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Abstract. The duality theory of coherent sheaves on algebraic vari-
eties goes back to Roch’s half of the Riemann-Roch theorem for Riemann
surfaces (1870s). In the 1950s, it grew into Serre duality on normal
projective varieties; and shortly thereafter, into Grothendieck duality
for arbitrary varieties and more generally, maps of noetherian schemes.
This theory has found many applications in geometry and commutative
algebra.

We will sketch the theory in the reasonably accessible context of a
variety V over a perfect field k, emphasizing the role of differential forms,
as expressed locally via residues and globally via the fundamental class
of V/k. (These notions will be explained.)

As time permits, we will indicate some connections with Hochschild
homology, and generalizations to maps of noetherian (formal) schemes.
Even 50 years after the inception of Grothendieck’s theory, some of these
generalizations remain to be worked out.
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Introduction

This talk, aimed at graduate students, will be about the duality theory
of coherent sheaves on algebraic varieties, and a bit about its massive—and
still continuing—development into Grothendieck duality theory, with a few
indications of applications. The prerequisite is some understanding of what
is meant by cohomology, both global and local, of such sheaves.
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1. Riemann-Roch and duality on curves

This section reviews the Riemann-Roch theorem for a smooth irreducible
projective curve V over an algebraically closed field k, in a way that moti-
vates the sequel.

1.1. In sheaf-theoretic terms, Riemann’s part of the theorem is as follows.
For any coherent OV -module (i.e., sheaf of OV -modules) F, and any integer
i ≥ 0, set

hi(F) := dimk

(
Hi(V,F )

)
<∞.

The Euler-Poincaré characteristic of F is the integer

χ(F) := h0(F)− h1(F).

For invertible F—that is, every v ∈ V has an open neighborhood U such
that the restriction F|U is isomorphic to OU—the degree of F is the integer

(1.1.1) deg(F) := χ(F)− χ(OV ).

This is the Riemann theorem, transformed into a definition. However, to
give the definition substance, one needs to interpret it more concretely—
which one does by showing, via simple manipulations of suitable exact se-
quences and their cohomology, that for invertible OV -modules L1 and L2 ,

(1.1.2) deg(L1 ⊗ L2) = deg(L1) + deg(L2).

It follows that if L ⊃ OV is invertible, and if L−1 is the invertible sheaf
HomOV

(L,OV ) ⊂ OV , then

(1.1.3) deg(L) = dimk(OV /L−1).

It results via the standard correspondence between divisors and invertible
sheaves that “degree” has the usual interpretation .

(For a proof of (1.1.2) applicable to arbitrary one-dimensional schemes
proper over an artin ring A, with dimension of k-vector spaces over fields
replaced by length of A-modules, see, e.g., [L69, pp. 214–215] (where, in
Lemma (10.1), F ⊕N should be F ⊗N ).)

The problem Riemann was addressing is how to find the dimension of a
complete linear system, which translates into finding h0(L) for invertible L.

Rewriting χ(OV ) as 1− g, where g = h1(OV ) is the genus of V , one gets
from (1.1.1):

h0(L) = deg(L) + 1− g + h1(L).

Now deg(L) can be determined via (1.1.2) and (1.1.3). So one needs some
information about h1(L). This is where Roch and duality come in.

1.2. Let Ω = ΩV/k be the sheaf of differential 1-forms on V/k. This is an
invertible sheaf.
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In modern terms Roch showed the following global duality theorem:

For any invertible L there is a natural k-linear isomorphism

HomOV
(L,Ω) ∼= H0(L−1⊗ Ω) −→∼ Homk(H

1(V ,L), k).

Thus h1 becomes a somehow less mysterious h0.

More elaborately, Ω is a dualizing sheaf, in the following sense.
A pair (ω, θ) with ω a coherent OV -module and θ : H1(V , ω) → k a

k-linear map such that for all coherent OV -modules F, the composition

HomOV
(F, ω)

natural−−−−→ Homk

(
H1(V ,F ),H1(V , ω)

) via θ−−−→ Homk(H
1(V ,F ), k)

is an isomorphism, is said to be dualizing. The first component of a dualizing
pair is called a dualizing sheaf. A simple category-theoretic argument shows
that there is a unique isomorphism between any two dualizing pairs. Hence
the dualizing sheaves form an isomorphism class of OV -modules (a class
which a priori might have been empty).

Moreover, as we will now indicate, there is a canonical k-linear map∫
V : H1(V , Ω) −→∼ k,

such that the pair
(
Ω,
∫
V

)
is dualizing—standing out in the isomorphism

class of all dualizing pairs.

1.3. The map
∫
V is defined via residues, as follows.

Let k(V ) be the field of rational functions on V , and Ωk(V ) its vector space
(one-dimensional) of relative k-differentials. For any closed point v ∈ V , let
Hi
v denote local cohomology supported at the maximal ideal mv of the local

ring OV,v . As the OV,v-module Ωk(V ) is injective, the local cohomology
sequence associated to the natural exact sequence

0 −→ Ωv −→ Ωk(V ) −→ Ωk(V )/Ωv −→ 0

gives an isomorphism

Ωk(V )/Ωv = H0
v(Ωk(V )/Ωv) −→∼ H1

v(Ω).

Theorem-Definition 1.3.1. There is a unique k-linear map

resv : H1
v(Ω) = Ωk(V )/Ωv → k

such that for any local coordinate t at v,

resv(t
−1dt+ Ωv) = 1

resv(t
adt+ Ωv) = 0 (a < −1).

Classically (when k = C), resv sends ν + Ωv to 1
2πi

∮
ν (the integral of ν

counterclockwise around a small path enclosing v).

There are algebraic proofs, valid in all characteristics, e.g., [S88, Chap. I].
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With ̂ denoting completion at the maximal ideal mv of the local ringOV,v ,
canonical local duality says:

For all finitely generated ÔV,v-modules F, the composition

Hom bOV,v
(F, Ω̂v)

natural−−−−→ Homk(H
1
m̂v
F,H1

m̂v
Ω̂v)

via resv−−−−→ Homk(H
1
m̂v
F, k)

is an isomorphism.

In other words, (Ω̂v, resv) is a canonical “locally dualizing” pair.

Now let us globalize. The constant sheaf Ω of meromorphic differentials,
with sections Ωk(V ), is an injective OV -module.

The sections of Ω∗ := Ω/Ω over an open U ⊂ V are given by

Ω∗(U) := ⊕v∈U Ωk(V )/Ωv
∼= ⊕v∈U H1

v(Ω).

The cohomology sequence associated to the natural exact sequence

0 −→ Ω −→ Ω −→ Ω∗ −→ 0

gives the exact row in the diagram

Ωk(V ) ⊕v∈V H1
v(Ω) H1(V ,Ω) 0

k

⊕resv
∫
V

The key residue theorem says that “the sum of the residues of a mero-
morphic differential is zero.”

Classically, by Stokes theorem, this sum is the integral around the (empty)
boundary of V . For an algebraic proof, see again, e.g., [S88, Chap. I].

In other words, the map ⊕resv annihilates the image of Ωk(V ); that is

there is a unique k-linear map H1(V ,Ω)→ k making the preceding diagram
commute.

This map is defined to be
∫
V .

For details, see, e.g., [S88, Chap. II]. There, it is first shown that there
exists some dualizing pair on V ; and then the residue theorem is used to
show that

(
Ω,
∫
V

)
is dualizing.

Scholium. For smooth projective curves, differentials and residues give a
canonical realization of, and compatibility between, global and local duality.

2. Regular differentials on algebraic varieties

2.1. Our principal goal in this lecture is to describe a generalization of the
canonical compatibility at the end of §1 to arbitrary reduced irreducible
n-dimensional varieties V proper over a perfect field k.

“Dualizing sheaf ” is defined as above, with n in place of 1. In this section,
we describe a canonical such sheaf, the sheaf of regular differential n-forms.
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Roughly, some historical highlights in the development of this generaliza-
tion are as follows.

• Rosenlicht (1952 thesis): V a curve (n = 1), dualizing sheaf a certain
sheaf of “regular” meromorphic differentials, see below and [S88, Chap. IV].
• Serre (1955±): V normal, dualizing sheaf i∗i

∗∧n Ω, where i : U ↪→ V is
the inclusion into V of its (open) smooth part U .
• Grothendieck (1957): V embedded in projective N -space, V ⊂ PNk , with

(noncanonical) dualizing sheaf ExtN−nPN
k /k

(
OV , ∧nΩPN

k /k

)
, see [G57].

• Grothendieck (1958): V arbitrary (proper over k), with existentially
defined dualizing sheaf, the target of a canonical map (the fundamental
class) with source ∧nΩ, this map being an isomorphism over the smooth
part of V , see [G58, pp. 112–115]—leading to vast generalization ([H66],
[C00], [L09]).

• Kunz (1975): V projective over k, with dualizing sheaf of regular dif-
ferentials, as explained below. This dualizing sheaf agrees with those of
Rosenlicht and Serre when V is a curve or normal variety, respectively. It
contains ∧nΩ, with equality at smooth points. See [Ku08].
• Lipman (1984). V arbitrary (proper over k), with dualizing sheaf of

regular differentials. See [L84].

2.2. Let us now define “regular differentials.” Let C be an integral domain
finitely generated over k, and B ⊂ C a polynomial k-algebra in n variables
over which C is finite, and such that the corresponding extension of fraction
fields k(B) ⊂ k(C) is separable. (Such B exist, by Noether normalization.)
Setting Ωn := ∧nΩ, one has the differential trace map

τ : Ωn
k(C)/k = k(C)⊗k(B) Ωn

k(B)/k
trace⊗1−−−−−→ k(B)⊗k(B) Ωn

k(B)/k = Ωn
k(B)/k .

The generalized Dedekind complementary module is

ωC/B := { ν ∈ Ωn
k(C)/k | τ(Cν) ⊂ Ωn

B/k }.
The C-module ωC/B does not depend on the choice of B. Kunz proved:

Theorem 2.2.1. Lying between Ωn and the constant sheaf Ωn of mero-
morphic differential n-forms, there is a unique coherent OV -module ω such
that for any affine open subset U = SpecC ⊂ V and any B ⊂ C as above,

Γ(U, ω) = ωC/B .

Sections of this ω are called regular differential n-forms. As mentioned
before, the stalks Ωn

v and ωv are equal at any smooth point v ∈ V .

2.3. As indicated before, the sheaf of regular differentials is dualizing. This
is not a trivial result, especially for nonprojective varieties.

Moreover, generalizing the above-described case of curves, there is a
canonical k-linear

∫
V : Hn(V , ω) → k, closely related to residues, such that

the pair (ω,
∫
V ) is dualizing.

The canonical dualizing pair (ω,
∫
V ) is the main actor in this lecture.
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Example 2.4 (Regular differentials for a local complete intersection). Let
V ⊂ X, an N -dimensional variety, and let v ∈ V be a smooth point of X.
Suppose further that OV ,v = OX,v/(f1, . . . , fN−n) with (f1, . . . , fN−n) a
regular sequence in OX,v.

Let (x1, . . . , xN ) generate the maximal ideal of OX,v, the indexing being
such that, with x̄i the image of xi in OV ,v, the differentials dx̄1, . . . , dx̄n
generate Ωk(V ).

Then ωv is freely generated over OV ,v by the meromorphic n-form

dx̄1dx̄2 · · · dx̄n/[∂(f1, . . . , fN−n)/∂(xn+1, . . . , xN )] ,̄

where the denominator is the image in OV ,v of a Jacobian determinant.

3. Higher-dimensional residues

For any closed point v ∈ V , Hn
v is the functor assigning to an OV,v-module

its n-th local cohomology module with supports at the maximal ideal mv.
For any OV -module F , set

Hn
v F := Hn

v Fv,
the local cohomology of the stalk of F at v.

As above, ω is the sheaf of regular n-forms on V . The k-linear residue map

resv : Hn
v (ω)→ k

is as follows, at least when the residue field degree [OV,v/mv : k] = 1, which
we assume here to avoid technicalities involving traces.

Suppose first that v is a smooth point, so that ωv = Ωn
v .

If mv is generated by (t1, t2, . . . , tn) then the OV,v -module ωv is free of
rank one, with basis dt1 ∧ dt2 ∧ · · · ∧ dtn (d : OV,v → ΩOV,v/k being the

universal derivation).

It is known that Hn
v (Ωn

v ) = Hn
v (Ω̂n

v ) is the direct limit of the filtered family

(Ωn
v/t

aΩn
v )a = (Ω̂n

v/t
aΩ̂n

v )a

where a = (a1, . . . , an) runs through all n-vectors of positive integers, where
ta := ta11 . . . tann , and where the transition map from a to a′ (a′i ≥ ai) is given

by multiplication by ta
′−a. Thus with πa the natural composition

Ω̂n
v � Ω̂n

v/t
aΩ̂n

v → Hn
v (Ω̂n

v ),

every element in Hn
v (Ω̂n

v ) can be represented, non-uniquely, as[
ν

ta11 , . . . , t
an
n

]
:= πaν.

Note that ÔV,v is a power-series ring k[[t1, . . . , tn]], so that any ν ∈ Ω̂n
v

can be represented as

ν =
∑

a≥(0,...,0)

cat
adt1dt2 · · · dtn (ca ∈ k).
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Theorem-Definition 3.1. There exists a unique k-linear map

resv : Hn
v (Ω̂n

v )→ k

such that for any (t1, . . . , tn) as above and ν =
∑

a cat
adt1dt2 · · · dtn,

resv

[
ν

ta11 , . . . , t
an
n

]
= c(a1−1,...,an−1).

Remarks. 1. Classically, resv is given by some integral , see [GH78,
Chap. 5].

2. There are a number of algebraic proofs, valid in all characteristics. The
difficulty is to show that resv does not depend on the choice of (t1, . . . , tn).
See e.g., [L84, §7].

3. When n = 1, this resv is the same as the one in §1.3.

As for the general case, given v ∈ V , it follows from Noether normalization
that S := OV,v has a local k-subalgebra R that is the local ring of a point
p ∈ Pnk , and such that S is a localization of a finite R-algebra. It follows
easily from the considerations in §2.2 that the differential trace map induces
a map Hn

v (ωV,v) → Hn
p (Ωd

Pn
k/k

). Composing this with resp (as just defined),

one gets a k-linear map resv : Hn
v (ωV,v) → k that seems to depend on the

choice of V and of a Noether normalization of V , but in fact doesn’t. For
example, ωV,v depends only on S, and not on the choice of V ; so we can
denote this module by ωv. Moreover, there is a definition of resv involving
Hochschild homology, that doesn’t make use of any choices [L87]. See also
[L01, §5].

4. Residues, integrals and duality

Now here is the main result, expressing via residues and integrals a
canonical realization of and compatibility between local and global duality.

Theorem 4.1. (i) (Canonical local duality). For all finitely generated ÔV,v-
modules F, the composition

Hom bOV,v
(F, ω̂v)

natural−−−−→ Homk(H
n
vF,H

n
v ω̂v)

via resv−−−−→ Homk(H
n
vF, k)

is an isomorphism.
In other words, (ω̂v, resv) is a canonical locally dualizing pair.

(ii) (Globalization). There exists for each proper n-dimensional k-variety
V a unique map ∫

V : Hn(V, ωV/k)→ k

such that for each closed point v ∈ V, with γv : Hn
v (ωv) → Hn(V, ωV/k) the

natural map (derived from the inclusion of the functor of sections supported
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at v into the functor of all sections), the following diagram commutes.

Hn
v (ωv) Hn(V, ωV/k)

k

γv

resv
∫
V

(iii) (Canonical global duality). For each V as in (ii), the pair (ωV ,
∫
V )

is dualizing.

A proof occupies the first nine sections in [L84].
Probably the theorem can be deduced from general Grothendieck duality

theory; but no one has yet carried that out (or maybe even bothered trying).
The theorem has been generalized by Hübl and Sastry to certain maps of

noetherian schemes, see [HS93].
A further generalization, to flat maps of formal schemes, has been partially

worked out. (See [L01, §5.6].) In that context, local and global duality
become unified, and residues and integrals become different instances of a
single map. Working out the precise connections draws one through a rich
vein of functorial relationships.

5. Closing remarks

5.1. (Fundamental class.) As in the case of curves, what one does when
generalizing to, say, a proper flat map f : X → Y of schemes, of relative
dimension n, is first to show (for example, via Grothendieck duality theory)
the existence of some relative dualizing pair ω, θ), and then show (if possible)
the existence of a canonical map cf—the fundamental class of f—from the
sheaf Ω of highest order relative differential forms to ω.

This cf is the foundation of the role played by differential forms in the
abstract Deligne-Verdier approach to Grothendieck duality theory.

The fundamental class should be uniquely determined by the requirements
that it should be an isomorphism at all points where f is smooth, and that it
should be compatible with a certain trace map for differential forms, relative
to a factorization of f as smooth◦ finite.

If f is proper then by Grothendieck duality, cf corresponds to a canonical

map
∫
f : Rnf∗Ω → OY . But even when f is not proper, one can often con-

struct a fundamental class with the above characteristic properties. There
is, for instance, one approach via Hochschild homology.

The residue theorem will say, very roughly, that cf corresponds at each
point of x, via a suitable form of local duality, to an intrinsically defined
residue map, depending only on the local ring in question.

Thus the fundamental class is a globalization of locally defined residues.
All this is necessarily quite vague, given our time constraints. Nor has

it all been published yet in definitive form. But there are some substantial
treatments in [AL89] and [Kd09].
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5.2. (Why?) Why bother to learn this extensive theory? First of all du-
ality theory has many applications in commutative algebra and algebraic
geometry. In commutative algebra, there are—to mention just a few—the
Briançon-Skoda theorem (nowadays best understood in equal characteristics
via tight closure, but for which the only proof in mixed characteristic makes
use of duality), results on “adjoint ideals” (a special case of multiplier ideals),
and results on Cohen-Macaulay graded rings. In algebraic geometry—again,
to mention just a couple—there is a proof of resolution of singularities of
two-dimensional noetherian schemes, and just recently, Chatzistamatiou and
Rülling used a beautiful combination of techniques from intersection theory
and Grothendieck duality to prove the invariance of cohomology of the struc-
ture sheaf under proper birational maps of smooth varieties over fields of
arbitrary characteristic (previously known only in characteristic zero, via
resolution of singularities).

Then there is the purely aesthetic motivation of discovering and under-
standing, for their own sake, deep-lying relationships in a fertile mathemat-
ical landscape. Right now, that’s what drives my interest; but a young
person building a career should be aware that it plus two bucks may get you
no more than a cup of coffee at Starbucks.
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