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It is a well-known theorem, due to J. Shalika and I. Piatetski-Shapiro, independently,
that any nonzero cuspidal automorphic form on GL,(A) is generic, that is, has a nonzero
Whittaker-Fourier coefficient. Its proof follows from the Fourier expansion of the cus-
pidal automorphic form in terms of its Whittaker-Fourier coefficients. In this paper,
we extend this Fourier expansion to the whole discrete spectrum of the space of all
square-integrable automorphic forms of GL,(A) and determine the Fourier coefficients
of irreducible noncuspidal (residual) automorphic representations of GL,(A) in terms of

unipotent orbits.

1 Introduction

Let k be a number field and A be the ring of adeles of k. For the general linear group GL,,
it is a well-known theorem that any nonzero cuspidal automorphic form ¢ on GL,(A)
is globally generic, that is, has a nonzero Whittaker-Fourier coefficient (which will be
defined in Section 2), which was proved by Shalika [12] and Piatetski-Shapiro [10], inde-
pendently, using the Fourier expansion of the cuspidal automorphic form ¢ in terms of
its Whittaker-Fourier coefficients (which will be recalled in Section 2). This important

fact for cuspidal automorphic forms on GL,(A) distinguishes the theory of GL, from that
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of other reductive algebraic groups, since over a general reductive algebraic group, there
do exist nongeneric cuspidal automorphic forms.

In general, Fourier coefficients of automorphic forms over G(A), where G is a
reductive algebraic group defined over k, may be defined in terms of unipotent orbits
of G(k). However, the Fourier coefficients in a Fourier expansion of automorphic forms
over G(A) may be different from the notion of Fourier coefficients attached to unipotent
orbits, although when G = GL,, and the automorphic forms are cuspidal, they coincide.
Hence it is important to study the relations between the two different notions of Fourier
coefficients. In this paper, we do this for the noncuspidal discrete series automorphic
forms on GL,(A), with the hope that some of the ideas and methods may be extendable
to the discrete spectrum of classical groups.

First, we extend the Fourier expansion to automorphic forms on GL,(A), which
occur in the discrete spectrum of square-integrable automorphic forms on GL,(A). This
is done in Section 3 (Theorem 3.3). A technical, but very useful lemma (Lemma 3.2) is
proved in Section 4. Based on the Fourier expansion in Section 3, we determine the
degenerate Whittaker—-Fourier coefficients along the standard maximal unipotent sub-
group U, of GL, with degenerate characters for all noncuspidal discrete series auto-
morphic representations of GL,(A), following the terminology used by Zelevinsky [14,
Section 8.3]. Note that the notion of degenerate Whittaker—Fourier coefficients is easy to
use when the group is GL,, as one can see in the Fourier expansion in Section 3. How-
ever, for other reductive groups, there are cuspidal automorphic forms, which have no
nonzero Whittaker-Fourier coefficients, and hence such degenerate Whittaker-Fourier
coefficients are all zero. Therefore, it is natural to introduce the notion of Fourier
coefficients attached to unipotent orbits for automorphic forms on general reductive
groups [1, 2, 6].

In Section 5, we define the notion of Fourier coefficients attached to unipotent
orbits for automorphic forms on GL,(A), and determine the relation between the degen-
erate Whittaker-Fourier coefficients from the Fourier expansion and the Fourier coeffi-
cients attached to unipotent orbits for the residual spectrum of GL,(A) (Theorem 5.4). We
remark that Ginzburg [1] gives a sketch of a proof of this result [1, Proposition 5.3] with
an argument combining local and global methods. We give here a global proof with full
details. In Section 6, we show that the Fourier coefficient for any noncuspidal, discrete
series automorphic form of GL,(A) obtained from Theorem 5.4 is the biggest Fourier
coefficient according to the partial ordering of unipotent orbits (Theorem 5.5). Finally,
Theorem 5.6, which is the combination of Theorems 5.4 and 5.5 and Corollary 3.4,

extends the results of Shalika and of Piatetski-Shapiro on cuspidal automorphic forms of
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GL,(A) to the whole discrete spectrum of GL,(A). In other words, we prove the following

main result (Theorem 5.6) of this paper.

Theorem 1.1 (Fourier coefficients for discrete spectrum of GL,). Lett be anirreducible
unitary cuspidal automorphic representation of GL,(A) and let n=ab with b > 1. Define
the residual representation &5 of GL,(A) as in Section 2.1. Let p=I[pip>--- p/] be a
partition of nwith p; > p, > --- > p. > 0 and denote by [a?] the partition of all parts equal
to a. Then the following hold.

(1) The residual representation &:p has a nonzero . -Fourier coefficient,
whose definition is given in Section 5.
(2) For any partition p=[p1p>--- p] of n, if p; > a, then the residual represen-

tation & » has no nonzero v ,-Fourier coefficients. O

Finally, we would like to thank the referees for their helpful comments on the

previous version of this paper.

2 Discrete Spectrum of GL,

We first recall from [7] the structure of the discrete spectrum of GL, and from [10, 12]

the Fourier expansion of any cuspidal automorphic form on GL,,.

2.1 Structure of discrete spectrum

Take n=ab with a, b > 1 integers. It was a conjecture of Jacquet [4] and then a theorem of
Moeglin and Waldspurger [7] that an irreducible automorphic representation = of GL,(A)
occurring in the discrete spectrum of the space of all square-integrable automorphic
forms on GL,(A) is parameterized by a pair (z, b) with t an irreducible unitary cuspidal
automorphic representation of GL,(A), for some pair a, b of integers such that n=ab. In
particular, if 7 is also cuspidal, then b=1.

More precisely, we take the Borel subgroup B, = T,,U, to be the subgroup of all
upper triangular matrices in GLy, where T,, consists of all diagonal matrices in GL,. The
triple (GLy, By, Tp) determines the structure of the root system of GL,. For n=ab with
b > 1, take the standard parabolic subgroup Py = My N of GLg,, with the Levi part My
isomorphic to GL;b =GLg X - -+ X GLg(b — times). Then (P, t®?) is a cuspidal datum of
GLg(A). Following the theory of Langlands [5] and Moeglin and Waldspurger [8], there

is an Eisenstein series E(¢.», s, g) attached to (P, t®P), where s =(sy, ..., sp) € CP. This
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Eisenstein series converges absolutely for the real part of s belonging to a certain cone
and has meromorphic continuation to the whole complex space C?. Moreover, it has an

iterated residue at

e . (b=1b-3 1-b
20 — b= 2 9 2 EECIEIEIE) 2
given by
b-1
Eo1(¢eer, 9) = lim H(si — Sis1 = DE(¢res. 5. 9). (2.1)
1=

which is square integrable, and hence belongs to the discrete spectrum of the space of
all square integrable automorphic forms of GLg(A). Denote by & 5 the automorphic
representation generated by all the residues E_j (¢es, g). It is a theorem of Moeglin and
Waldspurger [7] that & ) is irreducible, and any irreducible noncuspidal automorphic
representation occurring in the discrete spectrum of GL,(A) is of this form for some

a>1 and b > 1 such that n=ab, and has multiplicity one.

2.2 Fourier expansion for cuspidal automorphic forms

Recall B, = T,,U,, is the Borel subgroup fixed in Section 2.1. We write elements of U, to be
u= (u; ;), which is upper triangular. Let ¥ be a nontrivial character of A, which is trivial

on k. We define a nondegenerate character of U,(A) by

Yo, (W =Y (U2 + Up3+ -+ Up1,n). (2.2)

It is clear that vy, is trivial on Uy,(k). For an automorphic form ¢ on GL,(A), the (nonde-

generate) Whittaker-Fourier coefficient of ¢ is given by

W (g, 9) :=J pug) vy, (W du. (2.3)

Un(k)\Un(4)

When ¢ is cuspidal, the following well-known Fourier expansion of ¢ is proved indepen-
dently in [10, 12]:

p@= Y. W9, (2.4)

y€Up_1(k)\GLy—1 (k)

where (,(y) = (g (1’) As a consequence, one deduces easily from this Fourier expansion
that any nonzero cuspidal automorphic form ¢ has a nonzero Whittaker-Fourier coeffi-

cient, and hence is generic.
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Now let us consider the residual representations of GL,(A). Take n=ab. The
residual representation £ p can also be generated by the residues at the point (s;, 52) =
b-1 _1

(%5, —3) of the Eisenstein series with support

GLg X GLgp-1), T ® Ez.p-1)-

From the calculation of Shahidi [11, Chapter 7], it is clear to see that the residual repre-
sentation & ») has a nonzero Whittaker-Fourier coefficient only if the residual represen-
tation £; -1y has a nonzero Whittaker-Fourier coefficient. By the induction argument,
it is enough to show that & 3 is not generic. This follows from [11, Theorem 7.1.2]. We

summarize the discussion as in the following proposition.

Proposition 2.1. Any irreducible, noncuspidal, automorphic representation occurring
in the discrete spectrum of GL,(A) is nongeneric, that is, has no nonzero Whittaker-

Fourier coefficients. O

We note that this global result can also be proved by using Zelevinsky classifica-

tion theory of irreducible smooth representations of GL, over a p-adic local field [14].

3 Fourier Expansion for the Discrete Spectrum

Fourier expansion for automorphic forms on GL,(A) is an important tool to study the
properties of automorphic forms. A general expansion is given in [13, Proposition 2.1.3].
However, it is not easy to use such a general expansion to establish an analog of the
Fourier expansion (2.4) for the automorphic forms in the noncuspidal discrete spectrum
of GL,(A). In this section, we write the Eisenstein series in a more explicit form and
study the vanishing and nonvanishing of certain Fourier coefficients of the residual rep-
resentations to obtain the exact extension of (2.4) to the whole discrete spectrum of
GLp(A).

For n=abwith b > 1, take the standard parabolic subgroup P = P = MN of GLg,

with Levi part M = GL;b. Consider the normalized induced representation
I(z,s,b) zlndgzﬁi(ﬂ PR ®1]- %),

where t is an irreducible unitary cuspidal automorphic representation of GL,(A) and

s={s1,..., s} €CPl.
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For any section ¢ € I(z, s, b), let ip be a complex function over N(A)M(k) \ G(A)
defined by
ip(g) = p(9)(1D). (3.1)

where I? is the identity in the group M. Then, when the real part of s belongs to a certain

cone, the Eisenstein series can be expressed as

E@.5,90= Y, 6  i6(rg. (3.2)

¥ €P(k)\GLap (k)

For any parabolic subgroup Q =LV of GL,, the constant term of the Eisenstein

series along Q is defined by

E(¢’ S, g)OZJ E(¢’ S, vg) dv. (33)
V(R\V(A)

Then the constant term of the residue E_; (¢, g) along Q is given by
b-1
E (¢, 9a=lim [[(si = sis1 — DE(@, 5, 9a- (3.4)
s A
It follows from [8, Proposition 2.1.7] that the constant term E_;(¢, g)q is always zero

unless P C Q.

3.1 Families of fourier coefficients

In order to study the Fourier expansion for the discrete spectrum of GL,, we introduce
two families of Fourier coefficients. Let «, 8,y, and § be four nonnegative integers,
such that

a+B+y-6=n

Consider the standard parabolic subgroup
Oa,l("*“) = La,l(n—a) le(n—a)

of GL, with the Levi part Ly jn« = GL, x GL} ™. We define Q) | to be the subgroup
of Q4 1m0 = (g; ) with g;; =1 for all i > «. Note that

Vl,l(n—l) = VO,I" = UYL

is the standard maximal unipotent subgroup of GL,.
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For nonnegative integers «, 8, y, and § as given above, we define two types of

(degenerate) characters 1/f§+;y_5 and W,g;y-a of V, 1n-« as follows:
1/f,§l+;y.5(v) =Y (Vgat1 T Votla+2 T+ Vot p1,04+p)
Y (Vagpr1,a4p4+2 T+ F Vo pro—1,a+p+5)

Y (Vaqprs+1l,atp+o+2 T+ Vagpr25—1,a+6+25)

Y (Vo - (y—1)8+Latpt(y—1)-s42 T+ + Un_1.n) (3.5)
and

w,?;y.s(v) =Y (Vatt,a42 T+ Vogp—1,a48)
Y Vet pr1,a4p4+2 T+ Vs prs—1atp+s)

U (Vatprotlatprstz T+ + Vot pros—1.a+6+26)

U Vot pt(y—1)-s+Latpt(y—1)6+42 + =+ + Un-1.n)- (3.6)

Note that w;;y,a(v) =Y (Vy.g+1) - w,;‘;y_a(v). The corresponding Fourier coefficients of the
residue E_;(¢, g) are given by:

BN 00| B g0 3.7)

[V, 1n-o]

E" (¢, 9) :=J E_ (. vg)¥},.5(0) " dv, 3.8)

[le(n—o{)]

where [V, 10-w]i=V, 100 (k) \ V1000 (A). For simplicity of notation, if there is no

: n n
confusion, we also use ¥+.,.s for wﬁ*‘;y-é’ and y.,.s for wﬁ;y_s.

3.2 Fourier expansion: Step 1

We consider first a preliminary version of the Fourier expansion for the residue
E _1(¢, g), following the idea of the Fourier expansion for cuspidal automorphic forms

on GLg(A) (n=ab from now on) given in [10, 12].
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Consider the standard parabolic subgroup Qg-1.1 = Lap—1.1Vap—1.1 0f GLg. The

(ab—1)

unipotent radical V ;; is abelian and is isomorphic to k® . Hence we have the

following Fourier expansion for the residue E_; (¢, g) along Vgp—1.1(k) \ Vap—1.1(A):

E_1($.9)=E-1($. 9w, + 3 EV @, yang),

Yab€ Ogb—2,1(2> (k)\agb,l‘l ()

witha=ab—-1,8=1,and y =6 =0.
If a=1, then b=nand the residual representation &, , is one-dimensional. Hence

¢1+ 00

it has no nontrivial Fourier coefficients. That is, E (¢, g) is identically zero (this will

be generalized in Lemma 3.2), which implies that

E L. 9 =E 1 Pay,., =E" @, 9 =E"" (¢, 9). (3.9)

If a> 1, then Qg-;, does not contain P. By the cuspidal support of the residue,

the constant term E_;(¢, 9)q,, ,, is always zero. Hence we obtain

E_i(¢.9)= 3 E'Y @, yang)- (3.10)

Vb€, , | \Q% 11 ()

Note that Ef11+:°'° (¢, 9) is left tap_1,a(QY,_, (k) invariant, where the subgroup QJ,_, , is
the GLg-1-analog of subgroup QJ,_, ; of GLg, and

h 0
Labfl,ab(h) = ( ) (3.11)
0 1

for he GLg-1. Next consider the unipotent radical V51 of Ogb 2.1» Which is abelian

‘//1+ 00

and isomorphic to k¥@~2_ Hence we have the Fourier expansion of E'} (¢, g) along
Vab—2,1(k) \ Vap—2,1(A):
'/jl ;0 le
E' (¢, 9) = EXY (. Dy s (o) + 3 E' 0, yap-19).

Yar-1€Q0 ) (0\QG, 5, (k)

It is easy to see from the definition that the constant term

E" @, D@20 = BV (8, 9)-
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If a = 2, we show that the Fourier coefficient Efﬁ“’"’ (¢, Yap—19) is zero (Lemma 3.2).

Hence, when a= 2, from (3.10), we obtain

E (4,9 = > E"S (9, vang)- (3.12)

Yab€ ag(b—l),l(z) (k)\agb,H (k)

If a> 2, then the term Ef‘f”(qb, g) contains as an inner integration the constant
term E_,(¢, 9)p, ,, of E_1(¢, g) along the standard maximal parabolic subgroup Ps-2 2
of GL,, with Levi part isomorphic to GLg—2 X GLy. Since Pg,—3 2 does not contain P when

a> 2, the constant term E_; (¢, g)p,, ,, must be zero. Hence, when a > 2, we have

E" (¢, g)= 3 E"S (¢, yap19). (3.13)

Yar1€0%, . ) (0NQY, 5, ()

With (3.10), we obtain, when a > 2, that the residue E_; (¢, g) is equal to

3 3 E" (@, tas1.a0(Yap1) Ve ),

Vb yap1€Q0, 6 (0\QY, ()
where y,, Tuns over Ogb_z’lm (k) \ QY_, 1 (k). Note that
Q% 510 =tab-1.a(QY_5 1) Var-1.1
and ‘ab—l,ab(agbfz,l) normalizes V1. Note also that

0 0
Lab—z,ab(oab,;:,,l(m)Vab—l.l = Oab,;g,l(s)y

where (gh—2.ab = lab—2.ab—1 © lab—1.ab- We obtain, when a > 2, the following Fourier expan-

sion for the residue E_;(¢, g):

E_i(¢.9) = 3 E'Y 0, yabg). (3.14)

Yab€ agb—s_ 13) R\ Ogb—l,l (k)

We continue with the expansion (3.14) and repeat the above argument, and finally

we obtain the following expansion:

E_\(¢.9)= > E"S"(¢. Yabg). (3.15)
Y€, @ ®N\Q% 11 (R
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which uses Lemma 3.2. Note that this expansion generalizes (3.9) and (3.12), froma=1, 2

to general a. We record the above discussion as follows.

Proposition 3.1. Let E_;(¢,g) be the residue of the Eisenstein series E(¢,s,g) as
defined in (2.1).

(1) It has the following Fourier expansion:

E .9 = > BT, v9).

Ve Og(b—l).l(a) (\QG 1,1 (k)

(2) The above Fourier expansion is absolutely convergent and uniformly

converges on any compact set in g. O

Note that Part (2) is clear since, in each step, the Fourier expansion in the argu-
ment is absolutely convergent and uniformly converges on any compact set in g. Also,
if we assume that b=1, then £, ; =7, and the Fourier expansion in Part (1) recovers the
Fourier expansion in (2.4) for any cuspidal automorphic form ¢, in the space of 7, given
in [10, 12].

Now we state the technical lemma, which will be proved in Section 4.

Lemma 3.2. Let E_;(¢, g) be the residue of the Eisenstein series E(¢, s, g) as defined in
Wa*:y-a

(2.1). The Fourier coefficient E"{ "“(¢, g) is identically zero, fora =a(b—y — 1), =6 =aq,
and y=0,1,2,...,b— 2. O

3.3 Fourier expansion: Step 2

As we remarked after Proposition 3.1, if b=1, then &;; =, and we finish the Fourier
expansion. If b > 1, we are able to do further Fourier expansion from the Fourier expan-
sion in Part (1) of Proposition 3.1.

Consider the subgroup Og(b—l)fl,l of GLgp-1y, which is the GLgp-1)-analog of
QY, .- In this case, Vyp-1)-1.1 is the unipotent radical of Q}, , ,,, which is iso-
morphic to k®@>-D-D 1t is clear that the Fourier coefficient Ef‘fl'“(¢>,g) in (3.15) is
left tap—1).a6(Vap-1y-1,1(k)) invariant, where for he GLgp-1), tap-1).a0(h) is the block-

diagonal matrix diag(h, I,) in GL,. Hence we have the following Fourier expansion
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]//, a
for E_i(b’”'” (@, 9):

a(b—1)

. . Y& il
E'$ (6, 9) = EYY (@, 91y sy, 1 ZE TP ta-1.a6 (1)),

where y runs over QQ, | , (k) \ QQp 1), (k) and

b . ab—1)
ngaw

E_ ST g) :=J E_“fbl'“(qs, vg)wfi?gg)(v)*l dv. (3.16)
v
Here the integration dv is over
tap-1).ab(Vap-1)-1,1(K)) \ tap-1),ab(Vap-1)-1,1(A)).
As long as a>1, which we always assume from now on, the constant term Ef‘f“’

((P g)la(b 1D.ab(Q%
E_i(¢,g) along the maximal parabolic subgroup Pgp-1)-1.4+1 0f GLg, which is identi-

o 11) contains as an inner integration the constant term of the residue
al

cally zero since Pyp_1)-1,4+1 does not contain P. Hence we obtain (a > 1)

Wa(b 1)

E'"(¢.g)= ZE T @ a0 (1)), (3.17)

where y runs over Og(b—n—z 12 R\ 02(b71)71 (k). As in Section 3.1, we can continue and

obtain the following Fourier expansion

ab-1)

E'{" (¢, 9) = ZE%M (s taw-1),a0(V)9), (3.18)

where y runs over Q° )\ Q) p_1)_1,(k), and

a(b—2),1@

a(b—1)
wﬂla l//OIa

E" (¢>,g>=J E"8eg, v YT ()7 do.

Here the integration dv is over
tap—1),ab(Vap-2),10 (k) \ tap-1),ab(Vap—2).10 (A)).

Note that the proof here uses the technical lemma (Lemma 3.2 again).

0202 ABIN LZ U Josn NINQY Seuelqi] Ausioaiun anpind Aq 08291 2/620v/L LIS L0ZOBAISGE-0|dI1E /Ul W00 dNo"ojWapede//:sdny Wwoly papeojumoq
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Since ‘a(b—l),ab(Va(bfz),l(“) Va(bfl)’l(a)) = Va(bfz)’l(z(z), we see that

ab a(b—1)
w(): l-a

E" Vo1a (. 9) =J E_i(¢, Ug)l/fg;g»a(v)_l dv

ab
WO:Z-a

=E_1 (¢’ 9)7 (319)

where the integration dv is over Vy;_g) 10 (K) \ Vgp-2).100 (A). Note here that o = a(b — 2),
B=0,y=2,and § =a.

From the above discussion, we obtain

E_($.9)=Y Y E"*(¢. 7219 (3.20)

v

where y; runs over ag(b—l),lw (k) \ Q2_, (k) and y, runs over

tat-1).a0( Qo2 10 () \ tar-1).a0( Q1)1 1 (K)).-
For general b > 1, such that n=ab, we repeat the above argument and obtain, by

means of the inductive argument and Lemma 3.2 for each step, the following Fourier

expansion for the residue E_; (¢, g).

EL($.9)=) - Y EN"@. 1 19, (3.21)

V1 Vb

where y; runs over
La(b—i+1),ab(ag(b_i),l(u) %)) \ La(b—i+1),ab(ag(b_i+1)_1,1 (k)
fori=1,2,...,b. Note here that « = =0, y = b, and § = a. We state this as follows.

Theorem 3.3 (Fourier expansion). Let E_;(¢, g) be the residue of the Eisenstein series
E(¢, s, g) as defined in (2.1).

(1) It has the following Fourier expansion:

EL@.9)=Y Y E'% .y ng).
Y1 Vb
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where y; runs over

La(b—i+1),ab(02(b,i),l(a) (k)) \ La(b—i+1),ab(Qg(b_i+1)_1,1 (k))

fori=1,2,...,b.
(2) The above Fourier expansion is absolutely convergent and uniformly con-

verges on any compact set in g. 0
As a consequence, we obtain the following corollary.

Corollary 3.4. Let E_;(¢, g) be the residue of the Eisenstein series E(¢, s, g) as defined
in (2.1) with cuspidal datum (P, t®?). Then the degenerate Whittaker-Fourier coefficient
Ef{f}’” (¢, g) is nonzero for some choice of ¢. a

More generally, there is a notion of Fourier coefficients of an automorphic form
on GL,(A) parameterized by partitions of n or unipotent orbits, which works better for
general reductive groups and will be introduced for GL,, in Section 5. By using the order-
ing of partitions, we will show that the Fourier coefficient Eﬁ%’ (¢, g) is essentially the
one attached to the biggest partition among all partitions to which the residue E_; (¢, g)

can have nonzero Fourier coefficients attached.

4 Proof of Lemma 3.2

In order to prove Lemma 3.2, we need Lemma 4.1, which will also be used in the proofs
of Theorem 5.4 and Lemma 6.1. In the following, we take the standard section for the
Eisenstein series E(¢, s, g), via the natural isomorphism of vector spaces: I(z, 0, b) =
I(z,s, b), which takes ¢ to ¢(s), for any section ¢ € I(z, 0, b), canonically. In this way, the

Eisenstein series is given by, when the real part of s belongs to a certain cone,

E@.s.9= Y,  ip®(9.

y€P(k)\GLa» (k)

Lemma 4.1. Let Q;:= Qg qp-iy = L;iV; be the standard maximal parabolic subgroup of
GLgp» with Levi part L; = GLg; X GLgp-iy, Where 1 <i <b — 1. Then there is a section

GLa (A b i
fe Indal_@g() 177 ey @1 12E0b-1)

such that
E_1(¢, Do = [(@UTa X Lap—i)- O
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Proof. We first calculate the constant term of the Eisenstein series E(¢, s, g) along the
parabolic subgroup Q;. This Eisenstein series has cuspidal support on the standard
parabolic subgroup P, = My Np. In this proof, we use P = MN to simplify the notation.

To do this we introduce the set Wi, which consists of elements w™! € W(GLg)
(the Weyl group of GLg), with the properties that w(e) >0 for any o € @5, the posi-
tive roots in M, w™'(8) > 0 for any g € @, the positive roots in L;, and oMw™' C L;. By

Moeglin and Waldspurger [8, Proposition 2.1.7(2)], we have

E$.5, 9o = ). > iM(, $)¢(5)(y9)

w ey WL, y€(@Pw ' NL)(K)\Li (k)

> E%(M(w. 9)¢(s). ws. g).

w*leMT/I/LCi

where M(w, s) is the intertwining operator corresponding to w.

Note that » W}, has total Cl elements which are of following forms: for any i
numbers {l;,...,[;}in {1, ..., b} with increasing order, and the complement b — i numbers
{my,....,mp;}={1,....b}\ {1, ...,1;} with increasing order, the corresponding element
o™t € yW, is defined as

o' jl; and i+ fr>my (4.1)
forje{1,2,...,i}and fe({1,2,...,b—i}). Note here that by e~ nwe mean that w~! takes
the eth block to the nth block (with the block size a x a).

To compute E_;(¢,g)q,, we use the fact that the multi-residue operator
limg_, 4, ]—[ﬁ’;l (si — siy1 — 1) (where Ay is defined in (2.1)) and the constant term opera-
tor are interchangeable. Using the same argument as in the proof of Offen and Sayag
[9, Lemma 2.4], we deduce that after applying the multi-residue operator, the only term
left is the one corresponding to w; ', where w; = ( Ia(gﬂ-) L )

Indeed, given an element w~! as in (4.1), let

Al@)={1<j<b-1lo()>w(j+ 1D}

A@={1<j<b-1llo(G+1) —o()=1}\{o ().
Then the normalized intertwining operator

N, s):= [] 5 —si1—DHM@,9
jeAl(w)
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is holomorphic at Ap, and the normalized Eisenstein series

[T 65— si11 — DEX (N, 9)¢(5). ws. )
JjeA?(w)

1

is holomorphic at Ap. Therefore, the term corresponding to w™' survives after applying

the multi-residue operator if and only if @~! has the property that
Alw)U A% (w)={1,...,b—1},

which is equivalent to that w # I, and there is no 1 < j<b—1, such that w(j+1) —
w(j) > 1. Note that if w = I;, then

Al ) U A%(w)={1,....,b—1}\ {i} #{1,....,b—1}.

Since the property that there is no 1 <j<b —1, such that w(j+ 1) — w(j) > 1, implies
that

w: j—>i+j and b—i+ f> f (4.2)

for je{l,2,...,b—i}and fe{l1,2,...,i}. This means that w = (Ia(gﬂ-) Igi), or w = Iy. After

applying the multi-residue operator, the only term left is the one corresponding to wi_l,

0 Iy

where w; = ( Loy 0 ) Therefore, we prove the following identity

E_1(¢, 9o, = E%(M_1 (00, taiap—ir» 9)»

where ,uai,a(b—i)z(_%§ %)G(CZ. We embed C? to C? by (s1,8) < (S1,...,51;52,...,82)
with i-copies of s; and (b —i)-copies of s, and identify C? with the image. Note that

(45 = (" 225 . 10)

2 , 2 e Ty Ty Ty 2

(-1 1—i (b—1)—1 1—(b-1) N b—i i
T\ 2 77 2 2 2 2’2

= Agi,atp—i) T Mai,ab—i)s

(Zi—b—l 2i—-b-3 1-b b—1 b-3 2i—b+1)
w;Ap = ;
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where

i—11i-3 1-i -1 -1 b-—1)—3 1—(b-1)
Aai,a(bfi): 2 R 2 ey 2 N 2 N 2 ey 2 .

As discussed in [9, Page 10] (or in the proof of the Proposition 2.3 [9]),
E% 1 (M_1(0i)@, aiapv—i), 9) defines a surjective intertwining operator from I(z, Ap, b) onto

b—i i . .
Indngg()A)ﬂ 172 Eriy ® |- 12Ew.b-1))- Hence there exists a section
GLgy(A b i
felndy, (“g() ) (l AT ) ® | IZE(T,IH'))

such that
E*l(q')v g) Q; = E?i (M,] ((Ui)db, l‘l/aai,u(bfi)’ g) = f(g) (Iai X Ia(b,i)).

This finishes the proof. u

Now, we are ready to prove the technical Lemma 3.2. This is to show that
for the residue E_ 1(45 g) of the Eisenstein series E(¢,s,g) as defined in (2.1), the

Fourier coefficient E_ Var 17%(¢,9) is identically zero, for e =a(b—y — 1), =56=a, and
y=0,1,2,...,b— 2. Notethatwheny:b— 1,

ab ab
waﬂ(b—l)-a = Wa;(bfl) -a Wo ba*

By using the cuspidal support of the re81due E_i(¢, g), we have the following

Fourier expansion for the Fourier coefficient E_ it 17, 9)

WZR a wa a
(¢, 9) = > 17, €9)
eeag(b—y—zm*(k)\ag(bﬂ/fl)fl.l*(k)
+ > B et (@.3)
6+€ag(b—y—2)—1.l*(k)\ag(b—y—l)fl.l*(k)

Here we use Om =0 to simplify the notation.

m, 1ab-m
ab

We show that the Fourier coefficient Efzf‘”'“(cb g) is identically zero Based on

this, the vanishing of E_ vt 17%(¢, g9) is equivalent to the vanishing of E_ 2“+ T4, etTg). By

using the inductive argument onlaforl=1,2,...,b—y, whichis based on the vanish-

ing of the Fourier coefficient Ew’“”(qb, g) foreach [=2,3,...,b—y, it follows that the
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o v, . . L Vet D
vanishing of E (¢, g) is equivalent to the vanishing of E_{"*"*(¢, e*g), which is the
ab
same as Ef‘lb‘”“”'” (¢, €t g).

Hence, in order to prove Lemma 3.2, it is enough to prove the following lemma.

Lemma 4.2. For y=0,1,2,...,b—2 and [=2,3,...,b— vy, the Fourier coefficient

1pl“”‘((]ﬁ g) is identically zero. O

'/jbaoa

Proof. First, when y =0 and [ =b — y = b, the Fourier coefficient E_1"“(¢, g) is exactly
the Whittaker-Fourier coefficient of the residue E_;(¢, g), which is 1dentica11y zero by
Proposition 2.1.

In the following, we use Lemma 4.1 twice to reduce the general case to the
above special case with lower rank. Hence those Fourier coefficients must all be zero
identically.

We assume thatl < b — y, and we show, by using Lemma 4.1, that this will reduce
to the case l = b — y, which will be treated next.

Recall the parabolic subgroup Qp—,_;=Lp_y_ Vs, of GLy from Lemma 4.1,
with Ly—,_; = GLg@-y-1) X GLg+1). By the definition of the Fourier coefficient E wl“”(qﬁ, ()}
the constant term of the residue E_,(¢,g) along Qp_,_; is an inner integration of

ab
wla y-a

(¢, g9). More precisely, we have

1//lu va a(y+l)

@, 9) =E_1($, 9a, , Viera. (4.4)

Note here that the wlﬁ’;,ﬁ)—Fourier coefficient is taken from the subgroup GL,;, which is
the second factor in the Levi subgroup L;—, ;.

By Lemma 4.1, there exists a section f belonging to

dGLab(

y+ b—y-l
(A)(l | 2 g(t,b—}/—l) ® | | 2 5(‘[,V+l))a

such that

E 1(9.9Day, = F(@Tap—y-1yxLag+1)-

Since the wlaa(;);ﬂ)—Fourier coefficient of the constant term E_;(¢, g)q, ,, is taken from the
subgroup GL, 4, it suffices to show that the residual representation & ;1) 0f GLg,41)(A)
has no nonzero y; (V+a) Fourier coefficients. This reduces the problem from GLg, to

GLg( 41). Note that this reduces the general casel <b — y tothecasel=b— y forb=y +1.
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Now take E_;(¢.=v-», g) from the space of the residual representation & ,4) of
GLg(y+1)(A). Consider the standard maximal parabolic subgroup Q;, = L;, Vj, of GLgq 41
with Levi part L;, = GLjq x GL,,. By the definition of the wf;’;/_*;)—Fourier coefficient of
E_1(¢re0+, g), the constant term of the residue E_;(¢,s0+, g) along Q;, occurs as an

a(y+1)

inner integration in the v, a -Fourier coefficient of E_;(¢.s0-0, g). As before, we write

it more precisely as follows:
a(y+1) la . va
[E_1 (o0, @lViere = [E_y(¢ro0i, 9)a,, 1Mw0eVora,

After taking the constant term along Q;,, E_1(¢:s0+, g)q,, is an automorphic function
over GLj,(A) x GL,4(A). Note here that the ’ﬁllg;o- .- Fourier coefficient is taking on GL,(A)
and the 1//8,’;[;_ o-Fourier coefficient is taken on GL,4(A).

By Lemma 4.1 again (applied to GLg,41), it is enough to show that the residual

la

o 0.o-Fourier coefficients or the residual represen-

representation £ ;) has no nonzero v
tation & ) has no nonzero w(’)'f;a-Fourier coefficients. It is clear that the character @/fl’fll;o,a
is exactly the Whittaker character of GL;,(A). By Proposition 2.1, the residual represen-

tation &) is not generic, and hence it has no nonzero w{;oAa-Fourier coefficients. [ |
This completes the proof of Lemma 3.2.

5 Fourier Coefficients for GL,

In Theorem 3.3 and Corollary 3.4, we show that the residue E_;(¢, g) of the Eisenstein
series E(¢, s, g), with cuspidal datum (P, t®?), has a nonzero degenerate Whittaker-
Fourier coefficient Eﬁg"“(qﬁ, g). In this section, we give the definition of Fourier coeffi-
cients of automorphic forms attached to unipotent orbits or partitions of n, and show
that this degenerate Whittaker-Fourier coefficient for the residue E_;(¢, g) is analogous
to the Whittaker-Fourier coefficient for the cuspidal automorphic forms on GL,(A), as
remarked at the end of Section 3. In other words, we show that, according to the partial
ordering of partitions or unipotent orbits, the Fourier coefficient Ef‘?b'“(qs, g) is equiva-
lent (for the nonvanishing property) to the biggest possible Fourier coefficient that the

residue E_;(¢, g) can possibly have.

5.1 Fourier coefficients for GLp

We consider the Fourier coefficients of automorphic forms of GL,(A) attached to
unipotent k-orbits under the GL,(k)-adjoint action, following the idea of Ginzburg et al.
[2] and Ginzburg [1] for the global theory and of Moeglin et al. [6] for the local theory.
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When G = GL,, each unipotent k-orbit O of GL,(k) has an element in the standard
Jordan form, which is unique up to permutation (conjugation by a certain Weyl group
element), and hence is characterized by a standard partition of n: p=[pip;--- p:] with
p>=p>--->p->0andn=);_, p;. We denote by Jp the unipotent Jordan matrix in the
unipotent k orbit O, determined by the partition p. Since J, is of standard Jordan form,

there is a one-dimensional toric subgroup H p of GLy(k):
Hp(t) := diag(Hip, (1), Hip, (D), - . ., Hipa (D)) (5.1)
with Hp () :=diag@? ', tP=3, ..., 7P t!"P) fori=1,2,...,r, and t € k*, such that
Vte k*, Ad(Hp(0))(Tp) = t*Tp.
Take JB_ to be the opposite to J,. It is clear that
(T Hp. Ty )

generates the k-SL attached to the k-orbit Op. Under the adjoint action, the Lie algebra
gl,,(k) of GL,(k) decomposes into a direct sum of Ad(HB)-eigenspaces:

0= m® - Dg 209 1PgDPIDRD - Donm (5.2)

for some m, where g; := {X € gl,(k) | Ad(H (1)) (X) = ¢ Xy

Let Vp j(k) (with j=1,2,..., m) denote the unipotent subgroup of GL,(k) whose
Lie algebra is @l’ljgl- Let LB(k) be the algebraic subgroup of GL,(k) such that its Lie
algebra is go. It is easy to check that J, belongs to Vp 2 (k). Under the adjoint action, the
set Ad(LB(k))(jE) is Zariski open dense in the affine space VB,z(k)/ VB’g(k). Hence one may
use the representative Jp of the k-orbit Op to define a (generic) character ¥p of Vp2(k).
Let Qp be the standard parabolic subgroup of GL, corresponding to the partition p. The
Levi subgroup M is GLp, x GLj, x -+ x GLj,. It is clear that the intersection M, N Vp 2 is
Up, x Up, x --- x Up,, where Uy, is the standard maximal unipotent subgroup (the radical
of the standard Borel subgroup) of GL,,. We define a character of V, as follows: for any

Ve ng,

Yp(v) =¥ (tr((J, — In) log(v)))

=y @izt +vp-1,p)
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Y Wp+1,p+2 + F Uptp—1,pi+ps)
(5.3)

YV WUp ot potlpttpot2z T F Upiti g Lpi bt pe)

Y Uptetp s+l prttpat2 T+ Un).

Note that v also defines a nondegenerate (Whittaker) character of M.
Let ¢ be an automorphic form on GL,(A). We define the wB—Fourier coefficient of

¢ attached to the partition p or the unipotent orbit Op by the following integral:

¢"2(9) :=J $wg)Y," (v) dv. (5.4)

V2 (k)\Vp2(A)

Note that the definition of the yp-Fourier coefficient of ¢ depends on the choice of the
representative Jp (and the semisimple element Hp).

According to the k-rational version of the Jacobson-Morozov Theorem [6], the
Fourier coefficient of ¢ can be defined by means of any choice of representatives in the
unipotent k-orbit Op. Since ¢ is automorphic, the vanishing or nonvanishing of the vp-
Fourier coefficient of ¢ depends only on the k-orbit Op.

Let 7 be an irreducible automorphic representation of GL,(A) occurring as a sub-
space of the discrete spectrum of square-integrable automorphic functions on GL,(A).
We say that 7 has a y,-Fourier coefficient if there is a function ¢ € = such that ¢'2(g) is
nonzero. As discussed above, the property that = has a vp-Fourier coefficient depends
only on the k-orbit O.

For g;, as defined in (5.2), let Gi+ (G;, respectively) be the union of all one-
parameter subgroups X, (x) whose Lie algebra is in g;, with positive (negative, respec-
tively) roots «, in the root system determined by (GLy, By, Ty). It is easy to see that both
G and G; have group structures and are abelian. In the following, by saying that one
entry in GL, is in G or G;, we mean that the corresponding element in the associated
one-parameter subgroup is in G} or G; .

Recall that V£,1(k) is the unipotent subgroup of GL,(k) whose Lie algebra is g; ®
g2 D - - D gm. Following [6], we define

(T ={Xeg | tr((J, — X, X =0,vX' eg).

0202 ABIN LZ U Josn NINQY Seuelqi] Ausioaiun anpind Aq 08291 2/620v/L LIS L0ZOBAISGE-0|dI1E /Ul W00 dNo"ojWapede//:sdny Wwoly papeojumoq



On Fourier Coefficients of Automorphic Forms of GL(n) 4049

Define VLI’)Y2 =exp(g; N (jg_)u)Vsz' which is a normal subgroup of VB,I(k). From the
definition of (jpj)ﬁ, it is easy to see that the character 1//2 on VB’Z can be trivially extended
to VéZ, which we still denote by Vp. It turns out that Vp1/ I(EI‘VL;VZ(I//B) has a Heisenberg
structure W & Z (see [6, Section 1.7]), where W= VE’I/VL/IZ and Z = Vé_z/kervéz(wg). Note
that the symplectic form on W is the one inherited from the Lie algebra bracket, that is,
for wy, wy € W (here, we identify w € W with any of it's representatives in V,; such that

log(w) € g1),

(w1, wa) =tr((J, — In) log(lwy, w2]))

=tr((J, — Inllog(wy). log(wy))).

The nondegeneracy of this symplectic form can be checked easily as following: for fixed
wy € W, if (wy, we) =0, for any w, € W, that is, tr((J, — Iylog(wy), log(w;y)]) =0, for any
wy € W, that is,

tr((Jy — Inllog(wy), X =0,

for any X’ € g;, which implies that tr((J, — Iylog(w;), X'I) =0, for any X' € g, that is,
log(w;) € (Jlj)”, that is, w; =0€ Vp1/V),.

Lemma 5.1. L/’»z = Vpa. O
Proof. As discussed at the beginning of this subsection, the partition p=I[pip:--- pl
gives rise to the SL,-triple

(Tpe Hp T3 ).

If, under the adjoint action of H, on the Lie algebra gl,,(k), the space g, as defined in (5.2)
is zero, there is nothing to prove. In the following we assume that g; is not zero. To prove
Vy.2 = Vp2, it suffices to prove that g, N (7, )" = {0}.

First let us describe Vp2. Elements in Vp2 have the following form:
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where n; € Up, (n; € Up;, respectively), the maximal unipotent radical of GLp (GLp,,
respectively), g“/ € My, ,p,, and p"/ € My ., satisfy some conditions. Since in this lemma,
we only need to care about (i, j) such that p; and p; are of different parity, we describe
the conditions for ¢/ and p’/ only for the case that p; and p; are of different parity' q e
My, p, withqlijrf;lzo, forl>m + %ﬁ_l, P e My yp Wlthplm—O form <1+ 2=0i— L 41

According to the structure of the space g;, we define abelian groups Y and X,

which are given by

Y= I v,

1<i<j<r,p; and p; are of different parity

Y‘J—]—[xl,(yl (5.5)

ij , .
where o) = ezlm_11 ot APl T O and

X= ]_[ X4,

1<i<j<r.p; and p; are of different parity
.. p] ..
x4 :HXﬁli,j(XlL’]), (5.6)
=1
where ,Bli’j =€yl o~ Zm - IRE Then, we can see that g; =log(X) @ log(Y).
Therefore, to show that g; N Ty )* = {0}, we only need to show that (log(X) @ log(Y)) N

(JB*)ti = {0}. It suffices to show that for 1 <i < j <r, such that p; and p; are of different

nopl

parity, and for any I=1,..., pj, both log(X, u(yl J)) and log(X ”(Xl J)) are not in (j ),

where 0 # yl ) e k*. This is true, since by direct calculation, when yl 7& 0,
tr((J, — Illog (X (x7)), log(X,i (1 N = —x7 37/ #0.
This completes the proof of the lemma. |

Therefore, by Lemma 5.1 and the discussion above, Vp1/ kervp.z(wg) has a Heisen-
berg structure W & Z, where Z = VBZ/ keer)z(wﬂ), and X® Yisa polal:ization of W, where
X, Y are defined in (5.6) and (5.5). i

In more explicit calculations of Fourier coefficients of automorphic forms, there

is a very useful lemma, which has been used in many occasions and is now formulated
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in a general term in [3, Corollary 7.1]. In order to fit it better for our use in this paper, we
reformulate it in a slightly different way and use a slightly different argument to prove
the GL,-analog of the useful lemma.

Let C be an F-subgroup of a maximal unipotent subgroup of GL,, and let ¢ be a
nontrivial character of [C] = C(F) \ C(A). X, Y are two unipotent F-subgroups, satisfying

the following conditions:

(1) X and Y normalize C;
(20 XNC and YNC are normal in X and Y, respectively, (XN C)\ X and (YN
C)\ Y are abelian;

(3) X(A) and Y(A) preserve y¢;

(4) ¢ is trivial on (X N C)(A) and (Y N C)(A);

(5) [X, Ylcc;

(6) there is a nondegenerate pairing (XN C)(A) x (Y N C)(A) — C*, given by

(x, y) — ¥ (Ix, yl), which is multiplicative in each coordinate, and identifies
(YNC)(F)\ Y(F) with the dual of X(F)(XNC)(A)\ X(A), and (XNC)(F)\
X(F) with the dual of Y(F)(Y N C)(A) \ Y(A).

Let B=CY and D = CX, and extend v trivially to characters of [B] = B(F) \ B(A)
and [D]=D(F) \ D(A), which will be denoted by ¥ and vp, respectively. Here is the
reformulation of the useful lemma, the proof of which is valid for the general group
H(A) as in [3].

Lemma 5.2. Assume the quadruple (C, V¢, X, V) satisfies the above conditions. Let f be

an automorphic form on GLy,(A). Then
J feg)¥g'(0) de=0,Vg € GLA(A),
(]

if and only if
J[ ] Fug)vrp' (W) du=0, g € GLa(A),
D

if and only if
J fwg vz (v) dv=0, Vg e GLy(A). 0
[B]

Proof. By symmetry, we only need to show that

J fleg)¥z'(c)dc=0,Vg e GL,(A),
[C]
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if and only if

J[ ] fug)yp' (w) du=0, Vg € GLp(A).
D

Since

J[ ] fug)yy' (W) du= flexg)y;' (o) dedy,
D

J X(F)(XNC)(A)\X(A) J [c1

we know that if

J fleg) vz (c)dc=0, Vg € GL,(A),
il

then

J[D] fug)y ' (w du=0,V¥g € GLy(A).

On the other hand, by Formula [3, (7.5)],

J flegyg'(@de= ) J fw'9vp' (w du,
] ye@ne @z !
which implies that if

J[ | fug)vp' (W du=0,Vg € GLy(A),
D

then

J fleg)¥z'(c) dc=0,Vg € GLy(A).
[C]

This completes the proof of the lemma. [ |

Note that when we apply this lemma in the remaining of the paper, we always
denote ¥ and yp by ¥ for convenience.

The following corollary gives an important property of the v p-Fourier coeffi-
cients for automorphic forms on GL,(A). The corresponding case for symplectic group

is given in [2, Lemma 1.1].

Corollary 5.3. Let p=[pip,--- p] be a standard partition of n, that is, py > py >--->
p->0andn=)_; pi. Let ¢ be an automorphic form on GL,(A). Then $V2, the ¥ p-Fourier
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coefficient of ¢ is nonvanishing if and only if the following integral is nonvanishing:
J J P yg)y,' (v) dvdy,
(¥1 J (7,21 =

where the subgroup Y is defined in (5.5). O

Proof. This is a consequence of Lemmas 5.1 and 5.2. In fact, by Lemma 5.1 and the
discussion before it, we know that VBJ/kerVn2 (¥p) has a Heisenberg structure We Z,
where Z =V, »/kery,,(y,) and X@ Y is a pol:';lrization of W, where X, Y are defined in
(5.6) and (5.5). This 7imp1ies directly that the quadruple (Vp2, ¥p, X, Y) satisfies all the

conditions for Lemma 5.2. [ |

5.2 Fourier coefficients for the discrete spectrum of GL,

Recall from [10, 12] that any nonzero irreducible cuspidal automorphic representation
m of GL,(A) is generic, that is, has a nonzero Whittaker-Fourier coefficient. From the
definition, the Whittaker-Fourier coefficient of 7 is the one attached to the partition
p=I[n.

In the following, we assume that n=ab with b> 1, and consider = =& ), the

residual representation of GLg,(A) with cuspidal support (Py, 7).

Theorem 5.4. For any residue E_;(¢, ) in the residual representation & p of GLg(A)
with cuspidal support (P, t®?), the wgﬁ)_a—Fourier coefficient of E_;(¢, ), denoted by

ab
Ef“f”'“(q&, g), is nonvanishing for some choice of data if and only if the y,-Fourier coef-

ficient of E_;(¢, -), denoted by Ef[fb] (¢, g), is nonvanishing for some choice of data. O

Proof. If a=1, then b=n and the residual representation &, is just x o det, a char-
acter of GL,(A), which of course has only the trivial Fourier coefficient attached to the
partition [1"] of n. The theorem holds for this case.

When n=a, Eﬁ“'”(fp, g) = Ef‘l’” (¢, g). We are done for this case, since in this case
the parabolic subgroup is trivial, that is, the whole group GL,, and hence the automor-
phic form considered is cuspidal.

We only need to consider the case 1 < a < n. In order to use the induction argu-
ment, we assume that for n=a, 2aq, ..., a(b — 1), the equivalence of the nonvanishing of

both Fourier coefficients holds. We are going to prove that it will also be true for n=ab.
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We start from Ef[{‘b' (¢, g), the Yp;-Fourier coefficient of the residue E_; (¢, -). In

order to apply Lemma 5.2 to the following integral

Via )
E'" ¢, 9 = J E_(¢, vg)l/f[abll(v) dv, 5.7)
Vigb1 2R\ Vgb) 5 (A)

we conjugate it by the Weyl element w of GL, which conjugates the one-parameter toric

subgroup H,u in (5.1) corresponding to the partition [a’] to the following toric subgroup:
diag(Hiq(0); t* ' Ty—1, t° 2 Ipy, ..., 7%y, £ %),

where Hg(t) = diag(t® !, 143, ..., 274 t17%). Note that w is of the form diag(I,, »'), where

o' permutes the toric subgroup H 1 in (5.1) corresponding to the partition [a®~'] to the

toric subgroup in GLgp—1):

diag(t“‘lIb_l, ta_SIb_l, ey tS_aIb_l, tl_aIb_l).

Let Upgy2 = Vg 20! Then any element of Uy, has the following form:

m o q I, 0
u= .
0 m/ \p L1
where m, €U,, the maximal unipotent radical of GLg 1 € U 1yz = Vig 120

q € Mysap—1y with g, =0, for m<Il(b—-1); and pe Myp_1)xa With p ., =0, for
l>(m—1)(b—1). We define

. /=1 /
I/fU[czl’*ll,Z (u) T wV[zzb*I],Z (C() uw )

Therefore, after conjugating by w, the integral (5.7) becomes

I, 0 _ _
JE_l o (™ 1 w0g | Vi o (m)ds, (5.8)
* 0 m)\p ILop-n 12

where [ =[ [ [, [, d*=dn dndgdp, Y is a nondegenerate character of GL,.
We are going to apply Lemma 5.2 consecutively in order to replace the integra-

tion on the variable p by corresponding integration on the variable q. To do so, we define
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a sequence of unipotent subgroups of GL, (R for “row,” C for “column”). For1 <s<a-—1,

define
I
R, — a q ’
0 Iyp-1

where g € Mgy qp—1) With the property that g, ., =0ifl#sorl=s,m>1(b—-1).For2<s<

T, 0
Cs= ¢ s
P Iop-1)

where p € Myp-_1)xq With the property that p,, =0if m#sorm=s,l>m—-1)(b—-1). It

a, define

is easy to see that for 1 <s<a— 1, Ry(k) = C,,1 (k) = k°®D, as abelian groups.

Write Uiz = Upan2 [1%2, Cs, where Uy consists of elements in Uy, with p-
part (as indicated in the subgroup Cs) being zero. For 1 <s<a— 1, write Ry = ]_[f:1 Rﬁ,
where R. C G*,;_,,. For 2 <s < a, write C; = [[{_; C%, where Ci C G,

The key point here is to apply Lemma 5.2 to the integration on the variables in
]_[?:2 Cs. To do this, we will deal with the subgroups Cs; for s=2,3, ..., a, one by one.

First we apply Lemma 5.2 to the integration on C,-part. To do so, consider the
quadruple

a
(ﬁ[a”],z 1_[ Cs, 1»[f[tzll/fU[azHu’ Rllv Czl> :

s=3

Note that both R} and C} normalize Ujg 2 and preserve yigyuy,, , ,. Rl C G§, the conjuga-
tion by R} will change some entries in G;’ with i > 2, but not attached to any character,
and C; C G,, the conjugation by C} only changes some entries in G; or G; with i > 4. It
is easy to see that the quadruple (Ui 2 [[%s Cs, YiaYu, ., Ri» C;3) satisfies all the other
conditions for Lemma 5.2. By Lemma 5.2, the integral (5.8) is nonvanishing if and only if

the following integral is nonvanishing

I, o0 L
JE_I o (M 1 g) vt wvg  (myds, (5.9)
* 0 m/)\p ILp-1 @12

where [, = [ [, [, [, dx=dm dn,dgdp, (’; Ia(;{n) e[1%,Cs, and (%4 1) € Uiy 2R
The next step is to apply Lemma 5.2 to the integration on variables in the sub-

group Cj. Since C3 =C3} - C%, we have to consider the quadruples

a
(U[ab],le 1_[ CsC3, ViaYu g1, Ry, Cé)

s=4
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and

a
(U[ab],leRQ1 1_[ Cs, Y1aV¥u ey, R3, Cg) .
s=4

After finishing this step, we come to consider C4=C} - C2-C2. This time we consider

consecutively three quadruples

a
(U[ab],le Ry []CsCiCi viavuy o, Ri- c;) :

s=5

a
<U[ab],2R1 RyR; 1_[ CsC3. YiaVuy, ., R CZ) ,

s=b

and

a
(U[ab]_le RyRYR: [ [ Cs. YiaVuy, oy, BS- cj) .

s=b

By repeating the same procedure, we end up considering the subgroup C, = ]_[?;11 Ci. To

finish this step, we apply Lemma 5.2 to the following (a — 1) quadruples

i—1 a—1
~ . . . ;
U 2R1 - Ra—2 1_[ R, 1_[ Cglz’ w[a]wU[abflmv R(lz—lf C(lz
=1 Jj=i+1

with i=1,2,...,a— 1. After finishing all the steps, we obtain that the integral (5.9) is

nonvanishing if and only if the following integral is nonvanishing

J E_ (¢, <rg :) g) Vi ¥y, (p)dx, (5.10)
* 2

where [, =[_[ [, dx=dm dn,dg, and

n -
( ! q) GU[ab],2R1R2~'~Ra,1.

0 1]

Rewrite the integral (5.10) as follows:

m q I, O . .
E-1{e. d 5.11
an Jnl’q 1 (¢ <0 Ia(bl)) (0 Tl2> g) I/f[a] (nl)wUlabfll.z (nz)dx ( )

by changing the variable q - nz_1 + q. Note that q - nz_1 has the same structure as q.
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Now consider the inner integral

n
J 2 O 1 g) Vg (m) dny dg, (5.12)
n.q 0 Iy

. . I‘b a— . . . . . .
which is exactly E_Tl tab-a+l (¢, g), using the notation in Lemma 6.2, since the n; is inte-

grated over [U,], the maximal unipotent subgroup of GL,, q is integrated over [ M, ,,_;,],

where

Méxa(b_n ={gq= (Qi,j) € Muxam—1) | Ga,j = 0,vVl< ] <a(b-1)},

and Yq(m1) is the Whittaker character of U,. Then by Lemma 6.2, the integral (5.12)

is actually equal to Eﬁ““‘“”‘“ (¢, g) (for notation, see Lemma 6.2), that is, the following

n
J E_1{9, ' 1 g W[;]l (ny) dmy dgq,
m.q 0 Iyp-1

where any entry in any row of g is integrated over k\ A. Therefore, the integral (5.11)

m q I, O 1 1
E_ , dsx, (5.13)
[ 1(¢ ( )( )) Vil (v, ()

where any entry in any row of q is integrated over k\ A.
Note that the inner integral (5.13)

n n 0
J Eafo (™ T )o)vimwam dq:J E (o g Vi () dny,
m.,q 0 Iyp-1 m 0 Iyp-1 0

a,a(b—1)

integral

becomes

where Qg q4-1) is the parabolic subgroup of GLy, with its Levi subgroup GL, x GLgp-1)-

By Lemma 4.1, there is a section
GLap (A b 1
femdg®® (177 1@ 281,

such that

o (™ % ) (™ % o)t o
“\"\o LIop-1) 0 Iy @7 bl
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Recall the standard Iwasawa decomposition
GLab(A) = Oa,a(b—l)(A) . K7

with K =[], K, being the standard maximal compact subgroup of GLg(A). Then for
any g € GLg(A), we write g = h;(g)hz(9)v(g)k(g), where h;(g) € GL,(A) is identified with
diag(hi(9), Iap-1)), h2(g) € GLgp-1)(A) is identified with diag(ls, ha(9)), v(9) € Vaap-1)(A),
and k(g) € K.

Now, for m; € U,, write

0
(nl ) g=mhi(@h(g)v(g)k(g).
0 Iyp-1y

Then we have

0
E_, (‘P, <n1 )g) = f(nhi (@ h2(9)k(9) Ta X I gp—1))-
0 Iyp-y

Qg.ab-1)

By definition, we have

Fouhi(@h2(9k(@) = 1hi (@17 [h2(9)]? - (T (1 () ® Eie.p-1) (B2 (@) (FK(G))).

When k(g) € K, f(k(g)) is a vector in the space of 7 ® £;5-1). Since the sections defining

the Eisenstein series are of K-finite, we may assume that

9

fkig) =" {9 ® ¢,

j=1
where f}]-c(g) €t,and ¢§(g) € &q.p-1). Hence we have
(T (A () ® Erp1) (@) (Fk(@)) = D T (@) F{D) ® Eir.p1)(h2(9) (@5,

j=1

By definition, we have

T (@) (F) ) = £ (mhi(9))
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and

Eeo-1) (h2(9) @5 Lap-1)) = 852 (ha(9)).

It follows that

0 e b 1
E, <¢, ('g ; ) g) => 1@ 7 |ha(9)? {9 (uh (90 (ha(9)).-
ab-1) Quap-1y =1

Therefore, we have

m 0 1
E_ , d
Lo (a2, e

Oa,a(b—l)
k9
b—1 1
= Y 1m@I 7 Ih(@)? 79 uh (@) (ha(@) ¥ (u) dmy
o
k@

= J (@I~ 19 (i (9) ¥ (m) dru h2(9)2 65 (ha(9)).

Hence the integral (5.13) becomes

k9

Z|h1(g)|*b%lj f;’-‘(g)(nlhl(g>)1/f[;f(m>dnl-|h2<g)|%J ;7 (mha(9)Vg), , (mp) dnp.
J=1 ™ e

(5.14)

By the induction assumption, the integral
| oo e, ) dn
ny !
is nonvanishing if and only if the following integral is nonvanishing:

J{ ]¢>7~")<n2 ha (VG ) a(n2) ™! dm.
Uap-1)
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Therefore, the integral (5.14), hence the integral (5.13), is nonvanishing if and only if the

following integral is nonvanishing:

1 I 0 _ _
J J Ealo (™ T ) 7)) v v L)t dmy dgdn,
Wep-1)] In1.q 0 ILigp-1n/ \0O m

=J E_1($,v9) V55w " du.
[Ua)
This finishes the proof of the theorem. [ |

Furthermore, we will prove the following theorem in the next section.

Theorem 5.5. Let p=I[pip>--- p] be a standard partition of n, that is, pp>p >--- >
pr > 0. If p; > a, then the residual representation & ) of GLg,(A) with cuspidal support
(Pp, 7®P) has no nonzero wB-Fourier coefficients, that is, for any E_; (¢, g9) € E+.p), the Vp-

Fourier coefficient Eff(q), g) is identically zero. O

Combining Theorems 5.4 and 5.5 with Corollary 3.4, we obtain the following
extension to the residual spectrum of GL,(A) of the theorem of Shalika [12] and of
Piatetski-Shapiro [10], independently, that all nonzero irreducible cuspidal automorphic
representations of GL,(A) are generic, that is, they have nonzero Whittaker-Fourier coef-

ficients.

Theorem 5.6. Let p=I[pip>--- p] be a partition of n with py>p,>---> p >0 and
denote by [a’] the partition of all parts equal to a. For the residual representation & p)
with cuspidal support (P, 7%?), belonging to the discrete spectrum of GL,(A), the fol-
lowing hold.

(1) The residual representation £ has a nonzero y,-Fourier coefficient.
(2) For any partition p=[pip>--- p] of n, if p; > a, then the residual represen-

tation & has no nonzero y,-Fourier coefficients. O

It is clear that Part (1) follows from Theorem 5.4 and Corollary 3.4, and Part (2) is
from Theorem 5.5. Note that if we use the notation of Ginzburg [1], Theorem 5.6 implies
that O(g(f,b)) = {O[ab]}.
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6 Proof of Theorem 5.5

In this section, we will prove the vanishing property of Fourier coefficients of the residue
E_1(¢, g) attached to the partitions either bigger than or not related to the partition [a®].

To this end, we need to prove the following two key lemmas.

Lemma 6.1. Let p=I[pip;--- p] be a standard partition of n, thatis, py > p>---> p- >

0.If p, > a, then the 1//21 """ “-1_Fourier coefficient

€]sn€r_1
vp T

EL (4.9 1:J E_1(¢, ug)yy " (W' du=0, 6.1)
[Ugp] -
where
wg ..... €1 (u) = lﬂ(ul,z 4+ .o+ upl—l,pl + Elupl,pl-H)
Y Up1p+2 T Uptp—1.p+p + €2Up +pypitprt1)
Y (Uptt gt lprtt prat2 T 0 F Uptot gy =1 prtt pry
+ €r—1Up 4ot py prtt D +1)
Y (Upy ot g 41 bt a2 + 0+ Uab)s
ande €{0,1},i=1,...,r —1. O

Proof. We separate the proof into two steps: (1) ¢ =0; and (2) ¢; = 1.

Step (I). €; =0. Since p; > a, there are two cases to be considered: (1) p; # as for
all 1 <s<b; and (2) p = as for some 1 <s <b.

Case (1). Let Qp, a—p, be the parabolic subgroup of GLy, with Levi isomorphic
to GLp, X GLay_p,. By the definition of the v '-Fourier coefficient, E@MM (¢, 9) has
the constant term of the residue E_,(¢, g) along Qp a—p as an inner integral. More

precisely,
g

L, €20 €r—1
E (0,9 =[E_1(9, D, wp Ve Vi

Since p1#s-a for all 1<s<b, PZ Qapp, p, Which implies that E_,(¢,9)a,, s, =0

Therefore, EYB (¢,9) =0.
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Case (2). If p, =ab, then Effl _1(¢,g)=0, since &:p is not generic, and
E; (¢, g) is a Whittaker—Fourier coefficient. From now on, we assume that p; = as,
with 1 <s<b.

Recall from Lemma 4.1 that Qg qp-s) is the parabolic subgroup of GLg with

€1yens

Levi isomorphic to GLgs X GLgp-s). By the definition of the v¥p “-1_Fourier coefficient,

€] 5ens€p]
E% (¢, g) has the constant term of the residue E_;(¢, g) along Qgsqp—s) a@s an inner

integral. As before, we have

€1rn€p]
vp T

E; (9,9 =[E_1(¢,9) Qv ]llflpnn/f[pz’ﬁfp,rf )

After taking the constant term along Qgus.ap-s), E-1(#, 9) au.ap 1S @an automorphic func-
tion over GLgq(A) x GLgp—s)(A). Note here that the 1y -Fourier coefficient is taken on
GL(A) and the wfgjjj;r’]’l -Fourier coefficient is taken on GLgp_s)(A).

By Lemma 4.1, it is enough to show that the residual representation & sy has no
nonzero V,,1-Fourier coefficients or the residual representation & ;s has no nonzero
W[S;Z'jjj;:]’l—Fourier coefficients. It is clear that the character vy, is exactly the Whittaker
character of GLs,(A). By Proposition 2.1, the residual representation &£ s is not generic,

and hence it has no nonzero y,,1-Fourier coefficients.

Lonbr1
vp

Hence, if p; > aand ¢; =0, then E ] (¢,9)=0.
Step (II). We assume that e;=1. If =1, for all 1 <i <r —1, then ¢,""“ " is a
€] 5en€p_] -
nondegenerate character of GLg,, and hence E% (¢,9)=0.

So, we may assume i <7 — 1 to be the first number such that ¢; = 0. By applying

the proof of Step (I) to the partition [(Zgzl Pj) Pit+1 - - p), which is still either bigger than

e
v

or not related to the partition [a?], we deduce that E (¢,9)=0.
This completes the proof of the lemma. [ |

Lemma 6.2. Let Vim-1 g, ,y1 be the unipotent radical of the parabolic subgroup
Qim-1 gp—my1 With Levi part GLIX(m_l) X GLgp_my1. Let

WVlmfl,abfm“ W)=y @iz2+-+ Vm-1.m)

and

Vs oy ) =V W12+ + Um2.m-1)
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YV, e
be two characters of Vim-1 gp_pmy1. Define E_‘I/1 haemil (g g) by

J E(p.vg¥y) ,  ()dv. (6.2)
[Vlm—l,ab—m+1] b

YV o .
Then, if m > q, E_Tll1 habmil (g gy =0; and if m=a,

]//VIm—l

E,

l//Vl’WaIJ—m

@, 9)=E_, (¢.9). U

Proof. Fori=1,...,ab—1, let R; be the subgroup of Uy such that any element u=
(uj1) € R;, uj; =0, unless j=i.
Vv m—1 . . N . .
Since E_,"" ™' (¢, g) is left Ry(k)-invariant, we take Fourier expansion of

Ef[l/lmil‘abim+1 (¢, g) along [Ry,] = Ry (k) \ Ry (A):

WVI’"’1 —m+1 1‘Zvlma —m l//Vlm —m s
E"TN g, ) =E " (¢, 9) + > E"T (¢, diag(In, v)g). (6.3)

Y€} a1 NG Lap-m (k)

Since both Eﬁ’lm‘“b‘"‘ (¢, g) and Ef‘flm’“b"" (¢, g) are left R,.i(k)-invariant, we can
take the Fourier expansion of them along [R,1] = Rm+1 (k) \ Rpya1(A). We repeat this pro-
cess for each term in the Fourier expansion of Eﬁlm’“””" (¢, g) or Eﬁlm‘“b’"’ (¢, g) along the
following sequence [Ry 2, ..., [Rgp_1]. After plugging back all these Fourier expansion
to (6.3), we can see that E:{lm_l’“b""“ (¢, g) can be written as a summation, each term of
which is of the form (6.1), and is identically zero, if m > a, by Lemma 6.1.

If m = a, then from (6.3), we can see that

‘//Vlm_1 ab—m+1 v 1M ab-m
EL" (g9 =E " (9. 9).
since Eﬁlm’“”’m (¢, 9) =0 from the above discussion.
This finishes the proof of the lemma. |

Before proving the general case of Theorem 5.5, we prove the vanishing of Fourier
coefficients of E_;(¢, -) corresponding to the orbits [p;19°~P'] with p; > a. The idea of the
proof for this special case is applicable to the general case. Note that in the proof of
Ginzburg [1, Proposition 5.3], the vanishing of Fourier coefficients of E_;(¢, ) corre-

sponding to the general bigger than or not related orbits is sketched by reducing to the
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proof of that corresponding to the special partition [(a 4+ 1)1%-%"!], which is then proved

by using local argument. We prove it below using global argument.

Proposition 6.3. The Fourier coefficient of E_;(¢, ) corresponding to the orbit O =

[p1190-P], p; > ais identically zero. O

Proof. We separate the proof into two cases: (1) p; is odd and (2) p; is even.

Case (1). We assume that p, is odd. From the definition, any element in Vj,, ja-n 2

y— m q I, 0
0 Iwpp P lapp ’

where n; € Uy, the maximal unipotent radical of GL,, g € My, xap—p, With g, =0, for

has the following form:

lzplT_l +1, and p€ Map—p,xp, With p,, =0, for m < plT_l +1.

. . . '
The Yp, 1-n)-Fourier coefficient of E_; (¢, ), E_{"' " (¢, g), can be rewritten as

m q Ipl 0 .l
E- ’ dn, dgdp, (6.4)
Jp L ‘Ll 1 <¢ (0 Iab—pl) < p Iab—p1> g) wlpﬂ(nl) meacr

where yp,(11) is a nondegenerate character of GLy,.

For plT_l + 1<s<p; — 1, define the following unipotent subgroup of GL:

I q
R, = (pl ):quplxabpl,ql,mzo,l;és .
0 Igp—p

For plel + 2 <s < py, define the following unipotent subgroup of GLg:

Ip, 0

Cs= "PEMap—pixp>Ym=0m#s;.
p Iabfpl

Then we can see that Rs(k)\ Rs(A)=Cs(k)\ Cs(A)=(k\ A)® P, Note that RC

+ —

G—z(s—PlT‘l—n and Cs C Gz<s—PlT‘1—1>'

Write Vip 1a-m12 = Vip1o-n)2 ]_[fi oty Csi where Vi, 1#-n ], consists of elements in
- 2

Vipi1#-n112 With p-part zero.
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Now we are ready to apply Lemma 5.2 to the integral in (6.4) first with the

quadruple
b
V[pllab*m]J 1_[ Cs, I/f[pl], RPlelJr], CPlelJrz >
s=2-143
then with the quadruple
)2
Vipn@-nyaReo gy 1_[ Cs, Yips Rp-t g, CPIT71+3 ,
s=2-114

and keep doing the same thing until the final step with the quadruple

(V[pllub*PI]A,ZRPIT*IJrl e Rplfz, 1//[p1]» Rplfly Cpl)-

This calculation shows that the integral (6.4) is identically zero if and only if the follow-

ing integral is identically zero

J J E, <¢, (nl 1 )g> Y (m) dm dgdp, (6.5)
qJm 0 Iabfpl

where ('8 Iazzp] ) € fi[pllabfpl],szlel+l .-+ Rp,_1, that is, all first (p; — 1)-rows of g are inte-
grated over k\ A, and the last row of g is zero.
Note that for each step, we can easily check the conditions for Lemma 5.2. For

the first quadruple

P
V[pﬂ“’*m],Z 1_[ Cs, I/f[pl], RPlelJrl, CPlelJrz >

_pn-1
s==5—+3

the conjugation by Rn-1_; will change some entries in G; with i > 2, but the changing
2
of variables does not change the character, the conjugation by Cp -1, will change some
2

entries in Gf or G; withi>4.For1<j< plT_l — 2, when we consider the quadruple

J+1 D

Vipiio-niz l_[ Rpoy l_[ Co Vipn Ret gy Cntny s |
=1 s=B1iji4
=3 ]+
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the conjugation by Rp -1 , will change some entries in
2

+14j+

J+1 p
Gj— N T/[pllab’pl],Z 1—[ RPIT_I—H 1_[ Cs
I=1 s=B-tyjra

with i > —2j, but the changing of variables does not change the character, the conjuga-

tion by Cp 1 , will change some entries in G; with i > 4.
2

1)t
Yv o,
Note that the integral in (6.5) is actually E_,'" "' (¢, g), which is identically
zero by Lemma 6.2. This finishes the proof of the case of p; odd.

Case (2). Assume that p; is even. From the definition, any element in Vi, o5

(nl q (I m 0
u= ,
0 Impp P Iap

where n; € Up,, the maximal unipotent radical of GL,,, g € My, xap—p, With g, =0, for

has the following form:

1> %, and p € Mgp_p, xp, With p,» =0, form < % +1.

. . Vi, 1ab— .
The Yy, 1&-n)-Fourier coefficient of E_; (¢, ), E_{"' - (¢, 9), can also be rewritten

m q Ipl 0 1
o dm dgdp, (6.6)
J-p L Jnl 1 <¢ (0 Iab—pl) ( p Iab—pl) g) I//[Pﬂ(nl) maqgap

where V1p,1(11) is a nondegenerate character of GL, .

as

By Corollary 5.3, we only have to show that the following integral is identically

n I, 0 _
J 0 N ? Y9 | ¥, (m) dmy dgdpdy. (6.7)
v:p.a.m 0 I p P Iwp

where y e [Y].

Z€ero:

For % +1<s<p — 1, define the following unipotent subgroup of GLg:

Ip, q
Rs={< P > : quplxab_pl,ql,mzo,l;és}.

0 Iab—p1

For % + 2 <s < py, define the following unipotent subgroup of GLg:

I, 0
Cs= P PEMup pixp Gm=0m#s¢.
D Iabfpl
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Then we can see that Rs(k) \ Rs(A) = Cy(k) \ Cs(A) = (k\ A)®~P1, Note that R, C sz(

and Cs C Gz(s—%l)“'

Write YV, 10-n)2 = Yﬁmlab-qu ]‘[fi&l+2 Cs, where f}[pllab—pl]z consists of elements
-2

s—ZL)+1

in Vi, 1@-n 2 With p-part zero.

Now we apply Lemma 5.2 to the integral (6.7) first with the quadruple

D1
YVip1o-m)2 l_[ Cs: Yip)s Ry, Coga |

s=p2—1+3
and then with the following quadruple

D
YVip@-mi 2Ry iy 1_[ Cs, Yipi, Ry, Coyg |

_P
s=E£+4

and keep doing the same thing until the last step with the quadruple

(YV[pl IW*PII,ZR%H -+ Rp—2, Yip)s Rp, -1, Cp1)~

This calculation shows that the integral (6.7) is identically zero if and only if the follow-

ing integral is identically zero

[ ]| & <¢>, ("1 1 )yg) Y} ) dmy dqdy, 6.9)
yJiqim 0 Iabfpl

where (o 1, ) € YVp10ni2Re - Ry 1, that is, all first (o — 1)-rows of g are inte-
grated over k\ A, the last row of g is zero. For each step, the conditions for Lemma 5.2
can be easily checked as the case of p; odd.

Note that the integral in (6.8) is actually Eﬁlwl””””“ (¢, 9), which is identically
zero by Lemma 6.2.

This completes the proof of the proposition. |

Now, we prove the general case of Theorem 5.5. As we mentioned, the idea will

be similar to the case of special orbits [p;1%°~P'], p; > a, in Proposition 6.3.
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First, by Corollary 5.3, we only have to show that the following integral is iden-

tically zero:

J J E_1(¢, vy9) ¥y, (v) dv dy. (6.9)
[v] J [V s

Note that we will use the notation introduced in Section 5 accordingly.

First we conjugate the integration variables in the integral (6.9) by the Weyl ele-
ment o of GL, (n=ab) which conjugates the toric subgroup H, of GLg in (5.1) attached
to the partition p to the toric subgroup:

diag(Hp,(); t7 1, ...t ),

where after the first block of size p;, the exponents of ¢t are of nonincreasing order. Note
that w is of the form diag(l,, o), where ' is a Weyl element of GL,_p,, which conjugates
the toric subgroup Hjy,..51 of GL,_p, in (5.1) corresponding to the partition [p,--- p] to
the toric subgroup of GL,_p,:

diag(t?!, ..., t'7P),
where the exponents of t are of nonincreasing order. For example, for the partition
[p2--- pl1=1(3%)2], o is the Weyl element of GLg, which conjugates the toric subgroup

diag(t?,1,t72;t2,1,t7 2, t,t7 1) to the toric subgroup: diag(t?, t2,t, 1, 1,t7 1, t72, t2).

Let Upo= a)YVBZw*I. Then any element of U, has the following form:
n I 0
u—= 1 q b1 ,
0 m b Iab—p1
where n; € U,, the maximal unipotent radical of GL,, and

-1
AS U[pzmpr],z = a)/Y[m...pr]’z V[pz...pr]yza)/

with Yjp,..p12 being the corresponding Y for the partition [p;--- p-]. Denote Y, (W =

¥v,, (0™ uw). Hence integral (6.9) equals

J E, (¢, (nl q) (Ipl 0 )wg) Yy, (w du (6.10)
[UEZ] 0 1y p Iabfpl b
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Consider the group Upz N Up, ab—p,, Where Up, qp—p, is the unipotent subgroup of
the parabolic subgroup of G with Levi GL, x GLg—p,. Let i be the index of the first
row of Upz N Up, ab-p, With zero entries. Let R; be the subgroup of Up, a-p, with zeros
everywhere except the complement of Up2 N Up, ap-p, in the jth row, i <j<p — 1. Sim-
ilarly, let C; be the subgroup of U, 4,
of Upz N Up1 ab—py in the jth column, i + 1 < j < p;. Then, we can see that R; =C 4.

Write Upz= ~p2'nfli+1 Cs, where ﬁpz consists of elements in Up, with

with zeros everywhere except the complement

U, -part zero. For i < j < p; — 1, write Rj= Hl 1R where Rl consists of all the

1.ab—py
elllotriespm G*, with kl- decreasing. For i+ 1 < j < p;, write C; = mf ! Cl where Cl con-
sists of all the entries in G, with K} increasing. Note that R} = Cé+1
Now we are ready to apply Lemma 5.2 to the integral (6.10) w1th a sequence of
quadruples: (Up2 [12;,,C Cly VYu,, R, Cl)), and then (Up2 R[], 5 Cs 1125 Chyys

Yu,,, R, C%,,), and keep going untll (UBZRI' R, C Yu,,. R, ClY). ThlS fin-
ishes the first step. Then we go with a next sequence of quadruples

mi+1
<UP2R1 l_[ Cs H CHZ» wUpZ’ R’L+1’ CL+2)

s=i+3 =2

& pl erl 1 Mit1 ~Mig | .
<Up,21-"alRi+1 H Cs. Y, LY. ClY5 )

s=i+3

and keep doing this until the last step with a sequence of quadruples

Mpy -1
<Up,zRi...Rplz I1 cﬁ,l,wUp,z,R;l,c;,)

=2

mPl

7 . mpl 1—1 mpl
(Up2Ri--- Rp- 2Rp1 1 Rpoy wUpZ’ p1—

{ ,Cp' ).
Note that here for convenience, we denote all the characters in all the above quadruples
by yv,,. The above calculation shows that the integral (6.10) is identically zero if and

only if the following integral is identically zero

H J E <¢, (’g e )g) VELWUE! U p) A dgdu,, (6.11)
xJgJdm

Up,..p]
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where g € Up, ab-p, (K) \ Up,.ab-p (A) with only the last row being zero, [, means [,
el

and du, is dup,. p. For each step, the conditions for Lemma 5.2 can be checked easily as
in the proof of Proposition 6.3.

Note that the integral (6.11) contains the following integral as an inner integral

H E_ (¢, (rg 1 )g)w[;}](m)dmdq,
qJm

Inp—p,

v v
1P171 gp—p; 41 1P171 gp—p; 41

14 14
which is actually E_, (¢, 9). By Lemma 6.2, the Fourier coefficient E_,
(¢, g) is identically zero. This completes the proof of Theorem 5.5.
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