

Xinyu Liu

Purdue University

April 26, 2018

$$\sum_{i=0}^{\infty} a_n$$

• What is the first step to determine the convergence of a series?

$$\sum_{i=0}^{\infty} a_n$$

- What is the first step to determine the convergence of a series?
- Test for divergence.

〉〕a_n

- What is the first step to determine the convergence of a series?
- Test for divergence.
 - $\lim_{n\to\infty} a_n \neq 0$, the series must diverge.
 - $\lim_{n \to \infty} a_n = 0$, the Test for Divergence is inconclusive. Just because the n-th term goes to zero does not mean the series necessarily converges. We need more tests to determine if a series converges.

〉]an

- What is the first step to determine the convergence of a series?
- Test for divergence.
 - $\lim_{n\to\infty} a_n \neq 0$, the series must diverge.
 - $\lim_{n \to \infty} a_n = 0$, the Test for Divergence is inconclusive. Just because the n-th term goes to zero does not mean the series necessarily converges. We need more tests to determine if a series converges.
- Sometimes you can not apply it directly:

$$\sum_{i=0}^{\infty} \frac{8n!}{e^{n^2}}$$

5 of 21

• What tests you can use after the first step (test for divergence)?

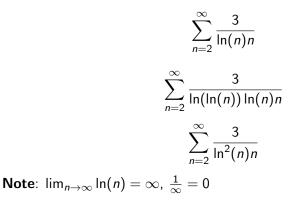
- What tests you can use after the first step (test for divergence)?
- Geometric Series
- Integral Test
- p-series
- Direct Comparison Test
- Limit Comparison Test (Taylor series)
- Alternating Series Test
- Ratio Test
- Root Test

Geometric Series

- This formula not only tell you the convergence, but also can give you the **exact value** of series or function.
- Find the sum of series $\sum_{i=0}^{\infty}$
- To what simple function f(x) does $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$ converge near x = 0?
- Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$

Integral Test

- When a_n contains some ln(n) or ln(ln(n)) terms
- Determine whether the series is convergent or divergent



Comparison Test

- Combine the comparison test with *p*-series and Taylor series.
- Determine whether the series is convergent or divergent

$$\sum_{n=1}^{\infty} \frac{\arctan(n)}{n^{1.6}}$$
$$\sum_{n=2}^{\infty} \frac{2n+7^n}{3n+8^n}$$
$$\sum_{n=2}^{\infty} \frac{2n+(0.5c)^n}{3n+c^n}$$

Alternating Series Test

- a_n has the alternating term $(a_n = (-1)^n b_n$ where $b_n > 0)$
- Determine whether the series is conditionally convergent, absolutely convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4n+5}$$
$$\sum_{n=2}^{\infty} \frac{(-1)^n (3n+2)}{4n^5+n^3}$$
$$\sum_{n=2}^{\infty} \frac{(-1)^n 3n}{4n^2+5}$$

Estimate the sum with given error

$$|S - S_n| < b_{n+1}$$

11 of 21

Ratio Test

- a_n has factorial term like n!, (2n)! or x^n .
- Determine whether the series is convergent or divergent

Root Test

- a_n has term like x^n , x^{n^2} .
- Determine whether the series is convergent or divergent

$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$
$$\sum_{n=2}^{\infty} 7\left(1+\frac{1}{n}\right)^{n^2}$$

Power Series

- Series $\sum a_n(x)$ is a function f(x). $\sum x^n = \frac{1}{1-x}$
- Series $\sum a_n$ is a number. $\sum (1/2)^n = \frac{1}{1-1/2} = 2$

Thus, for series containing variable x, there are convergence interval or radius.

And for series only witout x, there are only convergent or divergent.

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \ |x-a| < R$$

then its coefficients are given by the formula $c_n = \frac{f^{(n)}(a)}{n!}$.

- Find a Taylor or Maclaurin series for a function
- Find a binomial series.
- Use a basic list of Taylor series to find other Taylor series or evaluate the limit ot integrand.

Find a Taylor or Maclaurin series for a function.

- Use a list to find the pattern after successive differentiation of f(x)
- Find the associated radius of convergence *R*. (Ratio test)
- Find the Taylor series for $f(x) = \frac{4}{x}$ centered at the given value of a = 2

Find a binomial series.

- Use the binomial series to expand the function as a power series.
- Follow up question wich is based on the answer you have computed.
- (a1)Use the binomial series to expand $\frac{7}{\sqrt{(1-x^2)}}$ (b1)Use part (a1) to find the Maclaurin series for 7 arcsin(x)
- (a2)Use the binomial series to expand $\frac{5}{\sqrt[4]{1+x}}$ (b2)Use part (a2) to estimate $\frac{5}{\sqrt[4]{11}}$ correct to three decimal places.

Use a basic list of Taylor series to find other Taylor series or evaluate the limit ot integrand.

• Given a table of Maclaurin series to obtain the Maclaurin series for given function.

$$f(x) = 3\sin 2(x)$$

• Evaluate the indefinite integral as an infinite series.

$$\int \frac{e^x - 1}{7x} dx$$

Use series to evaluate the limit.

$$\lim_{x\to 0}\frac{1-\cos(5x)}{1+5x-e^{5x}}$$

18 of 21

Work

Since work=force×distance, we can rewrite the work as $W = \int_{a}^{b} f(x) dx$, when the force is a function about distance x.

- Stretch a spring.
 - Hooke's Law $f(x) = k(x x_0) = k\delta x$.
- Pump water out of the tank.
 - Find the volume of layer and distance to the top.

Vector

Dot Product a ⋅ b = |a||b| cos(θ)
a ⋅ b = 0 if and only if a and b are orthogonal.

• Cross Product
$$c = a \times b = < \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} >, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}.$$

- \circ Right-hand Rule to find the direction of *c*.
- $\circ a \times b = 0$ if and only if a and b are parallel.
- Triple Products $a \cdot (b \times c)$
 - $V = |a \cdot (b \times c)|$

Arc Length

• Given y = f(x)• $L = \int_a^b \sqrt{1 + [f'(x)]^2} dx$ • Given x = g(y)• $L = \int_c^d \sqrt{1 + [g'(y)]^2} dy$ • Given x = x(t), y = y(t)• $L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$ • Given $r = f(\theta)$ • $L = \int_a^b \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$

