-module. Since by assumption jc,

is injective, therefore (*)c, holds, and we conclude that F¢ is free over C,
whence (F/tF) @4 A, (= Fc/tFc) is free over A, (=C/tC). Q.E.D.

One final remark: B, t, A being as above, if F is any finitely generated
reflexive B-module then F is torsion-free (in other words, if 0 # f € F and
b is a regular element of B, then bf # 0); and furthermore F/tF is a
torsion-free A-module. (Proof left to reader; the only hypothesis really
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needed is that F = Homy (G, B) for some B-module G.) It follows that if p
is a prime ideal of depth <1 in the normal noethetian domain A, then
(F/tF) ®4 A, is a free Ap,-module.

It should now be evident—and up to this point nothing very substan-
tial has been done—that (D-S)’ follows from Theorem 1 below.

2. The Basic Result.

THEOREM 1. Let B be a noetherian ring and let t be a regular ele-
ment in the Jacobson radical of B. Let F be a finitely generated B-module
such that t is not a zero-divisor in F. Set A = B/tB, E = F/tF, and sup-
pose that

(i) Homy (E, A) is a free A-module, and
(i) E, = E ®a4A,is afree A,-module for every prime ideal p in A
such that depth(4,) = 2.

Then Homp (F, B) is a free B-module.*
Proof. Consider the exact sequence

0 — Homj (F, B) - Homjp (F, B) — Homjp (F, A)
— Extiz (F, B) = Ext'p (F, B) — Ext!'s (F, A)

(obtained from the short exact sequence 0 — B LB —A—0).Ifwecan
show that Ext!z (F, A) = 0, then Ext's (F, B) = t(Ext!s (F, B)), so by
Nakayama’s lemma [1, Chapter 2, Section 3.2, Proposition 4], Ext!s (F, B)
= (0, whence

Homj (F, B)/t(Homp (F, B)) = Homjp (F, A) = Homy (E, A);

since Homy (E, A) is a free A-module, it follows from [1, Chapter 2, Sec-
tion 3.2, Proposition 5] (applied to the ideal ¢tB) that Homgp (F, B) is free
over B, as required.

Now Ext!s (F, A) is canonically isomorphic to Ext' 4 (E, A). [This can
be seen—for example—as follows: Let G, = -+ — G, — Gy — Gy — 0

4One can check, using [7, p. 879, Proposition 2.2], that (ii) can be replaced by the
following two weaker conditions:

(ii)" Ep is a torsion-free A,-module whenever depth(4,) = 1;

(i)” Ep is a reflexive Ap-module whenever depth(4,) = 2.
[(ii)’ is automatic if F is reflexive.]
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be a projective resolution of the B-module F (so that F = Ho(G.)). A brief
examination of the long exact homology sequence of the exact sequence of
complexes

0-G.~G. -G /MG, -0

shows that G./tG. is an A-projective resolution of the A-module E. (It
should be kept in mind here that, by assumption, multiplication by ¢ in
Hy(G.) is an injective map.) Hence, for alli = 0, and any A-module M

Ext'4 (E, M) = H'(Homux (G./tG., M))
= Hi{(Homp(G., M)) = Exti'z(F, M).]

Let us show then that Ext! 4 (F, 4) = 0.

Let a: E — E** be the canonical map of E into its ‘““bidual” (over 4)
(cf. Sect. 0), and let K, I, C be the kernel, image, and cokernel (respec-
tively) of «. From the exact sequences

0-K—-E—-I1-0, 0—-I—-E*-~C—-0
we obtain exact segences

Extl4 (I, A) — Ext'4 (E, A) — Ext'4 (K, A),
Ext!  (E** A) — Ext'4 (I, A) — Ext24 (C, A).

Since E* is free (by assumption), also E ** is free, and Ext!, (E**, 4) = 0.
So it will be enough to show that

Ext?24 (C, A) = Ext'a (K, A) = 0.
Now for any prime p in A, there is a natural identification of a® 4 A,
with the canonical map of E ® 4 A, into its bidual (over A,). [Indeed,

for any A-algebra R, we have a natural commutative diagram

E ®4 R —%— Homg (Homg (E ® 4R, R), R)

a@AR ’Y

E** ®AR——5—*HomR (E* ®A R, R)
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where (3 is the natural map of £ @, R into its bidual (over R); v is ob-
tained by applying Homg (-, R) to the natural map

we: Hom, (E, A) ®4 R — Homg (E ®4 R, R);

and 8 is wee. And if R is flat over A, then v and § are isomorphisms [1,
Chapter 1, Section 2.10, Proposition 11].]

Thus if depth(4,) =< 2, sothat E ®4 A, is free, then a ® 4 A, is bi-
jective, i.e. K, = C, = 0. By a theorem of Rees ([9, p. 31, Theorem 1.3]
or also 5, p. 33, Proposition 2.9]), this means that

Ext’ (K, A) = Ext'(C, A) =0 (i =2). Q.E.D.

We note, in closing, the following generalization of [5, p. 133,
Lemma 3.16]:

CorOLLARY. Let B, t, and A be as in Theorem 1 [so that Spec (A)
can be identified with the closed subscheme t = 0 of Spec (B)]. Let
X be an open subset of Spec (B), let Y C X be an open subset of
Spec (A) such that depth (4,) = 3 for all prime ideals p in Spec (4) —
Y,%and let i: Y — X be the inclusion map. If F is any locally free co-
herent sheaf on X with i*F = Oy", then F = Ox". In particular, the
canonical map Pic (X) — Pic (Y) is injective.

Proof. There exists a finitely generated B-module F such that, if '~
is the corresponding coherent sheaf on Spec (B), then F~|X = F [6, p.
318, Cor. (6.9.5)]. We may replace F by its bidual, i.e. we may assume
that F is reflexive. (In particular, ¢ is not a zero-divisor in F.) We shall
show that £ = F/tF satisfies conditions (i) and (ii) of Theorem 1; then
Homg (F, B) is free, so F itself, being reflexive, is free, and the Corollary
results.

For (i), letj: ¥ — Spec (4) be the inclusion map. Since Y contains all
primes p such that depth (4,) = 1, we have that: for any finitely
generated free A-module G, with associated sheaf G~ on Spec (4), the
canonical map G~ — j_j*G~ is an isomorphism (cf. for example [S, p.
37, Cor. 3.5]). Applying Hom, (-, A) to a finite presentation of E, we ob-
tained an exact sequence

0—-FE*~G -G,

5This means precisely that HO(Y, Oy) = A and H! (Y, Oy) = 0.
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with G, and G, finitely generated free A-modules; in the resulting com-
mutative diagram (with exact rows)

0 - %~ Gy~ G,~
®

0 ——jJ*E* ™ — j J*CG1~—j j* G

we see then that ¢ is an isomorphism. But
J¥E~ = [*F = Oy
and hence
JRE*- = 0y0  [=j%Am) -]
Applyingj,, we conclude that E*~ = (4")~, so E* is free.
As for (ii), if depth(A,) < 2, then p € Y; but then E,, is just the stalk

atp of i*F,so E, is free. Q.E.D.

PURDUE UNIVERSITY
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