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Subspaces, Basis, Dimension, and Rank

Definition. A subspace of Rn is any collection S of vectors in Rn such that

1. The zero vector ~0 is in S.

2. If ~u and ~v are in S, then ~u+~v is in S (that is, S is closed under addition).

3. If ~u is in S and c is a scalar, then c~u is in S (that is, S is closed under
multiplication by scalars).

Remark. Property 1 is needed only to ensure that S is non-empty; for
non-empty S property 1 follows from property 3, as 0~a = ~0.

Theorem 3.19. Let ~v1, ~v2, . . . , ~vk be vectors inRn. Then span (~v1, ~v2, . . . , ~vk)
is a subspace of Rn.

Subspaces Associated with Matrices

Definition. Let A be an m× n matrix.

1. The row space of A is the subspace row(A) of Rn spanned by the rows
of A.

2. The column space of A is the subspace col(A) of Rm spanned by the
columns of A.

If we need to determine if ~b belongs to col(A), this is actually the same
problem as whether ~b ∈ span of the columns of A; see the method on p. 9.

If we need to determine if ~b belongs to row(A), then we can apply the
same method as above to the columns ~bT and col(AT ). Another method for
the same task is described in Example 3.41 in the Textbook.

Theorem 3.20. Let B be any matrix that is row equivalent to a matrix A.
Then row(B) =row(A).

See the theorem on p. 13.

Theorem 3.21. Let A be an m×n matrix and let N be the set of solutions
of the homogeneous linear system A~x = ~0. Then N is a subspace of Rn.

Definition. Let A be an m×n matrix. The null space of A is the subspace
of Rn consisting of solutions of the homogeneous linear system A~x = ~0. It is
denoted by null(A).



MATH10212 • Linear Algebra • Brief lecture notes 31

Theorem. Let B be any matrix that is row equivalent to a matrix A. Then
null(B) =null(A).

This is the Fund. Th. on e.r.o.s, see p. 4.

E.g., the set {[x1, x2, x3] | x1 + x2 + x3 = 0} is automatically a subspace
of R3 — no need to verify those closedness properties 1, 2, 3, as this is the
null space of the homogeneous system x1 + x2 + x3 = 0 (consisting of one
equation).

Basis

Definition. A basis for a subspace S of Rn is a set of vectors in S that

1. spans S and

2. is linearly independent.

Remark. It can be shown that this definition is equivalent to each of the
following two definitions:

Definition′. A basis for a subspace S of Rn is a set of vectors in S that
spans S and is minimal with this property (that is, any proper subset does
not span S).

Definition′′. A basis for a subspace S of Rn is a set of vectors in S that is
linearly independent and is maximal with this property (that is, adding any
other vector in S to this subset makes the resulting set linearly dependent).

Method for finding a basis of row(A). Reduce A to r.r.e.f. R by e.r.o.s.
(We know row(A) = row(R).) The non-zero rows of R, say, ~b1, . . . ,~br, form a
basis of row(R) = row(A). Indeed, they clearly span row(R), as zero rows
contribute nothing. The fact that the non-zero rows are linearly indepen-
dent can be seen from columns with leading 1s: in a linear combination∑

ci
~bi the coordinate in the column of the 1st leading 1 is c1, since there are

only zeros above and below this leading 1; also the coordinate in the column
of the 2nd leading 1 is c2, since there are only zeros above and below this
leading 1; and so on. If

∑
ci
~bi = ~0, then we must have all ci = 0.

Moreover, the same is true for any r.e.f. Q (not necessarily reduced r.e.f.):
The non-zero rows of Q form a basis of row(Q)=row(A).

1st Method for finding a basis of col(A). Use the previous method
applied to AT .
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2nd Method for finding a basis of col(A). We know that e.r.o.s do not
alter the solution set of the homogeneous system A~x = ~0. Every solution
of it can be regarded as a dependence of the columns of A. Thus, after
reducing by e.r.o.s to r.r.e.f. R, we shall have exactly the same dependences
among the columns as for A. For R, the columns of leading 1s clearly form
a basis of col(R). Then the corresponding columns of A will form a basis of
col(A). (WARNING: col(R) 6= col(A) in general!)

Again, the same is true for any r.e.f. Q (not necessarily reduced r.e.f.):
the columns of leading entrie form a basis of col(Q) and therefore the cor-
responding columns of A form a basis of col(A).

Method for finding a basis of null(A). Express leading variables via
free variables (independent parameters). Give these parameters values as
in the columns of the identity matrix If , where f is the number of free
variables, and compute the values of leading variables. The resulting f
vectors form a basis of null(A).

E.g., suppose the general solution (=null(A)) is




s + 2t + 3u
s
t

2u
u




(that is,

the free variables are x2, x3, x5, while leading are x1, x4). We give s, t, u the
values 1, 0, 0, then 0, 1, 0, then 0, 0, 1. The resulting vectors are



1
1
0
0
0




;




2
0
1
0
0




;




3
0
0
2
1




, which form a basis of null(A).

Dimension and Rank

Theorem 3.23. The Basis Theorem
Let S be a subspace of Rn. Then any two bases for S have the same

number of vectors.

Warning: there is blunder in the textbook – the existence of a
basis is not proven. A correct statement should be

Theorem 3.23+. The Basis Theorem
Let S be a non-zero subspace of Rn. Then

(a) S has a finite basis;

(b) any two bases for S have the same number of vectors.
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For the examination, no need to have proof. But, for the com-
pleteness of exposition, I give a proof of existence of basis, Theo-
rem 3.23+(a), here.

The existence of basis. Let S be a non-zero subspace (that is, S does
not consist of zero vector only) of Rn. Then S has a basis.

Proof. Consider all linearly independent systems of vectors in S. Since
S contains a non-zero vector ~v 6= ~0, there is at least one such system: ~v.
Now, if ~v1, . . . , ~vk is a system of linearly independent vectors in S, we have
k 6 n by Theorem 2.8.

We come to a crucial step of the proof: choose a system of linearly in-
dependent vectors ~v1, . . . , ~vk in such way that k is maximal possible and
consider

U = span(v1, . . . , vk).

Observe that U ⊆ S. If U = S, then ~v1, . . . , ~vk is a basis of S by definition of
the basis, and our theorem is proven. Therefore we can assume that U 6= S
and chose a vector ~v ∈ S \ U (in S but not in U ).

The rest of proof of Theorem 3.23 can be taken from the text-
book.

Definition. If S is a subspace of Rn, then the number of vectors in a basis
for S is called the dimension of S, denoted dim S.

Remark. The zero vector ~0 by itself is always a subspace of Rn. (Why?)
Yet any set containing the zero vector (and, in particular, {~0}) is linearly
dependent, so {~0} cannot have a basis. We define dim{~0} to be 0.

Examples. 1) As we know, the n standard unit vectors form a basis of Rn;
thus, dimRn = n.

2) If ~v1, . . . , ~vk are linearly independent vectors, then they form a basis
of span(~v1, . . . , ~vk), so then dim span(~v1, . . . , ~vk) = k.

We shall need a slightly more general result:

Theorem 3.23++. (a) If v1, . . . , vk are linearly independent vectors in a
subspace S, then they can be included in (complemented to) a basis of S; in
particular, k ≤ dim S.

(b) If one subspace is contained in another, S ⊆ T , then dim S ≤ dim T .
If both S ⊆ T and dim S = dim T , then S = T .

Example. If we have some n linearly independent vectors ~v1, . . . , ~vn in Rn,
they must also form a basis of Rn, as the dimension of their span is n and
we can apply Theorem 3.23++(b).
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Theorem 3.24. The row and column spaces of a matrix A have the same
dimension.

Definition The rank of a matrix A is the dimension of its row and column
spaces and is denoted by rank(A).

Theorem 3.25. For any matrix A,

rank (AT ) = rank (A)

Definition The nullity of a matrix A is the dimension of its null space
and is denoted by nullity(A).

Theorem 3.26. The Rank–Nullity Theorem
If A is an m× n matrix, then

rank (A) + nullity (A) = n

Theorem 3.27. The Fundamental Theorem of Invertible Matrices
Let A be an n× n matrix. The following statements are equivalent:

a. A is invertible.

b. A~x = ~b has a unique solution for every ~b in Rn.

c. A~x = ~0 has only the trivial solution.

d. The reduced row echelon form of A is In.

e. A is a product of elementary matrices.

f. rank(A)= n.

g. nullity(A)= 0.

h. The column vectors of A are linearly independent.

i. The column vectors of A span Rn.

j. The column vectors of A form a basis for Rn.

k. The row vectors of A are linearly independent.

l. The row vectors of A span Rn.

m. The row vectors of A form a basis for Rn.
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Coordinates

Theorem 3.29. Let S be a subspace of Rn and let

B = {~v1, ~v2, . . . , ~vk}

be a basis for S. For every vector ~v in S, there is exactly one way to write ~v
as a linear combination of the basis vectors in B:

~v = c1~v1 + c2~v2 + · · ·+ ck~vk

Definition. Let S be a subspace of Rn and let

B = {~v1, ~v2, . . . , ~vk}

be a basis for S. Let ~v be a vector in S, and write

~v = c1~v1 + c2~v2 + · · ·+ ck~vk

Then c1, c2, . . . , ck are called the coordinates of ~v with respect to B, and col-
umn vector

[~v]B =




c1

c2

...
ck




is called the coordinate vector of ~v with respect to B. (Note, although ~v has
n “original” coordinates as a vector in Rn, the same vector in the basis B of
the subspace S of dimension k has k coordinates.)


