Techniques of Integration

Xinyu Liu

Purdue University

April 24, 2018

$$\int u dv = uv - \int v du$$

• Why we need integration by part?

$$\int u dv = uv - \int v du$$

- Why we need integration by part?
 To obtain a simpler integral than the one we started with.
- Find $\int x \sin(x) dx$

- Use integration by part twice or more.
 - \circ Find $\int t^2 e^t dt$

- Use integration by part twice or more.
 - Find $\int t^2 e^t dt$
- Use integration by part twice or more until come back.
 - Find $\int e^x \sin(x) dx$

- Use integration by part twice or more.
 - Find $\int t^2 e^t dt$
- Use integration by part twice or more until come back.
 - Find $\int e^x \sin(x) dx$
- Combine integration by part with trig integration.
 - Find $\int \sec^3(x) dx$

- Types of Trig Integration
 - $\circ \int \sin^m(x) \cos^n(x) dx$
 - $\circ \int \tan^m(x) \sec^n(x) dx$
 - $\circ \int \sin(mx) \cos(nx) dx, \int \sin(mx) \sin(nx) dx \text{ and } \int \cos(mx) \cos(nx) dx$

- $\int \sin^m(x) \cos^n(x) dx$
 - o **m** odd or **n** odd. Find $\int \sin^4(x) \cos^5(x) dx$ Strategy: Extract one $\cos(x)$ and use the substitution $u = \sin(x)$ via the equality $\cos^2(x) = 1 - \sin^2(x)$.
 - m even and n even. Find $\int \sin^2(x) \cos^2(x) dx$ Strategy: Using the double angle formula to drop the degree.

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2x))$$
$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$$

- $\int \tan^m(x) \sec^n(x) dx$
 - ∘ $n \neq 0$ even. Find $\int \tan^3(x) \sec^4(x) dx$
 - \circ $\mathbf{n} = \mathbf{0}$. Find $\int \tan(x) dx$, $\int \tan^3(x) dx$
 - m odd & n odd. Find $\int \tan^3(x) \sec^5(x) dx$
 - o **m** even & **n** odd. Find $\int \sec(x) dx$, $\int \sec^3(x) dx$

- $\int \sin(mx) \cos(nx) dx$
- $\int \sin(mx) \sin(nx) dx$
- $\int \cos(mx)\cos(nx)dx$ Strategy: Using the formulas accordingly,

$$\sin(mx)\cos(nx) = \frac{1}{2}[\sin((m-n)x) + \sin((m+n)x)]$$

$$\sin(mx)\sin(nx) = \frac{1}{2}[\cos((m-n)x) - \cos((m+n)x)]$$

$$\cos(mx)\cos(nx) = \frac{1}{2}[\cos((m-n)x) + \cos((m+n)x)]$$

we split the multiplication of sin and cos into the addition.

• Find $\int \sin(4x)\cos(5x)dx$

•
$$\sqrt{a^2 - x^2}$$

 $u = a \sin(\theta)$, $du = a \cos(\theta)$, $\sqrt{a^2 - x^2} = a \cos(\theta)$

•
$$\sqrt{a^2 + x^2}$$

 $u = a \tan(\theta)$, $du = a \sec^2(\theta)$, $\sqrt{a^2 + x^2} = a \sec(\theta)$

•
$$\sqrt{x^2 - a^2}$$

 $u = a \sec(\theta)$, $du = a \tan(\theta) \sec(\theta)$, $\sqrt{x^2 - a^2} = a \tan(\theta)$

• What's the right substitution for $\int \frac{1}{x^2\sqrt{x^2+4}}dx$

• What's the right substitution for $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$ $x = 2 \tan(\theta)$

- What's the right substitution for $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$? $x = 2 \tan(\theta)$
- What's the right substitution of $\int \frac{1}{\sqrt{x^2-a^2}} dx$?

- What's the right substitution for $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$? $x = 2 \tan(\theta)$
- What's the right substitution of $\int \frac{1}{\sqrt{x^2-a^2}} dx$? $x = a \sec(\theta)$

- What's the right substitution for $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$? $x = 2 \tan(\theta)$
- What's the right substitution of $\int \frac{1}{\sqrt{x^2-a^2}} dx$? $x = a \sec(\theta)$
- What's the right substitution of $\int \frac{x}{\sqrt{3-2x-x^2}} dx$?

- What's the right substitution for $\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$? $x = 2 \tan(\theta)$
- What's the right substitution of $\int \frac{1}{\sqrt{x^2-a^2}} dx$? $x = a \sec(\theta)$
- What's the right substitution of $\int \frac{x}{\sqrt{3-2x-x^2}} dx$? $x+1=2\sin(\theta)$

Strategy for Integration

- Simplify the Integrand if Possible
- Look for an Obvious Substitution
- Clasify the Integrand according to Its Form
 - Trigonmetric functions
 - Rational functions
 - Integration by parts
 - Radicals
- What shold I do when they don't work?

Strategy for Integration

• Try Again!!!

- Try substitution
- Try parts
- Manipulate the integrand
- Relate the problem to previous problems
- Use several methods

