PURDUE UNIVERSITY · MA 16200 CALCULUS II

Quiz 14

Please answer the following questions in complete sentences in a clearly prepared manuscript. (No credits for the answer without nessary explaination.)

Problem 0: Quiz checklist

Please write the section number, your name and special number on the **back**.

Problem 1: Integral Test

(5 points) The series $\sum_{n=1}^{\infty} \frac{4n+5}{n^2}$ converges by the integral test. True or False? (No reason needed) **solution**: False, you can see it by the comparison test with $\sum_{n=1}^{\infty} \frac{4}{n}$. (15 Points) Which of the following series converge? You must state clearly what is f(x) and calculate $\int_n^{\infty} f(x) dx$ (I) $\sum_{n=1}^{\infty} \frac{1}{3n^{\frac{1}{5}}}$, **solution**: Converge. $f(x) = \frac{1}{3x^{\frac{5}{4}}}$ $\int_1^{\infty} f(x) dx = \int_1^{\infty} \frac{1}{3x^{\frac{5}{4}}} dx = -\frac{4}{3} * x^{-\frac{1}{4}} |_1^{\infty} < \infty$ (II) $\sum_{n=1}^{\infty} \frac{(\ln(n))^2}{n}$, Diverge $f(x) = \frac{(\ln(x))^2}{x}$ $\int_1^{\infty} f(x) dx = \int_1^{\infty} \frac{(\ln(x))^2}{x} dx = \frac{(\ln(x)^3)}{3} |_1^{\infty} = \infty$ (III) $\sum_{n=1}^{\infty} \frac{2}{n+4}$, Diverge $f(x) = \frac{2}{x+4}$ $\int_1^{\infty} f(x) dx = \int_1^{\infty} \frac{2}{x+4} dx = 2\ln(x+4)|_1^{\infty} = \infty$