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Introduction

In [Km, p. 43, Thm. 4], Kleiman proves (more than) the following version of relative

duality for quasi-coherent sheaves in algebraic geometry:

For any scheme Z, let Zqc denote the category of quasi-coherent OZ -Modules. Let

f : X → Y be a finitely presentable proper map of schemes, and let d be an integer such

that all the fibres of f have dimension ≤ d. Then there exists a functor f ! : Yqc → Xqc and

a bifunctorial isomorphism

HomOX (F , f !G) −→∼ HomOY (Rdf∗F , G) (F ∈ Xqc, G ∈ Yqc).

In other words, f ! is right-adjoint to the higher direct image functor Rdf∗ : Xqc → Yqc; as

such, it is unique up to isomorphism.

Deeply intriguing and enlivening features of the subject of Duality emerge when one

seeks to render concrete realizations—often involving differential forms—of the abstract

theory. The passage between abstract and concrete is unexpectedly demanding; the payoff

is vital illumination in both directions. It is in this light that our results should be viewed.

The importance of differential forms in this area grows out of the following result:

though the relative dualizing sheaf f !OY is determined only up to isomorphism, under

suitable additional hypotheses (X and Y noetherian excellent schemes without embedded

associated points, f : X → Y generically smooth and equidimensional of relative dimen-

sion d, cf. §1), there is a canonical choice for it, namely the sheaf of regular d-forms

defined by Kunz and Waldi in [KW, §3], a certain coherent OX -submodule of the sheaf of

meromorphic relative differential d-forms, restricting over the (open, dense) smooth locus

U ⊂ X of f to the usual sheaf ΩdU/Y of holomorphic relative d-forms. This result has a long

history, beginning with Roch’s contribution to the Riemann-Roch theorem, if not earlier,

cf. [L1, pp. 5–6]. For Y = Spec(k), k a perfect field, it is part of the main theorem in

[L1] (ibid. p. 26, (e))—the projective case had been done before in [Kz]. (In this situation,

and no doubt more generally, it can also be deduced from Grothendieck Duality [RD].)

Recently it was proved by Hübl and Kunz for any projective map f as above [HK2, Duality

Theorem], and then for any proper f by Hübl and Sastry [HS, main Theorem].
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Now fix a base scheme S, and restrict attention to those S-schemes Z whose structure

map g : Z → S is proper and satisfies the “additional hypotheses” in the preceding para-

graph. Let ωZ ∼= g!OS be the canonical dualizing sheaf of regular differential forms. A

motivating problem is: given a suitably restricted map f : X → Y of such S-schemes, relate

ωX to ωY by invariants of f . There is a fascinating interplay between this global question

and local functorial properties of residues, such as are given by (R3), (R4), and (R10) in

[RD, pp. 197–199]. The case where f is finite and flat leads to generalizations of (R10) like

the “trace formula” of [L2, p. 92, Thm. 4.7.1]. The case of a closed immersion, treated in

[L1, §13], leads to generalizations of (R3), cf. [ibid., p. 117, Thm. 13.12]. Here we consider

the case where f satisfies the “additional hypotheses.” This case will involve a local version

of (R4). The territory is not undiscovered, but still rather unexplored; our emphasis will

be on bringing out the inherent local-global relationships.

Suppose then that f has relative dimension d and that Y → S has relative dimension n,

so that X → S has relative dimension n+d. Let ωf be the canonical dualizing sheaf for f .

The right-adjointness property of f ! leads directly to a natural isomorphism ωX −→∼ f !ωY ,

and hence (cf. §2) to a natural map

η : f∗ωY ⊗ ωf → ωX = f !ωY .

This η is an isomorphism if, for example, Y → S is flat, with Gorenstein fibres (so that

ωY is invertible); or if f is flat and locally projective, with Cohen-Macaulay fibres (cf. Re-

mark (2.3)). In particular, the case where f is flat and finite contains the classical “Hurwitz

formula.” So we have in these circumstances some kind of solution to our motivating prob-

lem (given implicitly in [V, p. 396, Cor. 2], and more explicitly in [Km, p. 57, Remark (vii)]).

But what does the abstractly-defined map η look like in concrete terms?

Assume for simplicity that X , Y , and S are reduced and irreducible, with function

fields k(X), k(Y ), and k(S). Then ωf is a subsheaf of the constant sheaf Ωdk(X)/k(Y ),

and similarly ωX ⊂ Ωn+d
k(X)/k(S) and ωY ⊂ Ωnk(Y )/k(S). Using only local methods (i.e.,

commutative algebra), Hübl shows in [H2, p.216, Thm. 1] that the image of the natural

composed map

f∗ωY ⊗ ωf → f∗Ωnk(Y )/k(S) ⊗Ωdk(X)/k(Y ) → Ωn+d
k(X)/k(S)

lies in ωX . Thus there is a down-to-earth map

ϕ : f∗ωY ⊗ ωf → ωX .

Hübl shows further [ibid., p. 221, Cor. 2] that ϕ is an isomorphism at any point x ∈ X

such that f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x),1 or such that g is

Gorenstein at f(x). So here again is a solution—local, and concrete—to our problem.

1 This restriction on g is superfluous.
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Our main result Theorem (4.1) asserts, in essence, that η = ϕ. Thus the global,

functorial perspective and the local, algebraic perspective complement each other.

We close this Introduction with a few remarks about the proof of Theorem (4.1). It

suffices to compare the stalks ηx and ϕx at a closed point x of X at which f is smooth and

such that g is smooth at f(x); and since all the relevant data are compatible with flat base

change, cf. (2.2.6), we may therefore assume that S = Spec(k), where k = k(S), and that

furthermore the maps X → Y and Y → S are smooth. In this case one could, presumably,

find a global proof of the Theorem by working with the definition of the isomorphisms

f !OY −→∼ ωf = ΩdX/Y etc. described in [Km, p. 55, Prop. (22)] (based on [V, p. 397,

Thm. 3])—and verifying that those isomorphisms coincide with the ones from [HS] which

we have been using up to now. However, in the above-mentioned spirit, we will base

our proof on the interconnection between global duality and local residues, as expressed

fundamentally by the Residue Theorem, which in various degrees of generality is a principal

result in [Kz], [L1], [HK2], and [HS]. (We need a still more general version, given in (4.2.2).)

By local duality, we can determine that ηx = ϕx after applying local cohomology

Hn+d
x and the residue map resx : Hn+d

x (Ωn+d
X/k

) → k, cf. e.g., [L1, §7]. Set R := OX,x and

A := OY,f(x); let s = (s1, . . . , sn) be a system of parameters in A, and extend s to a

system of parameters (s, t) = (s1, . . . , sn, t1 . . . , td) in R. The key point is to show that for

ξ1 ∈ ΩnA/k and ξ2 ∈ ΩdR/A, the image of the generalized fraction (cf. §3)[
ξ1 ⊗ ξ2

s, t

]
∈ Hn+d

x (f∗ωY ⊗ ωf )

under the composition

Hn+d
x (f∗ωY ⊗ ωf )

ηx−→ Hn+d
x (ωX)

resx−−→ k

is

resf(x)

[(
ResR/A

[
ξ2
t

])
ξ1

s

]
where the residue ResR/A[ ] ∈ A is as in [L2, p. 19, (1.9)]. (N.B. This is a local charac-

terization of the globally defined map η.) This requires, among other things, a transitivity

relation for cohomology with supports, given in §3.

The desired conclusion then follows, because in [H1, p. 102, Cor. (7.9)] Hübl has proved

a similar transitivity formula for residues, with ϕ in place of η.

What we just described is our original argument. R. Hübl has made us aware that the

residue formalism recently developed by him and E. Kunz in [HK1] is very well suited to

the present context. For example, it makes the reduction to smoooth points unnecessary.

Therefore the argument given in §4, though basically the same as the foregoing one, will

make use of the Hübl-Kunz approach to residues.
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§1. Preliminaries

For any scheme Z, Zqc denotes the category of quasi-coherent (sheaves of) OZ-Modules.

A locally finitely presentable (lfp) scheme-map f : X → Y is said to be generically

smooth if f is smooth at each maximal point x of X , i.e., at the generic point of each

irreducible component of X . (This means that f is flat at x and that, with y = f(x),

the local ring of x on the fibre f−1(y) is a field, separable over the residue field at y.)

Equivalently, f is generically smooth if the (open) subset of X where f is smooth is dense

in X [EGA IV, (12.1.7)].

An lfp scheme-map f : X → Y is said to be equidimensional if f takes each maximal

point of X to a maximal point of Y , and if there exists an integer d such that every

component of every non-empty fibre of f has dimension d. Such a d is called the relative

dimension of f .

Let C be the category whose objects are noetherian excellent schemes without embed-

ded associated points (i.e., every associated point is maximal), and whose morphisms are

finite-type (hence lfp) generically smooth equidimensional scheme-maps. Let Cd consist of

all morphisms in C of relative dimension d. If f : X → Y is in Cd and g : Y → S is in Cn,

then one checks, using e.g. [EGA IV, (13.3.1), b)], that gf : X → S is in Cn+d.

To any f : X → Y in Cd, Kunz and Waldi have associated a coherent OX -Module ωdf—

the sheaf of regular differential forms of f (with respect to the trivial differential algebra

Ω = OY ) of degree d. (Cf. [KW, p. 45, 3.2 b), and p. 51]; or, for a quick survey, [H2,

pp. 214–215].) This is a subsheaf of the sheaf of meromorphic differentials MX(ΩdX/Y )

defined in [EGA IV, (20.1.3)].

Let f : X → Y be a proper map in Cd, and let (f !, tf ) be a d-dualizing pair ([Km, p. 41,

Definition 1]), i.e., f ! : Yqc → Xqc is a functor right-adjoint to Rdf∗, and tf : Rdf∗f
! → id

is the corresponding functorial map. The main results in [HS] yield:

(1.1) Theorem. There is a canonical isomorphism of OX -Modules

γf : ωdf −→∼ f !OY .

(1.2) Example. If d = 0, X = Spec(B), Y = Spec(A), then the total ring of fractions L

of B is étale over the total ring of fractions K of A, so we have the usual trace map

tr : L→ K; and γf is the sheafification of the B-module isomorphism

{ x ∈ L | tr(xB) ⊂ A } −→∼ HomA(B,A)

which takes x to the map y 7→ tr(xy).
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§2. An abstract transitivity relation

Fix a proper finitely presentable map f : X → Y of schemes (not necessarily noeth-

erian). Let d be an integer such that the fibres of f are all of dimension ≤ d, let (f !, tf )

be a d-dualizing pair [Km, p. 43, Thm. 4], and set

ωf = f !OY .

In this section we define a canonical functorial map

ηf (F) : f∗F ⊗OX ωf → f !F (F ∈ Yqc),

and prove its compatibility with flat base change.2 (The section heading refers to the

special case where F = ωg for suitable g : Y → Z, so that f !F ∼= ωgf [Km, p. 57, Remark

(vii)].)

(2.1) Here is the definition of ηf . In the following diagram, with
∫
f

= tf (OY ), the

map Ff (F) is a natural isomorphism, to be described in a moment. The defining right-

adjointness property of (f !, tf ) guarantees then that there is a unique map ηf (F)—clearly

functorial in F ∈ Yqc—making the diagram commute.

(2.1.1)

Rdf∗(f
∗F ⊗OX ωf )

Rdf∗(ηf (F))−−−−−−−−→ Rdf∗(f
!F)

Ff (F)

x' ytf (F)

F ⊗OY Rdf∗ωf −−−−→
id⊗

∫
f

F ⊗OY OY

The functorial map

Ff (F) : F ⊗OY Rdf∗ωf → Rdf∗(f
∗F ⊗OX ωf ) (F ∈ Yqc)

is defined by setting E = ωf in the natural composition

Gf (F,E) : F ⊗OY Rdf∗E→ f∗f
∗F ⊗OY Rdf∗E→ Rdf∗(f

∗F ⊗OX E)

where E is any OX -Module, the first map arises from the canonical map F → f∗f
∗F, and

the second one (“cup product”) from [EGA III, p. 58, (12.2.2.1)]. This Gf (F,E) is an

isomorphism, to verify which observe that:

(a) The question is local (check, or refer to Lemma (2.2.3) below), so we may assume

that Y is affine, say Y = Spec(A), and that F = M̃ , the OY -Module corresponding

to an A-module M .

2 This map is implicit in [V, p. 396, Proof of Cor. 2].
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(b) The map f , being proper, is quasi-compact and separated, and so for any affine

open subset U of Y , cohomology on f−1U commutes with (filtered) direct limits

[Kf, p. 641, Thm. 8]; it follows directly—or by [ibid., p. 643, Cor. 11]—that all the

higher direct images Rif∗ commute with direct limits. Hence, since M is a direct

limit of finitely presentable A-modules [GD, p. 133, (6.3.1.4)], we can reduce to

where M itself is finitely presentable, i.e., there exists an exact sequence

OmY → OnY → F → 0 (m,n ∈ N).

(c) Both the functors F⊗OY Rdf∗E and Rdf∗(f
∗F⊗OX E) are right exact in F ∈ Yqc,

because Rif∗ = 0 for i > d [Km, p. 43, Lemma 3].

Applying Gf (−,E) to the exact sequence in (b), we can now reduce further to the case

F = OY , which is covered by [EGA III, p. 58, (12.2.3)].

(2.2) (Base change) With f and d as before, consider a fibre square

(2.2.1)

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y

i.e., a commutative square such that the associated map X×Y Y ′ → X ′ is an isomorphism.

We have functorial maps

(2.2.2) g∗Rif∗ → (Rif ′∗)g
′∗ (i ≥ 0)

corresponding via adjointness of g∗ and g∗ to the natural compositions

Rif∗ → (Rif∗)g
′
∗g
′∗ → g∗(R

if ′∗)g
′∗,

cf. [EGA III, p. 58, (12.2.5)].

(2.2.3) Lemma. With preceding notation, the following diagram commutes:

g∗(F ⊗OY Rdf∗E)
g∗Gf (F,E)−−−−−−−−−→ g∗Rdf∗(f

∗F ⊗OX E)

(2.2.2)

y y(2.2.2)

g∗F ⊗OY ′ Rdf ′∗g′∗E −−−−−−−−−→
Gf′ (g

∗F, g′∗E)
Rdf ′∗(f

′∗g∗F ⊗OX′ g′∗E)

Proof. The functorial map Gf is defined above as a composition of two others. It

will suffice to show that each of these two is “compatible with g∗.” For the first, this

compatibility amounts to commutativity of the diagram of natural functorial maps

g∗ −−−−→ g∗f∗f
∗y y(2.2.2)

f ′∗f
′∗g∗ ˜−−−−→ f ′∗g

′∗f∗
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which commutativity becomes apparent when the diagram is expanded naturally as follows:

g∗ g∗ −−−−→ g∗f∗f
∗ −−−−→ g∗f∗g

′
∗g
′∗f∗∥∥∥ y y'

g∗∥∥∥∥∥∥∥∥∥∥

←−−−− g∗g∗g
∗ g∗(fg′)∗(fg

′)∗y ∥∥∥
g∗g∗f

′
∗f
′∗g∗ ˜−−−−→ g∗(gf ′)∗(gf

′)∗ g∗(gf ′)∗(fg
′)∗y y'

g∗ −−−−→ f ′∗f
′∗g∗ ˜−−−−→ f ′∗g

′∗f∗ ←−−−− g∗g∗f
′
∗g
′∗f∗

For the second map, compatibility amounts to commutativity of the natural diagram

g∗(f∗f
∗F ⊗Rdf∗E) −−−−→ g∗Rdf∗(f

∗F ⊗ E)

'
y y(2.2.2)

g∗f∗f
∗F ⊗ g∗Rdf∗E Rdf ′∗g

′∗(f∗F ⊗ E)

(2.2.2)

y y'
f ′∗g
′∗f∗F ⊗Rdf ′∗g′∗E −−−−→ Rdf ′∗(g

′∗f∗F ⊗ g′∗E)

i.e., to commutativity of the adjoint diagram (where D = f∗F)

f∗D⊗Rdf∗E −−−−→ Rdf∗(D⊗ E)y y
g∗(g

∗f∗D⊗ g∗Rdf∗E) g∗R
df ′∗g

′∗(D⊗ E)y y
g∗(f

′
∗g
′∗D⊗Rdf ′∗g′∗E) −−−−→ g∗R

df ′∗(g
′∗D⊗ g′∗E)

But this last diagram—without its middle row—is just the sheafification of the following

natural diagram of presheaves on Y (U being any open subset of Y , and V = g−1U), a

diagram whose commutativity results from [EGA III, p. 53, (12.1.5)]:3

H0(f−1U, D)⊗Γ(U,OY ) H
d(f−1U, E) −−−−→ Hd(f−1U, D⊗OX E)y y

H0(f ′−1V, g′∗D)⊗Γ(V,OY ′ )
Hd(f ′−1V, g′∗E) −−−−→ Hd(f ′−1V, g′∗D⊗OX′ g′∗E)

Filling in of details is left to the reader.

3 See also (III) in (4.5) below for an explicit description of the cup product.
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Assume now that g is flat. Then the maps in (2.2.2) are all isomorphisms [EGA III,

(1.4.15)]. And from [Km, p. 44, Thm. 5] and its proof we get a functorial isomorphism

(2.2.4) g′∗f ! −→∼ f ′!g∗

which at any F ∈ Yqc is the unique map such that the following diagram commutes:

(2.2.5)

Rdf ′∗(g
′∗f !F)

Rdf ′∗(2.2.4)−−−−−−−→ Rdf ′∗(f
′!g∗F)

(2.2.2)

y' ytf′ (g∗F)

g∗Rdf∗f
!F −−−−−−−→

g∗(tf (F))
g∗F

In particular, we have (taking F = OY ) a canonical isomorphism

(2.2.4)ω g′∗ωf −→∼ ωf ′ .

(2.2.6) Proposition (Compatibility of ηf with flat base change). Let f and d be as

before, let

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y

be a fibre square with g flat, and let (f !, tf ) and (f ′!, tf ′) be d-dualizing pairs for f and f ′

respectively. Then for every F ∈ Yqc, the following diagram, with vertical isomorphisms

arising from (2.2.4), commutes:

g′∗(f∗F ⊗OX ωf )
g′∗(ηf (F))−−−−−−−→ g′∗f !F

'
y y'

f ′∗g∗F ⊗OX ωf ′ −−−−−−−→
ηf′ (g

∗F)
f ′!g∗F

Proof. Let η : f ′∗g∗F ⊗OX ωf ′ → f ′!g∗F be the unique map such that the diagram

g′∗(f∗F ⊗OX ωf )
g′∗(ηf (F))−−−−−−−→ g′∗f !F

'
y y'

f ′∗g∗F ⊗OX ωf ′ −−−−−−−→
η

f ′!g∗F
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commutes. Our task is to show that η = ηf ′(g
∗F), i.e., that the following diagram com-

mutes (cf. (2.1.1)):

Rdf ′∗(f
′∗g∗F ⊗OX′ ωf ′)

Rdf ′∗(η)−−−−−→ Rdf ′∗(f
′!g∗F)

Ff′(g
∗F)

x' ytf′ (g∗F)

g∗F ⊗OY ′ Rdf ′∗ωf ′ −−−−→
id⊗

∫
f′

g∗F ⊗OY ′ OY ′

For this purpose, expand the diagram as follows, with all unlabeled arrows representing

isomorphisms arising from (2.2.2) or (2.2.4):

g∗F ⊗Rdf ′∗ωf ′ g∗F
1⊗
∫
f′

g∗F ⊗Rdf ′∗g′∗ωf

g∗(F ⊗Rdf∗ωf ) g∗F

(=)

g∗(id⊗
∫
f
)

g∗Rdf∗(f
∗F ⊗ ωf )

g∗Ff (F)

g∗Rdf∗(f
!F)

g∗Rdf∗(ηf )

g∗tf (F)

Rdf ′∗g
′∗(f∗F ⊗ ωf ) Rdf ′∗g

′∗(f !F)
Rdf ′∗g

′∗(ηf )

Rdf ′∗(f
′∗g∗F ⊗ ωf ′)

Ff′(g
∗F)

Rdf ′∗(f
′!g∗F)

Rdf ′∗(η)

tf′ (g
∗F)3 5

1

2

6

4

Commutativity of subdiagram ©1 follows from the definition of η; of ©2 from functori-

ality of (2.2.2); of ©3 from Lemma 2.2.3, with E = ωf and g′∗E = ωf ′ , cf. (2.2.4)ω ; of ©4
and ©5 from the commutativity of (2.2.5); and of ©6 from the commutativity of (2.1.1).

Since the southwest-pointing arrows—which represent isomorphisms—can be reversed,

commutativity of the outer border results.

(2.3) Remarks. 1. One checks that ηf (OY ) = identity; and so Proposition (2.2.6)

implies that ηf (F) is an isomorphism whenever F is locally free of finite rank. The same
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holds in fact for any flat F ∈ Yqc, since any such F is locally a direct limit of finite-rank

free ones (by Lazard’s theorem [GD, p. 163, (6.6.24)]), and since f ! commutes with direct

limits [Km, p.42, Prop. 2, (iv)].

2. If ηf is a functorial isomorphism, and if Y is quasi-separated, then ωf = f !OY is a

dualizing sheaf in the sense of [Km, p. 46, Definition 6]. Indeed, since ηf is, as in (2.2.6),

compatible with open immersions, and since for every affine open U ⊂ Y , quasi-coherent

OU -Modules extend to quasi-coherent OY -Modules [GD, p. 317, (6.9.2)], therefore ηf |U is

an isomorphism, and we conclude via [Km, p. 47, Prop. 8, (ii)⇒ (i)].

Conversely—and with no assumption on Y—if a dualizing sheaf exists, then for all open

U ⊂ Y , ηf |U is the isomorphism in [Km, p. 46, Definition 6].4 This need only be verified

(trivially) at OY , because all the functors in sight preserve epimorphisms and arbitrary

direct sums, and all the maps involved are compatible with open immersions.

Dualizing sheaves exist, for example, whenever Y is the spectrum of a field [Km, p.46,

Example 7 (i)]; or whenever f is flat, equidimensional, locally projective, and has Cohen-

Macaulay fibres [Km, p. 48, Definition 10, and p. 55, Thm. 21].

§3 Transitivity for cohomology with supports

(3.1) Let I be an ideal in a noetherian commutative ring A. The left-exact additive

functor ΓI of A-modules M is given by

ΓI(M) := {m ∈M | Inm = 0 for some n > 0} .

The right-derived functors of ΓI—cohomology with supports in I (or, more accurately,

in Spec(A/I))—are denoted by Hi
I (i ≥ 0).

If J is a second A-ideal, then

(3.1.1) ΓJ+I = ΓJ ◦ΓI .

As is well known (or follows from (3.2.3) below), if I = (t1, . . . , td)A and J = (s1, . . . , sn)A,

then

Hp
I (M) = 0 for p > d and Hq

J (M) = 0 for q > n;

hence the spectral sequence associated to the decomposition (3.1.1) of ΓJ+I gives rise to a

canonical isomorphism

(3.1.2) ν : Hn
J

(
Hd
I (M)

)
−→∼ Hn+d

J+I

(
M
)
.

The main result in this section is Proposition (3.3.1), which describes ν in terms of

“generalized fraction” representations of elements in modules of the form Hd
I (M).

4 which is presumably meant to be the identity when applied to OY .
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(3.2) To prepare the ground, we review a few facts about cohomology with supports.

Let X• be a bounded-below complex of A-modules. Recall from [RD, p. 56, Cor. 5.3α]

the definition of RΓI(X
•), a complex whose homology is the hyperhomology of X• with

supports in I.

Let t ∈ A. For any A-module M , ΓtA(M) is just the kernel of the natural map λM from

M to the localization Mt. Moreover, if M is an injective A-module, then λM is surjective

[Ha, p. 214, Lemma 3.3].

Denote by K•(t) the complex which looks like A
λA−−→ At in degrees 0 and 1, and which

vanishes elsewhere.

(3.2.1) Lemma. For any X• in the derived category of bounded-below complexes of

A-modules, and t ∈ A, there is a natural isomorphism

RΓtA(X•) −→∼ K•(t)⊗X•.

Proof. Let λ := λX• : X• → X•t be the natural map. There is an obvious map of

complexes

ΓtA(X•) = ker(λ)
ι
↪→ K•(t)⊗X• .

One checks directly that if λ is surjective then ι induces homology isomorphisms (i.e., ι is a

derived-category isomorphism); so in case X• is injective, then we are done, since then the

canonical map ΓtA(X•) → RΓtA(X•) is an isomorphism. Reduce the general case to this

one by choosing an isomorphism of X• into an injective bounded-below complex E•, and

noting that the resulting maps RΓtA(X•)→ RΓtA(E•) and K•(t)⊗X• → K•(t)⊗E• are

both isomorphisms (the latter, since K•(t) is flat and bounded, via [RD, p. 93, Lemma 4.1,

part b2]).

From (3.1.1) we get an isomorphism

(3.2.2) RΓJ+I −→∼ RΓJ ◦RΓI

[RD, p. 60, b)]. Hence, by induction on d, the case d = 0 being trivial and d = 1 given

by (3.2.1):

(3.2.3) Corollary. For any sequence t = (t1, . . . , td) in A, there is a natural func-

torial isomorphism

αt : RΓtA(X•) −→∼ K•(t)⊗X• def
= K•(t1)⊗ · · · ⊗K•(td)⊗X• ;

and if s = (s1, . . . , sn) is a second such sequence, then the following natural diagram

commutes:
RΓsARΓtA(X•) ˜−−−−→ RΓ(s,t)A(X•)

αs(RΓtA(X•))

y yαs,t(X•)

K•(s)⊗K•(t)⊗X• ˜−−−−→ K•(s, t)⊗X•
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Now for any A-module M , the complex K•(t)⊗M vanishes in all degrees > d, and in

degree d it is the localization Mt1t2...td . So α−1
t induces a surjection

π = π(t,M) : Mt1t2...td � Hd
(
RΓtA(M)

)
= Hd

tA(M) .

Thus we can represent any element of Hd
tA(M) as a “generalized fraction”:

(3.2.4) Definition. With preceding notation, and m ∈ M , and a1, a2, . . . , ad any

positive integers, [
m

ta1
1 , ta2

2 , . . . , tadd

]
:= π

(
m

ta1
1 ta2

2 . . . tadd

)
∈ Hd

tA(M) .

For d = 0 and the empty sequence φ, we set[
m

φ

]
:= m ∈M = H0

(0)(M) .

Remark. There is a possible ambiguity here in that we can have equalities of the form

ta1
1 = sb11 , etc. But in fact there is no problem: denoting (ta1

1 , . . . tadd ) by ta, one verifies

easily that K•(ta) = K•(t) and that αta = αt, whence π(t,M) = π(ta,M), so that the

map π depends only on the sequence ta.

(3.3) From (3.2.3) we deduce, for A-modules L,M , a natural functorial isomorphism

µ = µs,t(L,M) : Hn
sA(L)⊗Hd

tA(M) −→∼ Hn+d
(s,t)A(L⊗M)

such that

µ

([
a

s

]
⊗
[
b

t

])
=

[
a⊗ b
s, t

]
(a ∈ L, b ∈M).

In particular, we have the isomorphism

µs,φ

(
A,Hd

t (M)
)

: Hn
sA(A)⊗Hd

tA(M) −→∼ Hn
sA

(
Hd

tA(M)
)
.

So we have the isomorphism

µs,t(A,M) ◦µs,φ

(
A,Hd

t (M)
)−1

: Hn
sA

(
Hd

tA(M)
)
−→∼ Hn+d

(s,t)A(M) .

The following Proposition identifies this isomorphism with the isomorphism ν of (3.1.2).
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(3.3.1) Proposition. Let I and J be ideals in a noetherian commutative ring A, gen-

erated respectively by sequences (t1, . . . , td) and (s1, . . . , sn). Then for any A-module M ,

and with notation as in (3.2.4), the isomorphism ν of (3.1.2) satisfies

ν

[ [m
t

]
s

]
=

[
m

s, t

]
(m ∈M).

Proof. For any complex Z• of A-modules, and any integer r, the truncation τ≥rZ
• is

defined to be the complex

· · · → 0→ 0→ coker(Zr−1 → Zr)→ Zr+1 → Zr+2 → · · ·

This τ≥r can be viewed, in the obvious way, as a functor from the category of complexes

into itself. If f and g are homotopic maps of complexes, then so are τ≥rf and τ≥rg ; and

if f induces homology isomorphisms, then so does τ≥rf . Hence τ≥r can be made into a

derived-category functor.

From (3.2.3) we deduce, for A-modules M , a functorial derived-category isomorphism

τ≥dRΓI(M) −→∼ Hd
I (M)[−d] ,

and similarly for the pair (J, n).5 By (3.2.3) again, the desired conclusion results quickly

from commutativity of the following natural diagram:

τ≥n+dRΓJ+I(M) ˜−−−−→
(3.2.2)

τ≥n+dRΓJ
(
RΓI(M)

)
−−−−→ τ≥n+dRΓJ

(
τ≥dRΓI(M)

)
'
y y'

Hn+d
J+I (M)[−n− d] −−−−−−−−−−−−−−−−−−−−−−−−−−−→

ν−1
Hn
J

(
Hd
I (M)

)
[−n− d]

The proof of commutativity is an exercise on spectral sequences. (One may, for example,

begin by identifying ν, via the natural map RΓI → τ≥dRΓI , with an edge homomorphism in

the (degenerate) spectral sequence of ΓJ -hyperhomology of the complex τ≥dRΓI(M).)

(3.4) Remarks. (i) We will be making use of the residue maps defined in [HK]. Since

their notation for generalized fractions is, on the surface, different than ours, we need to

establish the equivalence of the two.

For any t ∈ A, K•(t) will denote the complex which is “multiplication by t”: A→ A in

degrees 0 and 1, and which vanishes elsewhere. For any two positive integers r ≤ s, there

is a map of complexes K•(tr)→ K•(ts) which is the identity in degree 0 and multiplication

5 Recall that for an A-module N , N [−d] is the complex which is N in degree d and 0 everywhere

else.
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by ts−r in degree 1. The resulting direct system of complexes has as its lim−→ the complex

K•(t) defined above.

Next, let t := (t1, . . . , td) be as in (3.2.3). For any A-module M , we set

K•(t,M) := K•(t1)⊗ · · · ⊗K•(td)⊗M .

There is a natural isomorphism between this K•(t,M) and the Koszul cochain complex

K•(t,M) defined in [EGA III, p. 82, (1.1.2.2)], inducing in degree d the identity map of

M = Kd(t,M) = Kd(t,M). The specification of this isomorphism (by induction on d, or

directly) is left to the reader. Setting tr := (tr1, . . . , t
r
d), we get from the direct systems

K•(tri ) (1 ≤ i ≤ d) a direct system K•(tr,M) whose lim−→ is K•(t)⊗M . Hence we have a

map

βt : M/tM = Hd
(
K•(t,M)

)
→ Hd

(
K•(t)⊗M

)
−→∼ Hd

I (M)

such that

βt(m+ tM) =

[
m

t

]
.

With these remarks, the equivalence of the generalized fraction notation here and in [HK]

becomes straightforward to check.

(ii) Let I be an ideal in a noetherian ring A, and let P = P(I) be the set of all

sequences t of length d such that the ideals I and tA have the same radical. Assume that

P is non-empty. Let t and t′ be sequences in P, and think of them as 1×d column vectors.

For any d × d matrix Λ such that Λt = t′, Cramer’s rule shows that multiplication by

the determinant |Λ| induces a map M/tM → M/t′M . The family (M/tM)t∈P together

with all such determinantal maps forms a directed inductive system. It follows easily from

[L1, p. 60, Lemma 7.2] (whose proof in the present more general context is the same) that

Hd
I (M) together with the preceding maps βt is a lim−→ of this system. Thus to define a map

of groups ρ : Hd
I (M)→ S is the same as to define a family of maps ρt : M/tM → S (t ∈ P)

commuting with the determinantal maps, the correspondence being such that

ρ

[
m

t

]
= ρt(m+ tM) .

§4 Transitivity for regular differentials

(4.0) We need some preliminary definitions before stating the main Theorem (4.1).

Let X be a noetherian scheme without embedded associated points. Let X0 be the

artinian scheme

X0 :=
∐
s

Spec(OX,s)
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where s runs through the set of associated (= maximal) points of X , let iX : X0 → X be

the canonical map, and set

k(X) := iX∗(OX0
) ,

the sheaf of germs of meromorphic functions on X . The map i := iX being affine, we have

for any E ∈ Xqc and F ∈ (X0)qc, a natural isomorphism

(4.0.1) E⊗OX i∗F −→∼ i∗(i
∗E⊗OX0

F) ;

and in particular there is a natural isomorphism

E⊗OX k(X) −→∼ i∗i
∗E .

For any map f : X → Y of such schemes, Ωj
X/Y

denotes, as usual, the sheaf of

relative differential j-forms. The map f induces a map f0 : X0 → Y0, and we have

Ωj
X0/Y0

= i∗XΩj
X/Y

. We define the sheaf of meromorphic relative j-forms to be

Ωj
k(X)/k(Y ) := iX∗(Ω

j
X0/Y0

) = iX∗i
∗
XΩj

X/Y
= Ωj

X/Y
⊗OX k(X) .

Now let f : X → Y be in Cd and let g : Y → S be in Cn, so that gf : X → S is in Cn+d

(cf. §1). There results a commutative diagram

X0
iX−−−−→ X

f0

y yf
Y0 −−−−→

iY
Y

g0

y yg
S0 −−−−→

iS
S

The generic smoothness of f and g implies that f0 and g0 are smooth. So we have an exact

sequence of locally free OX0
-Modules

0→ f∗0 Ω1
Y0/S0

→ Ω1
X0/S0

→ Ω1
X0/Y0

→ 0

whence (cf. e.g., [RD, p. 139]) an isomorphism

(4.0.2) f∗0 ΩnY0/S0
⊗OX0

ΩdX0/Y0
−→∼ Ωn+d

X0/S0
.

Since i∗Y k(Y ) = OY0
, there are natural identifications

f∗0 ΩnY0/S0
= f∗0

(
i∗Y ΩnY/S ⊗OY0

i∗Y k(Y )
)

= f∗0 i
∗
Y

(
ΩnY/S ⊗OY k(Y )

)
= i∗Xf

∗(Ωnk(Y )/k(S)

)
.

Applying iX∗ to the isomorphism (4.0.2), and keeping in mind (4.0.1), we get a canonical

isomorphism (which, for convenience, we will treat as an identity)

f∗Ωnk(Y )/k(S) ⊗OX Ωdk(X)/k(Y ) −→∼ Ωn+d
k(X)/k(S) .

Locally, this isomorphism is the same as the isomorphism Ψ in [H2, p. 214].
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Suppose now that the maps f and g are proper. Then there is a functorial isomorphism

Rng∗R
df∗ −→∼ Rn+d(gf)∗ (cf. e.g., [Km, p. 57, Remark (vii)]), and hence by the defining

right-adjointness property of dualizing pairs (§1) there is a unique functorial isomorphism

f !g! −→∼ (gf)! such that the following resulting diagram commutes for any D ∈ Sqc:

(4.0.3)

Rn+d(gf)∗f
!g!D ˜−−−−→ Rn+d(gf)∗(gf)!Dy

tgf (D)

'
y

Rng∗R
df∗f

!g!D

Rng∗(tf (g!D))

y
Rng∗g

!D −−−−→
tg(D)

D

From Theorem (1.1), it follows now that we can identify f !ωng with ωn+d
gf ; and then as in §2

we have the map

ηf (ωng ) : f∗ωng ⊗ ωdf → ωn+d
gf .

Our principal result is:

(4.1) Theorem. Let f : X → Y , g : Y → S be proper maps, with f ∈ Cd and g ∈ Cn.

Then the following diagram, in which the vertical maps arise from the embedding of regular

differentials into meromorphic differentials, commutes:

f∗ωng ⊗ ωdf
ηf (ωng )
−−−−→ ωn+d

gfy y
f∗Ωnk(Y )/k(S) ⊗ Ωdk(X)/k(Y ) Ωn+d

k(X)/k(S)

(4.2) The proof of Theorem (4.1) will be based on Proposition (4.2.2) below, which

generalizes the Residue Theorem [HS, Main Theorem, (iii); or Remark 2.7].6

We first fix some notation. Let f : X → Y be a proper map in Cd, and let (f !, tf ) be a

d-dualizing pair (§1). Let x be a closed point of X , so that y := f(x) is a closed point of Y .

Set R := OX,x and A := OY,y. Let n = dimA, and assume that dimR = n+d (i.e., at least

one component of X through x maps densely to a component Y ′ of Y through y such that

dimOY ′,y = n, cf. [EGA IV, 13.3.4]). Let s := (s1, . . . , sn) be a system of parameters in A,

and extend the image s′ of s in the A-algebra R to a system of parameters (s′, t). For any

F ∈ Yqc, the local cohomology Hn
y (F) = Hn

sA(Fy) is isomorphic to lim−→Fy/(s
r
1, . . . , s

r
n)Fy,

cf. (3.4); and hence, with Â the completion of A, there is a canonical isomorphism

(4.2.1) Hn
sA(Fy) −→∼ Hn

sÂ
(Fy ⊗A Â)

6 Prop. (4.2.2) is also related to [L1, p. 87, Thm. 10.2], and to [HS, Thm. 4.2].
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(so that Hn
y (F) is an Â-module). As in (3.3) there is a functorial map (with E ∈ Xqc)

µ = µ(F,E) : Hn
y (F)⊗A Hd

tR(Ex)→ Hn+d
x (f∗F ⊗OX E)

such that for a ∈ Fy and b ∈ Ex,

µ

([
a

s

]
⊗
[
b

t

])
=

[
a⊗ b
s′, t

]
.

With m the maximal ideal of R, we set

ResR/A

[
ν

t

]
:= Resm

[
ν

t

]
∈ Â (ν ∈ ωdR/A = ωdf,x)

where Resm is as in [HK1, Definition 2.1]. By the transition formula for the residue symbol

[ibid., Thm. 2.4], and the remarks at the end of (3.4) above, we can think of ResR/A as

arising from a map

ResJR/A : Hd
J(ωdR/A)→ Â (J =

√
tR).

Let E := f−1{y}. Since Hp
y (Rqf∗f

!F) = 0 for p > n or q > d, the spectral sequence

associated to the functorial decomposition ΓE = Γy ◦f∗ gives an isomorphism

δ(F) : Hn
y (Rdf∗f

!F) −→∼ Hn+d
E (f !F) (F ∈ Yqc).

We define the local trace

txf (F) : Hn+d
x (f !F)→ Hn

y (F)

to be the functorial composition

Hn+d
x (f !F)

natural−−−−→ Hn+d
E (f !F)

δ−1

−−→ Hn
y (Rdf∗f

!F)
Hny (tf )
−−−−→ Hn

y (F) .

In particular, if Y = Spec(k) for some local artin ring k, then E = X , n = 0, Hn
y = ΓY ,

and δ is the canonical isomorphism ΓY (Rdf∗f
!F) −→∼ Hd(X, f !F). In this case we let resx

be the composition

resx : Hd
x(ωdf ) −→∼ Hd

x(f !OY )
txf (OS)
−−−−→ k .

This is the same as the map ResmR/k, which, in view of [HK1, 1.7 and 2.6], is the map

Hd
x(ωdf ) = ΓY (RdZf∗ω

d
f )

ΓY

(∫
X/Y,Z

)
−−−−−−−−→ k

with Z = {x} and
∫
X/Y,Z

as in 4.4 of loc. cit. Indeed, the above-mentioned Residue

Theorem of [HS] tells us that
∫
X/Y,Z

factors as

RdZf∗ω
d
f

natural−−−−→ Rdf∗ω
d
f −→∼ Rdf∗f

!OY
tf−→ OY ,

and the equality ResmR/k = resx results. Thus resx depends only on the k-algebra R̂, and

not on f .
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(4.2.2) Proposition. (i) (Residue Theorem) Under the preceding circumstances, and

with η = ηf (F), cf. (2.1), the following diagram commutes:

Hn
y (F)⊗A Hd

tR((f !OY )x)
µ−−−−→ Hn+d

x (f∗F ⊗OX f !OY )

'
y yη

Hn
y (F)⊗A Hd

tR(ωdR/A) Hn+d
x (f !F)

1⊗ResJR/A

y ytxf
Hn
y (F)⊗A Â −−−−→

natural
Hn
y (F)

(ii) (Transitivity for local trace) Let X
f−→ Y

g−→ S be proper maps in Cd, Cn respec-

tively. Let x be a closed point of X , and set y := f(x), z := g(y). Let m := dimOS,z , and

assume that dimOY,y = m + n and dimOX,x = m + n + d. Then for any D ∈ Sqc, the

following diagram commutes:

Hm+n+d
x

(
f !g!D

) txf (g!D)
−−−−−→ Hm+n

y

(
g!D

)
'
x ytyg(D)

Hm+n+d
x

(
(gf)!D

)
−−−−→
tx
gf

(D)
Hm
z

(
D
)

In particular, if S = Spec(k) for some local artin ring k (so that m = 0), then the following

diagram commutes:

Hn+d
x

(
f !ωng

) txf (ωng )
−−−−→ Hn

y

(
ωng
)

'
x yresy

Hn+d
x

(
ωn+d
gf

)
−−−−→

resx
k

(4.3) Before proving (4.2.2), we deduce Theorem (4.1) from it.

First of all, (4.1) asserts the equality of two maps into Ωn+d
k(X)/k(S), and it is clear that

this equality can be checked “stalkwise” at the maximal points of X . Recall from (2.2.6)

that ηf is compatible with flat base change, and by [HS, Prop. 3.1] it follows that the same

is true of the isomorphism γf : ωdf −→∼ f !OY of (1.1). Since the map iS : S0 → S in (4.0)

is flat, it follows that we may replace S by a connected component of S0, and then assume

that S = Spec(k) where k is a local artin ring.

Next, let U ⊂ X (resp. V ⊂ Y ) be the (dense, open) smooth locus of f (resp. g), and

let W = U ∩ f−1V . Then W contains all the maximal points of X , so that (4.1) need only

be checked stalkwise at an arbitrary closed point x ∈ W (since then it holds at any point
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in W ). Since f is smooth at x and g is smooth at y := f(x) (so that gf is smooth at x),

we have, by [KW, p. 52, Cor. 3.10], canonical identifications

(f∗ωng )x ⊗ (ωdf )x = (f∗ΩnY/k)x ⊗ (ΩdX/Y )x = (Ωn+d
X/k

)x = ωn+d
gf,x .

Thus, with η = ηf (ωng ), our problem is reduced to showing that ηx = identity.

By local duality [HK1, 3.4], for ηx to be the identity, it suffices, with s, s′, and t as

in (4.2), that for any ξ1 ∈ ΩnA/k and ξ2 ∈ ΩnR/A ,

(4.3.1) resx

[
η(ξ1 ⊗ ξ2)

s′, t

]
= resx

[
ξ1 ⊗ ξ2

s′, t

]
.

But (i) in (4.2.2), with F = ωng , yields

txf

[
η(ξ1 ⊗ ξ2)

s′, t

]
=

(
ResJR/A

[
ξ2
t

])[
ξ1
s

]
;

and then (ii) in (4.2.2) shows that applying resy to this equality yields

(4.3.2) resx

[
η(ξ1 ⊗ ξ2)

s′, t

]
= resy

((
ResJR/A

[
ξ2
t

])[
ξ1
s

])
.

In the present smooth circumstances, all the residue maps appearing agree with those

defined via Hochschild homology, cf. [HK1, 1.8]; and for the latter type of residues, Hübl

has shown that the right hand sides of (4.3.1) and (4.3.2) agree [H1, p. 102, Cor. 7.9].7

Thus Theorem (4.1) holds.

Exercise. What does all this mean when d = 0 or n = 0 ? (Cf. (1.2) and (3.2.4).)

(4.4) It remains to prove (4.2.2), (i) and (ii). We do the easier part (ii) first. Set

F := g−1{z} and

E′ := f−1F = (gf)−1{z} ⊃ E := f−1{y} .

We have then the functorial decompositions

ΓE′ = Γz ◦ (gf)∗ = Γz ◦g∗ ◦f∗ = ΓF ◦f∗ .

7 Note that this is a purely local result. Hübl has pointed out to us that similar arguments lead

to a direct proof of this equality, with no reference to Hochschild homology. This is preferable not only

because the result is then more generally applicable (smoothness is not needed), but also because the
“trace property” employed is a rather difficult one to establish in the Hochschild context, but in contrast

is built into the definition of residues in [HK1].
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The assertion in (ii) is that the outer border of the following natural functorial diagram

commutes.

Hm+n+d
x (gf)! −̃−−→ Hm+n+d

x f !g!y y
Hm+n+d
E (gf)! −̃−−→ Hm+n+d

E f !g! −̃−−→

©1

Hm+n
y Rdf∗f

!g! −−−→ Hm+n
y g!y y y y

Hm+n+d
E′ (gf)! −̃−−→ Hm+n+d

E′ f !g! −̃−−→

©2

Hm+n
F Rdf∗f

!g! −−−→ Hm+n
F g!

'
y '

y y' y'
Hm
z R

n+d(gf)∗(gf)! −̃−−→ Hm
z R

n+d(gf)∗f
!g! −̃−−→

©3

Hm
z R

ng∗R
df∗f

!g! −−−→ Hm
z R

ng∗g
!y y

Hm
z Hm

z

Subdiagram ©1 commutes because the natural functorial map Γy → ΓF induces a mor-

phism of the spectral sequences associated respectively to the decompositions ΓE = Γy ◦f∗,
ΓE′ = ΓF ◦f∗. Commutativity of ©2 can be obtained as in the proof of (3.3.1) from com-

mutativity of the following natural derived-category diagram:

τ≥m+n+dRΓE′ −−−−→ (τ≥m+n+dRΓF ) ◦ (τ≥dRf∗)y y
(τ≥m+n+dRΓz) ◦ (τ≥n+dR(gf)∗) −−−−→ (τ≥m+n+dRΓz) ◦ (τ≥n+dRg∗) ◦ (τ≥dRf∗)

Commutativity of ©3 follows from that of (4.0.3); and commutativity of the remaining

subdiagrams is obvious. Thus (ii) holds.

(4.5) Now we prove (i) of (4.2.2).

(I) We first reduce to the case where A is complete and Y = Spec(A). For this purpose,

let A′ be the completion of A. Since A is excellent and has no embedded associated primes,

the same holds for A′ [EGA IV, (7.8.3)(v)]. Let g : Y ′ := Spec(A′) → Y be the canonical

map, and consider a base change diagram (fibre square)

X ′
g′−−−−→ X

f ′
y yf
Y ′ −−−−→

g
Y
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Then f ′ ∈ Cd. (Equidimensionality of f ′ is given by [EGA IV, (13.3.8)]. Generic smooth-

ness follows from the fact that the flat map g′ takes each maximal point of X ′ to a maximal

point of X . That X ′ has no embedded associated points is shown in [HK1, 1.9].) By [HS,

Prop. 3.1] we have a commutative diagram of natural isomorphisms

(4.5.1)

g′∗f !OY ˜−−−−→ f ′!OY ′

'
y y'

g′∗ωdf ˜−−−−→ ωdf ′

Let y′ be the closed point of Y ′, let E′ := f ′−1{y′} = g′−1E, and let x′ correspond

to x under the isomorphism E′ −→∼ E induced by g′. Let R′ be the R-algebra OX′,x′ and

let J ′ := JR′. Set F ′ := g∗F. As in (4.2.1), we can identify Hn
y (F) and Hn

y′(F
′).

We claim that the following two diagrams (in which unlabeled maps are the obvious

ones) commute:

(4.5.2)

Hn
y (F)⊗A Hd

tR

(
(f !OY )x

)
−−−−→

©1

Hn
y′(F

′)⊗A′ Hd
tR′
(
(f ′!OY ′)x′

)
'
y y'

Hn
y (F)⊗A Hd

tR(ωdR/A) −−−−→

©2

Hn
y′(F

′)⊗A′ Hd
tR′(ω

d
R′/A′)

1⊗ResJR/A

y y1⊗ResJ
′
R′/A′

Hn
y (F)⊗A A′ −−−−→

©3

Hn
y′(F

′)⊗A′ A′y y
Hn
y (F) Hn

y′(F
′)

(4.5.3)

Hn
y (F)⊗A Hd

J

(
(f !OY )x

)
−−−−→

©4

Hn
y′(F

′)⊗A′ Hd
J ′
(
(f ′!OY ′)x′

)
µ

y yµ
Hn+d
x (f∗F ⊗OX f !OY ) −−−−→

©5

Hn+d
x′ (f ′∗F ′ ⊗OX′ f ′!OY ′)

η

y yη
Hn+d
x (f !F) −−−−→

©6

Hn+d
x′ (f ′!F ′)

tfx

y ytf′
x′

Hn
y (F) Hn

y′(F
′)
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Commutativity of subdiagram ©1 follows from that of (4.5.1) and the (easily proved) fact

that for R′-modules, the functors Hd
tR and Hd

tR′ are naturally isomorphic. Commuta-

tivity of ©2 results from the fact that the local homomorphism R → R′ extends to an

isomorphism of completions. (By [HK1, Definition 2.1], ResJR/A depends only on R̂.)

Commutativity of ©3 is clear. Commutativity of ©4 is left to the reader. Commutativity

of ©5 follows from (2.2.6). Subdiagram ©6 can be expanded as follows, with E := f !F and

E′ := f ′!F ′ ∼= g′∗E, cf. (2.2.4), so that there is a natural map E→ g′∗E
′:

Hn+d
x (E) −−−−→ Hn+d

E (E)
δ−1

−−−−→ Hn
y (Rdf∗E)

Hny (tf )
−−−−→ Hn

y (F)∥∥∥∥∥∥∥∥∥∥

y y y
Hn+d
x (g′∗E

′) −−−−→

©7

Hn+d
E (g′∗E

′)
δ−1

−−−−→

©8

Hn
y (Rdf∗g

′
∗E
′)y y yγ

Hn+d
x′ (E′) −−−−→ Hn+d

E′ (E′) −−−−→
δ−1

Hn
y′(R

df ′∗E
′)

©9

−−−−−→
Hn
y′ (tf′ )

Hn
y′(F

′)

(The map γ arises via the natural functorial map Rdf∗g
′
∗ → g∗R

df ′∗.) Commutativity

of ©8 is an exercise on derived functors. It follows, for example, from commutativity of

the following natural derived-category diagram (keep in mind that the maps g and g′ are

affine, so that, for instance, g′∗E
′ −→∼ Rg′∗E′):

RΓERg′∗

'

y

˜−−−−→ RΓyRf∗Rg′∗ −−−−→ RΓyτ≥dRf∗Rg′∗

'
y y'

RΓyRg∗Rf ′∗ −−−−→ RΓyτ≥dRg∗Rf ′∗∥∥∥ y
RΓyRg∗Rf ′∗ −−−−→ RΓyRg∗τ≥dRf ′∗

'
y y'

RΓE′ ˜−−−−→ RΓy′Rf ′∗ −−−−→ RΓy′τ≥dRf ′∗

Commutativity of ©7 is left to the reader. Finally, since by the definition of (2.2.2) there

is a natural commutative diagram of functorial maps

Rdf∗ −−−−→ Rdf∗g
′
∗g
′∗y y

g∗g
∗Rdf∗ −−−−→ g∗R

df ′∗g
′∗
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therefore subdiagram ©9 commutes by [Km, pp. 44-45, Thm. 5(i)]. So (4.5.2) and (4.5.3)

do indeed commute.

Since (4.2.2) asserts the equality of the maps which arise by composing the columns

on the left of (4.5.2) and (4.5.3) respectively, it will be enough now to show equality for

the columns on the right, so that we can replace Y by Y ′. Thus we can assume that A is

complete and that Y = Spec(A).

(II) Arguing as in [HK1, 4.10] (or cf. [EGA II, (6.2.5)]), we can find an affine neigh-

borhood U := Spec(T ) of x, and a sequence t′ := (t′1, . . . , t
′
d) in T whose image in R is t,

and such that the scheme Z := Spec(T/t′T ) is closed in X and finite over Y ; and we may

assume furthermore that T/t′T is a local ring, so that for any r > 0, the natural map

T/t′rT → R/trR is an isomorphism (where tr := (tr1, . . . , t
r
d), and similarly for t′r). It

follows from the identification Hd
t′T (D) = lim−→(D/t′rD) that for any T -module D,

Hd
t′T (D) = Hd

tR(D ⊗T R);

and by (3.2.3), for example, there is a natural isomorphism

Hd
t′T (D ⊗T R) −→∼ Hd

tR(D ⊗T R) .

For any quasi-coherent OX -Module D, let D be the T -module Γ(U,D). By excision,

and the preceding remarks, we have

Hd
Z(X,D) = Hd

Z(U,D|U) = Hd
t′T (D) = Hd

tR(D ⊗T R) = Hd
tR(Dx) .

We conclude (cf. [HK1, Prop. 4.2]):

(4.5.4) Lemma. With preceding notation, the higher direct image with support in Z,

RdZf∗D, is the quasi-coherent OY -Module associated to the A-module Hd
tR(Dx).

(III) For any closed subscheme Z of X , any OX -Module E, and any OY -Module F,

consider the natural composition

GZ(F,E) : F ⊗OY RdZf∗E→ f∗f
∗F ⊗OY RdZf∗E→ RdZf∗(f

∗F ⊗OX E)

where the second map arises from a cup product. The case Z = X was treated in §2;

and as in (2.1) we can show that GZ(F,E) is an isomorphism. For present purposes, the

following description of the cup product is needed—and using this description one can

forget about the term “cup product” both here and in §2.

For any OX -Module D, then, we define a bifunctorial map of OY -Modules

f∗(D)⊗RdZf∗(E)→ RdZf∗(D⊗ E)
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or, equivalently,

f∗(D)→ HomOY
(
RdZf∗(E), RdZf∗(D⊗ E)

)
,

to be, over each open subset U of Y , with V := f−1U , the natural map

ΓUf∗(D) = ΓV (D) = HomV (OX , D)

→ HomU

(
RdZ(f |V )∗(OX ⊗ E), RdZ(f |V )∗(D⊗ E)

)
= ΓUHomOY

(
RdZf∗(E), RdZf∗(D⊗ E)

)
.

One checks then that the following diagram commutes:

(4.5.5)

Hd
tR(Fy ⊗A Ex)

(
RdZf∗(f

∗F ⊗OX E)
)
y

(3.3)

y' '
yGZ(F,E)

Fy ⊗A Hd
tR(Ex)

(
F ⊗OY RdZf∗(E)

)
y

(IV) Let us write ω for f !OY . Our problem is now reduced to showing that the

following diagram of natural maps commutes. (Keeping in mind the foregoing identification

of (RdZf∗ω)y with Hd
tR(ωx) ∼= Hd

tR(ωdR/A), note, using commutativity of (4.5.5), that the

composition—call it c—in the left column equals the natural composition

Hn
sR

(
Hd

tR(Fy ⊗A ωx)
)
−→∼ Hn

sR

(
Fy ⊗A Hd

tR(ωx)
)

−→∼ Hn
sA(Fy)⊗A Hd

tR(ωx)

−→∼ Hn
y (F)⊗A (RdZf∗ω)y .

Note also that the map µ in (4.2.2) is (3.3) ◦c−1; and that the bottom row is 1⊗ ResJR/A
by the Residue Theorem in [HS], together with [HK1, 1.7 and 2.6].)

Hn
sR

(
Hd

tR((f∗F ⊗ ω)x)
)

∥∥∥∥∥∥∥∥∥∥

(3.3)−−−→ Hn+d
x (f∗F ⊗ ω)

η−−−→ Hn+d
x (f !F)y y

Hn+d
E (f∗F ⊗ ω)

η−−−→ Hn+d
E (f !F)

δ−1

y yδ−1

Hn
y

(
RdZf∗(f

∗F ⊗ ω)
)

©1

−−−→ Hn
y

(
Rdf∗(f

∗F ⊗ ω)
) η−−−→ Hn

y (Rdf∗f
!F)

'
y y' y

Hn
y (F ⊗RdZf∗ω) −−−→ Hn

y (F ⊗Rdf∗ω)

©2
−−−→
1⊗tf

Hn
y (F)

'
y y' y'

Hn
y (F)⊗ (RdZf∗ω)y −−−→ Hn

y (F)⊗ (Rdf∗ω)y −−−→
1⊗tf

Hn
y (F)⊗ A
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Commutativity of subdiagram ©1 is again a formal exercise on derived functors, perhaps

best left to the reader, but in any case resulting from commutativity of the following

diagram of functors on D+
qc(X) (where ΓZ denotes “sheaf of sections with support in Z,”

where σx is the exact functor “stalk at x,” and where τe stands for τ≥e):

(τn+dRΓsR) ◦ (τdRΓtRσx) ←̃−− τn+dRΓsRRΓtRσx ←̃−− τn+dRΓx

'
y y' y'

(τn+dRΓy) ◦ (τdRf∗RΓZ) ←̃−− τn+dRΓyRf∗RΓZ ←̃−− τn+dRΓERΓZy y y
(τn+dRΓy) ◦ (τdRf∗) ←̃−− τn+dRΓyRf∗ ←̃−− τn+dRΓE

Commutativity of©2 results from the definition of η, cf. (2.1.1); and commutativity of the

remaining subdiagrams is obvious.

This completes our proof of Proposition (4.2.2), and of Theorem (4.1).

(4.6) Remark. One can (should?) formulate and prove Theorem (4.1) without assuming that the maps
f and g are proper. Without details, which would lead too far afield, here are some brief indications.

According to [HS, Cor. 1.7], one can define a functor f ! : Yqc → Xqc for every finite-type map f : X → Y

of noetherian schemes with fibres of dimension ≤ d, in such a way that if f is proper then f ! is the functor

used throughout this paper, and that if i : W → X is an open immersion, then (f ◦ i)! = i∗ ◦f !. This f !

behaves well with respect to flat base-changes Y ′ → Y .

For maps f : X → Y in Cd and g : Y → S in Cn, one can find a canonical isomorphism f !ωng −→∼ ωn+d
gf

(cf. [HS, §4] for the case when f is proper).

The map ηf of §2 can also be defined for non-proper f . This is because ηf , as defined in §2 for proper f ,
is local, in the following sense. Let fk : Xk → Y (k = 1, 2) be proper maps with fibres of dimension ≤ d,

and let ik : U → Xk be open immersions. Then there is a natural identification of the functorial maps
i∗1ηf1 and i∗2ηf2 . The proof is rather long and technical, and follows the lines of the proof in [HS, 1.1] for

the identification of i∗1f
!
1 and i∗2f

!
2 which underlies the above-mentioned definition of f ! for non-proper f .

Given these facts, one can now state Theorem (4.1) without assuming f and g to be proper. To prove it,

one notes that the question is local, and that locally, in view of the “quasinormalization” characterization

of equidimensional maps [EGA IV, (13.3.1)(b)], and Zariski’s Main Theorem [EGA IV, (18.12.13)], one
can compactify the situation, i.e., arrange that it arise from the proper case by restriction to suitable open

subsets. Thus the general case can be reduced to the proper case treated here.
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