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To Paul J. Cohen and Simon Kochen on their seventieth birthdays. Their work on this subject
in the 1960s has cast a long shadow.

Abstract. The main results of this paper are a Cell Decomposition Theorem

for Henselian valued fields with analytic structure in an analytic Denef-Pas lan-
guage, and its application to analytic motivic integrals and analytic integrals

over Fq((t)) of big enough characteristic. To accomplish this, we introduce a
general framework for Henselian valued fields K with analytic structure, and

we investigate the structure of analytic functions in one variable, defined on

annuli over K. We also prove that, after parameterization, definable analytic
functions are given by terms. The results in this paper pave the way for a the-

ory of analytic motivic integration and analytic motivic constructible functions

in the line of R. Cluckers and F. Loeser [Fonctions constructible et intégration
motivique I, Comptes rendus de l’Académie des Sciences, 339 (2004) 411 -

416].

0.1. Résumé. Décomposition cellulaire analytique et intégration mo-
tivique analytique. Dans cet article nous établissons une décomposition cellu-
laire pour des corps valués Henseliens munis d’une structure analytique induite par
un langage de Denef-Pas analytique. En particulier, nous appliquons cet énoncé
à l’ étude des intégrales analytiques motiviques et des intégrales analytiques sur
Fq((t)) de charactéristic assez grand. Pour cela, il est nécessaire d’introduire une
définition général des corps valués Henselien K avec structure analytique. On ex-
amine alors la structure de fonctions analytiques dans une variable définies sur des
annuli sur K et l’on établit que, dans ce contexte, les fonctions définissables sont
exactement données par des termes après paramétrisation. Plus généralement, les
résultats de cet article préparent le chemin pour définir une théorie d’intégration
analytique motivique et des fonctions analytiques motiviques constructibles dans
l’esprit de R. Cluckers et F. Loeser [Fonctions constructible et intégration motivique
I, Comptes rendus de l’Académie des Sciences, 339 (2004) 411 - 416].

1. Introduction

The main results of this paper are a Denef-Pas Cell Decomposition Theorem for
Henselian valued fields with analytic structure, Theorem 7.4, and its application
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to analytic motivic integrals1 and analytic integrals over Fq((t)) of big enough
characteristic. In section 2 we introduce a framework for Henselian valued fields K
with analytic structure, both strictly convergent and separated2, that generalizes
[2], [19], [21], [32], [34], and that works in all characteristics. An analytic structure
is induced by rings of power series over a Noetherian ring A that is complete and
separated with respect to the I-adic topology for some ideal I of A. This framework
facilitates the use of standard techniques from the theory of analytic rings in a more
general model theoretic setting.

Another necessary ingredient for cell decomposition is an analysis of analytic
functions in one variable, defined on annuli over K. This is carried out in Section 3.
Theorem 3.9 relates such functions piecewise to a (strong) unit times a quotient of
polynomials. This result is extended to functions in one variable given by terms in
Theorem 5.1. The results of this section extend the analysis of the ring of analytic
functions on an affinoid subdomain of K, carried out in [24, Sections 2.1 and 2.2],
in the case that K is algebraically closed and complete, in three directions: (i) K
not necessarily algebraically closed, (ii) the case of quasi-affinoid subdomains of K
and (iii) the case that K is not complete but carries an analytic structure. This
analysis will be pursued further in the forthcoming paper [5].

We also prove a fundamental structure result on definable analytic functions,
namely, that any definable function is given, after parameterization using auxiliary
sorts, by terms in a somewhat bigger language, cf. Theorem 7.5. This structure
result is new also in the algebraic case, and is used in [6] to prove a change of
variables formula for motivic integrals.

In section 8 we apply our results to study analytic motivic integrals in the sense
that we uniformly interpolate analytic p-adic and Fp((t)) integrals for p big enough
and for boundedly ramified p-adic field extensions for any fixed p. These results
for Fp((t)) and the uniformity are completely new. For fixed p-adic fields these
integrals are calculated in [18], and in [4] the relative case over a parameter space is
treated. The results for the fields Fp((t)) with p big are new, even for fixed p, but
they also follow in fact in a classical way from uniformity for p-adic fields, cf. the
algebraic case in [9] (but this is already implicit in work of Denef, and Pas). More
generally, the results in this paper pave the way for a theory of analytic motivic
integration and analytic motivic constructible functions along the lines of [6], [7]
and [8], in particular, for calculating relative motivic integrals over a parameter
space. Another approach to analytic motivic integration, based on entire models
of rigid varieties and the theory of Néron models instead of cell decomposition,
is developed by Sebag and Loeser in [35], and by Sebag in [42]. This alternative
approach is pursued in [41] for the study of generating power series and in [37] for
the study of the monodromy conjecture. In [6], apart from cell decomposition, also
a dimension theory is used; in the analytic case this can be developed along the
lines of work by Çelikler [3].

1.1. Cell decomposition is a technique of breaking definable sets into finitely many
definable pieces each of which is particularly simple in a chosen coordinate direction.
For example, in the real case, Fubini’s Theorem often reduces the computation of an

1Motivic here stands for the idea of giving a geometric meaning to p-adic integrals, uniform in

p.
2The term “separated” usually means that the (intended) domains of the power series consid-

ered are Cartesian products of the valuation ring and the maximal ideal.
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integral over a complicated set to an iterated integral over the region between two
graphs, on which the integrand is of a simple form with respect to this coordinate,
cf. the Preparation Theorem and its use for integration by Lion and Rolin in [28].

In [11], Cohen reproved Tarski’s real quantifier elimination using his real cell
decomposition for definable sets. In the same paper, he gave a cell decomposition
for some Henselian fields, e.g. p-adic fields, extending results of Ax and Kochen,
[1]. A cell over a real field is a set given by conditions of the form f(x) < y < g(x)
or y = f(x), where f, g are definable. That quantifier elimination follows from cell
decomposition is fairly clear; the other implication a bit more complicated. A cell
over a Henselian field is specified by simple conditions on the order and angular
component of y− c(x), where c is definable (see below for definitions). This reflects
the idea that for many Henselian fields, a statement about the field can be reduced
to statements about the value group and the residue field.

Denef [14] refined Cohen’s techniques to reprove Macintyre’s quantifier elimina-
tion for p-adic fields and to obtain a p-adic integration technique which he used
to prove the rationality of certain p-adic Poincaré series [12]. Pas [38], [39], and
Macintyre [36] extended this method to study uniform properties of p-adic inte-
grals. Denef and van den Dries [18] extended the Ax-Kochen-Cohen-Macintyre
p-adic quantifier elimination to the analytic category based on strictly convergent
power series. (See also [19].) These ideas were extended to the algebraically closed
analytic category using separated power series by the second and third authors,
see [29] and [33]. The first author [4], using work of Haskell, Macpherson, and van
den Dries [21], obtained an analytic variant of the p-adic cell decomposition and an
application to p-adic analytic integrals.

In this paper, we extend the ideas of quantifier elimination and cell decomposition
to a wider class of Henselian fields with analytic structure, cf. Theorems 4.2 and
7.4.

1.2. Let us elaborate on the application to analytic motivic integrals. We repeat
that the contribution here is the uniformity and the ability of working relatively
over a parameter space (which is immediate from cell decomposition but not written
out in this paper). Let A be the class of all fields Qp for all primes p together with
all their finite field extensions and let B be the class of all the fields Fq((t)) with
q running over all prime powers. For each fixed prime p and integer n > 0 let
Ap,n be the subset of A consisting of all finite field extensions of Qp with degree of
ramification fixed by ordp(p) = n. For K ∈ A ∪ B write K◦ for the valuation ring,
K̃ for the residue field, πK for a uniformizer of K◦, and qK for ]K̃.

Denote by Z[[t]]〈x1, . . . , xn〉 the ring of strictly convergent power series over Z[[t]]
(consisting of all

∑
i∈Nn ai(t)xi with ai(t) ∈ Z[[t]] such that for each m ≥ 0 there

exists n′ such that ai(t) belongs to (tm) for each i with i1 + . . .+ in > n′).
The purpose of these strictly convergent power series is to provide analytic func-

tions in a uniform way, as follows. To each f(x) =
∑
i∈Nn ai(t)xi in Z[[t]]〈x1, . . . , xn〉,

ai(t) ∈ Z[[t]], we associate for each K ∈ A ∪ B the K-analytic function

fK : (K◦)n → K◦ : x 7→
∑
i∈Nn

ai(πK)xi.
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Fix f ∈ Z[[t]]〈x1, . . . , xn〉. As K varies in A ∪ B, one has a family of numbers

(1.1) aK :=
∫

(K◦)n

|fK(x)||dx|,

with |dx| the normalized Haar measure on Kn and |y| = q−ord y
K , and one would

like to understand the dependence on K in a geometric way (see [25] for a context
of this question). This is done using VarZ, the collection of isomorphism classes of
algebraic varieties over Z (i.e. reduced separated schemes of finite type over Z),
and, FormZ, the collection of equivalence classes of formulas in the language of
rings3 with coefficients in Z. For each finite field k, we consider the ring morphisms

Countk : Q[VarZ,
1

A1
Z

, { 1
1−Ai

Z

}i<0]→ Q

which sends Y ∈ VarZ to ]Y (k), the number of k-rational points on Y , and,

Countk : Q[FormZ,
1

A1
Z

, { 1
1−Ai

Z

}i<0]→ Q

which sends ϕ ∈ FormZ to ]ϕ(k), the number of k-rational points on ϕ, and where
we also write A`

Z for the isomorphism class of the formula x1 = x1 ∧ . . . ∧ x` = x`
(which has the set R` as R-rational points for any ring R), ` ≥ 0.

Using the work established in this paper, as well as results of Denef and Loeser
[16], we establish Theorem 8.2, which is a generalization of the following.

Theorem 1.2.
(i) There exists a (non-unique) element

X ∈ Q[VarZ,
1

A1
Z

, { 1
1−Ai

Z

}i<0]

and a number N such that for each field K ∈ A ∪ B with Char K̃ > N , one has

aK = Count eK(X).

In particular, if CharK̃ > N , then aK only depends on K̃.
(ii) For fixed prime p and n > 0, there exists a (non-unique) element

Xp,n ∈ Q[FormZ,
1

A1
Z

, { 1
1−Ai

Z

}i<0]

such that for each field K ∈ Ap,n one has

aK = Count eK(Xp,n).

Note that (i) treats the case of big residue characteristic, while (ii) can be used for
any fixed “small” residue characteristic. As one expects, for small residue charac-
teristic, one get less information than in case (i), namely, in case (ii), only bounded
ramification is allowed and formulas are used instead of varieties.

To prove Theorems 1.2 and 8.2 we calculate the aK by inductively integrating
variable by variable, in a uniform way, using analytic cell decomposition. By such
decomposition, one can partition the domain of integration uniformly in K ∈ A∪B,
for big enough residue field characteristic, and prepare the integrand on the pieces
in such a way that the integral with respect to a special variable becomes easy.

3Two formulas are equivalent in this language if they have the same R-rational points for every
ring R.
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There is possibly an alternative approach to prove Theorems 1.2 and 8.2 by using
analytic embedded resolutions of f = 0 over (a ring of finite type over) Z[[t]], if
such a resolution exists. We do not pursue this approach.

We comment on the non-uniqueness of X and Xp,n in Theorem 1.2. By analogy
to [6], [16] and using the results of this paper, one could associate unique objects, a
motivic integral, to the data used to define aK . Such objects would live in some quo-
tient of Q[FormZ,

1
A1

Z
, { 1

1−Ai
Z
}i<0], and the morphisms Countk could factor through

this quotient (at least for char k big enough). To establish uniqueness in some ring
is beyond the scope of the present paper.

More generally, we consider

(1.3) bK(s) :=
∫

(K◦)n

|f1K(x)|s|f2K(x)||dx|,

and similar integrals, whenK varies overA∪B, where f1, f2 are in Z[[t]]〈x1, . . . , xn〉,
and s ≥ 0 is a real variable. In the generalization Theorem 8.2 of Theorem 1.2,
we prove the rationality of bK(s) in qsK for K ∈ B of characteristic big enough
and with qK the number of elements in the residue field of K. For each fixed
K ∈ A this rationality was proved by Denef and van den Dries in [18]. Here we
thus prove uniformity, and hence rationality, results for the fields Fq((t)) of big
enough characteristic. Similarly as in the p-adic case, such integrals describe the
generating power series with coefficients Nm obtained by counting points modulo
tm in Fq[[t]]/(tm) satisfying analytic equations modulo tm, cf. the work of Igusa
and Denef, hence, we obtain uniform rationality results for these generating power
series.

2. Analytic structures

Analytic structures, introduced in [19] (cf. [21] and [34]), are a framework for the
model theory of analytic functions. This section contains an extensive elaboration
of those ideas.

Model theory provides a convenient means to analyze algebraic properties that
depend on parameters, and analytic structures are a way to extend model-theoretic
techniques to the analytic setting. In particular, a cell decomposition for a family
of functions of several variables is a partition of the domain into finitely many
simple sets on each of which the behavior of the functions has a simple dependence
on the value of the last variable. By assigning the other variables fixed values
in a possibly non-standard field extension, the compactness theorem reduces the
problem of cell decomposition for polynomial functions of several variables to that
of obtaining a cell decomposition for polynomial functions of just one variable, at
the expense of providing a uniform cell decomposition for all models of the theory.
By expressing a power series as the product of a unit and a polynomial in the last
variable, Weierstrass Preparation is used to reduce analytic questions to algebraic
ones. An analytic structure provides a convenient framework for dealing with the
parameters that arise in applying Weierstrass Preparation.

To make use of the Weierstrass data, the definition of a model-theoretic struc-
ture must be extended so that compositional and algebraic identities in the power
series ring are preserved when the power series are interpreted as functions on the
underlying field. In the case of polynomial rings, the interpretation of addition
and multiplication in a model of the theory of rings already provides a natural
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homomorphism from the polynomial ring into the ring of functions on the under-
lying structure. Furthermore, if the underlying field is complete, the valued field
structure also already provides a natural homomorphism from the ring of conver-
gent power series into the ring of functions (that preserves not only algebraic, but
compositional identities as well). But the fields over which we work may not be
complete since we must work uniformly in all models of a given theory. Thus, to
apply the Weierstrass techniques, our models must come equipped with a distin-
guished homomorphism from the ring of power series to the ring of functions. This
is essentially the definition of analytic structure in Definition 2.7 and in [19]. (Note
that, rather than a distinguished homomorphism, one could employ instead a first-
order axiom scheme in which each power series identity is coded into an axiom, but
that obscures the difference between the algebraic and analytic situations, where
topological completeness, in some form, comes into play.)

As in [19], [21] and [34], in using Weierstrass techniques, one often introduces
new parameters for certain ratios. Without a natural means of adjoining elements
of a (possibly non-standard) model to the given coefficient ring of the power series
ring, one is prevented from specializing the parameters, which complicates some
computations. However, since the proof of the Weierstrass Division Theorem relies
on completeness in the coefficient ring, adjoining elements of an arbitrary model
to the coefficient ring is problematic. The methods of [32] were developed to ana-
lyze the commutative algebra of rings of separated power series, which are filtered
unions of complete rings. Those ideas are applied in this section to show how to
extend the coefficient ring (Theorem 2.13 and Definition 2.15) and ground field
(Theorem 2.18) of a given analytic structure, which is how the present treatment
of analytic structures differs from the previous ones. (Indeed, with minor modifi-
cations to the proofs, much of the theory of [32] applies to the rings Sm,n(σ,K)
introduced in Definition 2.15, and, although we prefer to give a self-contained treat-
ment in this paper, would simplify the proofs of the results of Section 3.)

Finally, let K be a separated analytic A-structure as in Definition 2.7, so the
power series in a ring Sm,n(A) are interpreted as analytic functions on K in such a
way as to preserve the algebraic and compositional identities of Sm,n(A) and an ex-
tended power series ring Sm,n(σ,K) is obtained from Sm,n(A), as in Definition 2.15,
by adjoining coefficients from the field K. It is important to note that, although the
extended power series rings Sm,n(σ,K) are much larger than the rings Sm,n(A), the
structure K has essentially the same first-order diagram in the extended language.
Thus, although it is easier to work with the extended power series rings Sm,n(σ,K),
they have the same model theory as the smaller rings Sm,n(A), which, in fact, is
the point of introducing the extension.

Definition 2.1. Let E be a Noetherian ring that is complete and separated for the
I-adic topology, where I is a fixed ideal of E. Let (ξ1, . . . , ξm) be variables, m ≥ 0.
The ring of strictly convergent power series in ξ over E (cf. [2], Section 1.4) is

Tm(E) = E〈ξ〉 := {
∑
ν∈Nm

aνξ
ν : lim

|ν|→∞
aν = 0}.

Let (ρ1, . . . , ρn) be variables, n ≥ 0. The ring

Sm,n(E) := E〈ξ〉[[ρ]]

is a ring of separated power series over E (cf. [32], Section 2).
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Remark 2.2.
(i) If the formal power series ring E[[ρ]] is given the ideal-adic topology for the
ideal generated by I and (ρ), then Sm,n(E) is isomorphic to E[[ρ]]〈ξ〉. Note that
Sm,0 = Tm and Tm+n(E) is contained in Sm,n(E).

(ii) Observe that E〈ξ〉 is the completion of the polynomial ring E[ξ] in the I ·E[ξ]-
adic topology and E〈ξ〉[[ρ]] is the completion of the polynomial ring E[ξ, ρ] in the
J-adic topology, where J is the ideal of E[ξ, ρ] generated by ρ and the elements of
I.

(iii) The example of A = Z[[t]] and I = (t) is the one used in the introduction to
put a strictly convergent analytic structure on the p-adic fields and on the fields
Fq((t)).

The Weierstrass Division Theorem (cf. [32], Theorems 2.3.2 and 2.3.8) provides
a key to the basic structure of the power series rings Sm,n(E).

Definition 2.3. Let f ∈ Sm,n(E). The power series f is regular in ξm of degree
d if f is congruent, modulo the ideal I + (ρ), to a monic polynomial in ξm of
degree d, and f is regular in ρn of degree d if f is congruent, modulo the ideal
I + (ρ1, . . . , ρn−1) to ρdn · g(ξ, ρ) for some unit g of Sm,n(E).

Proposition 2.4 (Weierstrass Division). Let f, g ∈ Sm,n(E).
(i) Suppose that f is regular in ξm of degree d. Then there exist uniquely deter-

mined elements q ∈ Sm,n(E) and r ∈ Sm−1,n(E)[ξm] of degree at most d − 1 such
that g = qf + r. If g ∈ J · Sm,n for some ideal J of Sm−1,n, then q, r ∈ J · Sm,n.

(ii) Suppose that f is regular in ρn of degree d. Then there exist uniquely deter-
mined elements q ∈ Sm,n(E) and r ∈ Sm,n−1(E)[ρn] of degree at most d − 1 such
that g = qf + r. If g ∈ J · Sm,n for some ideal J of Sm,n−1, then q, r ∈ J · Sm,n.

Remark 2.5. By taking n = 0 in Proposition 2.4 (i), one obtains a Weierstrass
Division Theorem for the Tm(E).

Dividing ξdm (respectively, ρdn) by an element f ∈ Sm,n regular in ξm (respectively,
ρn) of degree d, as in [32], Corollary 2.3.3, we obtain the following corollary.

Corollary 2.6 (Weierstrass Preparation). Let f ∈ Sm,n(E).
(i) If f is regular in ξm of degree d, then there exist: a unique unit u of Sm,n

and a unique monic polynomial P ∈ Sm−1,n[ξm] of degree d such that f = u · P .
(ii) If f is regular in ρn of degree d, then there exist: a unique unit u of Sm,n

and a unique monic polynomial P ∈ Sm,n−1[ρn] of degree d such that f = u · P ; in
addition, P is regular in ρn of degree d.

Let the ring E and the ideal I be as in Definition 2.1. If K is a field containing E
that is complete in a rank 1 valuation and I is contained in the maximal ideal K◦◦

of the valuation ring K◦, then Tm(E) (respectively, Sm,n(E)) may be interpreted as
a ring of analytic functions on the polydisc (K◦)m (respectively, (K◦)m× (K◦◦)n),
exactly as in [32]. The following definition permits an extension to more general
valued fields K, for example, to ultraproducts of complete fields. In this more
general setting, analytic properties usually derived employing the completeness of
the domain can often be derived instead from Weierstrass Division (which relies on
completeness in the coefficient ring).

Definition 2.7 (cf. [19] and [34]). Let A be a Noetherian ring that is complete
and separated with respect to the I-adic topology for a fixed ideal I of A. Let
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(K, ord,Γ) be a valued field. A separated analytic A-structure on K is a collection
of homomorphisms σm,n from Sm,n(A) into the ring of K◦-valued functions on
(K◦)m × (K◦◦)n for each m,n ∈ N such that:

(i) (0) 6= I ⊂ σ−1
0 (K◦◦), with σ0 := σ0,0,

(ii) σm,n(ξi) = the i-th coordinate function on (K◦)m × (K◦◦)n, i = 1, . . . ,m,
and σm,n(ρj) = the (m + j)-th coordinate function on (K◦)m × (K◦◦)n,
j = 1, . . . , n,

(iii) σm,n+1 extends σm,n, where we identify in the obvious way functions on
(K◦)m × (K◦◦)n with functions on (K◦)m × (K◦◦)n+1 that do not depend
on the last coordinate, and σm+1,n extends σm,n similarly.

A collection of homomorphisms σm from Tm(A) = Sm,0(A) into the ring of K◦-
valued functions on (K◦)m is called a strictly convergent analytic A-structure on K
if the homomorphisms σm,0 := σm satisfy the above three conditions (with n = 0).

In any case, we call A the coefficient ring of the analytic structure.

Here are some typical examples of valued fields with strictly convergent analytic
A-structure. Take A := Z[[t]], where t is one variable, equipped with the (t)-adic
topology. Then (C((t)), ordt,Z) carries a unique analytic A-structure determined by
σ0(t) = t. For each prime p ∈ N, the valued field of p-adic numbers (Qp, ordp,Z)
carries a unique analytic A-structure determined by σ0(t) = p. Similarly, σ0(t) = p
determines a unique separated analytic structure on the non-discretely valued field
Cp, the completion of the algebraic closure of Qp, which yields a larger family of
analytic functions than the corresponding strictly convergent analytic A-structure.
The fields Fp((t)) carry unique analytic A-structures determined by σ0(t) = t. The
latter (standard) analytic A-structures induce an analytic A-structure on any non-
principal ultraproduct of the p-adic fields Qp, or Cp, or Fp((t)). Note that such
fields carry analytic A-structure even though they are not complete.

By definition, analytic A-structures preserve the ring operations on power se-
ries, thus they preserve the Weierstrass Division data. It follows that analytic
A-structures also preserve the operation of composition.

Proposition 2.8. Analytic A-structures preserve composition. More precisely, if
f ∈ Sm,n(A), α1, . . . , αm ∈ SM,N (A), β1, . . . , βn ∈ ISM,N (A)+(ρ), where SM,N (A)
contains power series in the variables (ξ, ρ) and I is the fixed ideal of A, then
g := f(α, β) is in SM,N (A) and σ(g) = (σ(f))(σ(α), σ(β)).

Proof. By the Weierstrass Division Theorem, there are elements qi ∈ Sm+M,n+N (A)
such that

f(η, λ) = g(ξ, ρ) +
m∑
i=1

(ηi − αi(ξ, ρ)) · qi +
n∑
j=1

(λj − βj(ξ, ρ)) · qm+j .

Let (x, y) ∈ (K◦)M × (K◦◦)N and put ai := σ(αi)(x, y) and bj := σ(βj)(x, y) for
i = 1, . . . ,m, j = 1, . . . , n. Clearly, b ∈ (K◦◦)n. By plugging (a, x, b, y) into the
above equation, the proposition follows. �

Next we show that the image of a power series is the zero function if, and only if,
the image of each of its coefficients is zero. This employs parameterized Weierstrass
Division which relies on the strong Noetherian property of Lemma 2.9 (cf. [18]
Lemmas 1.4 and 4.12.) We refer to this as a strong Noetherian property because,
implicit in Lemma 2.9 are the facts that not only are all the fµ,ν expressed as linear
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combinations of finitely many, but also that for ”small” fµ,ν the coefficients in these
linear combinations are also ”small”.

Lemma 2.9 ([32], Lemma 3.1.6). Let F ∈ Sm+M,n+N (E) and write

F =
∑

fµ,ν(ξ, ρ)ηµλν

with the fµ,ν ∈ Sm,n(E). Then there are: d ∈ N and units Gµ,ν of Sm+M,n+N (E)
such that

F =
∑

|µ|+|ν|≤d

fµ,ν(ξ, ρ)ηµλνGµ,ν(ξ, η, ρ, λ).

Proposition 2.10. The image of a power series is the zero function if, and only
if, the image of each of its coefficients is zero. More precisely,

(i) Let σ be a separated analytic A-structure on the valued field K. Then kerσm,n =
kerσ0 · Sm,n(A).

(ii) Let σ be a strictly convergent analytic A-structure on the valued field K.
Then kerσm = kerσ0 · Tm(A).

Proof. (ii) The ring σ0(A) is a Noetherian ring that is complete and separated
in the σ0(I)-adic topology. The map σ induces a homomorphism πm : Tm(A) →
Tm(σ0(A)), and kerπm = kerσ0 · Tm(A). Thus, the homomorphism σm factors
through Tm(σ0(A)), yielding a strictly convergent σ0(A)-analytic structure σ̄ on
K◦. Hence, there is no loss in generality to assume that kerσ0 = (0). Let f ∈
Tm(A) \ {0}; we must show that σm(f) is not the zero function.

Observe that if f ∈ Tm−1[ξm] is monic in ξm then σm(f) is not the zero function.
Indeed, write f = ξdm+

∑d−1
i=0 ξ

i
mai(ξ

′), where ξ′ = (ξ1, . . . , ξm−1). Let x ∈ (K◦)m−1;
then σm(f)(x, ξm) ∈ K◦[ξm] is monic of degree d. By Definition 2.7 (i), K is a non-
trivially valued hence infinite field; thus σm(f) is not the zero function.

Now let f =
∑
fµξ

µ be any non-zero element of Tm. By Lemma 2.9, there are
d ∈ N and units gµ of Tm such that

f =
∑
|µ|≤d

fµξ
µgµ.

Let ν be the lexicographically largest index such that

ordσ(fν) = min
|µ|≤d

ordσ(fµ).

Let ηµ be new variables and put

F := ξν +
∑
|µ|≤d
µ6=ν

ηµξ
µg−1
ν gµ.

Since the above sum is finite,

σ(f) = σ(fνgν)σ(F )(ξ, yµ),

where the yµ := σ(fµ)
σ(fν) ∈ K

◦. Since gν is a unit and σ(fν) 6= 0, to show that σ(f) is
not the zero function, it suffices to show that σ(F )(ξ, yµ) is not the zero function.

By the choice of ν, there is a polynomial change of variables ϕ, involving only the
ξ, such that F ◦ϕ is regular in ξm of some degree d. By Proposition 2.8, it is enough
to show that σ(F ◦ϕ) is not the zero function, which follows from Corollary 2.6 (i).
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(i) As above, we may assume that kerσ0 = (0). Let f(ξ, ρ) be a nonzero element
of Sm,n, let a be a nonzero element of the ideal I of A and put g := f(ξ, a · ρ). By
Proposition 2.8, to show that σ(f) is not the zero function, it suffices to show that
σ(g) is not the zero function. Since kerσ0 = (0) and K◦ is an integral domain, so
is A. Since a is a nonzero element of I, g is a nonzero element of Tm+n. It is then
a consequence of part (ii) that σ(g) is not the zero function. �

Next, we discuss how to extend the coefficient ring of a given analytic structure.

Definition 2.11. Let A and E be Noetherian rings that are complete and sepa-
rated for the I-adic, respectively, J-adic, topologies, where I and J are fixed ideals
of A, respectively, of E. Let K be a valued field with analytic A-structure {σm,n}
and analytic E-structure {τm,n}. Suppose E is an A-algebra via the homomor-
phism ϕ : A → E, and that I ⊂ ϕ−1(J). Note that ϕ extends coefficient-wise
to a homomorphism ϕ : Sm,n(A) → Sm,n(E). The analytic structures σ and τ
are called ϕ-compatible (or compatible when ϕ is understood) if, for all m and n,
σm,n = τm,n ◦ ϕ.

It can be particularly useful to extend the coefficient ring of an analytic A-
structure by adjoining finitely many parameters from the domainK. The coefficient
rings of analytic structures are complete, and Lemma 2.12 permits us to define the
appropriate completion of a finitely generated A-subalgebra of K◦.

Lemma-Definition 2.12. (i) Let K be a valued field with separated analytic A-
structure {σm,n} and let E be a finitely generated σ0(A)-subalgebra of K◦, say,
generated by a1, . . . , am. Then E is Noetherian. Let b1, . . . , bn generate the ideal
E ∩K◦◦. The subset Eσ of K

Eσ := {σ(f)(a, b) : f ∈ Sm,n(A)}

is independent of the choices of a and b. Moreover, Eσ is a Noetherian ring that is
complete and separated with respect to the J-adic topology, where J = (Eσ ∩K◦◦).
Moreover, J is generated by bj, j = 1, . . . , n.

(ii) Let K be a valued field with strictly convergent analytic A-structure {σm}
and E be a finitely generated σ0(A)-subalgebra of K◦, say, generated by a1, . . . , am.
Then E is Noetherian. The subset Eσ of K

Eσ := {σ(f)(a) : f ∈ Tm(A)}

is independent of the choice of a. Moreover, Eσ is a Noetherian ring that is complete
and separated with respect to the J-adic topology, where J = σ0(I) · Eσ.

Proof. (i) Let E be generated by some tuple a′ and E ∩ K◦◦ by b′. For some
polynomials pi, qj,` ∈ A[ξ],

a′i = σ(pi)(a), i = 1, . . . ,m′ and b′j =
n∑
`=1

σ(qj,`)(a)b`, j = 1, . . . , n′.

That Eσ is independent of the choice of a now follows from Proposition 2.8.
To prove the remainder of part (i), observe that the ideal J of Eσ is generated

by b1, . . . , bn. Indeed, let f ∈ Sm,n and write

f = f0(ξ) +
r∑
`=1

e`g`(ξ) +
n∑
j=1

ρjhj(ξ, ρ),
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where f0 ∈ A[ξ] is a polynomial, the e` generate the ideal I of A, g` ∈ Sm,0 and
hj ∈ Sm,n. Note that ordσ0(e`), ordσ(ρj)(b) = ord bj > 0 and that σ0(e`) and the
σ(ρj)(b) = bj belong to the ideal generated by b. Thus, ordσ(f)(a, b) > 0 implies
that ordσ(f0)(a) > 0. Since f0 is a polynomial, σ(f0)(a) ∈ E, and it follows that
σ(f0)(a) must also belong to the ideal generated by b.

Now consider the A-algebra homomorphism

εa,b : Sm,n(A)→ Eσ : f 7→ σ(f)(a, b).

Since εa,b is clearly surjective and Sm,n(A) is Noetherian, Eσ is Noetherian. By
the above observation, the non-trivial ideal J is generated by the images of the
ρj under εa,b. Since Sm,n is complete in the (ρ)-adic topology, it follows from the
Artin-Rees Theorem that the finitely generated Sm,n-module Eσ is complete and
separated in the J-adic topology, as desired.

(ii) The proof is similar to part (i). �

Theorem 2.13, below, gives a basic example of extending the coefficient ring of
an A-analytic structure to obtain a compatible analytic structure.

Theorem 2.13. (i) Let K be a valued field with separated analytic A-structure
{σm,n}. Let E ⊂ K◦ be a finitely generated A-subalgebra of K◦ and let Eσ be as in
Definition 2.12 (i). Then σ induces a unique analytic Eσ-structure τ on K◦ such
that σ and τ are compatible. Moreover, each τm,n is injective.

(ii) The analogous statement holds for K a valued field with strictly convergent
analytic A-structure {σm}.

Proof. (i) Let f ∈ SM,N (Eσ). By Lemma 2.12, J is generated by the σ(ρj)(b), so
there is some F ∈ Sm+M,n+N (A), F =

∑
fµ,ν(ξ, ρ)ηµλν , such that

f =
∑

σ(fµ,ν)(a, b)ηµλν .

Once the required homomorphisms τ are shown to exist, it follows by the Weier-
strass Division Theorem as in the proof of Proposition 2.8, that

(2.14) τm,n(f)(η, λ) = σm+M,n+N (F )(a, η, b, λ);

i.e., that τm,n is uniquely determined by the conditions of Definition 2.11.
It remains to show that τm,n is well-defined by the assignment of equation 2.14.

For that, it suffices to show for any G ∈ Sm+M,n+N (A), G =
∑
gµ,ν(ξ, ρ)ηµλν , that

if
∑
gµ,ν(a, b)ηµλν is the zero power series of SM,N (Eσ), then σm+M,n+N (G)(a, η, b, λ)

is the zero function. By Lemma 2.9, there are: d ∈ N and power series Hµ,ν ∈
Sm+M,n+N (A) such that

G =
∑

|(µ,ν)|≤d

gµ,νHµ,ν .

Then
σ(G)(a, η, b, λ) =

∑
|(µ,ν)|≤d

σ(gµ,ν)(a, b)σ(Hµ,ν)(a, η, b, λ) = 0,

as desired. Since Eσ is a subring of K◦, the injectivity of τ is a consequence of
Proposition 2.10. This proves part (i).

(ii) The proof of part (ii) is similar. �

For our purposes, it is useful to work with the ring of all separated (or strictly
convergent) power series with parameters from K.
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Definition 2.15. (i) Let K be a valued field with separated analytic A-structure
{σm,n}. Let F(σ,K) be the collection of all finitely generated A-subalgebras E ⊂
K◦. Then F(σ,K) and {Eσ}E∈F(σ,K) form direct systems ofA-algebras in a natural
way, where Eσ is as in Definition 2.12 (i). Put

S◦m,n(σ,K) := lim−−−−−−−→
E∈F(σ,K)

Eσ〈ξ〉[[ρ]],

which is a K◦-algebra. The rings of separated power series with parameters from
K are then defined to be

Sm,n(σ,K) := K ⊗K◦ S◦m,n(σ,K).

(ii) Let K be a valued field with separated analytic A-structure {σm,n}. Using the
notation of (i) we define the strictly convergent power series with parameters from
K to be

Tm(σ,K) := Sm,0(σ,K).
(iii) Let K be a valued field with strictly convergent analytic A-structure {σ′m}.
The rings Tm(σ′,K) of strictly convergent power series with parameters from K are
defined similarly using Lemma 2.12 (ii). Using the same notation for the rings of
strictly convergent power series with parameters from K arising from a separated
analytic structure on K and from a strictly convergent analytic structure on K
should not lead to confusion.

Remark 2.16. The rings S◦m,n(σ,K) (respectively, Tm(σ,K)) inherit Weierstrass
Division, Theorem 2.4, and Weierstrass Preparation, Corollary 2.6, since they are
direct unions of the rings Sm,n(Eσ) (respectively, Tm(Eσ)) to which those results
apply.

Just as it can be useful to extend the coefficient ring of an analytic structure,
it is also useful to be able to extend the domain of an analytic structure. This
requires the following proposition, which is proved exactly as [31], Lemma 3.3.

Proposition 2.17. (i) Let K be a valued field with separated analytic A-structure;
then K◦ is a Henselian valuation ring.

(ii) Let K be a valued field with strictly convergent analytic A-structure such
that ord(K◦◦) has a minimal element γ, and γ = min ord(σ0(I)). Then K◦ is a
Henselian valuation ring.

The following theorem permits us to work over any finite algebraic extension, or
over the algebraic closure, of the domain of an analytic A-structure.

Theorem 2.18. (i) Let K be a valued field with separated analytic A-structure σ.
Then there is a unique extension of σ to a separated analytic A-structure τ on Kalg,
the algebraic closure of K.

(ii) Let K be a valued field with strictly convergent analytic A-structure such
that ord(K◦◦) has a minimal element γ, and γ = min ord(σ0(I)). Then there is a
unique extension of σ to a strictly convergent analytic A-structure τ on Kalg.

(iii) Let K be as in part (ii); then there is a unique extension of σ to a separated
analytic A-structure τ on Kalg.

Proof. Let α ∈ K◦
alg and let P (t) = td+a1t

d−1 + · · ·+ad be the minimal polynomal
for α over K. Since by Proposition 2.17 (i), K◦ is Henselian, the coefficients ai
lie in K◦; moreover, if α ∈ K◦◦

alg, then the ai lie in K◦◦. Now use Weierstrass
division. �
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Remark 2.19. Let K be a valued field with analytic A-structure that satisfies the
conditions of either Theorem 2.18 (i) or (ii), and let L be an extension of K con-
tained in Kalg. Then the arguments of Theorem 2.18 show that

S◦m,n(τ, L) = L◦ ⊗K◦ S◦m,n(σ,K) and Sm,n(τ, L) = L⊗K Sm,n(σ,K).

Since the base change is faithfully flat, Remark 2.19 yields the following corollary.

Corollary 2.20. Let K and L be as in Remark 2.19; then:
(i) S◦m,n(τ, L) (respectively, Sm,n(τ, L)) is faithfully flat over S◦m,n(σ,K) (respec-

tively, over Sm,n(σ,K)), and
(ii) if L is finite over K, then Sm,n(τ, L) is finite over Sm,n(σ,K).
Similar statements hold for Tm.

3. Rational analytic functions in one variable

In this section, we develop the basis of a theory of analytic functions on a K-
annulus (an irreducible R-domain in K◦), when K carries a separated A-analytic
structure, as it is needed for the proof of the cell decomposition of this paper. In
particular, we show that given an analytic function f on a K-annulus, there is a
partition of the annulus into finitely many annuli U such that f |U is a rational func-
tion times a (very) strong unit (see Theorem 3.9). All the same results hold (with
the same proofs) in the “standard” case where K is a complete non-Archimedean
valued field and Sm,n(σ,K) is replaced by Sm,n(E,K) (with the notation of [34]).
Hence, the results in this section also extend the affinoid results of [24], Sections 2.1
and 2.2, to the case that K is not algebraically closed and to the quasi-affinoid case
(i.e., allowing strict as well as weak inequalities).

The results of this section require K to carry a separated A-analytic structure.
Note, however, by Theorem 2.18 (iii), in the setting of this paper, a strictly conver-
gent A-analytic structure on K can be extended uniquely to a separated A-analytic
structure on Kalg.

A subsequent paper will give a complete treatment of the analytic geometry of
the one-dimensional unit ball over Kalg, when K carries either a strictly convergent
or separated analytic structure. This will include the analogue of the classical
Mittag-Leffler Theorem (cf. [24], Theorems 2.2.6 and 2.2.9) over coefficient fields
K that may be neither complete nor algebraically closed, both in the affinoid and
quasi-affinoid setting. This will allow the exploration of more cell decompositions.

Definition 3.1. Let K be a Henselian valued field (with separated A-analytic
structure) and let x be one variable.

(a) A K-annulus formula is a formula ϕ of the form

|p0(x)|�0ε0 ∧
L∧
i=1

εi�i|pi(x)|,

where the pi ∈ K◦[x] are monic and irreducible, the εi are in the divisible closure√
|K| \ {0} of |K| \ {0}, and �i ∈ {<,≤}.4 Define �i by {�i,�i} = {<,≤}.

We require further that the “holes” {x ∈ Kalg : |pi(x)|�iεi}, i = 1, . . . , L, all are

4Alternatively, we could require that εi ∈ |K◦|\{0} and allow the pi to be powers of irreducible
monic polynomials.
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contained in the disc {x ∈ Kalg : |p0(x)|�0ε0} and that the holes corresponding to
different indices i are disjoint.5

(b) The corresponding K-annulus is

Uϕ := {x ∈ Kalg : ϕ(x)}
(If K1 ⊃ Kalg then ϕ also defines an annulus in K1. We shall also refer to this as
Uϕ. No confusion will result.)

(c) a K-annulus formula ϕ, and the corresponding K-annulus Uϕ, is called linear
if the pi are all linear. (If K = Kalg then all K-annulus formulas are linear.)

(d) a K-annulus formula ϕ, and the corresponding K-annulus Uϕ, is called closed
(respectively open) if all the �i are ≤ (respectively <).

Lemma 3.2. (i) Let p ∈ K[x] be irreducible and let � ∈ {<,≤}. Then for every
δ ∈

√
|K \ {0}| there is an ε ∈

√
|K \ {0}| such that for every x ∈ Kalg, |p(x)|�ε

if, and only if, for some zero α of p, |x− α|�δ.
(ii) A K-annulus is a finite union of isomorphic (and linear) Kalg-annuli.
(iii) Any two K-discs (i.e. L = 0 in Definition 3.1) U1 and U2 are either disjoint

or one is contained in the other.
(iv) For any two K-annuli U1 and U2, if U1∩U2 6= ∅ then U1∩U2 is a K-annulus.
(v) The complement of a K-annulus is a finite union of K-annuli.
(vi) Every set of the form

U =

{
x ∈ K◦

alg : |p0(x)|�0 ε0 ∧
s∧
i=1

εi �i|pi(x)|

}
with the pi irreducible over K is defined by a K-annulus formula.

Proof. Exercise �

Definition 3.3. Let ϕ be a K-annulus formula as in Definition 3.1 (a). Define the
ring of K-valued functions OK(ϕ) on Uϕ by

OK(ϕ) := Sm+1,n(σ,K)/(pl00 (x)− a0z0, p
l1
1 (x)z1 − a1, . . . , p

lL
L (x)zL − aL),

where ai ∈ K◦, |ai| = εlii ,m+n = L+1, {z0, . . . , zL} is the set {ξ2, . . . , ξm+1, ρ1, . . . , ρn}
and x is ξ1 and zi is a ξ or ρ variable depending, respectively, on whether �i is ≤
or <. Observe that each f ∈ OK(ϕ) defines a function Uϕ → Kalg via the analytic
structure on K, which by Theorem 2.18 extends uniquely to Kalg.

Remark 3.4. Let ϕ be a K-annulus formula and write Uϕ =
⋃̇
Ui with the Ui

isomorphic (linear) Kalg-annuli given by Lemma 3.2 (ii). Then one can prove

OK(ϕ) ↪→ Kalg ⊗K OK(ϕ) =
⊕
i

OKalg
(Ui).

This result is not needed here.

Definition 3.5. Let f be a unit in OK(ϕ). Suppose that there is some ` ∈ N
and c ∈ K such that

∣∣f `(x)∣∣ = |c| for all x ∈ Uϕ. Suppose also that there exists
a polynomial P (ξ) ∈ K̃[ξ] such that P

((
1
cf

`(x)
)∼)

= 0 for all x ∈ Uϕ, where
∼ : K◦ → K̃ is the natural projection. Then call f a strong unit. Call f a very
strong unit if moreover |f(x)| = 1 and (f(x))∼ = 1 in OK(ϕ).

5To give an example of a “hole”, look at the K-annulus formula |x| ≤ 1 ∧ 1/2 < |x|, for which
the hole is the ball |x| ≤ 1/2 around 0.
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Lemma 3.6 (Normalization). (i) Let ϕ be a closed K-annulus formula. Then there
is an inclusion

S1,0(σ,K) ↪→ OK(ϕ),

which is a finite ring extension.
(ii) Let ϕ be an open K-annulus formula. Then there is an inclusion

S0,1(σ,K) ↪→ OK(ϕ),

which is a finite ring extension.

Proof. Apply a suitable Weierstrass automorphism, as in the classical case. �

The following two corollaries are proved exactly as in the classical case (cf. [2]
Sections 3.8 and 5.2).

Corollary 3.7. Let ϕ be a K-annulus formula that is either closed or open. Then
(i) the Nullstellensatz holds for OK(ϕ); i.e., the maximal ideals of OK(ϕ) are

K-algebraic.
(ii) OK(ϕ) is an integral domain.

Corollary-Definition 3.8. (i) If ϕ is a K-annulus formula that is either closed
or open and ψ is any K-annulus formula with Uϕ ⊆ Uψ then

OK(ψ) ↪→ OK(ϕ).

(ii) If ϕ is a K-annulus formula that is closed or open, the ring OK(ϕ) depends
only on Uϕ and is independent of the formula ϕ. Hence, we can define OK(Uϕ) as
OK(ϕ) for such ϕ.

Let U be a K-annulus. A K-annulus formula ϕ

|p0(x)|�0ε0 ∧
L∧
i=1

εi�i|pi(x)|

is called a good description of U if U = Uϕ and each pi is of minimal degree. This
condition implies that if degq < degpi then q has no zero in the hole defined by pi;
i.e., in the disc defined by the formula |pi(x)|�iεi. If ϕ is a good description of Uϕ,
then we say that ϕ is a good K-annulus formula. Observe that each K-annulus has
a good description. Moreover, by Corollary-Definition 3.8 (ii), if ϕ is a closed or
open K-annulus formula, then replacing ϕ by a good description does not change
the ring of analytic functions.

The main result of this section is the following.

Theorem 3.9. Let ϕ be a K-annulus formula and let f ∈ OK(ϕ). Then there
are: finitely many K-annulus formulas ϕi, each either closed or open, such that ϕ
is equivalent to the disjunction of the ϕi, rational functions Ri ∈ OK(ϕi) and very
strong units Ei ∈ OK(ϕi) such that for each i,f |Uϕi

= RiEi.

Proof. By Lemma 3.11, the theorem follows from Propositions 3.14 and 3.15, below.
�

The decomposition in Theorem 3.9 will be given in terms of two types of annuli,
thin annuli and Laurent annuli, defined as follows.
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Definition 3.10. (i) A linear K-annulus is called thin if it is of the form

{x ∈ Kalg : |x− a0| ≤ ε and for i = 1, . . . , n, |x− ai| ≥ ε}

for some ε ∈
√
|K \ {0}|, ε ≤ 1, and ai ∈ K◦.

In general, a K-annulus is called thin if it can be written as a union of isomorphic
(and linear) Kalg-annuli Ui (as in Lemma 3.2 (ii)), such that each Ui is a thin Kalg-
annulus.

A K-annulus formula is called thin when it defines a thin K-annulus.
(ii) A K-annulus U of the form

{x ∈ Kalg : ε1 < |p(x)| < ε0},

where p ∈ K[x] is irreducible is called a Laurent annulus.

Note that any open K-annulus with one hole is Laurent.

Lemma 3.11. Every K-annulus formula is equivalent to a finite disjunction of
K-annulus formulas that are either thin or Laurent.

Proof. Define the complexity of a K-annulus formula

|p0(x)|�0ε0 ∧
L∧
i=1

εi�i |pi(x)|

to be
L∑
i=1

degpi. The proof is by induction on complexity. The base case is easy.

By removing thin annuli, we may assume that the remaining set is an open K-
annulus. If there is only one hole, the annulus is Laurent, and we are done. Assume
that there are at least two holes. Two closed holes are said to abut when their radii
are equal to the distance between the centers. After removing the largest possible
Laurent annuli surrounding each hole, we may assume that all holes are closed, and
at least two abut. Now, removing a thin annulus lowers the complexity. �

Lemma 3.12. Consider the following K-annulus formula, ϕ:

|p0(x)| ≤ ε0 ∧
L∧
i=1

εi ≤ |pi(x)| .

Suppose that ϕ is a good, thin K-annulus formula. Let νij ∈ N, i = 1, 2, j =
1, . . . , L. Suppose fi ∈ K[x] satisfy degfi < degpj for all j such that νij > 0 and
suppose that ν1j 6= ν2j for some j. Then∥∥∥∥∥ f1∏

j p
ν1j

j

+
f2∏
j p

ν2j

j

∥∥∥∥∥
sup

= max


∥∥∥∥∥ f1∏

j p
ν1j

j

∥∥∥∥∥
sup

,

∥∥∥∥∥ f2∏
j p

ν2j

j

∥∥∥∥∥
sup

 ,

with ‖·‖sup the supremum norm on Uϕ.

Proof. This reduces easily to the linear case, which is treated in the proof of [23],
Theorem 2.2.6. �

Lemma 3.13. When ϕ is a thin K-annulus formula, the supremum norm ‖·‖sup

is a valuation on OK(ϕ).
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Proof. Let the notation be as in the statement of Lemma 3.12. By that lemma and
the definition of OK(ϕ), this reduces to showing that∥∥∥∥∥ f1∏

p
ν1j

j

· f2∏
p
ν2j

j

∥∥∥∥∥
sup

=

∥∥∥∥∥ f1∏
p
ν1j

j

∥∥∥∥∥
sup

·

∥∥∥∥∥ f2∏
p
ν2j

j

∥∥∥∥∥
sup

,

which is immediate. �

Proposition 3.14. Let ϕ be a thin K-annulus formula. Then for each f ∈ OK(ϕ)
there is a rational function R ∈ OK(ϕ) and a very strong unit E ∈ OK(ϕ) such
that f = R · E.

Proof. By the Nullstellensatz, Corollary 3.7, there is a monic polynomial f0 ∈
K◦[x], with zeros only in Uϕ, and an f ′ ∈ OK(ϕ) such that f = f0 · f ′, and
f ′ is a unit of OK(ϕ). Thus we may assume that f is a unit. We may also
assume that the supremum norm ‖f‖sup on Uϕ equals 1. By Lemma 3.13, this
implies that ‖g‖sup = 1, where g ∈ OK(ϕ) satisfies gf = 1. Thus, by Lemma 3.12
and the definition of OK(ϕ), there is a rational function f̂ ∈ OK(ϕ) such that∥∥∥f − f̂∥∥∥

sup
< 1 and f̂ is a unit of OK(ϕ). Since f̂ is a unit, we may write f = f̂ ·E.

We have ‖E − 1‖sup < 1, so E is a very strong unit. �

Proposition 3.15. Let ϕ be a Laurent K-annulus formula, and let f ∈ OK(ϕ).
There are finitely many K-annulus formulas ϕi, each either thin or Laurent, such
that Uϕ = ∪iUϕi , and for each i, there are rational functions Ri ∈ OK(ϕi) and very
strong units Ei ∈ OK(ϕi) such that f |Uϕi

= Ri · Ei.

Proof. Write
f =

∑
i∈Z

ai(x)pi,

where p is the polynomial that occurs in ϕ and the ai are polynomials of degree less
than the degree of p, by using Euclidian division for polynomials. By Lemma 2.9,
there are only finitely many ai that can be dominant (in the sense of the proof
of Proposition 2.10) on any sub-annulus of Uϕ. There is a partition of Uϕ into a
finite collection of thin sub-annuli and Laurent sub-annuli such that each Laurent
sub-annulus is either of lower complexity or on the Laurent sub-annulus, each of the
finitely many dominant ai is a strong unit (only the fact that it is a unit is used).
The thin sub-annuli are handled by Proposition 3.14. The Laurent sub-annuli of
lower complexity are treated by induction and the remaining Laurent sub-annuli
are treated as in [30], Theorem 3.3. �

Lemma 3.16. Let

R(x) = xn0

s∏
i=1

pi(x)ni ∈ K(x),

where the pi ∈ K◦[x] are monic, irreducible and mutually prime and the ni ∈ Z.
Let ε ∈

√
|K| \ {0}, let � ∈ {<,≤}, and let

U := {x ∈ K◦
alg : |R(x)|� ε}.

There are finitely many K-annuli Ui, i = 1, . . . , L, such that U =
⋃L
i=1 Ui and for

each i, R(x)|Ui
∈ OK(Ui).
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Proof. Induction on s. For each i, let αi ∈ K◦
alg be a zero of pi, and let ai := |αi| ∈√

|K|. Since pi is irreducible, ai is independent of which zero of pi is chosen. Let

dij := min{|α− β| : pi(α) = 0 = pj(β)} ∈
√
|K|.

Hence dij is the smallest distance between a zero of pi and a zero of pj . We consider
several cases.

(Case 1) There are i, j with ai < aj . Choose γ ∈
√
|K| with ai < γ < aj . Let

U1 := U ∩{x : |x| ≤ γ} and U2 := U ∩{x : |x| ≥ γ}. Then on U1, pj is a strong unit
and on U2, we have that pi = E · xdeg(pi), E a strong unit.

(Case 2) ai = γ for all i and d12 < d13, say. Choose δ ∈
√
|K| so that d12 < δ < d13

and by Lemma 3.2 (i), choose γ′ ∈
√
|K| so that

|p1(x)| ≤ γ′ ←→
∨

α such that
p1(α)=0

|x− α| ≤ δ.

On U3 := U ∩{x : |p1(x)| ≤ γ′}, p3 is a strong unit. On U4 := U ∩{x : γ′ ≤ |p1(x)|},
we have that p2(x)n1 = E · p1(x)n2 , E a strong unit, for suitable n1, n2 ∈ N.

(Case 3) ai = γ for all i and dij = δ for all i 6= j. Then δ ≤ γ. Choose γi such that

{x : |pi(x)| < γi} =
⋃

α such that
pi(α)=0

{x : |x− α| < δ}

On U5i := {x : |pi(x)| < γi}, each pj with j 6= i is a strong unit. On U6i := {x :
|pi(x)| = γi}, each pi is of constant size γi. On U7 := {x : |p1(x)| > γ1} there are
di ∈ Q+ such that |pi(x)| = |p1(x)|di . (For each zero αi of pi there is a zero α1 of
p1 so that for all x ∈ U7 we have |x− αi| = |x− α1|.) �

4. A-analytic languages and quantifier elimination

In this section we recall the notion of languages of Denef-Pas and we introduce
the notion of A-analytic languages, suitable for talking about valued fields with
A-analytic structure. Further, we specify the theories that we will consider, and we
establish the corresponding quantifier elimination results in equicharacteristic zero
and in mixed characteristic with bounded ramification.

For K a valued field, I an ideal of K◦, write resI : K◦ → K◦/I for the natural
projection. An angular component modulo I is a map acI : K → K◦/I such that
the restriction to K× is a multiplicative homomorphism to (K◦/I)×, the restriction
to (K◦)× coincides with the restriction to (K◦)× of resI , and such that acI(0) = 0
(for R a ring, R× is the group of units of R). The importance of the maps acI for
some applications is explained in Remark 8.3.

Fix a sequence of positive numbers (np)p, indexed by the prime numbers and
write N0 := {x ∈ Z : x > 0}. We consider structures

(K, {K◦/Im}m∈N0 , ord(K×)),

where K is a Henselian valued field of characteristic zero with valuation ring K◦,
additively written valuation6 ord : K× → ord(K×), angular component maps acm

6The problem that ord is not defined globally on K is easily settled and the reader may choose
a way to do so. For example, the reader may choose a value of ord(0) in the value group and

treat the cases that the argument or ord equals zero always separately, or, the reader may add a

symbol +∞ to the language LOrd that is bigger than any element of the value group, and make
the natural changes.
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modulo Im, a constant tK ∈ K, and ideals Im of K◦ for m ∈ N0, satisfying the
following properties

(I) I1 is the maximal ideal of K◦,
(II) either Im = I1 for all m ∈ N0 and tK = 1, or, ord(K×) has a minimal

positive element, Im = Im1 for all m ∈ N0, and tK is either 1 or an element
of K◦ with minimal positive valuation such that acm(tK) = 1 for all m > 0,

(III) if the residue field K̃ of K has characteristic p > 0, then, tK 6= 1 (hence,
I2 6= I1), and the ramification is bounded by ord(p) ≤ np.

Let K((np)p) be the class of these structures. We call the sorts Val for the valued
field sort, Resm for the m-th residue ring K◦/Im for m ∈ N0, more generally Res
for the disjoint union of the Resm, and Ord for the value group sort.

For Val we use the language LVal = (+,−,−1 , ·, 0, 1, t0) of fields with an extra
constant symbol t0, interpreted in K as tK . Let LOrd,0 = (+,−,≤, 0) be the
language of ordered groups.

For Res we define the language LRes,0 as the language having the ring language
and a constant symbol tm for each sort Resm and natural projection maps πmn :
Resm → Resn giving commutative diagrams with the maps resm := resIm and
resn for m ≥ n. If I2 = I1, the tm are interpreted as 1. If I2 6= I1, tm denotes the
image under resm of an element x with acm(x) = 1 and ord(x) the minimal positive
element.

Fix expansions LOrd of LOrd,0 and LRes of LRes,0.7 To this data we associate the
language LDP = LDP(LRes,LOrd) of Denef-Pas defined as

(LVal,LRes,LOrd, {acm}m∈N0 , ord).

Fix a language LDP of Denef-Pas, an LOrd-theory TOrd, and an LRes-theory
TRes. For such data, let TDP = TDP(LDP,TRes,TOrd, (np)p) be the LDP-theory of
all structures

(K, {K◦/Im}m∈N0 , ord(K×))
in K((np)p) which are LDP-structures such that {K◦/Im}m∈N0 is a model of TRes,
and ord(K×) is a model of TOrd.

The sorts Resm for m ∈ N0 and Ord are called auxiliary sorts, and Val is the
main sort.

Now we come to the notion of A-analytic languages. Fix a Noetherian ring A
that is complete and separated for the I-adic topology for a fixed ideal I of A.
Define the separated A-analytic language

LS(A) := LDP ∪m,n≥0 Sm,n(A)

and the strictly convergent A-analytic language

LT (A) := LDP ∪m≥0 Tm(A),

where Sm,n(A) and Tm(A) are as in Definition 2.1.
For TDP as before, we define the LS(A)-theory

TS(A) := TDP ∪ (IV)S
and the LT (A)-theory

TT (A) := TDP ∪ (IV)T ,

7The reason that one can work with arbitrary one-sorted expansions of LOrd,0 and LRes,0 is

that all results about TS(A) and TT (A) are relative to the Ord- and Res-sorts.
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where

(IV)S the Val-sort is equipped with a separated analytic A-structure and each
symbol f of Sm,n(A) is considered as a function Valm+n → Val by extending
f by zero outside its domain {(x, y) ∈ Valm+n : ord(xi) ≥ 0, ord(yj) > 0},

(IV)T the Val-sort is equipped with a strictly convergent analytic A-structure
and each symbol f of Tm(A) is considered as a function Valm → Val by
extending f by zero outside its domain {x ∈ Valm : ord(xi) ≥ 0}. Moreover,
the value group has a minimal positive element and this is the order of some
constant of T0(A).

Observe that there exist LS(A)-terms, resp. LT (A)-terms, which yield all kinds
of restricted division as considered in [29], [33] and [34].

Write resm for the natural projection from the valuation ring to Resm, for each
m > 0. Note that each map resm is definable without Val-quantifiers, since it sends
x ∈ Val to acm(x) when ord(x) = 0, and to acm(1 + x)− 1 when ord(x) > 0.

Later on, in Theorem 7.5, we will use definitional expansions to reveal the term
structure of definable functions; these expansions are defined as follows. For each
language L, write L∗ for the expansion

(4.1) L∗ := L ∪ {(·, ·, ·)1/me , hm,e}m>0, e≥0,

with m, e integers. Then, each model of TDP extends uniquely to an L∗DP-structure,
axiomatized as follows:

(V) (·, ·, ·)1/me is the function Val×Res2e+1×Ord→ Val sending (x, ξ, z) to the
(unique) m-th root y of x with ace+1(y) = π2e+1,e+1(ξ) and ord(y) = z,
whenever ξm = ac2e+1(x), m 6= 0 in Rese+1, and mz = ord(x), and to 0
otherwise;

(VI) hm,e is the function Valm+1×Res2e+1 → Val sending (a0, . . . , am, ξ) to the
unique y satisfying ord(y) = 0, ace+1(y) = π2e+1,e+1(ξ), and

∑m
i=0 aiy

i = 0,
whenever ξ is a unit, ord(ai) ≥ 0, f(ξ) = 0, and

π2e+1,e+1(f ′(ξ)) 6= 0,

with f(η) =
∑m
i=0 res2e+1(ai)ηi and f ′ its derivative, and to 0 otherwise.

Sometimes we will use the property, for ` either zero or a prime number,

(VII)` the residue field has characteristic `.

The following result extends quantifier elimination results of van den Dries [19]
and Pas in [38] and [39]. Theorem 4.2 for the theory TDP can be compared with
results obtained by Kuhlmann [26]. In [26], the language for the auxiliary sorts is
less explicit than in this paper.

Theorem 4.2 (Quantifier elimination). Let T be one of the theories TDP, TS(A), or
TT (A), and let LT be respectively LDP, LS(A), or LT (A). Then T admits elimination
of quantifiers of the valued field sort. Moreover, every LT -formula ϕ(x, ξ, α), with
x variables of the valued field-sort, ξ variables of the residue rings sorts and α
variables of the value group sort, is T -equivalent to a finite disjunction of formulas
of the form

(4.3) ψ(ac`f1(x), . . . , ac`fk(x), ξ) ∧ θ(ord f1(x), . . . , ord fk(x), α),

with ψ an LRes-formula, θ an LOrd-formula, and f1 . . . , fk LT -terms.



ANALYTIC CELL DECOMPOSITION 21

Proof of Theorem 4.2. If one knows the quantifier elimination statement, the state-
ment about the form of the formulas follows easily, cf. [19].

The quantifier elimination statement for TDP is proved together with the cell
decomposition Theorem 7.4 for TDP.

The statement for the analytic theories follows in a nowadays standard way from
the result for TDP and the Weierstrass division as developed in Section 2, cf. the
proof of Theorem 3.9 of [19] in the strictly convergent case, and Theorem 4.2 of
[34] in the separated case. �

5. Terms in one variable

The results of section 3 have strong implications for terms in the languages LS(A)

and LT (A) in one valued field variable.
Using Theorem 3.9, Propositions 3.14 and 3.15, Lemma 3.16, and induction on

the complexity of terms, we obtain the following.

Theorem 5.1. Let τ(x) be an LS(A)-term of the valued field sort (cf. section 4)
in one valued field variable x, and K be a TS(A)-model. Then there is a finite set
S ⊂ K◦

alg and a finite collection of disjoint K-annuli Ui, each open or closed, and
for each i, an Fi ∈ OK(Ui) such that K◦

alg =
⋃
Ui and

τ
∣∣
Ui\S

= Fi
∣∣
Ui\S

.

Moreover, we can ensure that
Fi = RiEi

where Ri is a rational function over K and Ei ∈ OK(Ui) is a very strong unit.

The analogue of Theorem 5.1 for LT (A)-models is the following:

Corollary 5.2. Let τ(x) be an LT (A)-term of the valued field sort in the valued
field variable x, let n > 0 be an integer. Let K and K ′ be TT (A)-models, such that
K is a submodel of K ′. Suppose that the value group of K and of K ′ have minimal
positive elements and suppose that there exists v in A such that both these minimal
elements are equal to the value of σ0(v) (thus, K ′ is an unramified field extension
of K). Then there is a finite set S ⊂ K ′ and a finite collection of disjoint closed
K-annulus formulas ϕi, and for each i, an Fi ∈ OK(Uϕi

), such that

K ′◦ =
⋃
U ′i

and
τ

∣∣
U ′

i\S
= Fi

∣∣
U ′

i\S
,

where U ′i = {x ∈ K ′ : ϕi(x)}. Moreover, we can ensure that

Fi = RiEi

and
Ei ≡ 1 mod σ0(v)n

hold on U ′i , where Ri is a rational function over K and Ei ∈ OK(Ui) is a very
strong unit.

Proof. Since K ′ is an unramified field extension of K, we can replace strict inequal-
ities by weak inequalities in the data given by Theorem 5.1, by using the element
σ0(v). �
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6. Definable assignments

We elaborate on the terminology of [16] and [6] on definable assignments and
definable subassignments. By some authors, definable assignments are just called
“formulas”, or “definable sets”, and definable morphisms are often called “definable
functions”.

Let T be a multisorted theory formulated in some language L, where some of
the sorts are auxiliary sorts and the other sorts are main sorts. Let Mod(T ) be
the category whose objects are models of T and whose morphisms are elementary
embeddings. By a T -assignment X we mean a T -equivalence class of L-formulas ϕ,
where we say that ϕ and ϕ′ are T -equivalent if they have the same set ofM-rational
points for eachM in Mod(T ). Knowing a T -assignment X is equivalent to knowing
the functor from Mod(T ) to the category of sets which sendsM∈ Mod(T ) to the
set ϕ(M) for any L-formula ϕ in X, and we will identify T -assignments with these
functors.

The usual set theoretic operations can be applied to T -assignments, for example,
for two T -assignments X,Y , X ⊂ Y has the natural meaning and if X ⊂ Y call X
a T -subassignment of Y . Similarly, for X,Y ⊂ Z T -assignments, X∪Y , X∩Y , and
X \ Y have the obvious meaning. Cartesian products have the obvious meaning
and notation. We refer to [6] and [16] for more details on the general theory of
assignments and T -assignments.

For T -assignments X,Y , a collection of functions fM : X(M) → Y (M) for
each M ∈ Mod(T ) is called a T -morphism from X to Y if the functor sending
M ∈ Mod(T ) to the graph of fM is a T -assignment. A T -morphism f : X → Y
such that fM is a bijection for eachM∈ Mod(T ) is called a T -isomorphism.

Definition 6.1. By a T -parameterization of a T -assignment X, we mean a T -
isomorphism f : X → Y ⊂ X × R with R a Cartesian product of auxiliary sorts,
such that π ◦ f : X → X is the identity on X, with π the projection.

Example 6.2. If T is one of the theories TDP, TS(A), or TT (A), write Val`1 ×Res`2n ×
Ord`3 , for the T -assignment which sends a model

(K, {K◦/Im}m>0, ord(K×))

to
K`1 × (K◦/In)`2 × ord(K×)`3 ,

for any n > 0, `i ≥ 0. We recall that, for such T , the sorts Resm and Ord are called
auxiliary sorts. For such T , the map Val → Val × Res1 : x 7→ (x, ac1(x)) is an
example of a T -parameterization.

7. Cell decomposition

In this section we state and prove an analytic cell decomposition theorem for
T -assignments with T one of the theories TS(A) or TT (A), see Theorem 7.4 below.
Theorem 7.4 generalizes cell decompositions of [38], [39], [14], [4], and [6] and
provides what is needed for the applications to analytic integrals in the next section.
Also for the theory TDP we obtain a cell decomposition, cf. Theorem 7.4, which
generalizes and refines the cell decompositions of Pas [38], [39] in several ways:
in equicharacteristic zero, also angular components of higher order (i.e., modulo
powers of the maximal ideal) are allowed; we can take the centers of the cells to
be L∗DP-terms; we can partition any definable set into cells adapted to any given
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definable function8; in mixed characteristic, we allow for any value group with a
least positive element9. In [6], a notion of cells is introduced that is more general
than the one in [38]; we base the definition of cells below on this notion of [6].
Summarizing, our cell decomposition holds for the theories introduced in section
4, which includes both the analytic and the algebraic cases, in equicharacteristic
zero with quite general angular components, and in mixed characteristic as long
as the degree of ramification is bounded. Crucial to the proof of analytic cell
decomposition are Propositions 3.14 and 3.15, Theorem 5.1, and Corollary 5.2.
The proof of the analytic cell decomposition seems to require all the work of the
previous sections. As a second main result of this section, we prove the fundamental
result that L-definable functions are, after parameterization using auxiliary sorts,
given by L∗-terms, where L is either LDP, LS(A), or LT (A), see Theorem 7.5; this
result is motivated by notes of van den Dries [20].

Fix T to be TDP, TS(A), or TT (A), and let LT be respectively LDP, LS(A), or
LT (A). We come to the definition of T -cells. The usage of parameterizations in
Definition 7.1 is necessary in view of Theorem 7.4, as is shown by the example of
the subset X of K2 defined by ord(z2− y) > ord(y), for which a parametrization is
essentially given by (y, z) 7→ (ac(z), ord(z), y, z). (More generally, for such T , the
following definition makes sense as well for the LT ∪K-theory T (K), where K is
the valued field of a model of T , LT ∪K is LT together with constant symbols for
the elements of K, and T (K) the theory T together with the diagram of K.)

Definition 7.1. Let C be a T -assignment, k > 0 an integer, and α : C → Ord,
ξ : C → Resk, and c : C → Val T -morphisms, such that ξ takes values in the
multiplicative units of the Resk-sort. The T -1-cell ZC,α,ξ,c with base C, order α,
angular component ξ, and center c is the T -subassignment of C ×Val defined by

y ∈ C ∧ ord (z − c(y)) = α(y) ∧ ack(z − c(y)) = ξ(y),

where y ∈ C and z ∈ Val. Similarly, if c is a T -morphism c : C → Val, we define
the T -0-cell ZC,c ⊂ C × Val with base C and center c as the T -subassignment of
C ×Val defined by

y ∈ C ∧ z = c(y).

More generally, Z ⊂ S×Val with Z and S T -assignments will be called a T -1-cell,
resp. a T -0-cell, if there exists a T -parameterization

λ : Z → ZC ⊂ S ×R×Val,

for some Cartesian product R of auxiliary sorts and some T -1-cell ZC = ZC,α,ξ,c,
resp. T -0-cell ZC = ZC,c.

We shall call the data (λ,ZC,α,ξ,c), resp. (λ,ZC,c), sometimes written for short
(λ,ZC), a T -presentation of the T -cell Z.

Definition 7.2. A T -morphism f : Z ⊂ S × Val → R with Z a T -cell, S a T -
assignment, and R a Cartesian product of auxiliary sorts, is called T -prepared if
there exist a T -presentation λ : Z 7→ ZC of Z onto a cell ZC with base C and a
T -morphism g : C → R such that f = g ◦ π ◦ λ, with π : ZC → C the projection.

8The cells used by Pas are neither suitable for the partition of definable sets, nor for the

preparation of definable functions. This problem has been addressed in [6].
9In mixed characteristic, Pas [39] allows for the integers as value group only.
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Example 7.3. Let Z be the T -cell Val \ {0}. The TDP-morphism Z → Ord : x 7→
ordx2 is T -prepared since with the T -presentation

λ : Z → Ord× Res1 ×Val \ {0} : x 7→ (ordx, acx, x)

and the map g : Ord× Res1 → Ord : (z, η) 7→ 2z, one has f = g ◦ π ◦ λ.

The following two theorems lay the technical foundations for analytic motivic
integration, the first one to calculate the integrals, the second one to prove a change
of variables formula, cf. [6] for the algebraic setting.

Theorem 7.4 (Cell decomposition). Let T be TDP, TS(A), or TT (A), and let LT
be respectively LDP, LS(A), or LT (A). Let X be a T -subassignment of S ×Val and
let f : X → R be a T -morphism with R a Cartesian product of auxiliary sorts, S
a T -assignment. Then there exists a finite partition of X into T -cells Z such that
each of the restrictions f |Z is T -prepared. Moreover, this can be done in such a
way that for each occurring cell Z one can choose a presentation λ : Z → ZC onto
a cell ZC with center c, such that c is given by an L∗T -term, where L∗T is defined
by (4.1).

The following is a fundamental result on the term-structure of definable func-
tions. The statement of Theorem 7.5 for fields of the form k((t)), uniform in the
field k of characteristic zero, and ideals I2 = I1 was announced in [6] and will be
proved completely here.

Theorem 7.5 (Term structure of definable morphisms). Let T be TDP, TS(A), or
TT (A), and let LT be respectively LDP, LS(A), or LT (A). Let f : X → Y be a
T -morphism. Then there exist a T -parameterization g : X 7→ X ′ and a tuple h of
L∗T -terms in variables running over X ′ and taking values in Y such that f = h ◦ g.
(See (4.1) and 6.1 for the definitions.)

The following notion is only needed for the proof of quantifier elimination in the
language TDP, cf. similar proofs in [11], [14], [38], and [39].

Definition 7.6. An LDP-definable function h : X → Val, with X a Cartesian
product of sorts, is called strongly definable if for each Val-quantifier free LDP-
formula ϕ(v, y), with y a tuple of variables running over arbitrary sorts, v a Val-
variable, and x running over X, there exists a Val-quantifier free LDP-formula
ψ(x, y) such that

ϕ(h(x), y)

is TDP-equivalent with
ψ(x, y).

The next Lemma yields L∗DP-terms picking a specific root when Hensel’s Lemma
implies that there exists a unique such one.

Lemma 7.7. Let Z be a TDP-1-cell with TDP-presentation id : Z → Z = ZC,α,ξ,c
with ξ taking values in Rese+1 and such that c = 0 on C. Let x run over C, and
y over Val. Let n > 0 and f(x, y) =

∑n
i=0 ai(x)y

i be a polynomial in y with L∗DP-
terms ai(x) as coefficients, such that an(x) is nowhere zero on C. Suppose that for
(x, y) in Z

min
i

ord ai(x)yi = ord ai0(x)y
i0 for some fixed i0 ≥ 1,
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and
ord f ′(x, y) ≤ ord te0ai0(x)y

i0−1,

and that there exists a TDP-morphism d : C → Val whose graph lies in Z and
satisfies

f(x, d(x)) = 0.

Then, d is the unique such morphism and, after a TDP-parametrization of C, d
can be given by an L∗DP-term. Moreover, if the ai are strongly definable, then the
function d is strongly definable (see Definition 7.6).

Proof. The uniqueness of d follows from Hensel’s Lemma, cf. [38] and [39]. Consider
the TDP-parametrization

g : C → C × Res2e+1 ×Ord : x 7→ (x, ac2e+1 d(x), ord d(x)).

We prove that, piecewise, d can be given by a term after the TDP-parametrization
g; at the end we will glue the pieces together. Note that α(x) = ord d(x). We first
prove that there exists a Val-term b such that ord b(g(x)) = α(x). Let fIx

(x, y) be
the polynomial

∑
i∈Ix

ai(x)yi, with

Ix := {i ∈ {0, . . . , n} : ord ai(x)yi ≤ ord t2e+1
0 ai0(x)y

i0}.

Note that Ix only depends on x, since the valuation of y for (x, y) ∈ Z only depends
on x. We work piecewise to find b. First we work on the piece where gcd(Ix) = 1.
After partitioning further to ensure that the quotients

ai(x)yi/aj(x)yj

have constant order on Z for i, j ∈ Ix, one readily verifies that there exists an L∗DP-
term b such that ord b(g(x)) = α(x) (for this, the constant symbol t0 is needed).
Now work on the part gcd(i ∈ Ix) = ` for some ` > 1. One obtains, by induction
on the degree, an L∗DP-term h such that∑

i∈Ix

ai(x)h(g(x))i/` = 0, ordh(g(x)) = `α(x), and ace+1h(g(x)) = ξ(x)`.

By the conditions of the lemma, ` 6= 0 in Rese+1. Defining the term b(x, η, a) as
(h(x, η, a))1/`, one verifies that ord b(g(x)) = α(x) for all x ∈ C with gcd(i ∈ Ix) =
`.

Now one has d(x) = τ(g(x)) with τ the term

τ(x, η, a) := bhn,e(
a0

ai0b
i0
,
ba1

ai0b
i0
, . . . ,

bnan
ai0b

i0
, ηac2e+1(1/b)).

One can glue s pieces together using extra parameters contained in the definable
subassignment A := {ξ ∈ Ress1 :

∑
i ξi = 1 ∧ (ξi = 0 ∨ ξi = 1)} to index the pieces,

by noting that for each element a in A there exists a definable morphism A→ Val,
given by an L∗T -term, which is the characteristic function of {a}. The fact that d is
strongly definable when the ai are will be proved in the proof of Theorem 7.4. �

The following is a refinement of both Theorem 3.1 of [38] and Theorem 3.1
of [39], the refinements being the same as the list of algebraic refinements in the
introduction of section 7.
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Theorem 7.8. Let f(x, y) be a polynomial in y with L∗DP-terms in x = (x1, . . . , xm)
as coefficients, x running over a TDP-assignment S. Then there exists an integer
` and a finite partition of S × Val into TDP-cells Z with presentation λ : Z → ZC
such that ZC has an L∗DP-term c as center, and such that, if we write

f(x, y) =
∑
i

ai(z)(y − c(z))i,

for (x, y) ∈ Z and (z, y) = λ(x, y), then we have

ord f(x, y) ≤ min
i

ord t`0ai(z)(y − c(z))i

for all (x, y) ∈ Z. Here, ord(x) ≤ ord(0) always holds by convention. If one
restricts to the theory TDP∪(VII)0, one can take ` = 0 and one can choose cells
whose angular components take values in Res1.

Proof. The equicharacteristic 0 result induces the analogous result for big enough
residue field characteristic, leaving only finitely many residue characteristics and
ramification degrees to treat separately.

We give a proof for T = TDP∪(VII)p with p > 0. For T = TDP∪(VII)0 one can
use the same proof with e = 0, `0 = 0, and k = 1.

Let f be of degree d in y and proceed by induction on d. Let f ′(x, y) be the
derivative of f with respect to y. Applying the induction hypothesis to f ′, we find
a partition of S × Val into cells. By replacing S we may suppose that these cells
have the identity mapping as presentation.

First consider a 0-cell Z = ZC,c in the partition. Then we can write f(x, y) =
f(x, c(x)) = τ(x) for some L∗DP-term τ , for (x, y) ∈ Z, and the theorem follows.

Next consider a 1-cell Z = ZC,α,ξ,c in the partition. Write f(x, y) =
∑
i ai(x)(y−

c(x))i for (x, y) ∈ Z. There is some `0 such that for all (x, y) ∈ Z

ord f ′(x, y) ≤ min
i

ord t`00 iai(x)(y − c(x))i−1.

We may suppose that ai(x) is either identically zero or else never zero on C for
each i. Put I = {i : ∀x ∈ C ai(x) 6= 0} and J = {(i, j) ∈ I × I : i > j}. We may
suppose that J is nonempty since the case J = ∅ is trivial. Put Θ := {<,>,=}J .
For θ = (� ij) ∈ Θ, put

Cθ = {x ∈ C : ∀(i, j) ∈ J iα(x) + ord ai(x) � ijjα(x) + ord aj(x)}.
Ignoring the Cθ which are empty, this gives a partition of C and hence a partition of
Z into cells Zθ = ZCθ,α|Cθ

,ξ|Cθ
,c|Cθ

. Fix θ ∈ Θ. We may suppose that Z = Zθ. The
case that ord a0(x) < iα(x) + ord ai(x) for all i ≥ 1 and all x ∈ C follows trivially.
Hence, we may suppose that there exists i0 > 0 such that i0α(x) + ord ai0(x) ≤
iα(x) + ord ai(x) for all x ∈ C and all i. Put e := `0 + ord i0. Let ξ take values in
Resk. By either enlarging e and `0 or enlarging k, we may suppose that k = e+ 1.
Define the subassignments Bi ⊂ Z by

B1 := {(x, y) ∈ Z :

∀ z
(
ord(z − y) > α(x) + ord te0 → ordf(x, z) ≤ i0α(x) + ord t2e0 ai0(x)

)
}

and B2 := Z \B1. If Bi is nonempty, it is equal to the cell ZCi,α|Ci
,ξ|Ci

,c|Ci
for some

TDP-definable assignment Ci ⊂ C. Moreover, the Bi can be described without using
new Val-quantifiers, by using the maps acm for big enough m. On B1 the theorem
holds with ` = 2e. On B2, by Lemma 7.7, there exists a unique definable function
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d : C2 → Val such that, for each x in C2, (x, d(x)) lies in B2 and f(x, d(x)) = 0.
Again by Lemma 7.7, we may suppose that d(x) is given by an L∗DP-term. Let D
be the TDP-definable assignment {j ∈ Ord : j > 0}. For

C ′2 := C2 ×D × (Res1 \ {0}),
β : C ′2 → Ord : (x, j, z) 7→ α(x) + e+ j,

η : C ′2 → Res1 \ {0} : (x, j, z) 7→ z,

d′ : C ′2 → Val : (x, j, z) 7→ d(x),

consider the cell ZC′
2,β,η,d

′ and its projection π to C2 ×Val. One checks that B2 is
the disjoint union of the 1-cell π(ZC′

2,β,η,d
′), with presentation π−1, and the 0-cell

ZC2,d. Moreover, if one writes f(x, y) =
∑
bi(z)(y − d′(z))i for (z, y) in ZC′

2,β,η,d
′

and (x, y) = π(z, y), one has ord f(x, y) = ord b1(z)(y − d′(z)), which can be seen
using a Taylor expansion of f around d′. This finishes the proof. �

Remark 7.9.
(i) By Theorem 7.8, one can probably add arbitrary angular components modulo
Ij for a collection of nonzero ideals Ijj∈J to LDP, TS(A), or TT (A). When one
enlarges the language LRes to the the full induced language, (which can be richer
in the analytic than in the algebraic case), one can probably obtain a form of
quantifier elimination and cell decomposition. Most likely, one also gets a similar
term structure result (even without introducing new (·, ·, ·)1/mj or hm,j for the new
ideals). This should follow from Theorem 7.8.

(ii) Similar proofs should hold to show that, if one restricts to the theory T ∪(VII)0
in Theorem 7.5, one can take for h in Theorem 7.5 a tuple of L�T -terms, with L�T
the language

L� := L ∪m>0 {(·, ·, ·)1/m0 , hm,0}.

Proof of Theorems 7.4 and 4.2 for TDP. First suppose that X = X0 = Valm+1

and that f = f0 is the map

(7.10) f0 : Valm+1 → Res`n ×Ord` : x 7→ (acn(gi(x, t)), ord(gi(x, t)))i,

with gi(x1, . . . , xm, t) polynomials over Z, m ≥ 0, `, n > 0, i = 1, . . . , `. By Theorem
7.8, the result for ` = 1 follows rather immediately. It is from this partial result
for ` = 1 that one deduces the final statement of Lemma 7.7 in the same way as
this is proved in [38] and [39]. We will not recall this proof of the final statement
of Lemma 7.7.

By induction on `, we may suppose that the result holds forG1 := (acn gi, ord gi)`−1
i=1

and for G2 := (acn g`, ord g`). This gives us two finite partitions {Zij} such that Gi
is prepared on Zij for each j and i = 1, 2. Choose Z1 := Z1j and Z2 := Z2j′ .
It is enough to partition Z1 ∩ Z2 into cells such that f0 is prepared on these
cells. If Z1 or Z2 is a 0-cell, this is easy, so we may suppose that Z1 is a 1-cell
with presentation λ1 : Z1 → ZC1 = ZC1,α1,ξ1,c1 and Z2 a 1-cell with presentation
λ2 : Z2 → ZC2 = ZC2,α2,ξ2,c2 . We may suppose that π(Z1) = π(Z2) with π : X → S
the projection, that ξ1 and ξ2 take values in Resk, and that ZCi ⊂ Z × R with R
a fixed product of auxiliary sorts for i = 1, 2. Under these suppositions it follows
from the non archimedean property that Z1 ∩ Z2 is already a cell on which the
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function f0 is TDP-prepared, where one can use the presentation

λ12 : Z1 ∩ Z2 → λ12(Z1 ∩ Z2) ⊂ Z ×R× {0, 1} :

(x, t) 7→
{

(λ1(x, t), 0) if α1 ≥ α2,
(λ2(x, t), 1) else,

and where we write αi for αi(λi(x, t)). Here, λ12(Z1∩Z2) has as center c1d0 +c2d1,
where di is the L∗DP-term from Res1 to Val which is the characteristic function of
{i} for i = 0, 1.

By exploiting the proof of this partial result for general `, one can ensure that
all occurring centers are strongly definable and that there are no Val-quantifiers
introduced in the process of the cell decomposition. From this partial result for
general ` one deduces quantifier elimination for TDP in the language LDP as in [38]
and [39].

Now let f : X → R be a general T -morphism with R a Cartesian product of
auxiliary sorts and X an arbitrary T -assignment. Let f1, . . . , ft be all the polyno-
mials in the Val-variables, say, x1, . . . , xm+1 occurring in the formulas describing
the X and f , where we may suppose that these formulas do not contain quanti-
fiers over the valued field sort. Apply the above case of cell decomposition to the
polynomials fi. This yields a partition of Valm+1 into cells Zi with presentations
λi : Zi → ZCi

and centers ci. Write x = (x1, . . . , xm+1) for the Val-variables,
ξ = (ξj) for the Res-variables and z = (zj) for the Ord-variables on ZCi

. If Zi
is a 1-cell, we may suppose that for (x, ξ, z) in ZCi

we have ord(xm+1 − ci) = z1
and acn(xm+1 − ci) = ξ1, by changing the presentation of Zi if necessary (that is,
by adding more Ord-variables and Res-variables). By changing the presentation as
before if necessary, we may also assume that

ordfj(x) = zkj
,

acnfj(x) = ξlj ,

for (x, ξ, z) in the 1-cell ZCi
, where the indices kj and lj only depend on j and i.

Since the condition f(x) = 0 is equivalent to acn(f(x)) = 0, we may suppose
that, in the formulas describing X and f the only terms involving Val-variables are
of the forms ord fj(x) and acn fj(x). Combining this with the above description
of ordfj(x) and acnfj(x), one sees that the value of f only depends on variables
running over the bases of the cells. Hence, f is TDP-prepared on these cells.

�

Proof of Theorem 7.4 for TS(A) and TT (A). Let M be a model of T , a a Val-
tuple of M, Ma the LT -substructure of M generated by a, Ka the valued field
of Ma, LT (Ka) the language LT together with constant symbols for the elements
of Ka, and T (Ka) the LT (Ka)-theory of all models of T containing the structure
Ma. Let LDP(Ka) be the language LDP together with constant symbols for the
elements of Ka and TDP(Ka) the LDP(Ka)-theory of all TDP-models containing the
structure Ma.

First we prove some special cases of Theorem 7.4 for the theory T (Ka). Suppose
first that X = Val and that f is the map

f : X → Res`n ×Ord` : x 7→ (acn(gi(x)), ord(gi(x)))i,

with the gi LT (Ka)-terms in the variable x for i = 1, . . . , `. In the case that T
is TS(A), apply Theorem 5.1 to the terms gi and to the terms gi(x−1). In the
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case that T is TT (A), there is a LT -term which presents a valued field element
with minimal positive valuation by (IV)T , hence we can apply Corollary 5.2 to
the terms gi and to the terms gi(x−1). In this way we find a finite partition of
X0 := {x ∈ Val : ord(x) ≥ 0} into LDP(Ka)-T (Ka)-assignments Xj given by Ka-
annulus formulas ϕj , rational functions hij(x) with coefficients in Ka, a polynomial
F (x) over Ka, and very strong units Uij ∈ OKa(ϕj), such that for all i, j and all
x ∈ Xj

F (x) = 0 ∨ gi(x) = Uij(x)hij(x),

where we mean by an LDP(Ka)-T (Ka)-assignment a T (Ka)-assignment which can
be defined by an LDP(Ka)-formula. If I1 6= I2, the separated analytic structure
collapses to a strictly convergent analytic structure, and thus, by Corollary 5.2, we
can even assume that acn(Uij) = 1 on Xj . Up to the transformation x 7→ x−1,
we can partition X1 := {x ∈ Val : ord(x) < 0} in a similar way. Now apply
Theorem 7.4 for the theory TDP(Ka) to the LDP(Ka)-T (Ka)-assignments Xjk and
the functions x ∈ Xjk 7→ (ac(F (x)), acn hij(x), ordhij(x))i to refine the partition
and to finish the proof for X and f of the above form.

Next we suppose that X = Val and f is an arbitrary T (Ka)-morphism f : X →
Res`n×Ord`. Apply Theorem 4.2 to obtain a formula ϕ without Val-quantifiers, as
in (4.3), which describes the graph of f . Then, let g1, . . . , gr be the LT (Ka)-Val-
terms occurring in ϕ. Applying the previous case to the terms gi, the case of this
f easily follows, cf. the analogous step in the proof of Theorem 7.4 for TDP.

Next we suppose that X = Valm+1 and that f is an arbitrary T -morphism
f : X → Res`n × Ord`, `,m > 0. In this case, the theorem is reduced by a
compactness argument to the case m = 0, as follows. Suppose that for every
candidate T -cell decomposition of X into T -cells Ai, with L∗T -terms as centers,
and T -prepared functions gi : Ai → Res`n×Ord`, this data is not the data of a cell
decomposition of X which prepares f . This is equivalent to saying that for each
such candidate cell decomposition there exists a model with valued field K (with
A-analytic structure) and a ∈ Km such that either the fibers of the T -cells Ai
above a (under the projection Valm+1 → Valm) are not a T (a)-cell decomposition
of Val, or the fibers of the functions gi above a do not coincide with f on the fiber
of Ai above a. Then, by compactness, there exists a model with valued field K ′

and a′ ∈ K ′m such that Val can not be partitioned into T (Ka)-cells on which the
fibers of the functions gi above a are prepared, which contradicts the previous case
for X = Val. Moreover, this construction ensures that we can work with L∗T -terms
as centers of the cells.

Finally, the general Theorem follows from this case similarly as the general case
is obtained in the proof of Theorem 7.4 for TDP.

�

Proof of Theorem 7.5. By working componentwise it is enough to prove the
theorem for Y = Val. Let Graph(f) ⊂ X × Val be the T -assignment which is
the graph of f , and suppose it is described by an LT -formula ϕ of the form given
by the quantifier elimination Theorem 4.2; let gj be the LT -terms occurring in
this formula. Apply Theorem 7.4 for T to the terms gi. Doing so, all occurring
centers of the cells are given by L∗T -terms. For each occurring cell Zi, let Z ′i be
λ−1
i (Graph(ci)) ∩ Graph(f), where λi is the presentation of Zi and ci its center.

Clearly each Z ′i is a 0-cell with presentation the restriction of λi to Z ′i. It follows
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from the special form of ϕ (as given by the application of Theorem 4.2) that the cells
Z ′i form a cell decomposition of Graph(f) and one concludes that the restriction of
f to each of finitely many pieces in a partition of X satisfies the statement. Now
the Theorem follows by gluing the pieces together using extra parameters as in the
proof of Lemma 7.7.

�

8. Applications to analytic motivic integration

Let OF be the ring of integers of a number field F . Let AF be the class of all
finite field extensions of all p-adic completions of F , and BF the class of all local
fields of positive characteristic which are algebras over OF . For a fixed prime p and
integer n > 0, let AF,p,n be the subset of AF consisting of all fields with residue
field of characteristic p and with degree of ramification fixed by ordp(p) = n.

For K ∈ AF ∪BF write K◦ for the valuation ring, πK for a uniformizer, K̃ for the
residue field, and qK for ]K̃. By Tm(OF [[t]]) denote the ring of strictly convergent
power series in m variables over OF [[t]]. For each K in AF ∪ BF and each power
series f =

∑
i∈Nm ai(t)Xi in Tm(OF [[t]]) define the analytic function

fK : (K◦)m → K◦ : x 7→
∑
i∈Nm

ai(πK)xi,

and extend this by zero to a function Km → K.
In the terminology of section 2, we have thus fixed the strictly convergent analytic

OF [[t]]-structure on all the fields K ∈ AF ∪ BF .
Let LF be the language LT (OF [[t]]) with LOrd the Presburger language LPres =

(+,−, 0, 1,≤, {≡ modn}n) and LRes the language LRes,0 (cf. section 4). Define the
LF -theory T F as TT (A) together with the axiom t0 6= 1 (that is, with higher order
angular components, see section 4), and axioms describing the congruence relations
modulo n in the natural way.

Let W be an LF -formula with m free valued field variables and no other free
variables. (Note that W determines a T F -assignment in the sense of section 6, but
this is not needed here.) For each K ∈ AF ∪ BF , we obtain a set WK ⊂ Km by
interpreting the formula W in the natural way. In a similar way, a T F -morphism
f from W to the valued field10 determines a function fK : WK → K.

Suppose now that the set WK is contained in (K◦)m for each K ∈ AF ∪BF . Fix
T F -morphisms f1 and f2 from W to the valued field, such that the images of the
fiK lie in K◦ for each K ∈ AF ∪ BF .

For each K ∈ AF ∪ BF and s ≥ 0 a real number, we consider

(8.1) aK(s) :=
∫
WK

|f1K(x)|s|f2K(x)||dx|.

It is well known by work of Denef and van den Dries [18] that, for each fixed
K ∈ AF , aK(s) is a rational function in q−sK . We prove that also for fixed K ∈ BF
with big enough characteristic, aK(s) is a rational function in q−sK . This is known
in the semialgebraic case by a ultraproduct argument, cf.[9] or [10], but was not

10By this we mean an LF -formula ϕ such that the set described by ϕ in any model M of T F

is the graph of a function from the M-rational points on W to the valued field of M, cf. section

6.
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known before for the analytic case. In fact, we give a geometric meaning to how the
aK vary for K ∈ AF , and, when the characteristic is big enough, also for K ∈ BF .

Let VarOF
denote the collection of isomorphism classes of algebraic varieties

over OF and let FormOF
be the collection of equivalence classes of formulas11 in

the language of rings with coefficients in OF . Define the rings

M(VarOF
) := Q[T, T−1,VarOF

,
1

A1
OF

, { 1
1−Ab

OF
T a
}(a,b)∈J ]

and
M(FormOF

) := Q[T, T−1,FormOF
,

1
A1
OF

, { 1
1−Ab

OF
T a
}(a,b)∈J ],

with J = {(a, b) ∈ Z2 : a ≥ 0, b < 0}, and where we write A`
OF

for the isomorphism
class of the formula x1 = x1 ∧ . . . ∧ x` = x` (which has the set R` as R-rational
points for any ring R over OF ), ` ≥ 0.

For each finite field k over OF with qk elements, we write Countk for the ring
morphisms

Countk :M(VarOF
)→ Q[q−sk , qsk, {

1
1− q−as+bk

}(a,b)∈J ]

and
Countk :M(FormOF

)→ Q[q−sk , qsk, {
1

1− q−as+bk

}(a,b)∈J ]

which send T to q−sk , Y ∈ VarOF
to the number of k-rational points on Y and

ϕ ∈ FormOF
to the number of k-rational points on ϕ.

We prove the following generalization of Theorem 1.2:

Theorem 8.2.
(i) There exists a (non-unique) element X ∈M(VarOF

) and a number N such that
for each K ∈ AF ∪ BF with CharK̃ > N one has

aK(s) = Count eK(X).

In particular, for K ∈ AF ∪BF with CharK̃ big enough, aK(s) only depends on K̃.
(ii) For fixed prime p and n > 0 there exists a (non-unique) element Xp,n ∈M(FormOF

)
such that for each K ∈ AF,p,n one has

aK(s) = Count eK(Xp,n).

Proof of Theorem 8.2. The Cell Decomposition Theorem 7.4 together with the Quan-
tifier Elimination Theorem 4.2 translates the calculation of the aK(s) in a nowadays
standard way into calculations of the form∑

i

Count eK(ϕi)
∑

z∈Si⊂Zm

q
−αi(z)−sβi(z)
K

with αi, βi : Si → N Presburger functions on the Presburger sets Si, and the ϕi
Lring-formulas12. One such expression works for K ∈ AF ∪ BF with residue field
characteristic big enough, and one needs another such expression for each class

11Two formulas are equivalent in this language if they have the same R-rational points for
every ring R over OF .

12Here, we use that, for any LRes-formula ϕ, there exists an Lring-formula ψ, such that for
all K ∈ AF ∪ BF the number of K◦/(πm

KK
◦)-rational points on ϕ is the same as the number ofeK-rational points on ψ. For this, use the definable bijection K◦/(πm

KK
◦) → eKm.
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AF,p,n. Using Lemma 3.2 of [13] on the summation of such Presburger functions
and their exponentials, it follows that there exist a number N0 and objects X0,
Xp,n ofM(FormOF

) such that

(i) for each K ∈ AF ∪ BF with CharK̃ > N0 one has

aK(s) = Count eK(X0),

(ii) for each K ∈ AF,p,n one has

aK(s) = Count eK(Xp,n).

By Theorem 6.4.1 of [17], one can associate virtual motives Yi to the isomorphism
classes of the formulas ϕi occurring in X0. Since each Yi belongs to the image of
the natural ring morphism from (a certain localisation of) the Grothendieck ring
of varieties over F into a ring of virtual motives (cf. Theorem 6.4.1 of [17]), there
exist N1 and Ai ∈ M(VarOF

) such that the number of k-points on Yi is equal
to Countk(Ai) for all finite fields k of characteristic > N1. One then easily finds
X ∈M(VarOF

) for which the Theorem holds for N = max(N0, N1). �

Remark 8.3. The extension of the Denef-Pas cell decomposition to the theory TDP

which allows for I2 6= I1, i.e. , which allows for higher order angular components
acn also in equicharacteristic zero, gives a new view on the foundational work by
Denef and Loeser on geometric motivic integration [15] and subsequent work. More
precisely, using acn to define a broader but analogous class of semialgebraic sets
than in [15], stable sets, cylinders, and weakly stable sets would be semialgebraic,
which is not the case in [15].

To illustrate this, consider the arc space L(A1
Q) of the affine line, π2 : L(A1

Q)→
L1(A1

Q) ∼= A2
Q its natural projection on the arcs modulo t2, and a constructible

subset X of L1(A1
Q). Then in general, the cylinder π−1

2 (X) is not a semialgebraic
subset of L(A1

Q) in the sense of [15], but with ac2 one can solve this problem, by
slightly generalizing the definition of semialgebraic sets in [15].

Acknowledgment. The authors thank Purdue University for its support and hos-
pitality and Jan Denef for stimulating discussions. Further we thank the referee for
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