
OVERCONVERGENT REAL CLOSED QUANTIFIER
ELIMINATION

L. LIPSHITZ AND Z. ROBINSON

Abstract. Let K be the (real closed) field of Puiseux series in t over R en-

dowed with the natural linear order. Then the elements of the formal power
series rings R[[ξ1, . . . , ξn]] converge t-adically on [−t, t]n, and hence define func-

tions [−t, t]n → K. Let L be the language of ordered fields, enriched with sym-
bols for these functions. By Corollary 3.17, K is o-minimal in L. This result is

obtained from a quantifier elimination theorem. The proofs use methods from

non-Archimedean analysis.

1. Introduction

The main result of this paper is the quantifier elimination theorem, Theorem 2.1,
for the real closed field

K :=
⋃
n

R((t1/n))

with restricted division and analytic functions given by t-adically overconvergent
power series with coefficients in K. The elimination theorem yields o-minimality
results such as the one mentioned in the abstract, Corollary 3.17. We would like
to thank Sergei Starchenko for bringing to our attention the question answered in
that corollary, which motivated this investigation.

Remark 1.1. Theorem 3.16, together with an example by Hrushovski and Peterzil
[7], yields a sentence in an expansion of the language of ordered fields that is false in
all expansions of (R,+, ·, <), but is true in the real closed field K of Corollary 3.17.
This gives a counterexample to a question raised in [5], p. 153, see also [1], p. 3.

Let K1 :=
⋃

n R((t1/n)) and let |·|t denote the t-adic norm on K1; i.e., the norm
determined by |tα|t = 2−α, α ∈ Q, and |c|t = 1, c ∈ R \ {0}. Since K1 is a direct
union of complete fields, it is a Henselian valued field. Let < denote the linear order
on K1 determined by the order on R; i.e.,

∑
cit

i/n > 0 if, and only if, the leading
coefficient is a positive real number. (We will also use < for the order relation on
the value group |K1|t ⊂ R. This should not cause confusion.) Note that |·|t is
the valuation canonically determined by the order < on K1 in the sense that the
valuation ring coincides with the set of ”finite” elements; i.e.,

{a ∈ K1 : |a|t ≤ 1} = {a ∈ K1 : −b < a < b for some b ∈ R}.

The residue field R is a real closed field, the value group Q is divisible and K1 is
Henselian, so K1 is a real closed field. By |·|< denote the quantifier-free definable
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absolute value |x|< :=
√
x2. Let K2 be the completion of K1 with respect to |·|t,

and let K denote either K1 or K2.
Let

K◦ := {x ∈ K : |x|t ≤ 1} and
K◦◦ := {x ∈ K : |x|t < 1}.

Let ξ = (ξ1, . . . , ξn) be variables, ν = (ν1, . . . , νn) be indices. By |ν| denote ν1 +
· · ·+ νn. The ring of strictly convergent power series in ξ over K is

K〈ξ〉 :=
{∑

aνξ
ν : lim

|ν|→∞
|aν |t = 0

}
.

The elements of K〈ξ〉 converge on the closed unit polydisc U = (K◦)n, hence are
analytic functions on U . For f =

∑
aνξ

ν ∈ K〈ξ〉, define the Gauss norm ‖f‖ of f
by

‖f‖ := max
ν
|aν |t .

The ring of overconvergent power series is

K〈〈ξ〉〉 :=
⋃
ε>1

{∑
aνξ

ν : lim
|ν|→∞

ε|ν| |aν |t = 0
}
.

This is the subring of K〈ξ〉 consisting of those power series that converge on some
polydisc of t-adic radius > 1. Define the restricted division function D : K2 → K◦

by

D(x, y) :=
{
x/y, if − 1 ≤ x/y ≤ 1
0, else.

Note that this is defined in terms of the linear order on K, rather than in terms of
the norm |·|t.

Let LD
an be the language of ordered fields augmented with the function symbol

D and function symbols for the overconvergent power series over K. The function
symbol for the element f ∈ K〈〈ξ〉〉 is interpreted as the function that is zero outside
of [−1, 1]n and is defined by the power series on [−1, 1]n. The t-adic norm |·|t is
not in LD

an.

Definition 1.2. The ring of overconvergent D-functions K〈〈ξ,D〉〉 is the set of all
LD

an-terms in the variables ξ built up from elements of K〈〈ξ, η〉〉 and D by compo-
sition. If τ ∈ K〈〈ξ,D〉〉 then there are f ∈ K〈〈ξ, η〉〉, gi, hi ∈ K〈〈ξ,D〉〉 such that
τ = f(ξ,D(g1, h1), . . . , D(gm, hm)).

2. The elimination theorem

In this section, we prove the main result:

Theorem 2.1. K admits quantifier elimination in LD
an.

Proof. We prove this through a sequence of reductions.
(i) It is sufficient to eliminate quantifiers from formulas of the form

ϕ(ξ) = ϕ0(ξ) ∧ ∃η1 · · · ∃ηN

[
L∧

i=1

(τi(ξ, η) = 0) ∧
M∧

i=L+1

(0 < τi(ξ, η))

]
,

where ϕ0 is quantifier-free and the τi are LD
an-terms. By standard manipulations,

we may assume that all the variables are constrained to lie in the interval [−1, 1].
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(ii) At the expense of introducing more η’s, we may assume that in the τi, no
variables η are within the scope of the function symbol D (recall that the function
D is existentially definable.) Hence it is sufficient to eliminate quantifiers from
formulas of the form

ϕ(ξ) = ϕ0(ξ) ∧ ∃η1 · · · ∃ηN

[
L∧

i=1

(fi(ξ, η) = 0) ∧
M∧

i=L+1

(0 < fi(ξ, η))

]
,

where the fi ∈ K〈〈ξ,D〉〉〈〈η〉〉, the subring of K〈〈ξ, η,D〉〉 consisting of those elements
in which η does not occur in the scope of any symbol D.

(iii) Replacing the terms from K〈〈ξ,D〉〉 that occur in the fi by new variables, it
is sufficient to eliminate quantifiers from

ϕ0(ξ) ∧
∧P

i=1(ζi = D(τi(ξ), τ ′i(ξ)))∧
∧∃η1 · · · ∃ηN

[∧L
i=1(fi(ζ, η) = 0) ∧

∧M
i=L+1(0 < fi(ζ, η))

]
,

where the fi ∈ K〈〈ζ, η〉〉.
(iv) Let fi(ζ, η) =

∑
ν aiν(ζ)ην , where aiν ∈ K〈〈ζ〉〉. As in [8], Lemma 3.3,

using [2], Proposition 5.2.7.1, there is a d ∈ N and there are biνµ ∈ K〈〈ζ〉〉 for
µ ∈ I := {0, 1, . . . , d− 1}N , with ‖biνµ‖ < 1 and ‖biνµ‖ → 0 as |ν| → ∞, such that

aiν =
∑
µ∈I

biνµaiµ.

Hence we can write

fi(ζ, η) =
∑
µ∈I

aiµ(ζ)(ηµ + ϕiµ(ζ, η))

where the ϕiµ ∈ K〈〈ζ, η〉〉 and ‖ϕiµ‖ < 1.
(v) Splitting into the cases aiµ(ζ) = 0 and aiµ(ζ) 6= 0, we can assume that

fi(ζ, η) =
∑
µ∈Ii

aiµ(ζ)(ηµ + ϕiµ(ζ, η)),

where Ii ⊂ {0, . . . , d − 1}N and for all µ ∈ Ii, the condition on ζ that aiµ(ζ) 6= 0
occurs in ϕ0.

(vi) We proceed now by induction on
∑

i |Ii|−M . Assume that
∑

i |Ii|−M = 0
(i.e., |Ii| = 1, say, Ii = {µi}, for each i.) Observe that there is a δ < 1 such that
for any π ∈ K with δ < |π|t < 1 we have that

ψiµ(ζ, w) := ϕiµ(ζ,
w1

π
,
w2

πd
, . . . ,

wN

πdN−1 ) ∈ K〈〈ζ, w〉〉

and ‖ψiµ(ζ, w)‖ < 1. Choose π = tα, α ∈ Q, α > 0, and |π|t close enough to 1,
i.e., α close enough to 0, and make a change of variables ηN 7→ wN

π , and for i < N ,
ηi 7→ wi+ wN

π . After multiplying by the constant πα|µi|, each ηµ+ϕiµ(ζ, η) becomes
regular in wN and we may apply the overconvergent Weierstrass Preparation The-
orem (which is an easy consequence of the usual Weierstrass Preparation Theorem)
to write

fi = aiµi(ζ)π
βE(w, ζ)Fi(w, ζ),

where β = −α |µi|, Fi(w, ζ) ∈ K〈〈ζ, w1, . . . , wN−1〉〉[wN ] and E(w, ζ) has the prop-
erty that ‖E − 1‖ < ‖E‖, so E does not change sign on the closed unit box. Observe
that

0 � fi ↔ 0 � aiµ(ζ)πβFi(w, ζ),
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where � ∈ {=, <}, and hence we can apply the classical (Tarski) quantifier elimi-
nation to eliminate the quantifier ∃wN .

Assume now that for some Ii we have |Ii| > 1. Order the elements of {0, . . . , d−
1}N in reverse lexicographic order and let µi be the largest element of Ii. For each
such i and µ ∈ Ii \ {µi} split into the following cases, defined in terms of the linear
order on K:

Case (i, ∗). |aiµi
|< ≥

∣∣∣π 1
2 aiµ

∣∣∣
<

for all µ ∈ Ii \ {µi}.

Case (i, µ). |aiµi
|< ≤

∣∣∣π 1
2 aiµ

∣∣∣
<

,

with π chosen as above.
(vii) In the case (i, µ), we can write

aiµi
= π

1
2 aiµD(aiµi

, π
1
2 aiµ)

and absorb the term aiµi(η
µ + ϕiµi) into ϕiµ, thus decreasing

∑
|Ii| −M by 1.

(Replace D(aiµi
, π

1
2 aiµ) by a new ζ-variable.)

(viii) It remains to treat the case (i, ∗) for all i with |Ii| > 1. Make the change
of variables

ηi = π−di−1
wi

and replace aiµ by π−
1
2 aiµiD(π

1
2 aiµ, aiµi) for each µ ∈ Ii \ {µi}. Observe, since µi

is the largest element of Ii with respect to the reverse lexicographic order, that if

aiµη
µ 7→ aiµπ

βµwµ

then βµi − 1 ≥ βµ for all µ ∈ Ii \ {µi}. Hence, after factoring out a suitable power
of π, we can absorb all the terms except aiµiw

µi into ϕiµi and we are in the base
case (vi), above. �

3. o-Minimality

Let Kalg be the algebraic closure of K (so Kalg = K[
√
−1].) The norm |·|t

extends uniquely to Kalg. The elements of K〈ξ〉 converge on (K◦
alg)

n, and the
elements of K〈〈ξ〉〉 converge on polydiscs over Kalg of t-adic radius greater than 1.

Definition 3.1. Let ξ be one variable. A K-affinoid annulus formula is a formula
of the form

(|P0(ξ)|t ≤ ε0) ∧
N∧

i=1

(εi ≤ |Pi(ξ)|t),

where the εi ∈ |K◦ \ {0}|t and the Pi ∈ K◦[ξ] satisfy the following conditions: the
Pi are monic and irreducible (hence of degree 1 or 2,)

{x ∈ Kalg : |P0(x)|t ≤ ε0} ⊂ K◦
alg,

{x ∈ Kalg : |Pi(x)|t ≤ εi} ⊂ {x ∈ Kalg : |P0(x)|t ≤ ε0} for i = 1, . . . , N,

{x ∈ Kalg : |Pi(x)|t < εi and |Pj(x)|t < εj} = ∅ for 1 ≤ i 6= j ≤ N,

and if there is an x ∈ K such that |Pi(x)|t < εi, 1 ≤ i ≤ N , then Pi is linear, and
similarly, if there is an x ∈ K such that |P0(x)|t ≤ ε0, then P0 is linear (i.e., the Pi

have lowest possible degree.)
A K-affinoid annulus is a subset of K◦

alg that can be defined by a K-affinoid
annulus formula.
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Note that since there is no symbol for |·|t in LD
an, a K-affinoid annulus formula is

not an LD
an-formula. The K-affinoid annulus formula

∣∣ξ2 + 1
∣∣
t
≤ 1

2 is not satisfied
by any K-rational point; i.e., over K, it defines the empty set. Indeed, since by
Theorem 3.16, below, K is o-minimal in LD

an, the only LD
an-definable subset of K

that can be defined by a K-affinoid annulus formula is the empty set.

Remark 3.2. If the polynomial P0 of Definition 3.1 is linear, then the subset U of
K◦

alg defined by the K-affinoid annulus formula of Definition 3.1 is a standard set,
as in [2], Section 9.7.2; otherwise, it is the disjoint union of two conjugate standard
sets. In either case, it is clear from Definition 3.1 that U is a rational subdomain
of K◦

alg (for the definition of rational domain, see [2], Section 7.2.3.) Therefore, a
K-affinoid algebra OK(U) is canonically associated to U , and

OK(U) ' K〈ξ, η0, . . . , ηN 〉/(P0 − α0η0, η1P1 − α1, . . . , ηNPN − αN ) =
= K〈ξ, P0

α0
, α1

P1
, . . . , αN

PN
〉

where the αi ∈ K satisfy |αi|t = εi. Alternatively, OK(U) is the completion of
the localization K[ξ]P (where P = P1 · · ·PN ) with respect to the supremum norm
over U (see [6], Section 2.2.) The Kalg-affinoid algebra canonically associated to
U , OKalg

(U), is defined similarly. Since Kalg is finite over K,

OKalg
(U) ' OK(U)⊗K Kalg.

The complex conjugation σ of Kalg over K extends to an OK(U)-algebra automor-
phism of OKalg

(U). As mentioned above, there are two possibilities, either U is
a standard subset of K◦

alg, or it is the disjoint union of two standard subsets of
K◦

alg, U1 and U2, which are the Zariski-irreducible components of U with respect to
OKalg

(U). In the latter case, by [6], Lemma 2.2.8 (see also [2], Proposition 7.2.2.9,)

OKalg
(U) = OKalg

(U1)⊕OKalg
(U2),

and σ is an OK(U)-algebra isomorphism of OKalg
(U1) with OKalg

(U2).

Lemma 3.3. Let f ∈ K(ξ) be a rational function. Then the set

{x ∈ K◦ : |f(x)|t ≤ 1}

is a finite union of K-affinoid annuli.

Proof. This is a small extension of [6], Exercises 2.1.1 and 2.1.2. See also [3],
Lemma 3.16. �

Definition 3.4. Let U be a K-affinoid annulus. An element f ∈ OKalg
(U) is called

a strong unit if, and only if, there is a c ∈ Kalg \ {0} such that (i) |c · f(x)|t = 1 for
all x ∈ U , and (ii) the set of residues modulo K◦◦

alg of c · f(x), x ∈ U , is finite.

Remark 3.5. (i) Note that if f ∈ OKalg
(U) is a strong unit, then so is f−1, and the

product of strong units is a strong unit.
(ii) The simplest example of a strong unit is a non-zero constant.
(iii) Consider the unit disc U := K◦

alg, and let a ∈ Kalg\K◦
alg; then f := (a−ξ) is

a strong unit of OKalg
(U) because

∣∣a−1 · f(x)
∣∣
t
= 1 for all x ∈ U by the ultrametric

inequality, and the set of residues modulo K◦◦
alg of a−1 · f(x) is {1}.

(iv) Consider the K-affinoid annulus U := {x ∈ Kalg :
∣∣x2 + 1

∣∣
t
≤ |t|t}. Then

U has two Kalg-components, namely, the discs of radius |t|t centered at ±
√
−1.
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Observe that f := ξ is a strong unit in OK(U) because |f(x)|t = 1 for all x ∈ U

and the set of residues modulo K◦◦
alg of f(x) is {±

√
−1}. Note that in OK(U),

f−1 = −ξ ·
∞∑

n=0

(1 + ξ2)n,

and
∣∣1 + x2

∣∣
t
≤ |t|t for all x ∈ U , so the infinite sum is an element of OK(U).

(v) Suppose that U is aK-affinoid annulus with only oneKalg-component; equiv-
alently, σ(U) = U , or U ∩K 6= ∅. Suppose that f ∈ OK(U) is a strong unit and
fix c ∈ K \ {0} such that |c · f(x)|t = 1 for all x ∈ U . Then there is a fixed a ∈ K◦

such that for all x ∈ U the residue of c · f(x) equals the residue of a modulo K◦◦
alg.

Since f = σ(f), this follows from the proof of [6], Theorem 2.2.9 (see the proof of
Lemma 3.6, below.)

Lemma 3.6. Let U be a K-affinoid annulus defined by the K-annulus formula

(|P0(ξ)|t ≤ ε0) ∧
N∧

i=1

(εi ≤ |Pi(ξ)|t).

Then each element f ∈ O(U) uniquely determines the following data: a strong unit
E of O(U), a monic polynomial g ∈ K[ξ], all the zeros of which lie in U , and
non-negative integers ni such that

f = E · g∏N
i=1 P

ni
i

.

Proof. The corresponding result over Kalg for each irreducible component of U is
in the proof of [6], Theorem 2.2.9. Let f ∈ OK(U). In case U is irreducible (i.e.,
P0 is linear) we have

f = E ·R,
where E is a strong unit of OKalg

(U) and R ∈ Kalg(ξ) is a rational function of the
appropriate form. Since σ(f) = f , by the uniqueness of such expressions, σ(R) = R,
so R ∈ K(ξ) and E is a strong unit of OK(U).

In the remaining case, U is a disjoint union of the standard sets U1 and U2, and
for i = 1, 2, we have decompositions

f |Ui
= Ei ·Ri

with respect to OKalg
(Ui), and σ(E1) = E2, σ(R1) = R2. Put R := R1 ·R2 ∈ K(ξ).

We have
f |U1 = (E1R

−1
2 )R.

Since R ∈ K(ξ), σ(E1R
−1
2 ) = E1R

−1
2 , so E := E1R

−1
2 ∈ OK(U). Since R is of the

required form, it remains to see that E is a strong unit. But by Remark 3.5, R2

is a strong unit of OKalg
(U1), so E ∈ OK(U) is a strong unit of OKalg

(U1), and
since σ(E) = E, E must be a strong unit of OKalg

(U2). Thus E is a strong unit
of OK(U), as desired. The uniqueness of the expression f = E ·R follows from the
uniqueness for the OKalg

(Ui). �

Corollary 3.7. Suppose that U is a K-affinoid annulus and that U ∩K 6= ∅. Let
f ∈ OK(U) be a strong unit; then f has constant sign on U ∩K.
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Proof. By Remark 3.5 (v), there are c ∈ K \ {0} and a ∈ K◦ \K◦◦ such that for
all x ∈ U , ∣∣f(x)− c−1a

∣∣
t
<

∣∣c−1a
∣∣
t
.

It follows that the sign of f(x) coincides with the sign of c−1a for all x ∈ U . �

Definition 3.8. Let U be a K-affinoid annulus. A subset X of U ∩ K is called
relatively semialgebraic in U if, and only if, there is a semialgebraic subset Y of
K (which, by Tarski’s theorem, is a finite union of intervals with endpoints in
K ∪ {±∞}) such that X = Y ∩ (U ∩K).

Note that if X is relatively semialgebraic in U , then so is U \X.

Lemma 3.9. Let U be a K-affinoid annulus such that U∩K 6= ∅, let f, g ∈ OK(U).
Then: (i) the set

{x ∈ U : |f(x)|< = |g(x)|<}
is either finite or equal to U , and (ii) the set

{x ∈ U : |f(x)|< ≤ |g(x)|<}
is relatively semialgebraic in U .

Proof. Taking h := g2 − f2, it is sufficient to consider the sets

X := {x ∈ U : 0 = h(x)}
Y := {x ∈ U : 0 ≤ h(x)}

By Lemma 3.6 and Corollary 3.7, we may assume that h ∈ K(ξ) is a rational
function with no poles in U . �

Lemma 3.10. Let f ∈ K〈〈ξ,D〉〉. Then there is a finite cover U of K◦
alg by K-

affinoid annuli, a finite cover XU of each set U ∩ K, U ∈ U , by sets relatively
semialgebraic in U ∩ K, and for each U ∈ U and X ∈ XU , there is an element
fUX ∈ OK(U) such that

f |(X∩U) = fUX |(X∩U).

Proof. We may write

f = F (ξ,D(f1, g1), . . . , D(fn, gn)),

where F ∈ K〈〈η0, . . . , ηn〉〉 and the fij ∈ K〈〈ξ,D〉〉. We proceed by induction on
the number of occurrences of D, at each stage producing a refinement of the pair
of covers produced at the previous stage. Note that the intersection of two K-
affinoid annuli is either a K-affinoid annulus or the empty set, and the intersection
of two semialgebraic sets is semialgebraic. Since F is overconvergent, there is some
ε ∈ |K \ {0}|t, ε > 1, such that F converges on the polydisc of radius ε. For
i = 1, . . . , n, suppose we have covers Ui and {XiU}U∈Ui , as in the lemma, such that
for each U ∈ Ui and X ∈ XiU there is an hiUX ∈ OK(U) such that

D(fi, gi)|(X∩U) = hiUX |(X∩U)

and

(3.11) ‖hiUX‖sup,U ≤ ε,

where ‖·‖sup,U is the supremum norm on the affinoid domain U (as in [2], Sec-
tion 6.2.1.) Then, taking a common refinement of these covers and the correspond-
ing compositions with F establishes the lemma. Hence it suffices to prove the
following:
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Let W ⊂ K◦
alg be a K-affinoid annulus, let Y be a relatively semialgebraic subset

of W ∩K and let f, g ∈ OK(W ); then there is a finite cover U of W by K-affinoid
annuli, a finite cover XU of each set U ∩Y , U ∈ U , by relatively semialgebraic sets,
and for each U ∈ U and X ∈ XU , there is an element hUX ∈ OK(U) such that

D(f, g)|(X∩U∩Y ) = hUX |(X∩U∩Y )

and
‖hUX‖sup,U ≤ ε.

By Lemma 3.6, OK(W ) is a principal ideal domain, so by the Nullstellensatz (see
[2], Proposition 7.1.3.1,) for h ∈ OK(W ), if h(a) = 0, then there is an h′ ∈ OK(W )
such that h = (ξ − a)h′. We are only concerned with the values of the ratio f/g,
except possibly at the finitely many points of the set Z of common “real” (i.e., K-
rational) zeros of the pair f and g, which we can handle separately. Hence, using
Lemma 3.6 and the Nullstellensatz to factor out any common factors and replacing
Y by Y \ Z, we may assume that f and g have no common zero on W .

By Lemma 3.6 and Lemma 3.3, the sets

A := {x ∈W : |f(x)|t ≤ ε |g(x)|t} and
B := {x ∈W : |f(x)|t ≥ ε |g(x)|t}

are each finite unions of K-affinoid annuli. Since W = A ∪ B, intersecting with
these K-affinoid annuli, we can reduce to the cases that W ⊂ A or W ⊂ B.
Case 1. W ⊂ A.

Since f and g have no common zero on W , by the condition defining A, g is a
unit in OK(W ), so f/g ∈ OK(W ) and ‖f/g‖sup,W ≤ ε. Put

X1 := Y ∩ {x ∈W : |f(x)|< ≤ |g(x)|<}
X2 := Y ∩ {x ∈W : |f(x)|< > |g(x)|<};

then by Lemma 3.9, X1 and X2 are relatively semialgebraic in W . Put

hWX1 := f/g and hWX2 := 0

and note that

D(f, g)|X1 = hWX1 |X1 and D(f, g)|X2 = hWX2 |X2 .

Case 2. W ⊂ B.
By the condition defining B, for all x ∈W ,

|f(x)|< > |g(x)|< .

Put
hWY := 0;

then
D(f, g)|(Y ∩W ) = hWY |(Y ∩W ).

�

The following technical lemmas are needed for the proof of Theorem 3.16.

Lemma 3.12. Let U1, . . . , Un ⊂ K◦
alg be K-affinoid annuli that cover K◦◦. Then

there are real numbers a and b, −1 ≤ a < 0 < b ≤ 1, such that U1, . . . , Un cover
the closed interval [a, b].
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Proof. Let C ⊂ K◦ be a collection of “centers,” one for each “hole” that meets K
in each of the Ui. Let a ∈ R, −1 ≤ a < 0, satisfy c < a for all c ∈ C with |c|t = 1
and c < 0, and let b ∈ R, 0 < b ≤ 1, satisfy b < c for all c ∈ C with |c|t = 1 and
c > 0. �

Lemma 3.13. Let U1, . . . , Un ⊂ K◦
alg be K-affinoid annuli that cover [a, b], a, b ∈

K. Then there is a finite collection X of closed intervals with endpoints in K such
that X covers [a, b] and X refines {Ui ∩ [a, b]}1≤i≤n.

Proof. Induct on n. If n = 1, there is nothing to prove. At least one of the Ui

must have radius at least |b− a|t, so by renumbering, we may assume that the
“outer disc” of Un contains [a, b]. Let V ◦◦1 , . . . , V ◦◦m be the (open) “holes” of Un

and let V ◦1 , . . . , V
◦
m be the corresponding closed discs. Each V ◦◦j is covered by

U1, . . . , Un−1, so by translating and rescaling and Lemma 3.12, there are aj , bj ∈
(K ∩ V ◦j ) \ V ◦◦j such that V ◦◦j ∩K ⊂ [aj , bj ] and U1, . . . , Un−1 cover [aj , bj ]. Note
that [a, b] \

⋃m
j=1(aj , bj) is the union of a finite collection of closed intervals with

endpoints in K, all contained in Un. Hence, by induction, we are done. �

Lemma 3.14. Let U be a finite cover of [−1, 1] by K-affinoid annuli. For each
U ∈ U , suppose that XU ⊂ (U ∩K) is a relatively semialgebraic set. Suppose for
each U, V ∈ U that

(3.15) XU ∩ V = XV ∩ U.
Then [−1, 1] ∩

⋃
U∈U XU is semialgebraic.

Proof. By Lemma 3.13, there are elements a0, . . . , an ∈ K with −1 = a0 < a1 <
· · · < an = 1 such that for each i = 0, . . . , n − 1, there is some Ui ∈ U such that
[ai, ai+1] ⊂ Ui. Note that XUi ∩ [ai, ai+1] is semialgebraic and condition (3.15)
implies that

[−1, 1] ∩
⋃

U∈U
XU =

⋃
i

([ai, ai+1] ∩XUi
).

�

Theorem 3.16. The structure K is o-minimal in LD
an.

Proof. Let X ⊂ K be LD
an-definable. It is sufficient to consider the case X ⊂

[−1, 1]. By the quantifier elimination theorem, Theorem 2.1, X is quantifier-free
LD

an-definable. Thus by Lemma 3.10 and Lemma 3.9, there is a finite cover U of
[−1, 1] by K-affinoid annuli, and for each U ∈ U , the set XU := U ∩X is relatively
semialgebraic. Therefore, by Lemma 3.14, X is semialgebraic. �

Fix a ∈ K. Note that if one replaces, in the definition of LD
an, the rings of power

series convergent in polydiscs of radius greater than 1 by the rings of power series
convergent in polydiscs of radius greater than |a|t, one obtains exactly the same
class of definable sets. Indeed, if f(ξ) converges on a polydisc of radius greater than
|a|t then g(η) := f(a · η) ∈ K〈〈η〉〉 and for all x, f(x) = g(D(x, a)). In particular, if
a = t, then each element of R[[ξ]] converges in |·|t on a polydisc of radius greater than
|t|t (in fact, f converges on all of (K◦◦)n.) Hence f defines a function [−t, t]n → K◦.
The following is thus an immediate corollary of Theorem 3.16.

Corollary 3.17. Let L be the language of ordered fields with function symbols for
the elements of

⋃
n R[[ξ1, . . . , ξn]], interpreted as analytic functions on [−t, t]n; then

K is o-minimal in the language L.
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