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Genericity of Representations of p-Adic
Sp2n and Local Langlands Parameters

Baiying Liu

Abstract. Let G be the F-rational points of the symplectic group Sp2n, where F is a non-Archimedean

local field of characteristic 0. Cogdell, Kim, Piatetski-Shapiro, and Shahidi constructed local Lang-

lands functorial lifting from irreducible generic representations of G to irreducible representations

of GL2n+1(F). Jiang and Soudry constructed the descent map from irreducible supercuspidal repre-

sentations of GL2n+1(F) to those of G, showing that the local Langlands functorial lifting from the

irreducible supercuspidal generic representations is surjective. In this paper, based on above results,

using the same descent method of studying SO2n+1 as Jiang and Soudry, we will show the rest of local

Langlands functorial lifting is also surjective, and for any local Langlands parameter φ ∈ Φ(G), we

construct a representation σ such that φ and σ have the same twisted local factors. As one application,

we prove the G-case of a conjecture of Gross-Prasad and Rallis, that is, a local Langlands parameter

φ ∈ Φ(G) is generic, i.e., the representation attached to φ is generic, if and only if the adjoint L-

function of φ is holomorphic at s = 1. As another application, we prove for each Arthur parameter ψ,

and the corresponding local Langlands parameter φψ , the representation attached to φψ is generic if

and only if φψ is tempered.

1 Introduction

Let G be a connected reductive algebraic group split over F, where F is a non-Arch-

imedean local field of characteristic 0, and let G = G(F). Let Π(G) be the set of all

equivalence classes of irreducible admissible representations of G.

Since Sp∨
2n(C) = SO2n+1(C), GL∨

2n+1(C) = GL2n+1(C), and there is a natural em-

bedding i : SO2n+1(C) → GL2n+1(C), by the local Langlands functoriality conjecture,

there would have a local functorial map l : Π(Sp2n) → Π(GL2n+1).

Let Π
(g)(Sp2n) be the subset of Π(Sp2n) consisting of irreducible generic repre-

sentations of Sp2n. In [CKP-SS], Cogdell, Kim, Piatetski-Shapiro, and Shahidi con-

structed local Langlands functorial lifting l from this subset to Π
(g)(GL2n+1), which is

a subset of Π(GL2n+1) (explicit definition will be given Section 4.5), such that

L(σ × π, s) = L(l(σ) × π, s), ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ),

for any irreducible generic representation π of GLk(F), with k ∈ Z>0, where ψ is

a fixed nontrivial character of F. The left-hand side are the local factors defined

by Shahidi [S1], and the right-hand side are the local factors defined by Jacquet,

Piatetski-Shapiro, and Shalika [JP-SS]; both sides are the Langlands local factors with

respect to the standard representations, called standard local factors.
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In [JngS3], Jiang and Soudry constructed the descent map from supercuspidal

representations of GL2n+1(F) to irreducible supercuspidal generic representations of

Sp2n(F), showing that the local Langlands functorial lifting from irreducible super-

cuspidal generic representations of Sp2n(F) is surjective.

The first aim of this paper is to prove in Section 4 that the rest of local Lang-

lands functorial lifting is also surjective. Note that for SO2n+1, in [JngS2], Jiang and

Soudry have already constructed corresponding local Langlands functorial lifting,

and proved that it is actually bijective. To prove the surjectivity in the Sp2n-case, we

use the same descent method as in [JngS2]. Since the Jiang’s conjecture (a refinement

of local converse theorem conjecture; see [Jng] and Section 3) of this case has not

been proved, while the SO2n+1-case was proved in [JngS1], the local functorial lifting

here may not be injective. We will discuss Jiang’s conjecture further in Section 3. Us-

ing the same method as in [JngS1], we can show that the equality of local γ-factors

of generic representations of Sp2n(F) twisted by any irreducible supercuspidal repre-

sentation τ of GLl(F) with l = 1, 2, . . . , 2n, can be reduced to supercuspidal generic

representations, see Theorem 3.5.

Let WF be the Weil group associated with F. Let WF ×SL2(C) be the Weil–Deligne

group, see [Kn, Ku, GR], and let G∨(C) be the Langlands dual group of G. A homo-

morphism φ from WF ×SL2(C) to G∨(C) is called admissible if it can be decomposed

into a direct sum of irreducible representations of WF × SL2(C)

φ =
⊕

i

φi ⊗ Swi
,

which satisfy the following conditions:

(i) the representations φi are continuous complex representations of WF ;

(ii) φi(WF) consists of semi-simple elements;

(iii) Swi
is the unique irreducible algebraic complex representations of SL2(C) of di-

mension wi .

Let Φ(G) be the set of conjugacy classes of such admissible homomorphisms. The

elements in the set Φ(G) are called the local Langlands parameters for G. Then the

local Langlands reciprocity conjecture that associates a local L-packet Π(φ) with each

φ ∈ Φ(G) implies the parametrization relation between Φ(G) and Π(G). This con-

jecture implies the arithmetic aspects of representations of p-adic groups.

For G = GLn, Zelevinsky [Z] reduced this conjecture to the supercuspidal case,

which was proved by Harris and Taylor [HT] and by Henniart [H1]. Note that for

each φ ∈ Φ(GLn), there is only one element in Π(φ). See [Ku] for more discussion

in this case.

For G = SO2n+1, this conjecture was studied by Jiang and Soudry [JngS2]. For

each local Langlands parameter φ, they associated an irreducible admissible repre-

sentation σ of G, such that φ and σ have the same twisted local factors.

The second aim of this paper is to construct in Section 5 an irreducible admissible

representation σ of Sp2n(F), for any local Langlands parameter φ ∈ Φ(Sp2n) such

that φ and σ have the same twisted local factors, as in [JngS2]. We state the result.
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Let Π
′(Sp2n) be the set of equivalence classes of irreducible admissible represen-

tations of Sp2n(F), which are the Langlands quotients of induced representations

δ(Σ1) × δ(Σ2) × · · · × δ(Σ f ) ⋊ σ(t),

where σ(t) is an irreducible generic tempered representation of Sp2n∗(F), and

Σ1,Σ2, . . . ,Σ f are imbalanced segments, whose exponents are positive and in non-

increasing order, and δ(Σi) is the essentially square-integrable representation of

GLni
(F) associated with Σi for i = 1, 2, . . . , f (n = n∗ +

∑n
i=1 ni).

Theorem 1.1 There is a surjective map ι from Π
′(Sp2n) to the set Φ(Sp2n). Moreover,

the map ι preserves the local factors

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s) and ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ),

for all σ ∈ Π
′(Sp2n) and all irreducible admissible representations τ of GLk(F), with all

k ∈ Z>0. Here r−1(τ ) ∈ Φ(GLk), corresponding to τ by the local Langlands reciprocity

map for GLk as in [HT, H1].

In [JngS2], as an application of their result, Jiang and Soudry proved the SO2n+1-

case of a conjecture of Gross-Prasad and Rallis, that is, a local Langlands parameter

φ ∈ Φ(SO2n+1) is generic, i.e., there is a generic representation attached to φ if and

only if the adjoint L-function of φ is holomorphic at s = 1. As an application, we

prove the Sp2n-case of this conjecture. This is the third part of this paper (Section 6).

Note that this gives a criterion for determining the genericity of the representation

attached to φ in Section 5.

Theorem 1.2 For each local Langlands parameter φ ∈ Φ(Sp2n), the representation

σ attached to φ in Theorem 1.1 is generic if and only if the local adjoint L-function

L(AdSp
2n

◦ φ, s) is regular at s = 1.

Recently, Gross and Reeder [GR] proved this conjecture for general connected

reductive groups and for discrete parameters.

As another application of this paper, for each Arthur parameter (A-parameter)

ψ, and the corresponding local Langlands parameter (L-parameter) φψ , we give an-

other criterion for determining the genericity of the representation attached to φψ in

Section 5, besides the criterion in Theorem 1.2. Explicit definitions will be given in

Section 7. This is the fourth main part of this paper (Section 7).

Theorem 1.3 For each A-parameter ψ and the corresponding L-parameter φψ , the

representation attached to φψ in Section 5 is generic if and only if φψ is tempered.

First, for each σ ∈ Π
(g)(Sp2n) with L-parameter φσ , we will compute its Aubert in-

volution σ̂ and the corresponding L-parameter φbσ . Then we will prove Theorem 1.3.

And if φψ is tempered, then there is also an A-parameter ψ̂ such that φbψ = φbσ , and

ψ and ψ̂ are symmetric. The SO2n+1-case of these results were proved By Ban [Ban2];

the same method is used here.
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There are two main ingredients for this paper, the descent map given by Jiang and

Soudry [JngS3] (see Theorem 4.2) and the classification theory of generic represen-

tations of Sp2n(F) given by Muic [M2].

Finally, we describe the structure of this paper. In Section 2, we give some no-

tation and preliminaries. In Section 3, we discuss Jiang’s conjecture for Sp2n(F). In

Section 4, we prove the surjectivity of the rest of functorial lifting, and write down

the corresponding local Langlands parameters for each case of representations. In

Section 5, we discuss the structure of local Langlands parameters and prove Theorem

1.1. In Section 6, we prove Theorem 1.2. In Section 7, we prove Theorem 1.3.

2 Notation and Preliminaries

In this paper, we mainly follow the notation in [JngS2, Jng, Z].

Let F be a non-archimedean local field of characteristic zero. We fix a non-trivial

character ψ of F. Sp2n(F) denotes the group of F-rational points of the split group

Sp2n. From now on, let G = Sp2n(F).

Note that here we use St(τ , 2m + 1) to denote δ[v−mτ , vmτ ] in [JngS2].

In this paper, all representations in the lifting images are required to have trivial

central characters.

3 The Sp(2n)-case of Jiang’s Conjecture

In this section, we discuss the Sp2n-case of a conjecture of Jiang, see [Jng].

The notation in this section follows [Jng]. Given an irreducible admissible repre-

sentation σ of G, define the set of generic characters attached to σ to be

F(π) = {ψU |σ is ψU -generic},

where ψU ’s are characters of U .

Conjecture 3.1 (Jiang) For any irreducible admissible generic representation σ and

σ ′ of G, the following two conditions hold:

(i) the intersection of F(σ) and F(σ ′) is not empty, and

(ii) the twisted local γ-factors are equal, i.e. γ(s, σ × τ , ψ) = γ(s, σ ′ × τ , ψ) holds

for all irreducible supercuspidal representation τ of GLl(F) with l = 1, 2, . . . , n,

where r is F-rank of G.

Then σ ∼= σ ′.

Remark 3.2 For SO2n+1, in each conjectural local L-packet, there exists at most one

generic member. The main reason for this is the proved local converse theorem for

SO2n+1(F) in [JngS1], i.e., the SO2n+1-case in Jiang’s conjecture (Conjecture 3.1). But

for Sp2n, Jiang’s conjecture has not been proved, so different generic representations

may share the same twisted γ-factors, i.e., twisted γ-factors may not be able to dis-

tinguish two generic representations. This is the key point of G that is different from

GLn(F) and SO2n+1(F), which we have to always keep in mind. This is also the reason
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that the local Langlands functorial lifting from irreducible generic representations of

G to irreducible representations of GL2n+1(F) may not be injective.

This conjecture is a refinement of the local converse theorem conjecture. For the

rest of this section, using same method as in [JngS1], i.e., using information of poles

of local γ-factors, we will show that the equality of local γ-factors of generic repre-

sentations twisted by any irreducible supercuspidal representation τ of GLl(F) with

l = 1, 2, . . . , 2n, can be reduced to supercuspidal representations.

By the classification of the irreducible generic representations of GLn(F) and G

(see [BZ, Z, M2] and Section 4.5), for any irreducible generic representation σ of G,

there exists a standard parabolic subgroup P whose Levi part M is isomorphic to

GLm1
(F) × · · · × GLmr

(F) × Sp2m0
(F), n = m0 + · · · + mr,

irreducible unitary supercuspidal representations τi of Glmi
(F), 1 ≤ i ≤ r, an ir-

reducible supercuspidal generic representation σ(0) of Spm0
(F), and real numbers

z1 ≥ z2 ≥ · · · ≥ zr ≥ 0, such that σ is a subquotient of the following induced

representation

vz1τ1 × · · · × vzr τr ⋊ σ(0).

Then we say σ has supercuspidal support (P; τ1, τ2, . . . , τr; σ
(0)) and exponents

(z1, z2, . . . , zr).

Lemma 3.3 If an irreducible generic representation σ of G has supercuspidal support

(P; τ1, τ2, . . . , τr; σ
(0)) and exponents (z1, z2, . . . , zr), then s = 1 + z1 is the rightmost

possible real pole of γ(σ × ρ, s, ψ), where ρ is any irreducible unitary supercuspidal

representation of GLkρ
(F), with kρ ∈ Z>0. If it really is a pole for ρ, then ρ ∼= τi0

, where

1 ≤ i0 ≤ r, with zi0
= z1.

Proof By the multiplicativity of local γ-factors (see [S2]),

γ(σ × ρ, s, ψ) =

[ r∏
i=1

γ(τi × ρ, s + zi , ψ)γ(τ̃i × ρ, s − zi , ψ)
]
γ(σ(0) × ρ, s, ψ)

for any irreducible unitary supercuspidal representation ρ of GLkρ
(F), with 1 ≤ kρ ≤

2n.

We have

γ(τi × ρ, s + zi , ψ) = ǫ(τi × ρ, s + zi , ψ)
L(τ̃i × ρ̃, 1 − (s + zi))

L(τi × ρ, s + zi)
,

and if ρ ∼= τ̃i , then L(τ̃i × ρ̃, 1 − (s + zi)) has a simple pole at s = 1 − zi , and

L(τi × ρ, s + zi) has a simple pole at s = −zi . Therefore by [JP-SS, Proposition 8.1]

γ(τi × ρ, s + zi , ψ) has a simple pole at s = 1 − zi and a simple zero at s = −zi when

and only when ρ ∼= τ̃i .

Similarly, γ(τ̃i × ρ, s − zi , ψ) has a simple pole at s = 1 + zi , and a simple zero at

s = zi when and only when ρ ∼= τi .



1112 B. Liu

By [CKP-SS, Theorem 7.3], γ(σ(0) × ρ, s, ψ) has a possible zero at s = 0, does not

have zero at s > 0, has a possible simple pole at s = 1, and if the pole occurs, ρ ∼= ρ̃,

and L(ρ, Sym2, s) has a pole at s = 0.

Hence, s = 1 + zi is the rightmost possible real pole of γ(σ × ρ, s, ψ), and if it

is indeed a pole, it cannot be cancelled by any possible zeros of other factors and

ρ ∼= τi0
, where 1 ≤ i0 ≤ r, with zi0

= z1. This proves the lemma.

Corollary 3.4 If σ and σ ′ both are irreducible generic representations of G, with

supercuspidal support (P; τ1, τ2, . . . , τr; σ
(0)) and (P ′; τ ′

1 , τ ′
2 , . . . , τ ′

r ′ ; σ
′(0)), exponents

(z1, z2, . . . , zr) and exponents (z ′1, z ′2, . . . , z ′r ′), respectively, and

γ(σ × ρ, s, ψ) = γ(σ ′ × ρ, s, ψ)

for any irreducible supercuspidal representation ρ of GLkρ
(F), with 1 ≤ kρ ≤ 2n. Then

z1 = z ′1.

Theorem 3.5 If σ and σ ′ both are irreducible generic representations of G, with

supercuspidal support (P; τ1, τ2, . . . , τr; σ
(0)) and (P ′; τ ′

1 , τ ′
2 , . . . , τ ′

r ′ ; σ
′(0)), exponents

(z1, z2, . . . , zr) and exponents (z ′1, z ′2, . . . , z ′r ′), respectively, and

γ(σ × ρ, s, ψ) = γ(σ ′ × ρ, s, ψ)

for any irreducible supercuspidal representation ρ of GLkρ
(F), with 1 ≤ kρ ≤ 2n. Then

after a possible rearrangement of (τ ′
1 , z ′1; , . . . , ; τ ′

r ′ , z ′r ′), without affecting the decreasing

order of z ′1, z ′2, . . . , z ′r ′ ,

(i) r = r ′, and mi = m ′
i , for 0 ≤ i ≤ r,

(ii) zi = z ′i , and τi
∼= τ ′

i , for 0 ≤ i ≤ r,

(iii) γ(σ(0) × ρ, s, ψ) = γ(σ ′(0) × ρ, s, ψ) for any irreducible supercuspidal represen-

tation ρ of GLkρ
(F), with 1 ≤ kρ ≤ 2n.

Note that the proof is same as that of [JngS1, Theorem 5.1], we omit it here.

4 Surjectivity of local Langlands Functorial Lifting

In this section, first we will summarize the results on the local Langlands functo-

rial lifting from Π
(sg)(Sp2n) to Π

(sg)(GL2n+1), then using the same descent method as

in [JngS2], we will prove that the rest of local Langlands functorial lifting given by

Cogdell, Kim, Piatetski-Shapiro, Shahidi [CKP-SS] is also surjective. In each case,

we will write down the corresponding local Langlands parameters. Note that some

proofs will be omited, due to the similarity between the cases of Sp2n here and SO2n+1

in [JngS2].

4.1 Supercuspidal Generic Representations

Let Π
(sg)(Sp2n) be the set of all equivalence classes of irreducible supercuspidal

generic representations of G. Let Π
(sg)(GL2n+1) be the set of all equivalence classes

of irreducible tempered representations of GL2n+1(F) of the form

τ1 × τ2 × · · · × τr = IndGL2n+1(F)
Q (τ1 ⊗ τ2 ⊗ · · · ⊗ τr),
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where Q is a standard parabolic subgroup of GL2n+1(F) of type (n1, . . . , nr) with 2n +

1 =
∑r

i=1 ni , and for each 1 ≤ i ≤ r, τi is an irreducible supercuspidal self-dual

representation of GLni
(F) such that L(τi , Sym2, s) has a pole at s = 0 and for i 6= j,

τi 6∼= τ j .

Cogdell, Kim, Piatetski-Shapiro, and Shahidi [CKP-SS] gave the following local

Langlands functorial lifting.

Theorem 4.1 (Cogdell–Kim–Piatetski-Shapiro–Shahidi) There is a map l from

Π
(sg)(Sp2n) to Π

(sg)(GL2n+1). Moreover, the map l preserves local L and ǫ factors with

GL-twists, namely,

L(σ × π, s) = L(l(σ) × π, s) ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ)

for any σ ∈ Π
(sg)(Sp2n) and any irreducible generic representation π of GLk(F) (k is any

positive integer).

Jiang and Soudry [JngS3] constructed the descent map from supercuspidal rep-

resentations of GL2n+1 to irreducible supercuspidal representations of Sp2n, implying

the following theorem, which is one of the main ingredients of this paper, as we men-

tioned in the introduction.

Theorem 4.2 (Jiang–Soudry) The map l in Theorem 4.1 is surjective.

Next, let us figure out the corresponding parameters of irreducible supercuspidal

generic representations of G.

The following is a result of Henniart [H2].

Theorem 4.3 (Henniart) The local Langlands reciprocity map for GLn(F) has the fol-

lowing property: the gamma factor γ(φ, Sym2, s, ψ) (γ(φ,∧2, s, ψ), respectively) has

the same poles as the local gamma factor γ(r(φ), Sym2, s, ψ) (γ(r(φ),∧2, s, ψ), respec-

tively) for any irreducible φ (i.e., r(φ) supercuspidal), where r is the local Langlands

reciprocity map for GLn.

As in [JngS1], using Henniart’s result, we have the following proposition.

Proposition 4.4 (i) Assume τ is an irreducible supercuspidal self-dual representation

of GLm(F), having the local Langlands parameter φ that is an irreducible admissible m-

dimensional complex representation of WF , and the local symmetric square L-function

L(τ , Sym2, s) has a pole at s = 0. Then φ is orthogonal, i.e.,

φ(WF) ⊂ SOm(C).

(ii) Let φ = φ1⊕φ2 be an admissible, completely irreducible, complex representation

of WF with the following property: HomWF
(φ1 ⊗ φ2, 1) = 0. Then φ is orthogonal of

and only if φ1 and φ2 are both orthogonal.

Proof For part (i), by definition

γ(τ̃ , Sym2, s, ψ) = ǫ(τ̃ , Sym2, s, ψ) ·
L(τ , Sym2, 1 − s)

L(τ̃ , Sym2, s)
.



1114 B. Liu

Since by assumption, the local symmetric square L-function L(τ , Sym2, s) has a pole

at s = 0, so the gamma factor γ(τ̃ , Sym2, s, ψ) has a pole at s = 1. Hence by The-

orem 4.3, the gamma factor γ(φ̃, Sym2, s, ψ) also has a pole at s = 1. Since we also

have

γ(φ̃, Sym2, s, ψ) = ǫ(φ̃, Sym2, s, ψ)
L(φ, Sym2, 1 − s)

L(φ̃, Sym2, s)
,

so the L-function L(φ, Sym2, s) has a pole at s = 0. Therefore, by definition of local

Artin L-functions, we can see that φ(WF) ⊂ SOm(C), i.e., the parameter is orthogo-

nal; see [JngS1, p. 796] and [Ban2, p. 7].

For part (ii), it is easy to figure out that if both φ1 and φ2 are orthogonal, then

so is φ. Conversely, first we know that φ is orthogonal if and only if Sym2(φ) has

WF-invariant functionals. Since

Sym2(φ) = Sym2(φ1) ⊕ Sym2(φ2) ⊕ [φ1 ⊗ φ2],

and by assumption HomWF
(φ1 ⊗ φ2, 1) = 0, so the WF-invariant functionals will

be nonzero on at least one of Sym2(φ1), Sym2(φ2). Without loss of generality, we

assume that there exists a nonzero WF-invariant functional that does not vanish on

Sym2(φ1). Hence φ1 is orthogonal. Since φ is non-degenerate and φ2 is the comple-

ment of φ1, we conclude that φ2 is also orthogonal. This completes the proof.

Let Φ
(sg)(Sp2n) be the subset of Φ(Sp2n) consisting of all parameters of type φ =⊕

i φi with the following properties:

(i) φi 6∼= φ j , if i 6= j;

(ii) for each i, φi is an irreducible element in Φ(Sp2ni
) (or Φ(SO2ni

)) for some non-

negative integer ni , i.e., φi is orthogonal.

Following from Theorem 4.3 and Proposition 4.4, we have the following result for

irreducible, generic, supercuspidal representations of G.

Theorem 4.5 There is a surjective map ι from Π
(sg)(Sp2n) to the set Φ

(sg)(Sp2n). The

map ι preserves the local factors as follows:

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ)

for any σ ∈ Π
(sg)(Sp2n) and any irreducible generic representations τ of GLkτ

(F), with

all kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of of WF ×SL2(C)

of dimension kτ , corresponding to τ by the local Langlands reciprocity map for GLkτ
.

4.2 Discrete Series Generic Representations

First, we recall the description of the structure of square-integrable generic represen-

tations of G given in [Td, M2].
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Let P ′ be a finite set of irreducible, supercuspidal, self-dual (unitary) representa-

tions τ of GLkτ
(F). Assume that for each τ ∈ P ′, there is a sequence of segments

Di(τ ) = [v−ai (τ )τ , vbi (τ )τ ], i = 1, 2, . . . , eτ ,

satisfying

2ai(τ ) ∈ Z and 2bi(τ ) ∈ Z≥0,(4.1)

and

a1(τ ) < b1(τ ) < a2(τ ) < b2(τ ) < · · · < aeτ
(τ ) < beτ

(τ ).(4.2)

Let σ(0) be an irreducible supercuspidal generic representation of Sp2n ′(F). Assume

the following hold:

(DS1) (C1) if L(σ(0) × τ , s) has a pole at s = 0, then −1 ≤ ai(τ ) ∈ Z r {0}, for

1 ≤ i ≤ eτ ;

(DS2) (C0) if L(τ , Sym2, s) has a pole at s = 0, but L(σ(0) × τ , s) is holomorphic at

s = 0, then ai(τ ) ∈ Z≥0, for 1 ≤ i ≤ eτ ;

(DS3) (C 1
2
) if L(τ ,∧2, s) has a pole at s = 0, then ai(τ ) ∈ − 1

2
+ Z≥0, for 1 ≤ i ≤ eτ .

Then the unique generic constituent of

(4.3)
(
×τ∈P ′ ×eτ

i=1 δ(Di(τ ))
)

⋊ σ(0)

is square-integrable ([Td]). Assume that the element in (4.3) is in G. Then every

square-integrable generic representation of G is obtained in this way for a unique set

consisting of a finite set P ′, segments {Di(τ )|1 ≤ i ≤ eτ , τ ∈ P ′} and a unique

generic supercuspidal representation σ(0) [M2, Proposition 2.1], satisfying condi-

tions (4.1), (4.2), and (DS1)–(DS3).

Note that we say (τ , σ(0)) satisfies (Cα), where α ∈ {0, 1
2
, 1}, if v±ατ ⋊ σ(0) re-

duces, and v±βτ ⋊σ(0) is irreducible for all |β| 6= α. And from [M1, Lemma 1.3], we

know that our (τ , σ(0)) must satisfy one of (Cα).

Remark 4.6 If L(σ(0) × τ , s) has a pole at s = 0 (case C1), then L(τ , Sym2, s) has a

pole at s = 0. We can see this from Theorem 4.5 and [M1, Proposition 3.1]. So, we

can see that (DS1) and (DS2) cover all possible cases, where L(τ , Sym2, s) has a pole

at s = 0.

Let Π
(dg)(Sp2n) be the set of all equivalence classes of irreducible discrete series

generic representations of G. Let Π
(dg)(GL2n+1) be the set of all equivalence classes of

irreducible tempered representations of GL2n+1(F) of the form

(4.4) St(τ1, 2m1 + 1) × St(τ2, 2m2 + 1) × · · · × St(τr, 2mr + 1),

where the balanced segments [v−mi τi , vmi τi] are pairwise distinct self-dual (i.e.,

τi
∼= τ̃i) and satisfy the following properties. For each i,

(i) if L(τi ,∧
2, s) has a pole at s = 0, then mi ∈

1
2

+ Z≥0, or
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(ii) if L(τi , Sym2, s) has a pole at s = 0, then mi ∈ Z≥0.

Remark 4.7 An irreducible admissible representation ρ of GL2n+1(F) lies in

Π
(dg)(GL2n+1) if and only if ρ is tempered and satisfies the following properties.

For any irreducible unitary supercuspidal representation τ of GLk(F) with k =

1, 2, . . . , 2n + 1,

(i) if τ 6∼= τ̃ , then L(ρ × τ , s) has no poles on the real line;

(ii) if τ ∼= τ̃ and L(ρ × τ , s) is not holomorphic, then

(a) if L(τ ,∧2, s) has a pole at s = 0, then L(ρ × τ , s) has only simple poles,

whose real parts lie inside − 1
2

+ Z≤0,

(b) if L(τ , Sym2, s) has a pole at s = 0, then L(ρ × τ , s) has only simple poles,

whose real parts lie inside Z≤0.

Then we have the following theorem.

Theorem 4.8 There is a surjective map l (which extends the one in Theorem 4.2) from

Π
(dg)(Sp2n) to Π

(dg)(GL2n+1). Moreover, l preserves local factors

L(σ × π, s) = L(l(σ) × π, s), ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ),

for any σ ∈ Π
(dg)(Sp2n) and any irreducible generic representation π of GLk(F) with all

k ∈ Z>0.

Proof Let ρ ∈ Π
(dg)(GL2n+1). As in the proof in [JngS2], the idea is to use the poles

on the real line of the local L-functions L(ρ × τ , s), for all τ in the set Π
(ss)(GLk) of

equivalence classes of irreducible self-dual supercuspidal of GLk(F) (with k being any

positive integers), to determine the structure of the tempered representation ρ.

Let

P(ρ) := {τ ∈ Π
(ss)(GLk)|L(ρ × τ , s) has a pole in R, k ∈ Z>0}.

Then P(ρ) is finite. For τ ∈ P(ρ), we list the real poles of L(ρ × τ , s) as follows:

−mdτ
(τ ) < · · · < −m2(τ ) < −m1(τ ) ≤ 0.

Put dτ = 0 if L(ρ× τ , s) is holomorphic for τ irreducible supercuspidal (self-dual or

not). Let us consider the following subset of P(ρ):

A(ρ) = {τ ∈ P(ρ)|L(τi , Sym2, s) has a pole at s = 0, and dτ is odd},

B(ρ) = {τ ∈ P(ρ)|L(τi , Sym2, s) has a pole at s = 0, and dτ is even},

C(ρ) = {τ ∈ P(ρ)|L(τi ,∧
2, s) has a pole at s = 0}.

By Remark 4.7, we have P(ρ) = A(ρ) ∪ B(ρ) ∪ C(ρ). And if τ ∈ A(ρ) ∪ B(ρ), then

{mi(τ )}dτ

i=1 ⊂ Z≥0; if τ ∈ C(ρ), then {mi(τ )}dτ

i=1 ⊂
1
2

+ Z≥0.

Since for τ ∈ A(ρ), dτ is odd, for τ ∈ B(ρ), dτ is even, and for τ ∈ C(ρ), we have

{mi(τ )}dτ

i=1 ⊂
1
2

+ Z≥0, the representation ×τ∈A(ρ)τ is a representation of GL2k+1, k is
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an integer, 2k + 1 =
∑

τ∈A(ρ) kτ . Since for τ ∈ A(ρ), L(τi , Sym2, s) has a pole at s=0,

by Theorem 4.2, there exists an irreducible supercuspidal generic representation σ(0)

(not necessarily unique up to equivalence) of Sp2k(F) such that

(4.5) l(σ(0)) = ×τ∈A(ρ)τ

on GL2k+1(F). Let

A0(ρ)7 = {τ ∈ A(ρ) | dτ = 1 and m1(τ ) = 0},

A1(ρ) = {τ ∈ A(ρ) | dτ ≥ 3 and m1(τ ) = 0},

A2(ρ) = {τ ∈ A(ρ) | m1(τ ) ≥ 1}.

Then they form a partition of A(ρ). For τ ∈ A1(ρ), let

(4.6) ∆i(τ ) = δ[v−m2i (τ )τ , vm2i+1(τ )τ ], i = 1, 2, . . . ,
dτ − 1

2
,

for τ ∈ A2(ρ), let

∆0(τ ) = δ[vτ , vm1(τ )τ ],∆i(τ ) = δ[v−m2i (τ )τ , vm2i+1(τ )τ ],

i = 1, 2, . . . ,
dτ − 1

2
.

(4.7)

For τ ∈ B(ρ), let

(4.8) ∆i(τ ) = δ[v−m2i−1(τ )τ , vm2i (τ )τ ], i = 1, 2, . . . , dτ

2
.

Similarly, for τ ∈ C(ρ), if dτ is odd, let

∆0(τ ) = δ[v
1
2 τ , vm1(τ )τ ],∆i(τ ) = δ[v−m2i (τ )τ , vm2i+1(τ )τ ],

i = 1, 2, . . . ,
dτ − 1

2
.

(4.9)

And for τ ∈ C(ρ), if dτ is even, let

(4.10) ∆i(τ ) = δ[v−m2i−1(τ )τ , vm2i (τ )τ ], i = 1, 2, . . . , dτ

2
.

Then, define

Jτ =





{1, 2, . . . , dτ−1
2

}, in case (4.6);

{0, 1, 2, . . . , dτ−1
2

}, in cases (4.7) and (4.9);

{1, 2, . . . , dτ

2
}, in cases (4.8) and (4.10).

And let σρ be the unique irreducible generic subrepresentation of

(
×τ∈P(ρ)rA0(ρ) × j∈ Jτ ∆ j(τ )

)
⋊ σ(0).

Actually, σρ is a representation of G. It is now easy to see that the sequence of seg-

ments in (4.6)–(4.10), together with σ(0) satisfy (4.1), (4.2), (DS1)–(DS3), hence σρ

is square-integrable.

As in [JngS2], we can see that the local factors are preserved.
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Next we generalize Theorem 4.5 to Π
(dg)(Sp2n).

Let Φ
(d)(Sp2n) be the subset of Φ(Sp2n) consisting of all the local Langlands pa-

rameters of type φ =
⊕

i φi ⊗ S2mi +1, where φi ’s are irreducible self-dual representa-

tion of WF of dimension kφi
, and S2mi +1’s are irreducible representations of SL2(C) of

dimension 2mi + 1, satisfying the following conditions:

(i) the tensor products φi ⊗ S2mi +1 are irreducible and orthogonal;

(ii) φi ⊗ S2mi +1 and φ j ⊗ S2m j +1 are not equivalent if i 6= j;

(iii) the image φ(WF × SL2(C)) is not contained in any proper Levi subgroup of

SO2n+1(C).

The local Langlands parameters in Φ
(d)(Sp2n) are called discrete.

Theorem 4.9 There is a surjective map ι (which extends the one in Theorem 4.5) from

Π
(dg)(Sp2n) to the set Φ

(d)(Sp2n). The map ι preserves the local factors:

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ)

for all σ ∈ Π
(dg)(Sp2n) and all irreducible generic representations τ of GLkτ

(F), with all

kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of WF × SL2(C) of

dimension kτ , corresponding to τ by the local Langlands reciprocity map for GLkτ
.

4.3 Elliptic Tempered Generic Representations

First we recall the classification of elliptic tempered generic representations of G from

[Hb] and [M2, Lemma 3.3].

Take any σ(2) ∈ Π
(dg)(Sp2n ′ ′). Then by Theorem 4.8, there exists ρ(2) ∈

Π
(dg)(GL2n ′ ′+1) such that l(σ(2)) = ρ(2). By (4.4) and the proof of Theorem 4.8, we

can write ρ(2) as follows:

ρ(2)
= ×r

i=1St(τi , 2mi + 1) = ×τ∈P(ρ(2)) ×
dτ

j=1 St(τ , 2m j(τ ) + 1).

Let β1, . . . , βc (with possible repetitions) be irreducible, self-dual, supercuspidal

representations of GLkβ1
(F), . . . , GLkβc

(F), respectively. Take a sequence of pairwise,

inequivalent, square-integrable representations

{St(βi , 2ei + 1)}c
i=1, 2ei ∈ Z≥0

of GLkβi
(2ei +1)(F)(i = 1, 2, . . . , c), such that

St(βi , 2ei + 1) 6∈ {St(τi , 2mi + 1)|1 ≤ i ≤ r},

and one of the following properties holds:

• St(βi , 2ei + 1) ∈ A2(ρ(2)), which implies that ei = 0;

• L(σ(0) × βi , s) has a pole as s = 0 and ei ≥ 1;

• L(βi , Sym2, s) has a pole at s = 0, L(σ(0) × βi , s) is holomorphic at s = 0, and

ei ∈ Z≥0;
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• L(βi ,∧
2, s) has a pole at s = 0 and ei ∈

1
2

+ Z≥0.

Then the unique generic constituent σ of

(4.11) St(β1, 2e1 + 1) × · · · × St(βc, 2ec + 1) ⋊ σ(2)

is an elliptic tempered representation of Sp2n(F) (n = n ′ ′ +
∑c

i=1(2ei + 1)kβi
).

This is the way that all elliptic, tempered, generic representations of G are obtained

and the inducing data {St(βi , 2ei + 1)}c
i=1 and σ(2) are uniquely determined ([M2]).

Recall that σ(0) is the irreducible supercuspidal generic representation of Sp2n ′(F)

such that l(σ(0)) = ×τ∈A(ρ(2))τ as in (4.5).

Let Π
(etg)(Sp2n) be the set of equivalence classes of irreducible, elliptic, tempered,

generic representations of G. Let Π
(etg)(GL2n+1) be the set of equivalence classes of

tempered representations of GL2n+1(F) of the form

(4.12) St(λ1, 2h1 + 1) × St(λ2, 2h2 + 1) × · · · × St(λ f , 2h f + 1),

where each representation St(λi , 2hi +1) in (4.12) is self-dual and appears either once

or twice, and satisfies the following conditions. For each i,

(i) if L(λi ,∧
2, s) has a pole at s = 0, then hi ∈

1
2

+ Z≥0;

(ii) if L(λi , Sym2, s) has a pole at s = 0, then hi ∈ Z≥0.

Theorem 4.10 There is a surjective map l (which extends the one in Theorem 4.8)

from Π
(etg)(Sp2n) to Π

(etg)(GL2n+1) and satisfying:

L(σ × π, s) = L(l(σ) × π, s), ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ),

for any σ ∈ Π
(etg)(Sp2n) and any irreducible generic representation π of GLk(F) with

all k ∈ Z>0.

Next let us write down the parameters of representations in Π
(etg)(Sp2n). Let

Φ
(etg)(Sp2n) be the subset of Φ(Sp2n) consisting of elements of the form

φ =

[ c⊕
i=1

φi ⊗ S2ei +1

]
⊕ φσ(2) ⊕

[ c⊕
i=1

φi ⊗ S2ei +1

]

with the property that the image φ(WF×SL2(C)) is a proper Levi subgroup of Sp2n(C)

if and only if c 6= 0, where φσ(2) is the parameter corresponding to the irreducible,

square-integrable, generic representation σ(2) occurring in σ. Then we have the fol-

lowing result.

Theorem 4.11 There is a surjective map ι (which extends the one in Theorem 4.9)

from Π
(etg)(Sp2n) to the set Φ

(etg)(Sp2n). And the map ι preserves the local factors:

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ)

for all σ ∈ Π
(etg)(Sp2n) and all irreducible generic representations τ of GLkτ

(F), with

all kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of WF × SL2(C)

of dimension kτ , corresponding to τ by the local Langlands reciprocity map for GLkτ
.



1120 B. Liu

4.4 Tempered Generic Representations

First we recall Muic’s description of tempered generic representations of G. Let

σ(et) ∈ Π
(etg)(Sp2n ′ ′ ′), then by Theorem 4.10, there exists ρ(et) ∈ Π

(etg)(GL2n ′ ′ ′+1)

such that ρ(et)
= l(σ(et)). We keep the notation, describe σ(et) as the unique generic

constituent of (4.11), and express ρ(et)
= l(σ(et)) as (4.12).

Let η1, η2, . . . , ηd (with possible repetitions) be irreducible, unitary, supercuspi-

dal representations of GLkη1
(F), GLkη2

(F), . . . , GLkηd
(F), respectively. From these η ′

i s,

take a sequence of irreducible square-integrable representations {St(ηi , 2pi + 1)}d
i=1

of GLkη1
(2pi +1)(F) with 2pi ∈ Z≥0 and i = 1, 2, . . . , d, satisfying one of the following

properties:

• St(ηi , 2pi + 1) ∈ {St(β j , 2e j + 1)|1 ≤ j ≤ c};

• St(ηi , 2pi + 1) ∈ {St(τ j , 2m j + 1)|1 ≤ j ≤ r};

• ηi 6∼= η̃i ;

• L(ηi ,∧
2, s) has a pole at s = 0 and pi ∈ Z≥0;

• L(ηi , Sym2, s) has a pole at s = 0 and pi ∈
1
2

+ Z≥0.

Then the induced representation

σ = St(η1, 2p1 + 1) × St(η2, 2p2 + 1) × · · · × St(ηd, 2pd + 1) ⋊ σ(et)

is an irreducible tempered generic representation of

Sp2n(F)

(
n = n ′ ′ ′ +

d∑

i=1

kη1
(2pi + 1)

)
.

This is the way that all irreducible, tempered, generic representations of G are

obtained, and the inducing data {St(ηi , 2pi +1)}d
i=1 and σ(et) are uniquely determined

up to replacements St(ηi , 2pi + 1) ↔ St(η̃i , 2pi + 1) in case ηi 6∼= η̃i , ([M2, Theorem

4.1]).

Let Π
(tg)(Sp2n) be the equivalence classes of irreducible, tempered, generic rep-

resentations of G. Let Π
(tg)(GL2n+1) be the set of equivalence classes of tempered

representations of GL2n+1(F) of the form

(4.13) St(λ1, 2h1 + 1) × St(λ2, 2h2 + 1) × · · · × St(λ f , 2h f + 1),

where λ1, λ2, . . . λ f are unitary supercuspidal representations, and 2hi ∈ Z≥0 such

that for 1 ≤ i ≤ f :

(i) if λi 6∼= λ̃i ,, then St(λi , 2hi + 1) occurs in (4.13) as many times as St(λ̃i , 2hi + 1)

does;

(ii) if L(λi ,∧
2, s) has a pole at s = 0, and hi ∈ Z≥0, then St(λi , 2hi + 1) occurs an

even number of times in (4.13);

(iii) if L(λi , Sym2, s) has a pole at s = 0, and hi ∈
1
2

+ Z≥0, then St(λi , 2hi +1) occurs

an even number of times in (4.13).
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Theorem 4.12 There is a surjective map l (which extends the one in Theorem 4.10)

from Π
(tg)(Sp2n) to Π

(tg)(GL2n+1). And l preserves local factors:

L(σ × π, s) = L(l(σ) × π, s), ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ),

for any σ ∈ Π
(tg)(Sp2n) and any irreducible generic representation π of GLk(F) with all

k ∈ Z>0.

Next, we write down the parameters for representations in Π
(tg)(Sp2n).

By Theorem 4.12, for each σ ∈ Π
(tg)(Sp2n),

l(σ) = St(η1, 2p1 + 1) × · · · × St(ηd, 2pd + 1) × l(σ(et))

· ˜St(ηd, 2pd + 1) × · · · × ˜St(η1, 2p1 + 1).

Then the local Langlands parameter of σ is

φσ(et) ⊕
d⊕

i=1

[
φηi

× S2pi +1 ⊕ φ̃ηi
× S2pi +1

]
.

Let Φ
(t)(Sp2n) be the subset of Φ(Sp2n) consisting of the local Langlands param-

eters φ with the property that φ(WF) is bounded in SO2n+1(C). The parameters in

Φ
(t)(Sp2n) are called tempered. Then we prove the following result: the local Lang-

lands parameters corresponding to representations in Π
(tg)(Sp2n) are exactly the tem-

pered parameters.

Theorem 4.13 There is a surjective map ι (which extends the one in Theorem 4.11)

from Π
(tg)(Sp2n) to the set Φ

(t)(Sp2n). It preserves the local factors:

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ)

for all σ ∈ Π
(tg)(Sp2n) and all irreducible generic representations τ of GLkτ

(F), with all

kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of WF × SL2(C) of

dimension kτ , corresponding to τ by the local Langlands reciprocity map for GLkτ
.

The basic idea of the proof is that, given a φ ∈ Φ
(t)(Sp2n), compose it with the

embedding SO2n+1(C) →֒ GL2n+1(C), then it is a 2n + 1-dimensional representation

of WF × SL2(C). Then, we can decompose φ, since it preserves a non-degenerate

symmetric bilinear form.

4.5 Generic Representations

First, we continue with Muic’s description of generic representations of G.

We consider self-dual representations of GL2n+1(F) of the form

δ(Σ1) × · · · × δ(Σ f ) × ρ(t) × δ(Σ̃ f ) × · · · × δ(Σ̃1),



1122 B. Liu

where ρ(t) is an irreducible self-dual tempered representation of GL2n∗+1(F) and

Σ1 = [v−q1ξ1, v−q1+w1ξ1],(4.14)

Σ2 = [v−q2ξ2, v−q2+w2ξ2],

. . . ,

Σ f = [v−q f ξ f , v−q f +w f ξ f ],

where ξ1, ξ2, . . . , ξ f are irreducible, unitary, and supercuspidal, with possible repeti-

tions, qi ∈ R, wi ∈ Z≥0, and qi 6=
wi

2
.

Assume that ρ(t) ∈ Π
(tg)(GL2n∗+1). Then by Theorem 4.12 there exists a σ(t) ∈

Π
(tg)(Sp2n∗) such that l(σ(t)) = ρ(t). Let ρ(2) be the lift of the irreducible square-

integrable generic representation σ(2), which is related to σ(t). Let σ(0) be the irre-

ducible, generic, supercuspidal representation occurring in σ(2), whose lift is denoted

by l(σ(0)) = ρ(0). Then, by Theorems 4.2, 4.8, 4.10, and 4.12, the representation ρ(t)

is completely determined up to isomorphism by the following three families of irre-

ducible square-integral representations of GL∗(F):

(4.15) {St(τ j , 2m j + 1)}r
j=1, {St(β j , 2e j + 1)}c

j=1, {St(η j , 2p j + 1)}d
j=1.

Definition 4.14 Let {Σ j}
f
j=1 and ρ(t) be given as above. Then the sequence {Σ j}

f
j=1

is called an Sp2n-generic sequence of segments with respect to ρ(t) if it satisfies the

following conditions:

(i) the segment Σi is not linked to either Σ j or Σ̃ j for 1 ≤ i 6= j ≤ f ;

(ii) for 1 ≤ i ≤ f , Σi is not linked to any segment, which corresponds to a repre-

sentation in any of the families

{St(τ j , 2m j + 1)}r
j=1, {St(β j , 2e j + 1)}c

j=1, {St(η j , 2p j + 1)}d
j=1,

{St(η̃ j , 2p j + 1)|η j 6∼= η̃ j , 1 ≤ j ≤ d};

(iii) one of the following three conditions holds

(a) ξi 6∼= ξ̃i ,

(b) Σi is linked to an element of A2(ρ(2)),

(c) (ξi , σ
(0)) is (Cα) (α = 0, 1

2
, 1), but ±α 6∈ {−qi ,−qi + 1, . . . ,−qi + wi}, that

is

(3C1) if L(σ(0) × ξi , s) has a pole at s = 0, then

±1 6∈ {−qi ,−qi + 1, . . . ,−qi + wi};

(3C0) if L(ξi , Sym2, s) has a pole at s = 0, but L(σ(0) × ξi , s) has no pole at

s = 0, then 0 6∈ {−qi ,−qi + 1, . . . ,−qi + wi};

(3C 1
2
) if L(ξi ,∧

2, s) has a pole at s = 0, then

± 1
2
6∈ {−qi ,−qi + 1, . . . ,−qi + wi}.
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Given a Sp2n-generic sequence of segments, put πi = δ(Σi), i = 1, 2, . . . , f , then

the representation σ of G defined by σ := π1 × π2 × · · · × π f ⋊ σ(t) is irreducible

and generic. Moreover, all irreducible generic representations of G can be obtained

in this way. And the set {π1, π2, . . . , π f , σ
(t)} is uniquely determined ([M2]). After

rearranging the data, if the exponent of δ(Σi) is negative, then replace Σi by Σ̃i to get

a positive exponent. We may assume that the exponents of δ(Σ1), δ(Σ2), . . . , δ(Σ f )

are positive and in non-increasing order (the Langlands inducing data), i.e.,

w1

2
− q1 ≥

w2

2
− q2 ≥ · · · ≥

w f

2
− q f > 0.

Let Π
(g)(Sp2n) be the set of equivalence classes of irreducible generic representa-

tions of G. Let Π
(g)(GL2n+1) be the set of equivalence classes of irreducible self-dual

representations of GL2n+1(F), which are Langlands quotients of representations

(4.16) δ(Σ1) × · · · × δ(Σ f ) × ρ(t) × δ(Σ̃ f ) × · · · × δ(Σ̃1),

where {Σ j}
f
j=1 are of the form (4.14); ξ1, ξ2, . . . , ξ f are irreducible unitary and super-

cuspidal with possible repetitions, qi ∈ R, wi ∈ Z≥0, qi 6=
wi

2
, and ρ(t) is determined

by three families of irreducible square-integrable representations of the form (4.15)

satisfying the following:

(i) w1

2
− q1 ≥

w2

2
− q2 ≥ · · · ≥

w f

2
− q f > 0.

(ii) The only possible linkages among the segments

Σ1,Σ2, . . . ,Σ f , Σ̃ f , . . . , Σ̃2, Σ̃1

may occur between Σi and Σ̃i for some index i.

(iii) The representations δ(Σi)×ρ(t) and δ(Σ̃i)×ρ(t) are irreducible for all 1 ≤ i ≤ f .

(iv) Assume ξi is self-dual and 2qi ∈ Z, such that if L(ξi ,∧
2, s) has a pole at s = 0,

then qi ∈
1
2

+ Z, and if L(ξi , Sym2, s) has a pole at s = 0, then qi ∈ Z. Then Σi

is not linked to Σ̃i . Moreover, if L(ρ(0) × ξi , s) has a pole at s = 0, and qi ∈ Z,

then −qi ≥ 2, or qi = −1 and ξi ∈ A2(ρ(2)).

Theorem 4.15 There is a surjective map l (which extends the one in Theorem 4.12)

from Π
(g)(Sp2n) to Π

(g)(GL2n+1). And it preserves the local factors

L(σ × π, s) = L(l(σ) × π, s), ǫ(σ × π, s, ψ) = ǫ(l(σ) × π, s, ψ),

for any σ ∈ Π
(g)(Sp2n) and any irreducible generic representation π of GLk(F) with all

k ∈ Z>0.

Remark 4.16 The irreducibility of (4.16) is equivalent to the genericity of ρ = l(σ).

At last, we write down the corresponding parameters.

Let Φ
(g)(Sp2n) be the subset of Φ(Sp2n) that consists of elements of the form

φσ = ι(σ(t)) ⊕
f⊕

i=1

[
| · |−qi +

wi
2 r−1(ξi) ⊗ Swi +1 ⊕ | · |qi−

wi
2 r−1(ξ̃i) ⊗ Swi +1

]
,
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where the sequence {Σ j = [v−q j ξ j , v−q j +w j ξ j]}
f
j=1 is an Sp2n-generic sequence of

segments with respect to ρ(t)
= l(σ(t)), ι is the reciprocity map given in Theorem 4.13

for irreducible, tempered, generic representations in Π
(tg)(Sp2n); r is the reciprocity

map for GL∗(F), and | · |s is the character of WF normalized as in [T] via local class

field theory.

Theorem 4.17 There is a surjective map ι (which extends the one in Theorem 4.13)

from Π
(g)(Sp2n) to Φ

(g)(Sp2n). The map ι preserves the local factors:

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ),

for all σ ∈ Π
(g)(Sp2n) and all irreducible generic representations τ of GLkτ

(F), with all

kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of WF × SL2(C) of

dimension kτ corresponding to τ by the local Langlands reciprocity map for GLkτ
.

5 Representations Attached to Parameters

In this section, as in [JngS2], we associate one irreducible representation of G with

each local Langlands parameter φ ∈ Φ(Sp2n). The key idea is to analyze the structure

of each local Langlands parameter.

Proposition 5.1 Given a φ ∈ Φ(Sp2n). Then either φ ∈ Φ
(t)(Sp2n), or

(5.1) φ = φ(t) ⊕ φ(n),

where φ(t) ∈ Φ
(t)(Sp2n∗) (n∗ < n) and φ(n) ∈ Φ(SO2(n−n∗)), which is of the form

(5.2) φ(n)
=

f⊕
i=1

[
| · |−qi +

wi
2 φi ⊗ Swi +1 ⊕ | · |qi−

wi
2 φ̃i ⊗ Swi +1

]
,

where f ∈ Z>0, w1, w2, . . . , w f ∈ Z≥0, q1, q2, . . . , q f ∈ R such that for 1 ≤ i ≤ f ,

qi 6=
wi

2
, φi is an irreducible bounded representation of WF , and for 1 ≤ i ≤ f − 1,

wi

2
− qi ≥

wi+1

2
− qi+1 > 0,

| · |s is the character of WF normalized as in [T] via local class field theory.

Proof Given a parameter φ ∈ Φ(Sp2n), assume V = C
2n+1 is the corresponding non-

degenerate orthogonal space of dimension 2n + 1, with an orthogonal form 〈 · , · 〉.
Let V1 be the direct sum of all irreducible subspaces, which are stable under the

action of WF × SL2(C) and in which φ(WF) is bounded. Let V2 be the direct sum of

all irreducible subspaces, which are stable under the action of WF × SL2(C) and in

which φ(WF) is unbounded. Then V = V1 ⊕V2.
As in [JngS2], one can see that both subspaces V1 and V2 are non-degenerate with

respect to the restriction of the non-degenerate orthogonal form 〈 · , · 〉.
Denote by φ(t) the sub-representation of WF × SL2(C) on V1, and by φ(n) the sub-

representation of WF × SL2(C) on V2. Then there are two cases:
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(i) φ(t) ∈ Φ
(t)(Sp2n∗) and φ(n) ∈ Φ(SO2(n−n∗));

(ii) φ(t) ∈ Φ
(t)(SO2n∗) and φ(n) ∈ Φ(Sp2(n−n∗)).

We want to prove that the case (ii) cannot occur. Otherwise, φ(n) is an odd dimen-

sional orthogonal representation, decompose it into irreducible representations

φ(n)
=

m⊕
i=1

| · |−qi +
wi
2 φi ⊗ Swi +1.

Since φ(n) is an orthogonal representation, it is stable under the involution θ(g) =

J−1gt,−1 J, where J is the orthogonal form of order 2(n − n∗) + 1, that is, a square

matrix of order 2(n − n∗) + 1 whose second diagonal are 1 and 0 elsewhere. So,

either θ send | · |−qi +
wi
2 φi ⊗ Swi +1 to itself or to | · |qi−

wi
2 φ̃i ⊗ Swi +1. Since φ(n) is odd

dimensional, there exists i such that

(
| · |−qi +

wi
2 φi ⊗ Swi +1

) θ
= | · |−qi +

wi
2 φi ⊗ Swi +1.

But, since Swi +1 is self-dual,

(
| · |−qi +

wi
2 φi ⊗ Swi +1

) θ
=

(
| · |−qi +

wi
2 φi

) θ
⊗ Swi +1.

On the other hand, (
| · |−qi +

wi
2 φi

) θ
= | · |qi−

wi
2 φ̃i .

So, −qi + wi

2
= qi −

wi

2
, and φi = φ̃i . Hence −qi + wi

2
= 0, which means | · |−qi +

wi
2 φi ⊗

Swi +1 = φi ⊗ Swi +1 is tempered, a contradiction!

Therefore, we can see that φ(t) ∈ Φ
(t)(Sp2n∗), and φ(n) is of the form (5.2). This

completes the proof.

Let Π
′(Sp2n) is the set of equivalence classes of irreducible admissible representa-

tions of G, which are Langlands quotients of induced representations

δ(Σ1) × δ(Σ2) × · · · × δ(Σ f ) ⋊ σ(t),

where σ(t) is an irreducible generic tempered representation of Sp2n∗(F), and

Σ1,Σ2, . . . ,Σ f are imbalanced segments, whose exponents are positive and in non-

increasing order.

Then we have the following result, which is Theorem 1.1.

Theorem 5.2 There is a surjective map ι (which extends the one in Theorem 4.13)

from Π
′(Sp2n) to the set Φ(Sp2n). And it preserves the local factors

L(σ × τ , s) = L(ι(σ) ⊗ r−1(τ ), s),

ǫ(σ × τ , s, ψ) = ǫ(ι(σ) ⊗ r−1(τ ), s, ψ),

for all σ ∈ Π
′(Sp2n) and all irreducible admissible representations τ of GLkτ

(F), with

all kτ ∈ Z>0. Here r−1(τ ) is the irreducible admissible representation of WF × SL2(C)

of dimension kτ , corresponding to τ by the local Langlands reciprocity map for GLkτ
.
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Proof Given a φ ∈ Φ(Sp2n), by Proposition 5.1, it can be written as φ = φ(t) ⊕ φ(n).
By Theorem 4.13, there exists σ(t) ∈ Π

(tg)(Sp2n∗) such that

(5.3) ι(σ(t)) = φ(t).

Using the local Langlands reciprocity map r for GLk(F), define

(5.4) Σi = [v−qi r(φi), v−qi +wi r(φi)], 1 ≤ i ≤ f .

Let σ be the Langlands quotient of the induced representation δ(Σ1) × δ(Σ2) ×
. . . δ(Σ f ) ⋊ σ(t), and define ι(σ) = φ.

6 A Conjecture of Gross–Prasad and Rallis

In this section, we give an application of the above results to a conjecture of Gross–

Prasad [GP] and Rallis [Ku]. For general formulation and discussion of this con-

jecture, see [JngS2]. We will prove the Sp2n-case of this conjecture; the method is

the same as in [JngS2]. Note that for G = Sp2n, φ is generic if the representation σ
attached to φ in Theorem 5.2 is generic. By the classification of irreducible generic

representations of G = Sp2n(F) in [M2], we have the following characterization of

the genericity of the local Langlands parameters of Sp2n.

Proposition 6.1 For any local Langlands parameter φ : WF × SL2(C) → SO2n+1(C),
the representation σ attached to φ in Theorem 5.2 is generic if and only if σ(t) and

Σi(i = 1, 2, . . . , f ) defined in (5.3) and (5.4) satisfy the conditions of Definition 4.14

(with ρ(t)
= l(σ(t))).

The following theorem is the G-case of the conjecture, which is Theorem 1.2 stated

in the introduction. It gives a criterion for determining the genericity of the repre-

sentation attached to each φ in Section 5.

Theorem 6.2 For any local Langlands parameter φ : WF × SL2(C) → SO2n+1(C),
the representation σ attached to φ in Theorem 5.2 is generic if and only if the associated

adjoint L-function L(AdSO2n+1
◦ φ, s) is regular at s = 1.

Proof Step (1). Assume that σ is generic. Write φ = φ(t) ⊕φ(n) as in (5.1) and (5.2).

Put

θ =

f⊕
i=1

| · |
wi
2
−qi φi ⊗ Swi +1.

Then, φ(n)
= θ ⊕ θ̃, and we have the following decomposition of L(AdSO2n+1

◦ φ, s)

(6.1)
L(AdSO2n+1

◦ φ, s) = L(θ ⊗ θ̃, s)L(θ ⊗ φ(t), s)L(θ̃ ⊗ φ(t), s)

· L(AdSO2n∗+1
◦ φ̃, s)L(∧2 ◦ θ, s)L(∧2 ◦ θ̃, s).

We will show that each factor in the above product is holomorphic at s = 1.
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By Theorems 4.12 and 4.13 and by [HT] and [H1], we have

L(θ ⊗ θ̃, s) = L(r(θ) × r̃(θ), s),

L(θ ⊗ φ(t), s) = L(r(θ) × ρ(t), s),

L(θ̃ ⊗ φ(t), s) = L(r̃(θ) × ρ(t), s),

where ρ(t)
= l(σ(t)), φ(t)

= y(σ(t)), and r(θ) = δ(Σ1) × · · · × δ(Σ f ). By Definition

4.14(i) and (ii), the representations r(θ) and π = r(θ) × ρ(t) are irreducible and

generic; assume that π is a representation of GLn1
(F). Then from the known GLn-case

of the conjecture, we know that L(π × π̃, s) = L(AdGLn1
◦ r−1(π), s) is holomorphic

at s = 1. On the other hand, L(π × π̃, s) has the following decomposition

(6.2) L(π × π̃, s) = L(r(θ) × r̃(θ), s)L(r(θ) × ρ(t), s)L(r̃(θ) × ρ(t), s)

· L(ρ(t) × ρ(t), s).

Since the last L-factor in (6.2) does not vanish at s = 1,

L(r(θ) × r̃(θ), s)L(r(θ) × ρ(t), s)L(r̃(θ) × ρ(t), s)

is holomorphic at s = 1. Note that this product occurs in (6.1).

From Theorem 5.2, we know that ρ(t)
= l(σ(t)) is an irreducible, tempered, generic

representation of GL2n∗+1(F). Then from the known GLn-case of the conjecture we

have

L(ρ(t) × ρ̃(t), s) = L(AdGL2n∗+1
◦ φ(t), s)

is regular at s = 1. Since as polynomials in q−s, L(AdSO2n∗+1
◦ φ(t), s)−1 divides

L(AdGL2n∗+1
◦ φ(t), s)−1, L(AdSO2n∗+1

◦ φ(t), s) is holomorphic at s = 1.

From Proposition 5.1, we know that θ has positive exponents, so the L-function

L(θ⊗ θ, s) is holomorphic at s = 1. Since L(θ⊗ θ, s) = L(Sym2 ◦θ, s)L(∧2 ◦ θ, s), and

L(Sym2 ◦θ, s) does not vanish at s = 1, L(∧2 ◦ θ, s) must be holomorphic at s = 1.

At last, we have to show that L(∧2 ◦ θ̃, s) is regular at s = 1. Let θi = φi ⊗ Swi +1,

then we have the decomposition

L(∧2 ◦ θ̃, s) =

f∏
i=1

L(∧2 ◦ θ̃i , s − wi + 2qi)

·
∏

1≤i< j≤ f

L
(

θ̃i ⊗ θ̃ j , s −
wi + w j

2
+ qi + q j

)
.

For 1 ≤ i < j ≤ f , by [JngS2, (0.17)], we have

L
(

θ̃i ⊗ θ̃ j , s −
wi + w j

2
+ qi + q j

)
= L

(
S̃ti ⊗ S̃t j , s −

wi + w j

2
+ qi + q j

)

= L
(
δ(Σ̃i) × δ(Σ̃ j), s

)
,
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where δ(Σ̃i) = vqi−
wi
2 S̃ti .

By [JngS2, Proposition 7.1], the following statement is true: for i < j, Σi and Σ j

are linked if and only if

L(δ(Σi) × δ(Σ̃ j), s)L(δ(Σ j) × δ(Σ̃i), s)

has a pole at s = 1.

Since there is no linkage between Σ̃i and Σ j (Definition 4.14(i)), so by the state-

ment above, we have that L(δ(Σ̃i) × δ(Σ̃ j), s) is holomorphic at s = 1; that is,

L
(

θ̃i ⊗ θ̃ j , s −
wi + w j

2
+ qi + q j

)

is holomorphic at s = 1.

Next, we want to calculate the L-factor L(∧2 ◦ θ̃i , z) for i = 1, 2, . . . , f and z =

s − wi + 2qi . First, we know that

∧2 ◦ (φ̃i ⊗ Swi +1) = (∧2 ◦ φ̃i) ⊗ (Sym2 ◦Swi +1) ⊕ (Sym2 ◦φ̃i) ⊗ (∧2 ◦ Swi +1).

The following formula can be found in [FH]:

Sym2(Symm
C

2) =

[ m
2

]⊕
k=0

Sym2m−4k
C

2,

∧2(Symm
C

2) =

[ m−1
2

]⊕
k=0

Sym2(m−1)−4k
C

2.

And since Swi +1 is the irreducible representation Symwi of SL2(C),

∧2 ◦ (φ̃i ⊗ Swi +1) =

[ [
wi
2

]⊕
k=0

(∧2 ◦ φ̃i) ⊗ S2wi−4k+1

]

⊗
[ [

wi−1

2
]⊕

k=0

(Sym2 ◦φ̃i) ⊗ S2(wi−1)−4k+1

]
.

Therefore,

L(∧2 ◦ θ̃i , z) =

[
wi
2

]∏
k=0

L(∧2 ◦ φ̃i , z + wi − 2k)

·
[

wi−1

2
]∏

k=0

L(Sym2 ◦φ̃i , z + wi − 2k − 1).

(6.3)

That is,

L(∧2 ◦ θ̃i , s − wi + 2qi) =

[
wi
2

]∏
k=0

L(∧2 ◦ φ̃i , s + 2qi − 2k)

·
[

wi−1

2
]∏

k=0

L(Sym2 ◦φ̃i , s + 2qi − 1 − 2k).

(6.4)
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We assume that φi is self-dual since if φi is not self-dual, then all these L-factors in

(6.4) are holomorphic on the real line, and in particular at s = 1.

From Theorem 4.3, we know that L(Sym2 ◦φi , z) has a pole at z = 0 if and only if

L(r(φi), Sym2, z) has a pole at z = 0 and L(∧2 ◦ φi , z) has a pole at z = 0 if and only

if L(r(φi),∧
2, z) has a pole at z = 0.

If L(r(φi),∧
2, s + 2qi − 2k) has a pole at s = 1 for some 0 ≤ k ≤ [ wi

2
], then

1 + 2qi − 2k = 0, since r(φi) is an irreducible self-dual supercuspidal representation

of GL∗(F). So that

(6.5) −qi =
1
2
− k ∈ 1

2
+ Z−.

Since −qi + wi ≥ −qi + wi

2
> 0, we know from (6.5) that −qi + wi ∈

1
2

+ Z≥0. Since

by (6.5), −qi ≤
1
2
, we can see that

1
2
∈ {−qi ,−qi + 1, . . . ,−qi + wi}.

This contradicts Definition 4.14(iii)(c). On the other hand, Definition 4.14(iii)(a)

and (b) are not valid, so we can see that L(r(φi),∧
2, s + 2qi − 2k) is holomorphic at

s = 1, for all 0 ≤ k ≤ [ wi

2
].

If L(r(φi), Sym2, s + 2qi − 2k − 1) has a pole at s = 1, for some 0 ≤ k ≤ [ wi−1
2

],

then −qi = −k ∈ Z−. So −qi + wi ≥ 1. Then we can see that 0, 1 ∈ {−qi ,−qi +

1, . . . ,−qi +wi}. This contradicts Definition 4.14(iii)(b) and (c). On the other hand,

Definition 4.14(iii)(a) is not valid, so, we can see that L(r(φi), Sym2, s + 2qi − 2k− 1)

is holomorphic at s = 1 for all 0 ≤ k ≤ [ wi−1
2

].

Therefore the adjoint L-function L(AdSO2n+1
◦ φ, s) is holomorphic at s = 1 when

φ ∈ Φ(Sp2n) is a generic parameter. Hence, Step (1) is proved.

Step (2). Assume that the adjoint L-function L(AdSO2n+1
◦ φ, s) is regular at s = 1, we

will prove that φ is generic.

Assume that φ is not generic, then ρ(t)
= l(σ(t)) and Σi(i = 1, 2, . . . , f ) do not

satisfy the conditions in Definition 4.14. We will consider all the cases one by one.

If Definition 4.14(i) is not satisfied, then there exist 1 ≤ i 6= j ≤ f , such that Σi

is linked to Σ j or Σ̃ j . Then, from the proof of Step (1), we know that the product

(6.6)

L
(
δ(Σi) × δ(Σ̃ j), s

)
L
(
δ(Σ j) × δ(Σ̃i), s

)
L
(
δ(Σi) × δ(Σ j), s

)
L
(
δ(Σ̃i) × δ(Σ̃ j), s

)

has a pole at s = 1. This means that L(AdSO2n+1
◦ φ, s) has a pole at s = 1, but the

product in (6.6) is a factor in L(AdSO2n+1
◦ φ, s), a contradiction!

If Definition 4.14(ii) is not satisfied, then the representation r(θ)×ρ(t) is reducible

and its Langlands quotient π is non-generic. Then following from the GLn-case of

the conjecture, we know that the product in (6.2) has a pole at s = 1. And, since

the last factor is holomorphic at s = 1, the pole at s = 1 must occur in the product

of the first three factors. On the other hand, the product of the first three factors

occurs in L(AdSO2n+1
◦ φ, s), so we can see that L(AdSO2n+1

◦ φ, s) has a pole at s = 1, a

contradiction!

If there is an integer 1 ≤ i ≤ f such that Definition 8.1(iii) is not satisfied, then φi

is self-dual; Σi is not linked to an element of A2(ρ(2)), and r(φi) does not satisfy con-

dition (iii)(c), where ρ(2)
= l(σ(2)) and σ(2) is the irreducible discrete series generic
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representation occurring in σ(t). Let σ(0) be the irreducible, supercuspidal, generic

representation occurring in σ(2). Put ξi = r(φi), then ξi is self-dual.

Assume that (ξi , σ
(0)) is (C1), but one of ±1 ∈ {−qi ,−qi + 1, . . . ,−qi + wi}.

Then, qi ∈ Z. Since L(ξi , Sym2, s) has a pole at s = 0, (6.3) will have a pole at s = 1 if

there exists one 0 ≤ k ′ ≤ [ wi−1
2

] such that

1 + 2qi − 2k ′ − 1 = 0,

that is k ′
= qi . If qi < 0, then qi ≤ −1, and so −qi ≥ 1; this means −qi = 1. Since

L(ρ(0) × ξi , s) has a pole at s = 1, this means Σi is linked to an element of A(ρ(2)).

Then Σi is linked to an element of A0(ρ(2))∪A1(ρ(2)). So, Σi is linked to a segment of

ρ(t), which means Definition 4.14(ii) is not satisfied. But, in this case, we have already

shown that L(AdSO2n+1
◦ φ, s) has a pole at s = 1, a contradiction! So, we have qi ≥ 0.

Since qi < wi

2
, we have

0 ≤ qi ≤
[ wi − 1

2

]
, qi ∈ Z.

So, the second product of (6.3) has a pole at s = 1, for its factor corresponding to

k ′
= qi has a pole at s = 1, a contradiction!

If (ξi , σ
(0)) is (C0), but 0 ∈ {−qi ,−qi + 1, . . . ,−qi + wi}, then we can see that

qi ∈ Z. So, −qi ≤ 0; that is, qi ≥ 0. On the other hand, qi < wi

2
, so, we have

0 ≤ qi ≤ [ wi−1
2

], qi ∈ Z. Then as in the last case, we can see that the product (6.3)

has a pole at s = 1, a contradiction!

If (ξi , σ
(0)) is (C 1

2
), but one of ± 1

2
∈ {−qi ,−qi +1, . . . ,−qi +wi}. Then qi ∈

1
2

+Z

and −qi ≤
1
2
. That is qi + 1

2
≥ 0. Since L(ξi ,∧

2, s) has a pole at s = 0, (6.3) will have

a pole at s = 1 if there exists one 0 ≤ k ′ ≤ [ wi

2
] such that 1 + 2qi − 2k ′

= 0; that is,

k ′
= qi + 1

2
. On the other hand, qi < wi

2
, so we have

0 ≤ qi + 1
2
≤ [ wi

2
], qi ∈

1
2

+ Z.

So, for the same reason as above, the product (6.3) has a pole at s = 1, a contradic-

tion!

Therefore, φ is generic. This completes the proof.

7 Genericity and Arthur Parameters

The local Arthur parameter (A-parameter) for G is of the following form (direct sum

of irreducible representations):

ψ : WF × SL2(C) × SL2(C) → SO2n+1(C)

ψ =

k⊕
i=1

φi ⊗ Smi
⊗ Sni

,

satisfying the following conditions:

(i) φi(WF) is bounded and consists of semi-simple elements;

(ii) the restrictions of ψ to the two copies of SL2(C) are analytic.
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By Arthur’s conjecture (see [A]), for each A-parameter ψ, there is a conjectual

A-packet corresponding to ψ, which is also a finite set of Π(G) satisfying certain

conditions.

For each A-parameter ψ, Arthur associated a local Langlands parameter (L-para-

meter) φψ as follows

φψ(w, x) = ψ

(
w, x,

(
|w|

1
2 0

0 |w|−
1
2

))
,

and

φ(w) ⊗ Sm(x) ⊗ Sn

((
|w|

1
2 0

0 |w|−
1
2

))
=

n−1
2⊕

j=− n−1
2

|w| jφ(w) ⊗ Sm(x).

Arthur also showed that ψ 7→ φψ is injective.

Let R(G) be the Grothendieck group of the category of all smooth finite length

representations of G, then the Aubert duality operator DG on R(G) is defined as fol-

lows (see [Aub])

DG = Σθ⊆∆(−1)|θ|iG
Mθ

◦ rG
Mθ

,

where ∆ is the set of simple roots, Mθ is the standard Levi corresponding to the subset

θ, iG
Mθ

and rG
Mθ

are normalized induction and Jacquet functors, respectively. For any

σ ∈ Π(G), let σ̂ = ±DG(σ) take the sign such that σ̂ is a positive element in R(G).

This is called the Aubert involution of σ.

In this section, first, given any σ ∈ Π
(g)(Sp2n) with L-parameter φσ , we will com-

pute its Aubert involution σ̂ and the corresponding L-parameter φbσ . Then we will

show that for each A-parameter ψ and the corresponding L-parameter φψ , the rep-

resentation attached to φψ in Section 5 is generic if and only if φψ is tempered, i.e.,

Theorem 1.3. And if φψ is tempered, then there is also an A-parameter ψ̂ such that

φbψ = φbσ , and ψ and ψ̂ are symmetric. Ban proved the SO2n+1-case of these results in

[Ban2]; we use the same method.

Denote

×τ∈P ′ ×eτ

i=1 δ(Di(τ )) = ×k
i=1δ(Σi),

{St(β j , 2e j + 1)}c
j=1 = {δ(Σi)}

l
i=k+1,

{St(η j , 2p j + 1)}d
j=1 = {δ(Σi)}

m
i=l+1,

{δ(Σi)}
f
i=1 = {δ(Σi)}

p
i=m+1,

×τ∈A(ρ(2))τ = {δ(Σi)}
q
i=p+1,

where Σi = [v−ai τi , vbi τi].

Let I1 = {1, . . . , k}, I2 = {k + 1, . . . , l}, I3 = {l + 1, . . . , m}, I4 = {m + 1, . . . , p},

I5 = {p +1, . . . , q}, and I ′1 = {i ∈ I1|ai ≥ 0}, I1
′ ′

= {i ∈ I1|ai = −1}, I ′5 = I5/{ j ∈
I5|τ j

∼= τi , for some i ∈ I ′ ′1 }, I = I1 ∪ I2 ∪ I3 ∪ I4, I0 = {i ∈ I|0 ∈ [−ai , bi]}.
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For ji ∈ [−ai , bi], ji 6= 0, let ǫ ji
= 1 if ji > 0, and let ǫ ji

= −1 if ji < 0. Rewrite

the multiset {(| ji |, ǫ ji
)|i ∈ I, ji ∈ [−ai , bi], ji 6= 0} in a non-increasing order with

respect to the first ji , denote the ultimate set by {(α1, ǫ1), . . . , (αt , ǫt )}. For αs = | ji |,
let ταs

= τi , and

ταs
αs

=

{
ταs

, if αs = 1,

τ̃αs
, if αs = −1.

Let σ ′ be the unique generic constituent of ×i∈I0
τi ⋊ σ(0).

Lemma 7.1 We have that σ̂ is the Langlands quotient of the following induced repre-

sentation

vα1τ ǫ1
α1

× · · · × vαt τ ǫt
αt

⋊ σ̂ ′.

Proof Let

σ1 = (vb1τ1 × · · · × v−a1τ1) × · · · × (vbp τp × · · · × v−ap τp) ⋊ σ(0).

By the classification theory of generic representations of G in Section 3, σ is a

subrepresentation of σ1. Then by [Ban1, Corollary 4.2], σ̂ is a quotient of σ1.

By the Langlands classification theory of representations of G, we can write σ̂ as

the unique Langlands quotient of the induced representation

vβ1 St1 × · · · × vβz Stz ⋊ σ2,

where the Sti ’s are irreducible square-integrable and σ2 is irreducible tempered, and

β1 ≥ · · · ≥ βz > 0.

Since the Aubert involution commutes with parabolic induction in the Grothen-

dieck group and σ = ̂̂σ [Aub], σ is the unique irreducible generic constituent of

v−β1 Ŝt1 × · · · × v−βz Ŝtz ⋊ σ̂2,

where Ŝti is the Aubert involution (i.e., the Zelevinsky involution) of Sti . Then from

[Rod, Theorems 2 and 3] or [M2, Lemma 1.2], both Ŝti and σ̂2 are generic. On the

other hand, for each 1 ≤ i ≤ z, Sti is an irreducible, square-integrable, generic

representation, by [Z, Theorem 9.7], Ŝti is generic if and only if it is supercuspidal,

i.e., Sti is supercuspidal.

Since σ2 is irreducible tempered, it can be written as a subrepresentation of the

induced representation Stz+1 × · · · × Stw ⋊ σ3, where St j ’s and σ3 are all square-

integrable.

By [Jan, Theorem 1.1], σ3 can be written as a subrepresentation of

δ(Σw+1) × · · · × δ(Σu) ⋊ σ4,

where σ4 is supercuspidal and Σk’s, σ4 satisfy the conditions of [Jan, Theorem 1.1].

Then σ̂2 is the unique generic constituent of

Ŝtz+1 × . . . Ŝtw × ζ(Σw+1) × · · · × ζ(Σu) ⋊ σ̂4,
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where ζ(Σk) = δ̂(Σk), w + 1 ≤ k ≤ u. Note that σ̂4 = σ4. By a similar argument

as above, we can see that St j , z + 1 ≤ j ≤ w and δ(Σk), w + 1 ≤ k ≤ u are all

supercuspidal. By the proof of [BZh, Lemma 4.2], we can see that {w+1, . . . , u} = ∅.

Therefore, σ̂ is a subquotient of

σ5 = vβ1 St1 × · · · × vβz Stz × Stz+1 × · · · × Stw ⋊ σ4,

where St j , 1 ≤ k ≤ w are supercuspidal unitary, and σ4 is also supercuspidal. Note

that, by the classification of irreducible generic representations, σ4 = σ(0).

By [C, Corollary 6.3.7],

{β1, . . . , βz} = {α1, . . . , αt}, {St1, . . . , Stz} = {τ ǫ1
α1

, . . . , τ ǫt
αt
}, and

{St j , z + 1 ≤ j ≤ w} = {τ ηi

i |i ∈ I0, ηi = ±1}.

So, σ̂ is the Langlands quotient of

vα1τ ǫ1
α1

× · · · × vαt τ ǫt
αt

⋊ σ6,

where σ6 is a subrepresentation of ×i∈I0
τ ηi

i ⋊σ(0). By a similar argument in the proof

of [Ban2, Lemma 5.1], we can see that

×i∈I0
τ ηi

i ⋊ σ(0)
= ×w

j=z+1St j ⋊ σ(0),

and σ6 = σ̂ ′. This completes the proof.

Based on the above lemma and results in previous sections, it is easy to give the

L-parameter of σ̂.

Theorem 7.2 The L-parameter of σ̂ is

φbσ =

(⊕
i∈I

b j⊕
j=−ai

(
| · | jφi ⊕ | · |− j φ̃i

))
⊕

( ⊕
i∈I5

φi

)
,

where φi = r−1(τi), r is the local Langlands reciprocity map for GL as in [HT, H1].

The following result is Theorem 1.3.

Theorem 7.3 For each A-parameter ψ and the corresponding L-parameter φψ , the

representations attached to φψ in Section 5 are generic if and only if φψ is tempered.

Proof Assume ψ =
⊕v

i=1 φ ′
i ⊗ Sm1

⊗ Sni
, then by definition

φψ =

v⊕
i=1

ni−1

2⊕
ji=−

ni−1

2

| · | ji φ ′
i ⊗ Smi

=
⊕

ni even

ni−1

2⊕
ji=

1
2

| · | ji φ ′
i ⊗ Smi

⊕ | · |− ji φ̃ ′
i ⊗ Smi

⊕
⊕

ni odd

( ni−1

2⊕
ji=1

| · | ji φ ′
i ⊗ Smi

⊕ | · |− ji φ̃ ′
i ⊗ Smi

)
⊕ φ ′

i ⊗ Smi
.
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Assume that σ is the representation attached to φψ in Section 5. Since φψ is tem-

pered, then σ is obviously generic, so it suffices to assume that σ is generic and to

show ni = 1, 1 ≤ i ≤ v and I4 = ∅.

Note that

φσ =
⊕
i∈I1

φi ⊗ S2bi +1 ⊕
⊕
i∈I ′1

φi ⊗ S2ai +1 ⊕
⊕
i∈I ′5

φi ⊕
⊕

i∈I2∪I3

φi ⊗ S2bi +1 ⊕ φi ⊗ S2bi +1

⊕
⊕
i∈I4

| · |
bi−ai

2 φi ⊗ Sai +bi +1 ⊕ | · |−
bi−ai

2 φi ⊗ Sai +bi +1.

If there exists i such that ni > 4, first consider it to be even, then the following

linked segments

Σ
′
1 = [v−

mi
2

+1τ ′
i , v

mi
2 τ ′

i ], Σ
′
2 = [v−

mi
2

+2τ ′
i , v

mi
2

+1τ ′
i ],

where τ ′
i = r(φ ′

i ), are in the segments corresponding to the index I4, but this contra-

dicts Definition 4.14(i). Similarly, there is also a contradiction when ni is odd.

If 1 < ni ≤ 3 and (mi , ni) 6= (1, 3), then by the similar argument in the proof

of [Ban2, Theorem 5.4], we can see that φ ′
i ⊗ Smi

⊗ Sni
is orthogonal. In par-

ticular, φ ′
i is self-dual. When ni = 2, the segment corresponding to ji =

1
2

is

Σ = [v−
mi
2

+1τ ′
i , v

mi
2 τ ′

i ], where τ ′
i is self-dual. By Definition 4.14, Σ has to satisfy

condition (iii)(b) or (c). One can easily see that (iii)(b) is not true for Σ. Since,

φ ′
i ⊗ Smi

⊗ Sni
is orthogonal, and ni = 2, φ ′

i ⊗ Smi
is symplectic. If mi is even, then φ ′

i

is orthogonal; that is, L(τ ′
i , Sym2, s) has a pole at s = 0, but 0, 1 ∈ {−mi

2
+1, . . . , mi

2
},

so (3C1) and (3C0) fail. If mi is odd, then φ ′
i is symplectic; that is, L(τ ′

i ,∧2, s) has

a pole at s = 0, but 1
2
∈ {−mi

2
+ 1, . . . , mi

2
}, so (3C 1

2
) also fails, a contradiction!

Similarly, there is also a contradiction when ni = 3.

If (mi , ni) = (1, 3), then the segment corresponding to ji = 1 is Σ = [vτ ′
i ]

and there is also a term φ ′
i in ψ whose the corresponding representation is τ ′

i . Since

Σ = [vτ ′
i ] and τ ′

i are linked, this contradicts either Definition 4.14(i) or (ii). This

completes the proof.

Remark 7.4 Note that by the structure of irreducible generic representations of

GLn(F) (see [BZ, Z]), Theorem 7.3 also holds for the GLn-case.

Next, for any σ ∈ Π
(tg)(Sp2n), we will consider the symmetry of A-parameters.

Theorem 7.5 Given any σ ∈ Π
(tg)(Sp2n) with L-parameter φσ and an A-parameter

ψ such that φσ = φψ , then there is also an A-parameter ψ̂ such that φbσ = φbψ , and ψ
and ψ̂ are symmetric.

Proof First, it is easy to see that

ψ =
⊕
i∈I1

φi ⊗ S2bi +1 ⊗ S1 ⊕
⊕
i∈I ′1

φi ⊗ S2ai +1 ⊗ S1 ⊕
⊕
i∈I ′5

φi ⊗ S1 ⊗ S1

⊕
⊕

i∈I2∪I3

φi ⊗ S2bi +1 ⊗ S1 ⊕ φi ⊗ S2bi +1 ⊗ S1.
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Let

ψ̂ =
⊕
i∈I1

φi ⊗ S1 ⊗ S2bi +1 ⊕
⊕
i∈I ′1

φi ⊗ S1 ⊗ S2ai +1 ⊕
⊕
i∈I ′5

φi ⊗ S1 ⊗ S1

⊕
⊕

i∈I2∪I3

φi ⊗ S1 ⊗ S2bi +1 ⊕ φi ⊗ S1 ⊗ S2bi +1.

Then ψ and ψ̂ are symmetric. It suffices to show that φbσ = φbψ , which can be easily

seen from the definition and Theorem 7.2.
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