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It is a well-known theorem, due to J. Shalika and I. Piatetski-Shapiro, independently,

that any nonzero cuspidal automorphic form on GLn(A) is generic, that is, has a nonzero

Whittaker–Fourier coefficient. Its proof follows from the Fourier expansion of the cus-

pidal automorphic form in terms of its Whittaker–Fourier coefficients. In this paper,

we extend this Fourier expansion to the whole discrete spectrum of the space of all

square-integrable automorphic forms of GLn(A) and determine the Fourier coefficients

of irreducible noncuspidal (residual) automorphic representations of GLn(A) in terms of

unipotent orbits.

1 Introduction

Let k be a number field and A be the ring of adeles of k. For the general linear group GLn,

it is a well-known theorem that any nonzero cuspidal automorphic form ϕ on GLn(A)

is globally generic, that is, has a nonzero Whittaker–Fourier coefficient (which will be

defined in Section 2), which was proved by Shalika [12] and Piatetski-Shapiro [10], inde-

pendently, using the Fourier expansion of the cuspidal automorphic form ϕ in terms of

its Whittaker–Fourier coefficients (which will be recalled in Section 2). This important

fact for cuspidal automorphic forms on GLn(A) distinguishes the theory of GLn from that
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4030 D. Jiang and B. Liu

of other reductive algebraic groups, since over a general reductive algebraic group, there

do exist nongeneric cuspidal automorphic forms.

In general, Fourier coefficients of automorphic forms over G(A), where G is a

reductive algebraic group defined over k, may be defined in terms of unipotent orbits

of G(k). However, the Fourier coefficients in a Fourier expansion of automorphic forms

over G(A) may be different from the notion of Fourier coefficients attached to unipotent

orbits, although when G = GLn and the automorphic forms are cuspidal, they coincide.

Hence it is important to study the relations between the two different notions of Fourier

coefficients. In this paper, we do this for the noncuspidal discrete series automorphic

forms on GLn(A), with the hope that some of the ideas and methods may be extendable

to the discrete spectrum of classical groups.

First, we extend the Fourier expansion to automorphic forms on GLn(A), which

occur in the discrete spectrum of square-integrable automorphic forms on GLn(A). This

is done in Section 3 (Theorem 3.3). A technical, but very useful lemma (Lemma 3.2) is

proved in Section 4. Based on the Fourier expansion in Section 3, we determine the

degenerate Whittaker–Fourier coefficients along the standard maximal unipotent sub-

group Un of GLn with degenerate characters for all noncuspidal discrete series auto-

morphic representations of GLn(A), following the terminology used by Zelevinsky [14,

Section 8.3]. Note that the notion of degenerate Whittaker–Fourier coefficients is easy to

use when the group is GLn, as one can see in the Fourier expansion in Section 3. How-

ever, for other reductive groups, there are cuspidal automorphic forms, which have no

nonzero Whittaker–Fourier coefficients, and hence such degenerate Whittaker–Fourier

coefficients are all zero. Therefore, it is natural to introduce the notion of Fourier

coefficients attached to unipotent orbits for automorphic forms on general reductive

groups [1, 2, 6].

In Section 5, we define the notion of Fourier coefficients attached to unipotent

orbits for automorphic forms on GLn(A), and determine the relation between the degen-

erate Whittaker–Fourier coefficients from the Fourier expansion and the Fourier coeffi-

cients attached to unipotent orbits for the residual spectrum of GLn(A) (Theorem 5.4). We

remark that Ginzburg [1] gives a sketch of a proof of this result [1, Proposition 5.3] with

an argument combining local and global methods. We give here a global proof with full

details. In Section 6, we show that the Fourier coefficient for any noncuspidal, discrete

series automorphic form of GLn(A) obtained from Theorem 5.4 is the biggest Fourier

coefficient according to the partial ordering of unipotent orbits (Theorem 5.5). Finally,

Theorem 5.6, which is the combination of Theorems 5.4 and 5.5 and Corollary 3.4,

extends the results of Shalika and of Piatetski-Shapiro on cuspidal automorphic forms of
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On Fourier Coefficients of Automorphic Forms of GL(n) 4031

GLn(A) to the whole discrete spectrum of GLn(A). In other words, we prove the following

main result (Theorem 5.6) of this paper.

Theorem 1.1 (Fourier coefficients for discrete spectrum of GLn). Let τ be an irreducible

unitary cuspidal automorphic representation of GLa(A) and let n= ab with b ≥ 1. Define

the residual representation E(τ,b) of GLn(A) as in Section 2.1. Let p= [p1 p2 · · · pr] be a

partition of nwith p1 ≥ p2 ≥ · · · ≥ pr > 0 and denote by [ab] the partition of all parts equal

to a. Then the following hold.

(1) The residual representation E(τ,b) has a nonzero ψ[ab]-Fourier coefficient,

whose definition is given in Section 5.

(2) For any partition p= [p1 p2 · · · pr] of n, if p1 > a, then the residual represen-

tation E(τ,b) has no nonzero ψp-Fourier coefficients. �

Finally, we would like to thank the referees for their helpful comments on the

previous version of this paper.

2 Discrete Spectrum of GLn

We first recall from [7] the structure of the discrete spectrum of GLn and from [10, 12]

the Fourier expansion of any cuspidal automorphic form on GLn.

2.1 Structure of discrete spectrum

Take n= ab with a,b ≥ 1 integers. It was a conjecture of Jacquet [4] and then a theorem of

Moeglin and Waldspurger [7] that an irreducible automorphic representation π of GLn(A)

occurring in the discrete spectrum of the space of all square-integrable automorphic

forms on GLn(A) is parameterized by a pair (τ,b) with τ an irreducible unitary cuspidal

automorphic representation of GLa(A), for some pair a,b of integers such that n= ab. In

particular, if π is also cuspidal, then b = 1.

More precisely, we take the Borel subgroup Bn = TnUn to be the subgroup of all

upper triangular matrices in GLn, where Tn consists of all diagonal matrices in GLn. The

triple (GLn, Bn, Tn) determines the structure of the root system of GLn. For n= ab with

b> 1, take the standard parabolic subgroup Pab = Mab Nab of GLab, with the Levi part Mab

isomorphic to GL×b
a = GLa × · · · × GLa(b − times). Then (Pab, τ⊗b) is a cuspidal datum of

GLab(A). Following the theory of Langlands [5] and Moeglin and Waldspurger [8], there

is an Eisenstein series E(φτ⊗b, s, g) attached to (Pab, τ⊗b), where s = (s1, . . . , sb) ∈ Cb. This
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4032 D. Jiang and B. Liu

Eisenstein series converges absolutely for the real part of s belonging to a certain cone

and has meromorphic continuation to the whole complex space Cb. Moreover, it has an

iterated residue at

s0 =Λb :=
(

b − 1

2
,

b − 3

2
, . . . ,

1 − b

2

)

given by

E−1(φτ⊗b, g)= lim
s→Λb

b−1∏
i=1

(si − si+1 − 1)E(φτ⊗b, s, g), (2.1)

which is square integrable, and hence belongs to the discrete spectrum of the space of

all square integrable automorphic forms of GLab(A). Denote by E(τ,b) the automorphic

representation generated by all the residues E−1(φτ⊗b, g). It is a theorem of Moeglin and

Waldspurger [7] that E(τ,b) is irreducible, and any irreducible noncuspidal automorphic

representation occurring in the discrete spectrum of GLn(A) is of this form for some

a≥ 1 and b> 1 such that n= ab, and has multiplicity one.

2.2 Fourier expansion for cuspidal automorphic forms

Recall Bn = TnUn is the Borel subgroup fixed in Section 2.1. We write elements of Un to be

u= (ui, j), which is upper triangular. Let ψ be a nontrivial character of A, which is trivial

on k. We define a nondegenerate character of Un(A) by

ψUn(u) :=ψ(u1,2 + u2,3 + · · · + un−1,n). (2.2)

It is clear that ψUn is trivial on Un(k). For an automorphic form ϕ on GLn(A), the (nonde-

generate) Whittaker–Fourier coefficient of ϕ is given by

Wψ(ϕ, g) :=
∫

Un(k)\Un(A)

ϕ(ug)ψ−1
Un
(u)du. (2.3)

When ϕ is cuspidal, the following well-known Fourier expansion of ϕ is proved indepen-

dently in [10, 12]:

ϕ(g)=
∑

γ∈Un−1(k)\GLn−1(k)

Wψ(ϕ, ιn(γ )g), (2.4)

where ιn(γ )=
(
γ 0
0 1

)
. As a consequence, one deduces easily from this Fourier expansion

that any nonzero cuspidal automorphic form ϕ has a nonzero Whittaker–Fourier coeffi-

cient, and hence is generic.
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On Fourier Coefficients of Automorphic Forms of GL(n) 4033

Now let us consider the residual representations of GLn(A). Take n= ab. The

residual representation E(τ,b) can also be generated by the residues at the point (s1, s2)=(
b−1

2 ,− 1
2

)
of the Eisenstein series with support

GLa × GLa(b−1), τ ⊗ E(τ,b−1).

From the calculation of Shahidi [11, Chapter 7], it is clear to see that the residual repre-

sentation E(τ,b) has a nonzero Whittaker–Fourier coefficient only if the residual represen-

tation E(τ,b−1) has a nonzero Whittaker–Fourier coefficient. By the induction argument,

it is enough to show that E(τ,2) is not generic. This follows from [11, Theorem 7.1.2]. We

summarize the discussion as in the following proposition.

Proposition 2.1. Any irreducible, noncuspidal, automorphic representation occurring

in the discrete spectrum of GLn(A) is nongeneric, that is, has no nonzero Whittaker–

Fourier coefficients. �

We note that this global result can also be proved by using Zelevinsky classifica-

tion theory of irreducible smooth representations of GLn over a p-adic local field [14].

3 Fourier Expansion for the Discrete Spectrum

Fourier expansion for automorphic forms on GLn(A) is an important tool to study the

properties of automorphic forms. A general expansion is given in [13, Proposition 2.1.3].

However, it is not easy to use such a general expansion to establish an analog of the

Fourier expansion (2.4) for the automorphic forms in the noncuspidal discrete spectrum

of GLn(A). In this section, we write the Eisenstein series in a more explicit form and

study the vanishing and nonvanishing of certain Fourier coefficients of the residual rep-

resentations to obtain the exact extension of (2.4) to the whole discrete spectrum of

GLn(A).

For n= ab with b> 1, take the standard parabolic subgroup P = Pab = MN of GLab

with Levi part M = GL×b
a . Consider the normalized induced representation

I (τ, s,b)= IndG(A)
P (A)(τ | · |s1 ⊗ · · · ⊗ τ | · |sb),

where τ is an irreducible unitary cuspidal automorphic representation of GLa(A) and

s = {s1, . . . , sb} ∈ Cb.
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4034 D. Jiang and B. Liu

For any section φ ∈ I (τ, s,b), let iφ be a complex function over N(A)M(k) \ G(A)

defined by

iφ(g)= φ(g)(I b
a). (3.1)

where I b
a is the identity in the group M. Then, when the real part of s belongs to a certain

cone, the Eisenstein series can be expressed as

E(φ, s, g)=
∑

γ∈P (k)\GLab(k)

iφ(γg). (3.2)

For any parabolic subgroup Q = LV of GLn, the constant term of the Eisenstein

series along Q is defined by

E(φ, s, g)Q =
∫

V(k)\V(A)
E(φ, s, vg)dv. (3.3)

Then the constant term of the residue E−1(φ, g) along Q is given by

E−1(φ, g)Q = lim
s→Λb

b−1∏
i=1

(si − si+1 − 1)E(φ, s, g)Q. (3.4)

It follows from [8, Proposition 2.1.7] that the constant term E−1(φ, g)Q is always zero

unless P ⊆ Q.

3.1 Families of fourier coefficients

In order to study the Fourier expansion for the discrete spectrum of GLn, we introduce

two families of Fourier coefficients. Let α, β, γ , and δ be four nonnegative integers,

such that

α + β + γ · δ = n.

Consider the standard parabolic subgroup

Qα,1(n−α) = Lα,1(n−α)Vα,1(n−α)

of GLn with the Levi part Lα,1(n−α) = GLα × GL×(n−α)
1 . We define Q0

α,1(n−α) to be the subgroup

of Qα,1(n−α) = (qi, j) with qi,i = 1 for all i >α. Note that

V1,1(n−1) = V0,1n = Un

is the standard maximal unipotent subgroup of GLn.
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On Fourier Coefficients of Automorphic Forms of GL(n) 4035

For nonnegative integers α, β, γ , and δ as given above, we define two types of

(degenerate) characters ψn
β+;γ ·δ and ψn

β;γ ·δ of Vα,1(n−α) as follows:

ψn
β+;γ ·δ(v) :=ψ(vα,α+1 + vα+1,α+2 + · · · + vα+β−1,α+β)

· ψ(vα+β+1,α+β+2 + · · · + vα+β+δ−1,α+β+δ)

· ψ(vα+β+δ+1,α+β+δ+2 + · · · + vα+β+2δ−1,α+β+2δ)

...

· ψ(vα+β+(γ−1)·δ+1,α+β+(γ−1)·δ+2 + · · · + vn−1,n) (3.5)

and

ψn
β;γ ·δ(v) :=ψ(vα+1,α+2 + · · · + vα+β−1,α+β)

· ψ(vα+β+1,α+β+2 + · · · + vα+β+δ−1,α+β+δ)

· ψ(vα+β+δ+1,α+β+δ+2 + · · · + vα+β+2δ−1,α+β+2δ)

...

· ψ(vα+β+(γ−1)·δ+1,α+β+(γ−1)·δ+2 + · · · + vn−1,n). (3.6)

Note that ψn
β+;γ ·δ(v)=ψ(vα,α+1) · ψn

β;γ ·δ(v). The corresponding Fourier coefficients of the

residue E−1(φ, g) are given by:

E
ψn
β+;γ ·δ

−1 (φ, g) :=
∫

[V
α,1(n−α) ]

E−1(φ, vg)ψ
n
β+;γ ·δ(v)

−1 dv, (3.7)

E
ψn
β;γ ·δ

−1 (φ, g) :=
∫

[V
α,1(n−α) ]

E−1(φ, vg)ψ
n
β;γ ·δ(v)

−1 dv, (3.8)

where [Vα,1(n−α) ] := Vα,1(n−α) (k) \ Vα,1(n−α) (A). For simplicity of notation, if there is no

confusion, we also use ψβ+;γ ·δ for ψn
β+;γ ·δ, and ψβ;γ ·δ for ψn

β;γ ·δ.

3.2 Fourier expansion: Step 1

We consider first a preliminary version of the Fourier expansion for the residue

E−1(φ, g), following the idea of the Fourier expansion for cuspidal automorphic forms

on GLab(A) (n= ab from now on) given in [10, 12].
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4036 D. Jiang and B. Liu

Consider the standard parabolic subgroup Qab−1,1 = Lab−1,1Vab−1,1 of GLab. The

unipotent radical Vab−1,1 is abelian and is isomorphic to k⊕(ab−1). Hence we have the

following Fourier expansion for the residue E−1(φ, g) along Vab−1,1(k) \ Vab−1,1(A):

E−1(φ, g)= E−1(φ, g)Qab−1,1 +
∑

γab∈Q0
ab−2,1(2)

(k)\Q0
ab−1,1(k)

E
ψ1+;0·0
−1 (φ, γabg),

with α = ab − 1, β = 1, and γ = δ = 0.

If a= 1, then b = nand the residual representation Eτ,n is one-dimensional. Hence

it has no nontrivial Fourier coefficients. That is, E
ψ1+;0·0
−1 (φ, g) is identically zero (this will

be generalized in Lemma 3.2), which implies that

E−1(φ, g)= E−1(φ, g)Qab−1,1 = Eψ1;0·0
−1 (φ, g)= Eψ0;1·1

−1 (φ, g). (3.9)

If a> 1, then Qab−1,1 does not contain P . By the cuspidal support of the residue,

the constant term E−1(φ, g)Qab−1,1 is always zero. Hence we obtain

E−1(φ, g)=
∑

γab∈Q0
ab−2,1(2)

(k)\Q0
ab−1,1(k)

E
ψ1+;0·0
−1 (φ, γabg). (3.10)

Note that E
ψ1+;0·0
−1 (φ, g) is left ιab−1,ab(Q0

ab−2,1(k)) invariant, where the subgroup Q0
ab−2,1 is

the GLab−1-analog of subgroup Q0
ab−1,1 of GLab and

ιab−1,ab(h) :=
(

h 0

0 1

)
(3.11)

for h∈ GLab−1. Next consider the unipotent radical Vab−2,1 of Q0
ab−2,1, which is abelian

and isomorphic to k⊕(ab−2). Hence we have the Fourier expansion of E
ψ1+;0·0
−1 (φ, g) along

Vab−2,1(k) \ Vab−2,1(A):

E
ψ1+;0·0
−1 (φ, g)= E

ψ1+;0·0
−1 (φ, g)ιab−1,ab(Qab−2,1) +

∑
γab−1∈Q0

ab−3,1(2)
(k)\Q0

ab−2,1(k)

E
ψ2+;0·0
−1 (φ, γab−1g).

It is easy to see from the definition that the constant term

E
ψ1+;0·0
−1 (φ, g)ιab−1,ab(Qab−2,1) = Eψ0;1·2

−1 (φ, g).
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On Fourier Coefficients of Automorphic Forms of GL(n) 4037

If a= 2, we show that the Fourier coefficient E
ψ2+;0·0
−1 (φ, γab−1g) is zero (Lemma 3.2).

Hence, when a= 2, from (3.10), we obtain

E−1(φ, g)=
∑

γab∈Q0
2(b−1),1(2)

(k)\Q0
2b−1,1(k)

Eψ0;1·2
−1 (φ, γabg). (3.12)

If a> 2, then the term Eψ0;1·2
−1 (φ, g) contains as an inner integration the constant

term E−1(φ, g)Pab−2,2 of E−1(φ, g) along the standard maximal parabolic subgroup Pab−2,2

of GLab with Levi part isomorphic to GLab−2 × GL2. Since Pab−2,2 does not contain P when

a> 2, the constant term E−1(φ, g)Pab−2,2 must be zero. Hence, when a> 2, we have

E
ψ1+;0·0
−1 (φ, g)=

∑
γab−1∈Q0

ab−3,1(2)
(k)\Q0

ab−2,1(k)

E
ψ2+;0·0
−1 (φ, γab−1g). (3.13)

With (3.10), we obtain, when a> 2, that the residue E−1(φ, g) is equal to

∑
γab

∑
γab−1∈Q0

ab−3,1(2)
(k)\Q0

ab−2,1(k)

E
ψ2+;0·0
−1 (φ, ιab−1,ab(γab−1)γabg),

where γab runs over Q0
ab−2,1(2) (k) \ Q0

ab−1,1(k). Note that

Q0
ab−2,1(2) = ιab−1,ab(Q

0
ab−2,1)Vab−1,1

and ιab−1,ab(Q0
ab−2,1) normalizes Vab−1,1. Note also that

ιab−2,ab(Q
0
ab−3,1(2) )Vab−1,1 = Q0

ab−3,1(3) ,

where ιab−2,ab := ιab−2,ab−1 ◦ ιab−1,ab. We obtain, when a> 2, the following Fourier expan-

sion for the residue E−1(φ, g):

E−1(φ, g)=
∑

γab∈Q0
ab−3,1(3)

(k)\Q0
ab−1,1(k)

E
ψ2+;0·0
−1 (φ, γabg). (3.14)

We continue with the expansion (3.14) and repeat the above argument, and finally

we obtain the following expansion:

E−1(φ, g)=
∑

γab∈Q0
a(b−1),1(a)

(k)\Q0
ab−1,1(k)

Eψ0;1·a
−1 (φ, γabg), (3.15)
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4038 D. Jiang and B. Liu

which uses Lemma 3.2. Note that this expansion generalizes (3.9) and (3.12), from a= 1,2

to general a. We record the above discussion as follows.

Proposition 3.1. Let E−1(φ, g) be the residue of the Eisenstein series E(φ, s, g) as

defined in (2.1).

(1) It has the following Fourier expansion:

E−1(φ, g)=
∑

γ∈Q0
a(b−1),1(a)

(k)\Q0
ab−1,1(k)

E
ψab

0;1·a
−1 (φ, γg).

(2) The above Fourier expansion is absolutely convergent and uniformly

converges on any compact set in g. �

Note that Part (2) is clear since, in each step, the Fourier expansion in the argu-

ment is absolutely convergent and uniformly converges on any compact set in g. Also,

if we assume that b = 1, then Eτ,1 = τ , and the Fourier expansion in Part (1) recovers the

Fourier expansion in (2.4) for any cuspidal automorphic form ϕτ in the space of τ , given

in [10, 12].

Now we state the technical lemma, which will be proved in Section 4.

Lemma 3.2. Let E−1(φ, g) be the residue of the Eisenstein series E(φ, s, g) as defined in

(2.1). The Fourier coefficient E
ψa+;γ ·a
−1 (φ, g) is identically zero, for α = a(b − γ − 1), β = δ = a,

and γ = 0,1,2, . . . ,b − 2. �

3.3 Fourier expansion: Step 2

As we remarked after Proposition 3.1, if b = 1, then Eτ,1 = τ , and we finish the Fourier

expansion. If b> 1, we are able to do further Fourier expansion from the Fourier expan-

sion in Part (1) of Proposition 3.1.

Consider the subgroup Q0
a(b−1)−1,1 of GLa(b−1), which is the GLa(b−1)-analog of

Q0
ab−1,1. In this case, Va(b−1)−1,1 is the unipotent radical of Q0

a(b−1)−1,1, which is iso-

morphic to k⊕(a(b−1)−1). It is clear that the Fourier coefficient Eψ0;1·a
−1 (φ, g) in (3.15) is

left ιa(b−1),ab(Va(b−1)−1,1(k)) invariant, where for h∈ GLa(b−1), ιa(b−1),ab(h) is the block-

diagonal matrix diag(h, Ia) in GLab. Hence we have the following Fourier expansion
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On Fourier Coefficients of Automorphic Forms of GL(n) 4039

for E
ψ ′

a(b−1),1(a)

−1 (φ, g):

Eψ0;1·a
−1 (φ, g)= Eψ0;1·a

−1 (φ, g)ιa(b−1),ab(Q0
a(b−1)−1,1)

+
∑
γ

E
ψab

0;1·a;ψa(b−1)
1+;0·0

−1 (φ, ιa(b−1),ab(γ )g),

where γ runs over Q0
a(b−1)−2,1(2) (k) \ Q0

a(b−1)−1,1(k) and

E
ψab

0;1·a;ψa(b−1)
1+;0·0

−1 (φ, g) :=
∫
v

E
ψab

0;1·a
−1 (φ, vg)ψa(b−1)

1+;0·0 (v)
−1 dv. (3.16)

Here the integration dv is over

ιa(b−1),ab(Va(b−1)−1,1(k)) \ ιa(b−1),ab(Va(b−1)−1,1(A)).

As long as a> 1, which we always assume from now on, the constant term Eψ0;1·a
−1

(φ, g)ιa(b−1),ab(Q0
a(b−1)−1,1)

contains as an inner integration the constant term of the residue

E−1(φ, g) along the maximal parabolic subgroup Pa(b−1)−1,a+1 of GLab, which is identi-

cally zero since Pa(b−1)−1,a+1 does not contain P . Hence we obtain (a> 1)

Eψ0;1·a
−1 (φ, g)=

∑
γ

E
ψab

0;1·a;ψa(b−1)
1+;0·0

−1 (φ, ιa(b−1),ab(γ )g), (3.17)

where γ runs over Q0
a(b−1)−2,1(2) (k) \ Q0

a(b−1)−1,1(k). As in Section 3.1, we can continue and

obtain the following Fourier expansion

Eψ0;1·a
−1 (φ, g)=

∑
γ

E
ψab

0;1·a;ψa(b−1)
0;1·a

−1 (φ, ιa(b−1),ab(γ )g), (3.18)

where γ runs over Q0
a(b−2),1(a) (k) \ Q0

a(b−1)−1,1(k), and

E
ψab

0;1·a;ψa(b−1)
0;1·a

−1 (φ, g)=
∫
v

E
ψab

0;1·a
−1 (φ, vg)ψa(b−1)

0;1·a (v)−1 dv.

Here the integration dv is over

ιa(b−1),ab(Va(b−2),1(a) (k)) \ ιa(b−1),ab(Va(b−2),1(a) (A)).

Note that the proof here uses the technical lemma (Lemma 3.2 again).
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4040 D. Jiang and B. Liu

Since ιa(b−1),ab(Va(b−2),1(a)Va(b−1),1(a) )= Va(b−2),1(2a) , we see that

E
ψab

0;1·a;ψa(b−1)
0;1·a

−1 (φ, g)=
∫
v

E−1(φ, vg)ψ
ab
0;2·a(v)

−1 dv

= E
ψab

0;2·a
−1 (φ, g), (3.19)

where the integration dv is over Va(b−2),1(2a) (k) \ Va(b−2),1(2a) (A). Note here that α = a(b − 2),

β = 0, γ = 2, and δ = a.

From the above discussion, we obtain

E−1(φ, g)=
∑
γ1

∑
γ2

Eψ0;2·a
−1 (φ, γ2γ1g), (3.20)

where γ1 runs over Q0
a(b−1),1(a) (k) \ Q0

ab−1,1(k) and γ2 runs over

ιa(b−1),ab(Q
0
a(b−2),1(a) (k)) \ ιa(b−1),ab(Q

0
a(b−1)−1,1(k)).

For general b> 1, such that n= ab, we repeat the above argument and obtain, by

means of the inductive argument and Lemma 3.2 for each step, the following Fourier

expansion for the residue E−1(φ, g).

E−1(φ, g)=
∑
γ1

· · ·
∑
γb

Eψ0;b·a
−1 (φ, γb · · · γ1g), (3.21)

where γi runs over

ιa(b−i+1),ab(Q
0
a(b−i),1(a) (k)) \ ιa(b−i+1),ab(Q

0
a(b−i+1)−1,1(k))

for i = 1,2, . . . ,b. Note here that α= β = 0, γ = b, and δ = a. We state this as follows.

Theorem 3.3 (Fourier expansion). Let E−1(φ, g) be the residue of the Eisenstein series

E(φ, s, g) as defined in (2.1).

(1) It has the following Fourier expansion:

E−1(φ, g)=
∑
γ1

· · ·
∑
γb

E
ψab

0;b·a
−1 (φ, γb · · · γ1g),
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On Fourier Coefficients of Automorphic Forms of GL(n) 4041

where γi runs over

ιa(b−i+1),ab(Q
0
a(b−i),1(a) (k)) \ ιa(b−i+1),ab(Q

0
a(b−i+1)−1,1(k))

for i = 1,2, . . . ,b.

(2) The above Fourier expansion is absolutely convergent and uniformly con-

verges on any compact set in g. �

As a consequence, we obtain the following corollary.

Corollary 3.4. Let E−1(φ, g) be the residue of the Eisenstein series E(φ, s, g) as defined

in (2.1) with cuspidal datum (Pab, τ⊗b). Then the degenerate Whittaker–Fourier coefficient

E
ψab

0;b·a
−1 (φ, g) is nonzero for some choice of φ. �

More generally, there is a notion of Fourier coefficients of an automorphic form

on GLn(A) parameterized by partitions of n or unipotent orbits, which works better for

general reductive groups and will be introduced for GLn in Section 5. By using the order-

ing of partitions, we will show that the Fourier coefficient E
ψab

0;b·a
−1 (φ, g) is essentially the

one attached to the biggest partition among all partitions to which the residue E−1(φ, g)

can have nonzero Fourier coefficients attached.

4 Proof of Lemma 3.2

In order to prove Lemma 3.2, we need Lemma 4.1, which will also be used in the proofs

of Theorem 5.4 and Lemma 6.1. In the following, we take the standard section for the

Eisenstein series E(φ, s, g), via the natural isomorphism of vector spaces: I (τ,0,b)∼=
I (τ, s,b), which takes φ to φ(s), for any section φ ∈ I (τ,0,b), canonically. In this way, the

Eisenstein series is given by, when the real part of s belongs to a certain cone,

E(φ, s, g)=
∑

γ∈P (k)\GLab(k)

iφ(s)(γg).

Lemma 4.1. Let Qi := Qai,a(b−i) = LiVi be the standard maximal parabolic subgroup of

GLab with Levi part Li
∼= GLai × GLa(b−i), where 1 ≤ i ≤ b − 1. Then there is a section

f ∈ IndGLab(A)

Qi(A)
(| · |− b−i

2 E(τ,i) ⊗ | · | i
2 E(τ,b−i)),

such that

E−1(φ, g)Qi = f(g)(Iai × Ia(b−i)). �
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4042 D. Jiang and B. Liu

Proof. We first calculate the constant term of the Eisenstein series E(φ, s, g) along the

parabolic subgroup Qi. This Eisenstein series has cuspidal support on the standard

parabolic subgroup Pab = Mab Nab. In this proof, we use P = MN to simplify the notation.

To do this we introduce the set MWc
Li

, which consists of elements ω−1 ∈ W(GLab)

(the Weyl group of GLab), with the properties that ω(α) > 0 for any α ∈Φ+
M, the posi-

tive roots in M, ω−1(β) > 0 for any β ∈Φ+
Li

, the positive roots in Li, and ωMω−1 ⊆ Li. By

Moeglin and Waldspurger [8, Proposition 2.1.7(2)], we have

E(φ, s, g)Qi =
∑

ω−1∈MWc
Li

∑
γ∈(ωPω−1∩Li)(k)\Li(k)

iM(ω, s)φ(s)(γg)

=
∑

ω−1∈MWc
Li

E Qi (M(ω, s)φ(s), ωs, g),

where M(ω, s) is the intertwining operator corresponding to ω.

Note that MWc
Li

has total C i
b elements which are of following forms: for any i

numbers {l1, . . . , li} in {1, . . . ,b} with increasing order, and the complement b − i numbers

{m1, . . . ,mb−i} = {1, . . . ,b} \ {l1, . . . , li} with increasing order, the corresponding element

ω−1 ∈ MWc
Li

is defined as

ω−1 : j �→ l j and i + f �→ m f (4.1)

for j ∈ {1,2, . . . , i} and f ∈ {1,2, . . . ,b − i}. Note here that by e �→ nwe mean that ω−1 takes

the eth block to the nth block (with the block size a × a).

To compute E−1(φ, g)Qi , we use the fact that the multi-residue operator

lims→Λb

∏b−1
i=1 (si − si+1 − 1) (where Λb is defined in (2.1)) and the constant term opera-

tor are interchangeable. Using the same argument as in the proof of Offen and Sayag

[9, Lemma 2.4], we deduce that after applying the multi-residue operator, the only term

left is the one corresponding to ω−1
i , where ωi =

(
0 Iai

Ia(b−i) 0

)
.

Indeed, given an element ω−1 as in (4.1), let

Δ1(ω)= {1 ≤ j ≤ b − 1|ω( j) > ω( j + 1)},

Δ2(ω)= {1 ≤ j ≤ b − 1|ω( j + 1)− ω( j)= 1} \ {ω−1(i)}.

Then the normalized intertwining operator

N(ω, s) :=
∏

j∈Δ1(ω)

(sj − sj+1 − 1)M(ω, s)
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On Fourier Coefficients of Automorphic Forms of GL(n) 4043

is holomorphic at Λb, and the normalized Eisenstein series

∏
j∈Δ2(ω)

(sj − sj+1 − 1)E Qi (N(ω, s)φ(s), ωs, g)

is holomorphic at Λb. Therefore, the term corresponding to ω−1 survives after applying

the multi-residue operator if and only if ω−1 has the property that

Δ1(ω) ∪Δ2(ω)= {1, . . . ,b − 1},

which is equivalent to that ω �= Iab, and there is no 1 ≤ j ≤ b − 1, such that ω( j + 1)−
ω( j) > 1. Note that if ω= Iab, then

Δ1(ω) ∪Δ2(ω)= {1, . . . ,b − 1} \ {i} �= {1, . . . ,b − 1}.

Since the property that there is no 1 ≤ j ≤ b − 1, such that ω( j + 1)− ω( j) > 1, implies

that

ω : j �→ i + j and b − i + f �→ f (4.2)

for j ∈ {1,2, . . . ,b − i} and f ∈ {1,2, . . . , i}. This means that ω=
(

0 Iai
Ia(b−i) 0

)
, or ω= Iab. After

applying the multi-residue operator, the only term left is the one corresponding to ω−1
i ,

where ωi =
(

0 Iai
Ia(b−i) 0

)
. Therefore, we prove the following identity

E−1(φ, g)Qi = E Qi
−1(M−1(ωi)φ, μai,a(b−i), g),

where μai,a(b−i) =
(− b−i

2 ; i
2

) ∈ C2. We embed C2 to Cb by (s1, s2) ↪→ (s1, . . . , s1; s2, . . . , s2)

with i-copies of s1 and (b − i)-copies of s2, and identify C2 with the image. Note that(
Λb = (

b−1
2 , b−3

2 , . . . , 1−b
2

))

ωiΛb =
(

2i − b − 1

2
,

2i − b − 3

2
, . . . ,

1 − b

2
; b − 1

2
,

b − 3

2
, . . . ,

2i − b + 1

2

)

=
(

i − 1

2
, . . . ,

1 − i

2
; (b − i)− 1

2
, . . . ,

1 − (b − i)

2

)
+
(

−b − i

2
; i

2

)

=Λai,a(b−i) + μai,a(b−i),
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4044 D. Jiang and B. Liu

where

Λai,a(b−i) =
(

i − 1

2
,

i − 3

2
, . . . ,

1 − i

2
; (b − i)− 1

2
,
(b − i)− 3

2
, . . . ,

1 − (b − i)

2

)
.

As discussed in [9, Page 10] (or in the proof of the Proposition 2.3 [9]),

E Qi
−1(M−1(ωi)φ, μai,a(b−i), g) defines a surjective intertwining operator from I (τ,Λb,b) onto

IndGLab(A)

Qi(A)
(| · |− b−i

2 E(τ,i) ⊗ | · | i
2 E(τ,b−i)). Hence there exists a section

f ∈ IndGLab(A)

Qi(A)

(
| · |− b−i

2 E(τ,i) ⊗ | · | i
2 E(τ,b−i)

)

such that

E−1(φ, g)Qi = E Qi
−1(M−1(ωi)φ, μQai,a(b−i) , g)= f(g)(Iai × Ia(b−i)).

This finishes the proof. �

Now, we are ready to prove the technical Lemma 3.2. This is to show that

for the residue E−1(φ, g) of the Eisenstein series E(φ, s, g) as defined in (2.1), the

Fourier coefficient E
ψab

a+;γ ·a
−1 (φ, g) is identically zero, for α = a(b − γ − 1), β = δ = a, and

γ = 0,1,2, . . . ,b − 2. Note that when γ = b − 1,

ψab
a+;(b−1)·a =ψab

a;(b−1)·a =ψab
0;b·a.

By using the cuspidal support of the residue E−1(φ, g), we have the following

Fourier expansion for the Fourier coefficient E
ψab

a+;γ ·a
−1 (φ, g)

E
ψab

a+;γ ·a
−1 (φ, g)=

∑
ε∈Q0

a(b−γ−2),1∗ (k)\Q0
a(b−γ−1)−1,1∗ (k)

E
ψab

2a;γ ·a
−1 (φ, εg)

+
∑

ε+∈Q0
a(b−γ−2)−1,1∗ (k)\Q0

a(b−γ−1)−1,1∗ (k)

E
ψab

2a+;γ ·a
−1 (φ, ε+g). (4.3)

Here we use Q0
m,1∗ := Q0

m,1ab−m to simplify the notation.

We show that the Fourier coefficient E
ψab

2a;γ ·a
−1 (φ, g) is identically zero. Based on

this, the vanishing of E
ψab

a+;γ ·a
−1 (φ, g) is equivalent to the vanishing of E

ψab
2a+;γ ·a

−1 (φ, ε+g). By

using the inductive argument on la for l = 1,2, . . . ,b − γ , which is based on the vanish-

ing of the Fourier coefficient E
ψab

la;γ ·a
−1 (φ, g) for each l = 2,3, . . . ,b − γ , it follows that the
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On Fourier Coefficients of Automorphic Forms of GL(n) 4045

vanishing of E
ψab

a+;γ ·a
−1 (φ, g) is equivalent to the vanishing of E

ψab
(b−γ )a+;γ ·a

−1 (φ, ε+g), which is the

same as E
ψab
(b−γ )a;γ ·a

−1 (φ, ε+g).

Hence, in order to prove Lemma 3.2, it is enough to prove the following lemma.

Lemma 4.2. For γ = 0,1,2, . . . ,b − 2 and l = 2,3, . . . ,b − γ , the Fourier coefficient

E
ψab

la;γ ·a
−1 (φ, g) is identically zero. �

Proof. First, when γ = 0 and l = b − γ = b, the Fourier coefficient E
ψab

ba;0·a
−1 (φ, g) is exactly

the Whittaker–Fourier coefficient of the residue E−1(φ, g), which is identically zero by

Proposition 2.1.

In the following, we use Lemma 4.1 twice to reduce the general case to the

above special case with lower rank. Hence those Fourier coefficients must all be zero

identically.

We assume that l < b − γ , and we show, by using Lemma 4.1, that this will reduce

to the case l = b − γ , which will be treated next.

Recall the parabolic subgroup Qb−γ−l = Lb−γ−l Vb−γ−l of GLab from Lemma 4.1,

with Lb−γ−l = GLa(b−γ−l) × GLa(γ+l). By the definition of the Fourier coefficient E
ψab

la;γ ·a
−1 (φ, g),

the constant term of the residue E−1(φ, g) along Qb−γ−l is an inner integration of

E
ψab

la;γ ·a
−1 (φ, g). More precisely, we have

E
ψab

la;γ ·a
−1 (φ, g)= [E−1(φ, g)Qb−γ−l ]

ψ
a(γ+l)
la;γ ·a . (4.4)

Note here that the ψa(γ+l)
la;γ ·a -Fourier coefficient is taken from the subgroup GLγ+l , which is

the second factor in the Levi subgroup Lb−γ−l .

By Lemma 4.1, there exists a section f belonging to

IndGLab(A)

Qb−γ−l (A)
(| · |− γ+l

2 E(τ,b−γ−l) ⊗ | · | b−γ−l
2 E(τ,γ+l)),

such that

E−1(φ, g)Qb−γ−l = f(g)(Ia(b−γ−l)×I a(γ+l)).

Since the ψa(γ+l)
la;γ ·a -Fourier coefficient of the constant term E−1(φ, g)Qb−γ−l is taken from the

subgroup GLγ+l , it suffices to show that the residual representation E(τ,γ+l) of GLa(γ+l)(A)

has no nonzero ψ
a(γ+l)
la;γ ·a -Fourier coefficients. This reduces the problem from GLab to

GLa(γ+l). Note that this reduces the general case l < b − γ to the case l = b − γ for b = γ + l.
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Now take E−1(φτ⊗(γ+l) , g) from the space of the residual representation E(τ,γ+l) of

GLa(γ+l)(A). Consider the standard maximal parabolic subgroup Ql,γ = Ll,γVl,γ of GLa(γ+l)

with Levi part Ll,γ = GLla × GLγa. By the definition of the ψa(γ+l)
la;γ ·a -Fourier coefficient of

E−1(φτ⊗(γ+l) , g), the constant term of the residue E−1(φτ⊗(γ+l) , g) along Ql,γ occurs as an

inner integration in the ψa(γ+l)
la;γ ·a -Fourier coefficient of E−1(φτ⊗(γ+l) , g). As before, we write

it more precisely as follows:

[E−1(φτ⊗(γ+l) , g)]ψ
a(γ+l)
la;γ ·a = [E−1(φτ⊗(γ+l) , g)Ql,γ ]

ψ la
la;0·a;ψγa

0;γ ·a.

After taking the constant term along Ql,γ , E−1(φτ⊗(γ+l) , g)Ql,γ is an automorphic function

over GLla(A)× GLγa(A). Note here that the ψ la
la;0·a-Fourier coefficient is taking on GLla(A)

and the ψγa
0;γ ·a-Fourier coefficient is taken on GLγa(A).

By Lemma 4.1 again (applied to GLa(γ+l)), it is enough to show that the residual

representation E(τ,l) has no nonzero ψ la
2a;0·a-Fourier coefficients or the residual represen-

tation E(τ,γ ) has no nonzero ψγa
0;γ ·a-Fourier coefficients. It is clear that the character ψ la

la;0·a
is exactly the Whittaker character of GLla(A). By Proposition 2.1, the residual represen-

tation E(τ,l) is not generic, and hence it has no nonzero ψ la
la;0·a-Fourier coefficients. �

This completes the proof of Lemma 3.2.

5 Fourier Coefficients for GLn

In Theorem 3.3 and Corollary 3.4, we show that the residue E−1(φ, g) of the Eisenstein

series E(φ, s, g), with cuspidal datum (Pab, τ⊗b), has a nonzero degenerate Whittaker–

Fourier coefficient E
ψab

0;b·a
−1 (φ, g). In this section, we give the definition of Fourier coeffi-

cients of automorphic forms attached to unipotent orbits or partitions of n, and show

that this degenerate Whittaker–Fourier coefficient for the residue E−1(φ, g) is analogous

to the Whittaker–Fourier coefficient for the cuspidal automorphic forms on GLn(A), as

remarked at the end of Section 3. In other words, we show that, according to the partial

ordering of partitions or unipotent orbits, the Fourier coefficient E
ψab

0;b·a
−1 (φ, g) is equiva-

lent (for the nonvanishing property) to the biggest possible Fourier coefficient that the

residue E−1(φ, g) can possibly have.

5.1 Fourier coefficients for GLn

We consider the Fourier coefficients of automorphic forms of GLn(A) attached to

unipotent k-orbits under the GLn(k)-adjoint action, following the idea of Ginzburg et al.

[2] and Ginzburg [1] for the global theory and of Moeglin et al. [6] for the local theory.
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On Fourier Coefficients of Automorphic Forms of GL(n) 4047

When G = GLn, each unipotent k-orbit O of GLn(k) has an element in the standard

Jordan form, which is unique up to permutation (conjugation by a certain Weyl group

element), and hence is characterized by a standard partition of n: p= [p1 p2 · · · pr] with

p1 ≥ p2 ≥ · · · ≥ pr > 0 and n=∑r
i=1 pi. We denote by Jp the unipotent Jordan matrix in the

unipotent k orbit Op determined by the partition p. Since Jp is of standard Jordan form,

there is a one-dimensional toric subgroup Hp of GLn(k):

Hp(t) := diag(H[p1](t),H[p2](t), . . . ,H[pr ](t)) (5.1)

with H[pi ](t) := diag(tpi−1, tpi−3, . . . , t3−pi , t1−pi ) for i = 1,2, . . . , r, and t ∈ k×, such that

∀ t ∈ k×,Ad(Hp(t))(Jp)= t2Jp.

Take J −
p to be the opposite to Jp. It is clear that

{Jp,Hp,J −
p }

generates the k-SL2 attached to the k-orbit Op. Under the adjoint action, the Lie algebra

gln(k) of GLn(k) decomposes into a direct sum of Ad(Hp)-eigenspaces:

gln(k)= g−m ⊕ · · · ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ · · · ⊕ gm (5.2)

for some m, where gl := {X ∈ gln(k) | Ad(Hp(t))(X)= tl · X}.
Let Vp, j(k) (with j = 1,2, . . . ,m) denote the unipotent subgroup of GLn(k) whose

Lie algebra is ⊕m
l= jgl . Let L p(k) be the algebraic subgroup of GLn(k) such that its Lie

algebra is g0. It is easy to check that Jp belongs to Vp,2(k). Under the adjoint action, the

set Ad(L p(k))(Jp) is Zariski open dense in the affine space Vp,2(k)/Vp,3(k). Hence one may

use the representative Jp of the k-orbit Op to define a (generic) character ψp of Vp,2(k).

Let Qp be the standard parabolic subgroup of GLn corresponding to the partition p. The

Levi subgroup Mp is GLp1 × GLp2 × · · · × GLpr . It is clear that the intersection Mp ∩ Vp,2 is

Up1 × Up2 × · · · × Upr , where Upi is the standard maximal unipotent subgroup (the radical

of the standard Borel subgroup) of GLpi . We define a character of Vp,2 as follows: for any

v ∈ Vp,2,

ψp(v) :=ψ(tr((J −
p − In) log(v)))

=ψ(v1,2 + · · · + vp1−1,p1)
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4048 D. Jiang and B. Liu

· ψ(vp1+1,p1+2 + · · · + vp1+p2−1,p1+p2)

... (5.3)

· ψ(vp1+···+pr−2+1,p1+···+pr−2+2 + · · · + vp1+···+pr−1−1,p1+···+pr−1)

· ψ(vp1+···+pr−1+1,p1+···+pr−1+2 + · · · + vn).

Note that ψp also defines a nondegenerate (Whittaker) character of Mp.

Let φ be an automorphic form on GLn(A). We define the ψp-Fourier coefficient of

φ attached to the partition p or the unipotent orbit Op by the following integral:

φψp(g) :=
∫

Vp,2(k)\Vp,2(A)

φ(vg)ψ−1
p (v)dv. (5.4)

Note that the definition of the ψp-Fourier coefficient of φ depends on the choice of the

representative Jp (and the semisimple element Hp).

According to the k-rational version of the Jacobson–Morozov Theorem [6], the

Fourier coefficient of φ can be defined by means of any choice of representatives in the

unipotent k-orbit Op. Since φ is automorphic, the vanishing or nonvanishing of the ψp-

Fourier coefficient of φ depends only on the k-orbit Op.

Let π be an irreducible automorphic representation of GLn(A) occurring as a sub-

space of the discrete spectrum of square-integrable automorphic functions on GLn(A).

We say that π has a ψp-Fourier coefficient if there is a function φ ∈ π such that φψp(g) is

nonzero. As discussed above, the property that π has a ψp-Fourier coefficient depends

only on the k-orbit Op.

For gi, as defined in (5.2), let G+
i (G−

i , respectively) be the union of all one-

parameter subgroups Xα(x) whose Lie algebra is in gi, with positive (negative, respec-

tively) roots α, in the root system determined by (GLn, Bn, Tn). It is easy to see that both

G+
1 and G−

1 have group structures and are abelian. In the following, by saying that one

entry in GLn is in G+
i or G−

i , we mean that the corresponding element in the associated

one-parameter subgroup is in G+
i or G−

i .

Recall that Vp,1(k) is the unipotent subgroup of GLn(k) whose Lie algebra is g1 ⊕
g2 ⊕ · · · ⊕ gm. Following [6], we define

(J −
p )

� = {X ∈ g | tr((J −
p − In)[X, X′])= 0,∀X′ ∈ g}.
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On Fourier Coefficients of Automorphic Forms of GL(n) 4049

Define V ′
p,2 = exp(g1 ∩ (J −

p )
�)Vp,2, which is a normal subgroup of Vp,1(k). From the

definition of (J −
p )

�, it is easy to see that the character ψp on Vp,2 can be trivially extended

to V ′
p,2, which we still denote by ψp. It turns out that Vp,1/kerV ′

p,2
(ψp) has a Heisenberg

structure W ⊕ Z (see [6, Section 1.7]), where W ∼= Vp,1/V ′
p,2 and Z ∼= V ′

p,2/kerV ′
p,2
(ψp). Note

that the symplectic form on W is the one inherited from the Lie algebra bracket, that is,

for w1, w2 ∈ W (here, we identify w ∈ W with any of it’s representatives in Vp,1 such that

log(w) ∈ g1),

〈w1, w2〉 = tr((J −
p − In) log([w1, w2]))

= tr((J −
p − In)[log(w1), log(w2)]).

The nondegeneracy of this symplectic form can be checked easily as following: for fixed

w1 ∈ W, if 〈w1, w2〉 ≡ 0, for any w2 ∈ W, that is, tr((J −
p − In)[log(w1), log(w2)])≡ 0, for any

w2 ∈ W, that is,

tr((J −
p − In)[log(w1), X′])≡ 0,

for any X′ ∈ g1, which implies that tr((J −
p − In)[log(w1), X′])≡ 0, for any X′ ∈ g, that is,

log(w1) ∈ (J −
p )

�, that is, w1 = 0 ∈ Vp,1/V ′
p,2.

Lemma 5.1. V ′
p,2 = Vp,2. �

Proof. As discussed at the beginning of this subsection, the partition p= [p1 p2 · · · pr]

gives rise to the SL2-triple

{Jp,Hp,J −
p }.

If, under the adjoint action of Hp on the Lie algebra gln(k), the space g1 as defined in (5.2)

is zero, there is nothing to prove. In the following we assume that g1 is not zero. To prove

V ′
p,2 = Vp,2, it suffices to prove that g1 ∩ (J −

p )
� = {0}.

First let us describe Vp,2. Elements in Vp,2 have the following form:

v=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

ni qi, j

. . .

0 nj

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

Ipi 0
. . .

pi, j Ipj

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where ni ∈ Upi (nj ∈ Upj , respectively), the maximal unipotent radical of GLpi (GLpj ,

respectively), qi, j ∈ Mpi×pj , and pi, j ∈ Mpj×pi satisfy some conditions. Since in this lemma,

we only need to care about (i, j) such that pi and pj are of different parity, we describe

the conditions for qi, j and pi, j only for the case that pi and pj are of different parity: qi, j ∈
Mpi×pj with qi, j

l,m = 0, for l ≥ m + pi−pj−1
2 , pi, j ∈ Mpj×pi with pi, j

l,m = 0, for m ≤ l + pi−pj−1
2 + 1.

According to the structure of the space g1, we define abelian groups Y and X,

which are given by

Y =
∏

1≤i< j≤r,pi and pj are of different parity

Yi, j,

Yi, j =
pj∏

l=1

X
α

i, j
l
(yi, j

l ), (5.5)

where αi, j
l = e∑i−1

m=1 pm+ pi−pj−1

2 +l
− e∑ j−1

m=1 pm+l ; and

X =
∏

1≤i< j≤r,pi and pj are of different parity

Xi, j,

Xi, j =
pj∏

l=1

X
β

i, j
l
(xi, j

l ), (5.6)

where β
i, j
l = e∑ j−1

m=1 pm+l − e∑i−1
m=1 pm+ pi−pj−1

2 +l+1
. Then, we can see that g1 = log(X)⊕ log(Y).

Therefore, to show that g1 ∩ (J −
p )

� = {0}, we only need to show that (log(X)⊕ log(Y)) ∩
(J −

p )
� = {0}. It suffices to show that for 1 ≤ i < j ≤ r, such that pi and pj are of different

parity, and for any l = 1, . . . , pj, both log(X
α

i, j
l
(yi, j

l )) and log(X
β

i, j
l
(xi, j

l )) are not in (J −
p )

�,

where 0 �= yi, j
l , xi, j

l ∈ k×. This is true, since by direct calculation, when yi, j
l , xi, j

l �= 0,

tr((J −
p − In)[log(X

β
i, j
l
(xi, j

l )), log(X
α

i, j
l
(yi, j

l ))])= −xi, j
l yi, j

l �= 0.

This completes the proof of the lemma. �

Therefore, by Lemma 5.1 and the discussion above, Vp,1/kerVp,2(ψp) has a Heisen-

berg structure W ⊕ Z , where Z ∼= Vp,2/kerVp,2(ψp), and X ⊕ Y is a polarization of W, where

X,Y are defined in (5.6) and (5.5).

In more explicit calculations of Fourier coefficients of automorphic forms, there

is a very useful lemma, which has been used in many occasions and is now formulated
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On Fourier Coefficients of Automorphic Forms of GL(n) 4051

in a general term in [3, Corollary 7.1]. In order to fit it better for our use in this paper, we

reformulate it in a slightly different way and use a slightly different argument to prove

the GLn-analog of the useful lemma.

Let C be an F -subgroup of a maximal unipotent subgroup of GLn, and let ψC be a

nontrivial character of [C ] = C (F ) \ C (A). X̃, Ỹ are two unipotent F -subgroups, satisfying

the following conditions:

(1) X̃ and Ỹ normalize C ;

(2) X̃ ∩ C and Ỹ ∩ C are normal in X̃ and Y, respectively, (X̃ ∩ C ) \ X̃ and (Ỹ ∩
C ) \ Ỹ are abelian;

(3) X̃(A) and Ỹ(A) preserve ψC ;

(4) ψC is trivial on (X̃ ∩ C )(A) and (Ỹ ∩ C )(A);

(5) [X̃, Ỹ] ⊂ C ;

(6) there is a nondegenerate pairing (X̃ ∩ C )(A)× (Ỹ ∩ C )(A)→ C∗, given by

(x, y) �→ψC ([x, y]), which is multiplicative in each coordinate, and identifies

(Ỹ ∩ C )(F ) \ Ỹ(F ) with the dual of X̃(F )(X̃ ∩ C )(A) \ X̃(A), and (X̃ ∩ C )(F ) \
X̃(F ) with the dual of Ỹ(F )(Ỹ ∩ C )(A) \ Ỹ(A).

Let B = C Ỹ and D = C X̃, and extend ψC trivially to characters of [B] = B(F ) \ B(A)

and [D] = D(F ) \ D(A), which will be denoted by ψB and ψD, respectively. Here is the

reformulation of the useful lemma, the proof of which is valid for the general group

H(A) as in [3].

Lemma 5.2. Assume the quadruple (C , ψC , X̃, Ỹ) satisfies the above conditions. Let f be

an automorphic form on GLn(A). Then

∫
[C ]

f(cg)ψ−1
C (c)dc ≡ 0,∀g ∈ GLn(A),

if and only if ∫
[D]

f(ug)ψ−1
D (u)du≡ 0,∀g ∈ GLn(A),

if and only if ∫
[B]

f(vg)ψ−1
B (v)dv ≡ 0,∀g ∈ GLn(A). �

Proof. By symmetry, we only need to show that

∫
[C ]

f(cg)ψ−1
C (c)dc ≡ 0,∀g ∈ GLn(A),
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4052 D. Jiang and B. Liu

if and only if ∫
[D]

f(ug)ψ−1
D (u)du≡ 0,∀g ∈ GLn(A).

Since

∫
[D]

f(ug)ψ−1
D (u)du=

∫
X̃(F )(X̃∩C )(A)\X̃(A)

∫
[C ]

f(cxg)ψ−1
C (c)dcdy,

we know that if ∫
[C ]

f(cg)ψ−1
C (c)dc ≡ 0,∀g ∈ GLn(A),

then ∫
[D]

f(ug)ψ−1
D (u)du≡ 0,∀g ∈ GLn(A).

On the other hand, by Formula [3, (7.5)],

∫
[C ]

f(cg)ψ−1
C (c)dc =

∑
y′∈(Ỹ∩C )(F )\Ỹ(F )

∫
[D]

f(uy′g)ψ−1
D (u)du,

which implies that if ∫
[D]

f(ug)ψ−1
D (u)du≡ 0,∀g ∈ GLn(A),

then ∫
[C ]

f(cg)ψ−1
C (c)dc ≡ 0,∀g ∈ GLn(A).

This completes the proof of the lemma. �

Note that when we apply this lemma in the remaining of the paper, we always

denote ψB and ψD by ψC for convenience.

The following corollary gives an important property of the ψp-Fourier coeffi-

cients for automorphic forms on GLn(A). The corresponding case for symplectic group

is given in [2, Lemma 1.1].

Corollary 5.3. Let p= [p1 p2 · · · pr] be a standard partition of n, that is, p1 ≥ p2 ≥ · · · ≥
pr > 0 and n=∑r

i=1 pi. Let φ be an automorphic form on GLn(A). Then φψp, the ψp-Fourier

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2013/17/4029/716780 by Purdue U
niversity Libraries AD

M
N

 user on 21 M
ay 2020



On Fourier Coefficients of Automorphic Forms of GL(n) 4053

coefficient of φ is nonvanishing if and only if the following integral is nonvanishing:

∫
[Y]

∫
[Vp,2]

φ(vyg)ψ−1
p (v)dv dy,

where the subgroup Y is defined in (5.5). �

Proof. This is a consequence of Lemmas 5.1 and 5.2. In fact, by Lemma 5.1 and the

discussion before it, we know that Vp,1/kerVp,2(ψp) has a Heisenberg structure W ⊕ Z ,

where Z ∼= Vp,2/kerVp,2(ψp) and X ⊕ Y is a polarization of W, where X,Y are defined in

(5.6) and (5.5). This implies directly that the quadruple (Vp,2, ψp, X,Y) satisfies all the

conditions for Lemma 5.2. �

5.2 Fourier coefficients for the discrete spectrum of GLn

Recall from [10, 12] that any nonzero irreducible cuspidal automorphic representation

π of GLn(A) is generic, that is, has a nonzero Whittaker–Fourier coefficient. From the

definition, the Whittaker–Fourier coefficient of π is the one attached to the partition

p= [n].

In the following, we assume that n= ab with b> 1, and consider π = E(τ,b), the

residual representation of GLab(A) with cuspidal support (Pab, τ⊗b).

Theorem 5.4. For any residue E−1(φ, ·) in the residual representation E(τ,b) of GLab(A)

with cuspidal support (Pab, τ⊗b), the ψab
0;b·a-Fourier coefficient of E−1(φ, ·), denoted by

E
ψab

0;b·a
−1 (φ, g), is nonvanishing for some choice of data if and only if the ψ[ab]-Fourier coef-

ficient of E−1(φ, ·), denoted by E
ψ[ab]
−1 (φ, g), is nonvanishing for some choice of data. �

Proof. If a= 1, then b = n and the residual representation Eτ,b is just χ ◦ det, a char-

acter of GLn(A), which of course has only the trivial Fourier coefficient attached to the

partition [1n] of n. The theorem holds for this case.

When n= a, E
ψn

0;1·n
−1 (φ, g)= Eψ[n]

−1 (φ, g). We are done for this case, since in this case

the parabolic subgroup is trivial, that is, the whole group GLn, and hence the automor-

phic form considered is cuspidal.

We only need to consider the case 1< a<n. In order to use the induction argu-

ment, we assume that for n= a,2a, . . . ,a(b − 1), the equivalence of the nonvanishing of

both Fourier coefficients holds. We are going to prove that it will also be true for n= ab.
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4054 D. Jiang and B. Liu

We start from E
ψ[ab]
−1 (φ, g), the ψ[ab]-Fourier coefficient of the residue E−1(φ, ·). In

order to apply Lemma 5.2 to the following integral

E
ψ[ab]
−1 (φ, g)=

∫
V[ab],2(k)\V[ab],2(A)

E−1(φ, vg)ψ
−1
[ab](v)dv, (5.7)

we conjugate it by the Weyl element ω of GLn which conjugates the one-parameter toric

subgroup H[ab] in (5.1) corresponding to the partition [ab] to the following toric subgroup:

diag(H[a](t); ta−1 Ib−1, t
a−3 Ib−1, . . . , t

3−aIb−1, t
1−aIb−1),

where H[a](t)= diag(ta−1, ta−3, . . . , t3−a, t1−a). Note that ω is of the form diag(Ia, ω
′), where

ω′ permutes the toric subgroup H[ab−1] in (5.1) corresponding to the partition [ab−1] to the

toric subgroup in GLa(b−1):

diag(ta−1 Ib−1, t
a−3 Ib−1, . . . , t

3−aIb−1, t
1−aIb−1).

Let U[ab],2 =ωV[ab],2ω
−1. Then any element of U[ab],2 has the following form:

u=
(

n1 q

0 n2

)(
Ia 0

p Ia(b−1)

)
,

where n1 ∈ Ua, the maximal unipotent radical of GLa; n2 ∈ U[ab−1],2 :=ω′V[ab−1],2ω
′−1;

q ∈ Ma×a(b−1) with ql,m = 0, for m ≤ l(b − 1); and p∈ Ma(b−1)×a with pl,m = 0, for

l > (m − 1)(b − 1). We define

ψU[ab−1],2
(u) :=ψV[ab−1],2

(ω′−1uω′).

Therefore, after conjugating by ω, the integral (5.7) becomes

∫
∗

E−1

(
φ,

(
n1 q

0 n2

)(
Ia 0

p Ia(b−1)

)
ωg

)
ψ−1

[a] (n1)ψ
−1
U[ab−1],2

(n2)d∗, (5.8)

where
∫

∗ = ∫
p

∫
q

∫
n2

∫
n1

, d∗ = dn1 dn2 dq dp, ψ[a] is a nondegenerate character of GLa.

We are going to apply Lemma 5.2 consecutively in order to replace the integra-

tion on the variable p by corresponding integration on the variable q. To do so, we define
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On Fourier Coefficients of Automorphic Forms of GL(n) 4055

a sequence of unipotent subgroups of GLab (R for “row,” C for “column”). For 1 ≤ s ≤ a − 1,

define

Rs =
{(

Ia q

0 Ia(b−1)

)}
,

where q ∈ Ma×a(b−1) with the property that ql,m = 0 if l �= s or l = s,m> l(b − 1). For 2 ≤ s ≤
a, define

Cs =
{(

Ia 0

p Ia(b−1)

)}
,

where p∈ Ma(b−1)×a with the property that pl,m = 0 if m �= s or m = s, l > (m − 1)(b − 1). It

is easy to see that for 1 ≤ s ≤ a − 1, Rs(k)∼= Cs+1(k)∼= ks(b−1), as abelian groups.

Write U[ab],2 = Ũ[ab],2
∏a

s=2 Cs, where Ũ[ab],2 consists of elements in U[ab],2 with p-

part (as indicated in the subgroup Cs) being zero. For 1 ≤ s ≤ a − 1, write Rs =∏s
i=1 Ri

s,

where Ri
s ⊂ G+

−2(i−1). For 2 ≤ s ≤ a, write Cs =∏s−1
i=1 C i

s, where C i
s ⊂ G−

2i.

The key point here is to apply Lemma 5.2 to the integration on the variables in∏a
s=2 Cs. To do this, we will deal with the subgroups Cs for s = 2,3, . . . ,a, one by one.

First we apply Lemma 5.2 to the integration on C2-part. To do so, consider the

quadruple (
Ũ[ab],2

a∏
s=3

Cs, ψ[a]ψU[ab−1],2
, R1

1,C
1
2

)
.

Note that both R1
1 and C 1

2 normalize Ũ[ab],2 and preserve ψ[a]ψU[ab−1],2
, R1

1 ⊂ G+
0 , the conjuga-

tion by R1
1 will change some entries in G+

i with i ≥ 2, but not attached to any character,

and C 1
2 ⊂ G−

2 , the conjugation by C 1
2 only changes some entries in G+

i or G−
i with i ≥ 4. It

is easy to see that the quadruple (Ũ[ab],2
∏a

s=3 Cs, ψ[a]ψU[ab−1],2
, R1

1,C
1
2) satisfies all the other

conditions for Lemma 5.2. By Lemma 5.2, the integral (5.8) is nonvanishing if and only if

the following integral is nonvanishing

∫
∗

E−1

(
φ,

(
n1 q

0 n2

)(
Ia 0

p Ia(b−1)

)
g

)
ψ−1

[a] (n1)ψ
−1
U[ab−1],2

(n2)d∗, (5.9)

where
∫

∗ = ∫
p

∫
q

∫
n2

∫
n1

, d∗ = dn1 dn2 dq dp,
(

Ia 0
p Ia(b−1)

)
∈∏a

s=3 Cs, and
( n1 q

0 n2

) ∈ Ũ[ab],2 R1.

The next step is to apply Lemma 5.2 to the integration on variables in the sub-

group C3. Since C3 = C 1
3 · C 2

3 , we have to consider the quadruples

(
Ũ[ab],2 R1

a∏
s=4

CsC
2
3 , ψ[a]ψU[ab−1],2

, R1
2,C

1
3

)
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and (
Ũ[ab],2 R1 R1

2

a∏
s=4

Cs, ψ[a]ψU[ab−1],2
, R2

2,C
2
3

)
.

After finishing this step, we come to consider C4 = C 1
4 · C 2

4 · C 3
4 . This time we consider

consecutively three quadruples

(
Ũ[ab],2 R1 R2

a∏
s=5

CsC
2
4C 3

4 , ψ[a]ψU[ab−1],2
, R1

3,C
1
4

)
,

(
Ũ[ab],2 R1 R2 R1

3

a∏
s=5

CsC
3
4 , ψ[a]ψU[ab−1],2

, R2
3,C

2
4

)
,

and (
Ũ[ab],2 R1 R2 R1

3 R2
3

a∏
s=5

Cs, ψ[a]ψU[ab−1],2
, R3

3,C
3
4

)
.

By repeating the same procedure, we end up considering the subgroup Ca =∏a−1
i=1 C i

a. To

finish this step, we apply Lemma 5.2 to the following (a − 1) quadruples⎛
⎝Ũ[ab],2 R1 · · · Ra−2

i−1∏
l=1

Rl
a−1

a−1∏
j=i+1

C i
a, ψ[a]ψU[ab−1],2

, Ri
a−1,C

i
a

⎞
⎠

with i = 1,2, . . . ,a − 1. After finishing all the steps, we obtain that the integral (5.9) is

nonvanishing if and only if the following integral is nonvanishing

∫
∗

E−1

(
φ,

(
n1 q

0 n2

)
g

)
ψ−1

[a] (n1)ψ
−1
U[ab−1],2

(n2)d∗, (5.10)

where
∫

∗ = ∫
q

∫
n2

∫
n1

, d∗ = dn1 dn2 dq, and

(
n1 q

0 n2

)
∈ Ũ[ab],2 R1 R2 · · · Ra−1.

Rewrite the integral (5.10) as follows:

∫
n2

∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)(
Ia 0

0 n2

)
g

)
ψ−1

[a] (n1)ψ
−1
U[ab−1],2

(n2)d∗ (5.11)

by changing the variable q · n−1
2 �→ q. Note that q · n−1

2 has the same structure as q.
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Now consider the inner integral

∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)
g

)
ψ−1

[a] (n1)dn1 dq, (5.12)

which is exactly E
ψV

1a−1,ab−a+1

−1 (φ, g), using the notation in Lemma 6.2, since the n1 is inte-

grated over [Ua], the maximal unipotent subgroup of GLa, q is integrated over
[
M′

a×a(b−1)

]
,

where

M′
a×a(b−1) = {q = (qi, j) ∈ Ma×a(b−1) | qa, j = 0,∀1 ≤ j ≤ a(b − 1)},

and ψ[a](n1) is the Whittaker character of Ua. Then by Lemma 6.2, the integral (5.12)

is actually equal to E
ψ̃V1a,ab−a

−1 (φ, g) (for notation, see Lemma 6.2), that is, the following

integral ∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)
g

)
ψ−1

[a] (n1)dn1 dq,

where any entry in any row of q is integrated over k \ A. Therefore, the integral (5.11)

becomes ∫
n2

∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)(
Ia 0

0 n2

)
g

)
ψ−1

[a] (n1)ψ
−1
U[ab−1],2

(n2)d∗, (5.13)

where any entry in any row of q is integrated over k \ A.

Note that the inner integral (5.13)

∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)
g

)
ψ−1

[a] (n1)dn1 dq =
∫

n1

E−1

(
φ,

(
n1 0

0 Ia(b−1)

)
g

)
Qa,a(b−1)

ψ−1
[a] (n1)dn1,

where Qa,a(b−1) is the parabolic subgroup of GLab with its Levi subgroup GLa × GLa(b−1).

By Lemma 4.1, there is a section

f ∈ IndGLab(A)

Qa,a(b−1)(A)
(| · |− b−1

2 τ ⊗ | · | 1
2 E(τ,b−1)),

such that

E−1

(
φ,

(
n1 0

0 Ia(b−1)

)
g

)
Qa,a(b−1)

= f

((
n1 0

0 Ia(b−1)

)
g

)
(Ia × Ia(b−1)).
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Recall the standard Iwasawa decomposition

GLab(A)= Qa,a(b−1)(A) · K,

with K =∏
v Kv being the standard maximal compact subgroup of GLab(A). Then for

any g ∈ GLab(A), we write g = h1(g)h2(g)v(g)k(g), where h1(g) ∈ GLa(A) is identified with

diag(h1(g), Ia(b−1)), h2(g) ∈ GLa(b−1)(A) is identified with diag(Ia,h2(g)), v(g) ∈ Va,a(b−1)(A),

and k(g) ∈ K.

Now, for n1 ∈ Ua, write

(
n1 0

0 Ia(b−1)

)
g = n1h1(g)h2(g)v(g)k(g).

Then we have

E−1

(
φ,

(
n1 0

0 Ia(b−1)

)
g

)
Qa,a(b−1)

= f(n1h1(g)h2(g)k(g))(Ia×I a(b−1)).

By definition, we have

f(n1h1(g)h2(g)k(g))= |h1(g)|− b−1
2 |h2(g)| 1

2 · (τ (n1h1(g))⊗ E(τ,b−1)(h2(g)))( f(k(g))).

When k(g) ∈ K, f(k(g)) is a vector in the space of τ ⊗ E(τ,b−1). Since the sections defining

the Eisenstein series are of K-finite, we may assume that

f(k(g))=
nk(g)∑
j=1

fk(g)
j ⊗ φ

k(g)
j ,

where fk(g)
j ∈ τ , and φk(g)

j ∈ E(τ,b−1). Hence we have

(τ (n1h1(g))⊗ E(τ,b−1)(h2(g)))( f(k(g)))=
nk(g)∑
j=1

τ(n1h1(g))( fk(g)
j )⊗ E(τ,b−1)(h2(g))(φ

k(g)
j ).

By definition, we have

τ(n1h1(g))( fk(g)
j )(Ia)= fk(g)

j (n1h1(g))
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and

E(τ,b−1)(h2(g))(φ
k(g)
j )(Ia(b−1))= φ

k(g)
j (h2(g)).

It follows that

E−1

(
φ,

(
n1 0

0 Ia(b−1)

)
g

)
Qa,a(b−1)

=
nk(g)∑
j=1

|h1(g)|− b−1
2 |h2(g)| 1

2 fk(g)
j (n1h1(g))φ

k(g)
j (h2(g)).

Therefore, we have

∫
n1

E−1

(
φ,

(
n1 0

0 Ia(b−1)

)
g

)
Qa,a(b−1)

ψ−1
[a] (n1)dn1

=
∫

n1

nk(g)∑
j=1

|h1(g)|− b−1
2 |h2(g)| 1

2 fk(g)
j (n1h1(g))φ

k(g)
j (h2(g))ψ

−1
[a] (n1)dn1

=
nk(g)∑
j=1

∫
n1

|h1(g)|− b−1
2 fk(g)

j (n1h1(g))ψ
−1
[a] (n1)dn1|h2(g)| 1

2φ
k(g)
j (h2(g)).

Hence the integral (5.13) becomes

nk(g)∑
j=1

|h1(g)|− b−1
2

∫
n1

fk(g)
j (n1h1(g))ψ

−1
[a] (n1)dn1 · |h2(g)| 1

2

∫
n2

φ
k(g)
j (n2h2(g))ψ

−1
U[ab−1],2

(n2)dn2.

(5.14)

By the induction assumption, the integral

∫
n2

φ
k(g)
j (n2h2(g))ψ

−1
U[ab−1],2

(n2)dn2

is nonvanishing if and only if the following integral is nonvanishing:

∫
[Ua(b−1)]

φ
k(g)
j (n2h2(g))ψ

a(b−1)
0;(b−1)·a(n2)

−1 dn2.
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Therefore, the integral (5.14), hence the integral (5.13), is nonvanishing if and only if the

following integral is nonvanishing:

∫
[Ua(b−1)]

∫
n1,q

E−1

(
φ,

(
n1 q

0 Ia(b−1)

)(
Ia 0

0 n2

)
g

)
ψ−1

[a] (n1)ψ
a(b−1)
0;(b−1)·a(n2)

−1 dn1 dq dn2

=
∫

[Uab]
E−1(φ, vg)ψ

ab
0;b·a(u)

−1 du.

This finishes the proof of the theorem. �

Furthermore, we will prove the following theorem in the next section.

Theorem 5.5. Let p= [p1 p2 · · · pr] be a standard partition of n, that is, p1 ≥ p2 ≥ · · · ≥
pr > 0. If p1 > a, then the residual representation E(τ,b) of GLab(A) with cuspidal support

(Pab, τ⊗b) has no nonzero ψp-Fourier coefficients, that is, for any E−1(φ, g) ∈ E(τ,b), the ψp-

Fourier coefficient E
ψp

−1(φ, g) is identically zero. �

Combining Theorems 5.4 and 5.5 with Corollary 3.4, we obtain the following

extension to the residual spectrum of GLn(A) of the theorem of Shalika [12] and of

Piatetski-Shapiro [10], independently, that all nonzero irreducible cuspidal automorphic

representations of GLn(A) are generic, that is, they have nonzero Whittaker–Fourier coef-

ficients.

Theorem 5.6. Let p= [p1 p2 · · · pr] be a partition of n with p1 ≥ p2 ≥ · · · ≥ pr > 0 and

denote by [ab] the partition of all parts equal to a. For the residual representation E(τ,b)
with cuspidal support (Pab, τ⊗b), belonging to the discrete spectrum of GLn(A), the fol-

lowing hold.

(1) The residual representation E(τ,b) has a nonzero ψ[ab]-Fourier coefficient.

(2) For any partition p= [p1 p2 · · · pr] of n, if p1 > a, then the residual represen-

tation E(τ,b) has no nonzero ψp-Fourier coefficients. �

It is clear that Part (1) follows from Theorem 5.4 and Corollary 3.4, and Part (2) is

from Theorem 5.5. Note that if we use the notation of Ginzburg [1], Theorem 5.6 implies

that O(E(τ,b))= {O[ab]}.
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6 Proof of Theorem 5.5

In this section, we will prove the vanishing property of Fourier coefficients of the residue

E−1(φ, g) attached to the partitions either bigger than or not related to the partition [ab].

To this end, we need to prove the following two key lemmas.

Lemma 6.1. Let p= [p1 p2 · · · pr] be a standard partition of n, that is, p1 ≥ p2 ≥ · · · ≥ pr >

0. If p1 > a, then the ψε1,...,εr−1
p -Fourier coefficient

E
ψ
ε1 ,...,εr−1
p

−1 (φ, g) :=
∫

[Uab]
E−1(φ,ug)ψε1,...,εr−1

p (u)−1 du≡ 0, (6.1)

where

ψε1,...,εr−1
p (u) :=ψ(u1,2 + · · · + up1−1,p1 + ε1up1,p1+1)

· ψ(up1+1,p1+2 + · · · + up1+p2−1,p1+p2 + ε2up1+p2,p1+p2+1)

...

· ψ(up1+···+pr−2+1,p1+···+pr−2+2 + · · · + up1+···+pr−1−1,p1+···+pr−1

+ εr−1up1+···+pr−1,p1+···+pr−1+1)

· ψ(up1+···+pr−1+1,p1+···+pr−1+2 + · · · + uab),

and εi ∈ {0,1}, i = 1, . . . , r − 1. �

Proof. We separate the proof into two steps: (1) ε1 = 0; and (2) ε1 = 1.

Step (I). ε1 = 0. Since p1 > a, there are two cases to be considered: (1) p1 �= as for

all 1< s ≤ b; and (2) p1 = as for some 1< s ≤ b.

Case (1). Let Qp1,ab−p1 be the parabolic subgroup of GLab with Levi isomorphic

to GLp1 × GLab−p1 . By the definition of the ψε1,...,εr−1
p -Fourier coefficient, E

ψ
ε1 ,...,εr−1
p

−1 (φ, g) has

the constant term of the residue E−1(φ, g) along Qp1,ab−p1 as an inner integral. More

precisely,

E
ψ
ε1,...,εr−1
p

−1 (φ, g)= [E−1(φ, g)Qp1 ,ab−p1
]ψ[p1];ψε2,...,εr−1

[p2 ···pr ] .

Since p1 �= s · a for all 1 ≤ s ≤ b, P � Qab−pr ,pr , which implies that E−1(φ, g)Qp1 ,ab−p1
= 0.

Therefore, E
ψ
ε1,...,εr−1
p

−1 (φ, g)= 0.
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Case (2). If p1 = ab, then E
ψ
ε1 ,...,εr−1
p

−1 (φ, g)= 0, since E(τ,b) is not generic, and

E
ψ
ε1,...,εr−1
p

−1 (φ, g) is a Whittaker–Fourier coefficient. From now on, we assume that p1 = as,

with 1< s< b.

Recall from Lemma 4.1 that Qas,a(b−s) is the parabolic subgroup of GLab with

Levi isomorphic to GLas × GLa(b−s). By the definition of the ψε1,...,εr−1
p -Fourier coefficient,

E
ψ
ε1,...,εr−1
p

−1 (φ, g) has the constant term of the residue E−1(φ, g) along Qas,a(b−s) as an inner

integral. As before, we have

E
ψ
ε1,...,εr−1
p

−1 (φ, g)= [E−1(φ, g)Qp1 ,ab−p1
]ψ[p1];ψε2,...,εr−1

[p2 ···pr ] .

After taking the constant term along Qas,a(b−s), E−1(φ, g)Qas,a(b−s) is an automorphic func-

tion over GLsa(A)× GLa(b−s)(A). Note here that the ψ[p1]-Fourier coefficient is taken on

GLsa(A) and the ψε2,...,εr−1

[p2···pr ] -Fourier coefficient is taken on GLa(b−s)(A).

By Lemma 4.1, it is enough to show that the residual representation E(τ,s) has no

nonzero ψ[p1]-Fourier coefficients or the residual representation E(τ,b−s) has no nonzero

ψ
ε2,...,εr−1

[p2···pr ] -Fourier coefficients. It is clear that the character ψ[p1] is exactly the Whittaker

character of GLsa(A). By Proposition 2.1, the residual representation E(τ,s) is not generic,

and hence it has no nonzero ψ[p1]-Fourier coefficients.

Hence, if p1 > a and ε1 = 0, then E
ψ
ε1,...,εr−1
p

−1 (φ, g)= 0.

Step (II). We assume that ε1 = 1. If εi = 1, for all 1 ≤ i ≤ r − 1, then ψ
ε1,...,εr−1
p is a

nondegenerate character of GLab, and hence E
ψ
ε1 ,...,εr−1
p

−1 (φ, g)= 0.

So, we may assume i < r − 1 to be the first number such that εi = 0. By applying

the proof of Step (I) to the partition [(
∑i

j=1 pj)pi+1 · · · pr], which is still either bigger than

or not related to the partition [ab], we deduce that E
ψ
ε1,...,εr−1
p

−1 (φ, g)= 0.

This completes the proof of the lemma. �

Lemma 6.2. Let V1m−1,ab−m+1 be the unipotent radical of the parabolic subgroup

Q1m−1,ab−m+1 with Levi part GL×(m−1)
1 × GLab−m+1. Let

ψV1m−1 ,ab−m+1
(v)=ψ(v1,2 + · · · + vm−1,m)

and

ψ̃V1m−1 ,ab−m+1
(v)=ψ(v1,2 + · · · + vm−2,m−1)
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be two characters of V1m−1,ab−m+1. Define E
ψV

1m−1 ,ab−m+1

−1 (φ, g) by

∫
[V1m−1 ,ab−m+1]

E−1(φ, vg)ψ
−1
V1m−1 ,ab−m+1

(v)dv. (6.2)

Then, if m> a, E
ψV

1m−1 ,ab−m+1

−1 (φ, g)≡ 0; and if m = a,

E
ψV

1m−1 ,ab−m+1

−1 (φ, g)= E
ψ̃V1m ,ab−m

−1 (φ, g). �

Proof. For i = 1, . . . ,ab − 1, let Ri be the subgroup of Uab such that any element u=
(uj,l) ∈ Ri, uj,l = 0, unless j = i.

Since E
ψV

1m−1 ,ab−m+1

−1 (φ, g) is left Rm(k)-invariant, we take Fourier expansion of

E
ψV

1m−1 ,ab−m+1

−1 (φ, g) along [Rm] = Rm(k) \ Rm(A):

E
ψV

1m−1 ,ab−m+1

−1 (φ, g)= E
ψ̃V1m ,ab−m

−1 (φ, g)+
∑

γ∈Q0
1,ab−m−1(k)\GLab−m(k)

E
ψV1m ,ab−m

−1 (φ,diag(Im, γ )g). (6.3)

Since both E
ψ̃V1m ,ab−m

−1 (φ, g) and E
ψV1m ,ab−m

−1 (φ, g) are left Rm+1(k)-invariant, we can

take the Fourier expansion of them along [Rm+1] = Rm+1(k) \ Rm+1(A). We repeat this pro-

cess for each term in the Fourier expansion of E
ψ̃V1m ,ab−m

−1 (φ, g) or E
ψV1m,ab−m

−1 (φ, g) along the

following sequence [Rm+2], . . . , [Rab−1]. After plugging back all these Fourier expansion

to (6.3), we can see that E
ψV

1m−1 ,ab−m+1

−1 (φ, g) can be written as a summation, each term of

which is of the form (6.1), and is identically zero, if m> a, by Lemma 6.1.

If m = a, then from (6.3), we can see that

E
ψV

1m−1 ,ab−m+1

−1 (φ, g)= E
ψ̃V1m ,ab−m

−1 (φ, g),

since E
ψV1m ,ab−m

−1 (φ, g)≡ 0 from the above discussion.

This finishes the proof of the lemma. �

Before proving the general case of Theorem 5.5, we prove the vanishing of Fourier

coefficients of E−1(φ, ·) corresponding to the orbits [p11ab−p1 ] with p1 > a. The idea of the

proof for this special case is applicable to the general case. Note that in the proof of

Ginzburg [1, Proposition 5.3], the vanishing of Fourier coefficients of E−1(φ, ·) corre-

sponding to the general bigger than or not related orbits is sketched by reducing to the
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proof of that corresponding to the special partition [(a + 1)1ab−a−1], which is then proved

by using local argument. We prove it below using global argument.

Proposition 6.3. The Fourier coefficient of E−1(φ, ·) corresponding to the orbit O =
[p11ab−p1 ], p1 > a is identically zero. �

Proof. We separate the proof into two cases: (1) p1 is odd and (2) p1 is even.

Case (1). We assume that p1 is odd. From the definition, any element in V[p11ab−p1 ],2

has the following form:

u=
(

n1 q

0 Iab−p1

)(
Ip1 0

p Iab−p1

)
,

where n1 ∈ Up1 , the maximal unipotent radical of GLp1 , q ∈ Mp1×ab−p1 with ql,m = 0, for

l ≥ p1−1
2 + 1, and p∈ Mab−p1×p1 with pl,m = 0, for m ≤ p1−1

2 + 1.

The ψ[p11ab−p1 ]-Fourier coefficient of E−1(φ, ·), E
ψ[p11ab−p1 ]

−1 (φ, g), can be rewritten as

∫
p

∫
q

∫
n1

E−1

(
φ,

(
n1 q

0 Iab−p1

)(
Ip1 0

p Iab−p1

)
g

)
ψ−1

[p1](n1)dn1 dq dp, (6.4)

where ψ[p1](n1) is a nondegenerate character of GLp1 .

For p1−1
2 + 1 ≤ s ≤ p1 − 1, define the following unipotent subgroup of GLab:

Rs =
{(

Ip1 q

0 Iab−p1

)
: q ∈ Mp1×ab−p1 ,ql,m = 0, l �= s

}
.

For p1−1
2 + 2 ≤ s ≤ p1, define the following unipotent subgroup of GLab:

Cs =
{(

Ip1 0

p Iab−p1

)
: p∈ Mab−p1×p1 ,ql,m = 0,m �= s

}
.

Then we can see that Rs(k) \ Rs(A)∼= Cs(k) \ Cs(A)∼= (k \ A)ab−p1 . Note that Rs ⊂
G+

−2(s− p1−1
2 −1)

and Cs ⊂ G−
2(s− p1−1

2 −1)
.

Write V[p11ab−p1 ],2 = Ṽ[p11ab−p1 ],2
∏p1

s= p1−1
2 +2

Cs, where Ṽ[p11ab−p1 ],2 consists of elements in

V[p11ab−p1 ],2 with p-part zero.
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Now we are ready to apply Lemma 5.2 to the integral in (6.4) first with the

quadruple ⎛
⎜⎝Ṽ[p11ab−p1 ],2

p1∏
s= p1−1

2 +3

Cs, ψ[p1], Rp1−1
2 +1,C p1−1

2 +2

⎞
⎟⎠ ,

then with the quadruple

⎛
⎜⎝Ṽ[p11ab−p1 ],2 Rp1−1

2 +1

p1∏
s= p1−1

2 +4

Cs, ψ[p1], Rp1−1
2 +2,C p1−1

2 +3

⎞
⎟⎠ ,

and keep doing the same thing until the final step with the quadruple

(Ṽ[p11ab−p1 ],2 Rp1−1
2 +1 · · · Rp1−2, ψ[p1], Rp1−1,C p1).

This calculation shows that the integral (6.4) is identically zero if and only if the follow-

ing integral is identically zero

∫
q

∫
n1

E−1

(
φ,

(
n1 q

0 Iab−p1

)
g

)
ψ−1

[p1](n1)dn1 dq dp, (6.5)

where
( n1 q

0 Iab−p1

) ∈ Ṽ[p11ab−p1 ],2 Rp1−1
2 +1 · · · Rp1−1, that is, all first (p1 − 1)-rows of q are inte-

grated over k \ A, and the last row of q is zero.

Note that for each step, we can easily check the conditions for Lemma 5.2. For

the first quadruple

⎛
⎜⎝Ṽ[p11ab−p1 ],2

p1∏
s= p1−1

2 +3

Cs, ψ[p1], Rp1−1
2 +1,C p1−1

2 +2

⎞
⎟⎠ ,

the conjugation by Rp1−1
2 +1 will change some entries in G+

i with i ≥ 2, but the changing

of variables does not change the character, the conjugation by C p1−1
2 +2 will change some

entries in G+
i or G−

i with i ≥ 4. For 1 ≤ j ≤ p1−1
2 − 2, when we consider the quadruple

⎛
⎜⎝Ṽ[p11ab−p1 ],2

j+1∏
l=1

Rp1−1
2 +l

p1∏
s= p1−1

2 + j+4

Cs, ψ[p1], Rp1−1
2 +1+ j+1,C p1−1

2 +1+ j+2

⎞
⎟⎠ ,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2013/17/4029/716780 by Purdue U
niversity Libraries AD

M
N

 user on 21 M
ay 2020



4066 D. Jiang and B. Liu

the conjugation by Rp1−1
2 +1+ j+1 will change some entries in

G+
i ∩ Ṽ[p11ab−p1 ],2

j+1∏
l=1

Rp1−1
2 +l

p1∏
s= p1−1

2 + j+4

Cs

with i ≥ −2 j, but the changing of variables does not change the character, the conjuga-

tion by C p1−1
2 +1+ j+2 will change some entries in G+

i with i ≥ 4.

Note that the integral in (6.5) is actually E
ψV

1p1−1 ,ab−p1+1

−1 (φ, g), which is identically

zero by Lemma 6.2. This finishes the proof of the case of p1 odd.

Case (2). Assume that p1 is even. From the definition, any element in V[p11ab−p1 ],2

has the following form:

u=
(

n1 q

0 Iab−p1

)(
Ip1 0

p Iab−p1

)
,

where n1 ∈ Up1 , the maximal unipotent radical of GLp1 , q ∈ Mp1×ab−p1 with ql,m = 0, for

l ≥ p1

2 , and p∈ Mab−p1×p1 with pl,m = 0, for m ≤ p1

2 + 1.

The ψ[p11ab−p1 ]-Fourier coefficient of E−1(φ, ·), E
ψ[p11ab−p1 ]

−1 (φ, g), can also be rewritten

as ∫
p

∫
q

∫
n1

E−1

(
φ,

(
n1 q

0 Iab−p1

)(
Ip1 0

p Iab−p1

)
g

)
ψ−1

[p1](n1)dn1 dq dp, (6.6)

where ψ[p1](n1) is a nondegenerate character of GLp1 .

By Corollary 5.3, we only have to show that the following integral is identically

zero: ∫
y,p,q,n1

E−1

(
φ,

(
n1 q

0 Iab−p1

)(
Ip1 0

p Iab−p1

)
yg

)
ψ−1

[p1](n1)dn1 dq dpdy, (6.7)

where y∈ [Y].

For p1

2 + 1 ≤ s ≤ p1 − 1, define the following unipotent subgroup of GLab:

Rs =
{(

Ip1 q

0 Iab−p1

)
: q ∈ Mp1×ab−p1 ,ql,m = 0, l �= s

}
.

For p1

2 + 2 ≤ s ≤ p1, define the following unipotent subgroup of GLab:

Cs =
{(

Ip1 0

p Iab−p1

)
: p∈ Mab−p1×p1 ,ql,m = 0,m �= s

}
.
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Then we can see that Rs(k) \ Rs(A)∼= Cs(k) \ Cs(A)∼= (k \ A)ab−p1 . Note that Rs ⊂ G+
−2(s− p1

2 )+1

and Cs ⊂ G−
2(s− p1

2 )+1
.

Write YV[p11ab−p1 ],2 = YṼ[p11ab−p1 ],2
∏p1

s= p1
2 +2

Cs, where Ṽ[p11ab−p1 ],2 consists of elements

in V[p11ab−p1 ],2 with p-part zero.

Now we apply Lemma 5.2 to the integral (6.7) first with the quadruple

⎛
⎝YṼ[p11ab−p1 ],2

p1∏
s= p1

2 +3

Cs, ψ[p1], Rp1
2 +1,C p1

2 +2

⎞
⎠ ,

and then with the following quadruple

⎛
⎝YṼ[p11ab−p1 ],2 Rp1

2 +1

p1∏
s= p1

2 +4

Cs, ψ[p1], Rp1
2 +2,C p1

2 +3

⎞
⎠ ,

and keep doing the same thing until the last step with the quadruple

(YṼ[p11ab−p1 ],2 Rp1
2 +1 · · · Rp1−2, ψ[p1], Rp1−1,C p1).

This calculation shows that the integral (6.7) is identically zero if and only if the follow-

ing integral is identically zero

∫
y

∫
q

∫
n1

E−1

(
φ,

(
n1 q

0 Iab−p1

)
yg

)
ψ−1

[p1](n1)dn1 dq dy, (6.8)

where
( n1 q

0 Iab−p1

) ∈ YṼ[p11ab−p1 ],2 Rp1
2

· · · Rp1−1, that is, all first (p1 − 1)-rows of q are inte-

grated over k \ A, the last row of q is zero. For each step, the conditions for Lemma 5.2

can be easily checked as the case of p1 odd.

Note that the integral in (6.8) is actually E
ψV

1p1−1 ,ab−p1+1

−1 (φ, g), which is identically

zero by Lemma 6.2.

This completes the proof of the proposition. �

Now, we prove the general case of Theorem 5.5. As we mentioned, the idea will

be similar to the case of special orbits [p11ab−p1 ], p1 > a, in Proposition 6.3.
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First, by Corollary 5.3, we only have to show that the following integral is iden-

tically zero: ∫
[Y]

∫
[Vp,2]

E−1(φ, vyg)ψ−1
Vp,2
(v)dv dy. (6.9)

Note that we will use the notation introduced in Section 5 accordingly.

First we conjugate the integration variables in the integral (6.9) by the Weyl ele-

ment ω of GLn (n= ab) which conjugates the toric subgroup Hp of GLab in (5.1) attached

to the partition p to the toric subgroup:

diag(H[p1](t); tp2−1, . . . , t1−p2),

where after the first block of size p1, the exponents of t are of nonincreasing order. Note

that ω is of the form diag(Ia, ω
′), where ω′ is a Weyl element of GLn−p1 , which conjugates

the toric subgroup H[p2···pr ] of GLn−p1 in (5.1) corresponding to the partition [p2 · · · pr] to

the toric subgroup of GLn−p1 :

diag(tp2−1, . . . , t1−p2),

where the exponents of t are of nonincreasing order. For example, for the partition

[p2 · · · pr] = [(32)2], ω′ is the Weyl element of GL8, which conjugates the toric subgroup

diag(t2,1, t−2; t2,1, t−2; t, t−1) to the toric subgroup: diag(t2, t2, t,1,1, t−1, t−2, t−2).

Let Up,2 =ωYVp,2ω
−1. Then any element of Up,2 has the following form:

u=
(

n1 q

0 n2

)(
Ip1 0

p Iab−p1

)
,

where n1 ∈ Ua, the maximal unipotent radical of GLa, and

n2 ∈ U[p2···pr ],2 :=ω′Y[p2···pr ],2V[p2···pr ],2ω
′−1

with Y[p2···pr ],2 being the corresponding Y for the partition [p2 · · · pr]. Denote ψUp,2(u) :=
ψVp,2(ω

−1uω). Hence integral (6.9) equals

∫
[Up,2]

E−1

(
φ,

(
n1 q

0 n2

)(
Ip1 0

p Iab−p1

)
ωg

)
ψ−1

Up,2
(u)du. (6.10)
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Consider the group Up,2 ∩ Up1,ab−p1 , where Up1,ab−p1 is the unipotent subgroup of

the parabolic subgroup of G with Levi GLp1 × GLab−p1 . Let i be the index of the first

row of Up,2 ∩ Up1,ab−p1 with zero entries. Let Rj be the subgroup of Up1,ab−p1 with zeros

everywhere except the complement of Up,2 ∩ Up1,ab−p1 in the jth row, i ≤ j ≤ p1 − 1. Sim-

ilarly, let C j be the subgroup of U−
p1,ab−p1

with zeros everywhere except the complement

of Up,2 ∩ U−
p1,ab−p1

in the jth column, i + 1 ≤ j ≤ p1. Then, we can see that Rj
∼= C j+1.

Write Up,2 = Ũp,2 ·∏p1
s=i+1 Cs, where Ũp,2 consists of elements in Up,2 with

U−
p1,ab−p1

-part zero. For i ≤ j ≤ p1 − 1, write Rj =∏mj

l=1 Rl
j, where Rl

j consists of all the

entries in G+
kl

j
, with kl

j decreasing. For i + 1 ≤ j ≤ p1, write C j =∏mj−1

l=1 C l
j, where C l

j con-

sists of all the entries in G−
k̃l

j
, with k̃l

j increasing. Note that Rl
j
∼= C l

j+1.

Now we are ready to apply Lemma 5.2 to the integral (6.10) with a sequence of

quadruples: (Ũp,2
∏p1

s=i+2 Cs
∏mi

l=2 C l
i+1, ψUp,2 , R1

i ,C
1
i+1), and then (Ũp,2 R1

i

∏p1
s=i+2 Cs

∏mi
l=3 C l

i+1,

ψUp,2 , R2
i , C 2

i+1), and keep going until (Ũp,2 R1
i · · · Rmi−1

i

∏p1
s=i+2 Cs, ψUp,2 , Rmi

i , C mi
i+1). This fin-

ishes the first step. Then we go with a next sequence of quadruples

(
Ũp,2 Ri

p1∏
s=i+3

Cs

mi+1∏
l=2

C l
i+2, ψUp,2 , R1

i+1,C
1
i+2

)

...(
Ũp,2 Ri R

1
i+1 · · · Rmi+1−1

i+1

p1∏
s=i+3

Cs, ψUp,2 , Rmi+1
i+1 ,C

mi+1
i+2

)
;

and keep doing this until the last step with a sequence of quadruples

(
Ũp,2 Ri · · · Rp1−2

mp1−1∏
l=2

C l
p1
, ψUp,2 , R1

p1−1,C
1
p1

)

...

(Ũp,2 Ri · · · Rp1−2 R1
p1−1 · · · R

mp1−1−1
p1−1 , ψUp,2 , R

mp1−1

p1−1 ,C
mp1−1
p1 ).

Note that here for convenience, we denote all the characters in all the above quadruples

by ψUp,2 . The above calculation shows that the integral (6.10) is identically zero if and

only if the following integral is identically zero

∫
∗

∫
q

∫
n1

E−1

(
φ,

(
n1 q

0 u[p2...pr ]

)
g

)
ψ−1

[p1](n1)ψ
−1
[p2...pr ](u[p2...pr ])dn1 dq du∗, (6.11)
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where q ∈ Up1,ab−p1(k) \ Up1,ab−p1(A) with only the last row being zero,
∫

∗ means
∫

U[p2 ...pr ],2

and du∗ is du[p2...pr ]. For each step, the conditions for Lemma 5.2 can be checked easily as

in the proof of Proposition 6.3.

Note that the integral (6.11) contains the following integral as an inner integral

∫
q

∫
n1

E−1(φ,

(
n1 q

0 Iab−p1

)
g)ψ−1

[p1](n1)dn1 dq,

which is actually E
ψV

1p1−1,ab−p1+1

−1 (φ, g). By Lemma 6.2, the Fourier coefficient E
ψV

1p1−1 ,ab−p1+1

−1

(φ, g) is identically zero. This completes the proof of Theorem 5.5.
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