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Abstract. We study the top Fourier coefficients of isobaric automorphic representa-
tions of GLn(A) of the form

Πs = Ind
GLn(A)
P (A) ∆(τ1, b1)|·|s1 ⊗ · · · ⊗∆(τr, br)|·|sr ,

where si ∈ C, ∆(τi, bi)’s are Speh representations in the discrete spectrum of GLaibi(A)
with τi’s being unitary cuspidal representations of GLai

(A), and n =
∑r

i=1 aibi. In par-
ticular, we prove a part of a conjecture of Ginzburg, and also a conjecture of Jiang under
certain assumptions. The result of this paper will facilitate the study of automorphic
forms of classical groups occurring in the discrete spectrum.

1. Introduction

Fourier coefficients are important in the study automorphic forms. For example,
Whittaker-Fourier coefficients play an essential role in the theory of constructing auto-
morphic L-functions, either by Rankin-Selberg method or by Langlands-Shahidi method.
In general, there is a framework of attaching Fourier coefficients to nilpotent orbits (see
[GRS03, G06, J14, GGS17a], and also §2 for details), which has also been used in theory
of automorphic descent (see [GRS11]). Let F be a number field and A be its ring of
adeles. Let G be a connected reductive group defined over F . One important topic in the
theory of Fourier coefficients is to study all nilpotent orbits providing non-zero Fourier
coefficients for a given automorphic representation π of G(A). We denote the set of all
such nilpotent orbits by n(π). The subset of maximal nilpotent orbits nm(π) in n(π)
under the natural ordering of partitions is particularly interesting. For classical groups,
nilpotent orbits are parameterized by partitions of certain integers (see [CM93, W01]),
and in such cases, a relatively easier question is to characterize the sets of partitions
p(π) and pm(π) parameterizing nilpotent orbits in n(π) and nm(π), respectively. A folk-
lore conjecture is that all nilpotent orbits in nm(π) belong to the same geometric orbit
(namely over the algebraic closure F ), this means that the set pm(π) is a singleton in
the cases of classical groups. The properties of n(π), nm(π), p(π), and pm(π) have been
studied extensively in many papers, for example, [GRS03, G06, J14, JL13, JL15, JL16a,
JL16b, JL17, JLS16, C18, Ts17, GGS17a, GGS17b].
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In the case of GLn, the nilpotent orbits are in one-to-one correspondence with par-
titions of n (see [CM93]). In the 1970s, Shalika [S74] and Piatetski-Shapiro [PS79]
proved independently that any irreducible cuspidal automorphic representation π has a
non-zero Whittaker-Fourier coefficient, i.e. pm(π) = {[n]}, corresponding to the largest
nilpotent orbit. By the work of Mœglin and Waldspurger [MW89], the discrete spectrum
of GLn(A) consists of Speh representations ∆(τ, b) (see §3.1 for details), where τ runs
over irreducible unitary cuspidal automorphic representations of GLa(A), and n = ab.
Ginzburg proved in [G06] that pm(∆(τ, b)) = {[ab]} with a local-global argument, and
Jiang and the first-named author proved the same result in [JL13] using a purely global
method. Let n =

∑r
i=1 bi and consider the representation

π = Ind
GLn(A)
Pb1,··· ,br (A)δ

s
Pb1,··· ,br

with s = (s1, · · · , sr) ∈ Cr and Re(si − sj) � 0 (1 ≤ i < j ≤ r), which can be realized
as a space of degenerated Eisenstein series. Then it was conjectured by Ginzburg (see
[G06, Conjecture 5.1]) and proved recently by Cai in [C18] that

pm(π) = {[b1b2 · · · br]t} = {[1b1 ] + [1b2 ] + · · ·+ [1br ]} .
Here the transpose and addition of partitions will be recalled in §2.1.

The purpose of this paper is to generalize the results above and study the top Fourier
coefficients of automorphic representations of GLn(A) which are induced from Speh
representations

Πs = Ind
GLn(A)
P (A) ∆(τ1, b1)|·|s1 ⊗ · · · ⊗∆(τr, br)|·|sr ,

where P = MN is a parabolic subgroup of GLn with Levi subgroup M isomorphic to
GLa1b1 × · · · × GLarbr , τi is an irreducible unitary cuspidal automorphic representation
of GLai(A), n =

∑r
i=1 aibi, and s = (s1, . . . , sr) ∈ Cr.

The first result of this paper is about the top Fourier coefficients of Πs, which verifies
a part of a conjecture of Ginzburg (see [G06, Conjecture 5.6]).

Theorem 1.1. Suppose that Re(si − sj)� 0 for all 1 ≤ i < j ≤ r, then

pm(Πs) = {[ba11 · · · barr ]t} = {[ab11 ] + · · ·+ [abrr ]} .

We are also interested in the case s = (0, . . . , 0), in which case we have the isobaric
sum automorphic representation of the form

Π = ∆(τ1, b1) � ∆(τ2, b2) � · · ·� ∆(τr, br) .

From the Arthur classification of the discrete spectrum of classical groups (see [A13,
M15, KMSW14, Xu14]), endoscopic lifting images of automorphic representations of
classical groups occurring in the discrete spectrum form a special class of such isobaric
automorphic representations. In [J14], Jiang also conjectured that pm(Π) = {[ab11 ] +
· · ·+ [abrr ]}.

Our second result in this paper verifies the conjecture of Jiang under the following
assumptions:

Assumption 1.2. We assume the representations τ1, . . . , τr satisfy the following condi-
tions.

(i) We have τi � τj for all 1 ≤ i 6= j ≤ r.
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(ii) The local representations τi,v are tempered for all local places v of F and 1 ≤ i ≤
r.

(iii) The L-functions L(s, τi × τ̃j) are non-zero at s = 1
2

for all 1 ≤ i, j ≤ r.

Theorem 1.3. Under Assumption 1.2, we have

pm(Π) = {[ab11 ] + · · ·+ [abrr ]} .

Our proof makes use of some recent results on Fourier coefficients of automorphic
forms which pack up some systematical arguments in this topic, and hence can be done
in a shorter length. Under our assumptions, we use a result of Gomez, Gourevitch and
Sahi in [GGS17a] to show that Πs (and also Π) has a non-zero generalized Whittaker-

Fourier coefficient attached to the partition [ab11 ] + · · ·+ [abrr ] in §4 (see Proposition 4.2,
and see §2 for the definition of such Fourier coefficients). The use of [GGS17a] reduces
the argument to the calculation of constant term of Eisenstein series. On the other hand,
to show [ab11 ]+· · ·+[abrr ] is exactly the top orbit for Πs, one also needs to show that Π has
no non-zero generalized Whittaker-Fourier coefficients attached to any partition bigger
than or not related to [ab11 ]+ · · ·+[abrr ]. For this, we use a local criterion (see Proposition
2.2) which is due to the works of Mœglin-Waldspurger ([MW87]) and Varma ([V14])).
This local criterion reduces the proof of vanishing properties of Fourier coefficients to
a simpler local vanishing statement, which is proved in §5 (see Proposition 5.1) using
Bernstein’s localization principle (see [BZ76]) and a combinatorial result of Cai ([C18]).
We note that one important feature of the representation Πs we are considering is that
its global top orbit equals to its local top orbit at almost all places, so that this approach
works.

We remark that when we were finishing up this paper, we noticed that another proof
of the same result for Π is given by Tsiokos in [Ts17], using a different method.

Finally, it is worthwhile to mention that, towards understanding Fourier coefficients of
automorphic representations in the discrete spectrum of classical groups, in [J14, §4.4],
Jiang made a conjecture on the connection between Fourier coefficients of automorphic
representations in an Arthur packet and the structure of the corresponding Arthur pa-
rameter (see [JL16a] for the progress on the cases of symplectic groups). The result of
this paper will facilitate the study of Fourier coefficients of automorphic representations
in the discrete spectrum of classical groups, since the endoscopic lifting image of each
Arthur packet is an isobaric automorphic representation of a general linear group.

Acknowledgements. We would like to thank Dihua Jiang for his interest in this work
and for the valuable suggestions and constant encouragement. We also thank Yuanqing
Cai for helpful communication on the result in his paper [C18]. Finally, we are grateful
to the referee for pointing out a mistake in the main result of a previous verion, the
careful reading of our manuscript, and the very useful comments and suggestions, which
improve the exposition of the paper much.

2. Generalized and degenerate Whittaker-Fourier coefficients
attached to nilpotent orbits

In this section, we recall the generalized and degenerate Whittaker-Fourier coefficients
attached to nilpotent orbits, as well as some related basic definitions mentioned in §1,
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following the formulation in [GGS17a]. Then we introduce a local criterion due to
[MW87, V14] on determining the top generalized Whittaker models in the case of GLn.

2.1. The generalized and degenerate Whittaker-Fourier coefficients. Let G be
a reductive group defined over a number field F , and g be the Lie algebra of G(F ).
Given any semi-simple element s ∈ g, under the adjoint action, g is decomposed into
a direct sum of eigenspaces gsi corresponding to eigenvalues i. The element s is called
rational semi-simple if all its eigenvalues are in Q. Given a nilpotent element u and a
simi-simple element s in g, the pair (s, u) is called a Whittaker pair if s is a rational
semi-simple element, and u ∈ gs−2. The element s in a Whittaker pair (s, u) is called
a neutral element for u if there is a nilpotent element v ∈ g such that (v, s, u) is an
sl2-triple. A Whittaker pair (s, u) with s being a neutral element is called a neutral pair.

Given any Whittaker pair (s, u), define an anti-symmetric form ωu on g× g by

ωu(X, Y ) := κ(u, [X, Y ]) ,

here κ is the Killing form on g. For any rational number r ∈ Q, let gs≥r = ⊕r′≥rgsr′ .
Let us = gs≥1 and let ns,u be the radical of ωu|us . Then [us, us] ⊂ gs≥2 ⊂ ns,u. For
any X ∈ g, let gX be the centralizer of X in g. By [GGS17a, Lemma 3.2.6], one has
ns,u = gs≥2 + gs1 ∩ gu. Note that if the Whittaker pair (s, u) comes from an sl2-triple
(v, s, u), then ns,u = gs≥2. Let Ns,u = exp(ns,u) be the corresponding unipotent subgroup
of G. We define a character of Ns,u(A) by

ψu(n) = ψ(κ(u, log(n))) ,

here ψ : F\A → C× is a fixed non-trivial additive character, and we extend the killing
form κ to g(A)× g(A).

Let π be an irreducible automorphic representation of G(A). For any φ ∈ π, the de-
generate Whittaker-Fourier coefficient of φ attached to a Whittaker pair (s, u) is defined
to be

(2.1) Fs,u(φ)(g) :=

∫
[Ns,u]

φ(ng)ψ−1
u (n) dn .

If (s, u) is a neutral pair, then Fs,u(φ) is also called a generalized Whittaker-Fourier
coefficient of φ. Let

Fs,u(π) = {Fs,u(φ) | φ ∈ π} .
The wave-front set n(π) of π is defined to be the set of nilpotent orbits O such that
Fs,u(π) is non-zero for some neutral pair (s, u) with u ∈ O. Note that if Fs,u(π) is
non-zero for some neutral pair (s, u) with u ∈ O, then it is non-zero for any such neutral
pair (s, u), since the non-vanishing property of such Fourier coefficients does not depend
on the choices of representatives of O. Moreover, we denote by nm(π) the set of maximal
elements in n(π) under the natural partial ordering of nilpotent orbits (i.e., O1 ≤ O2 if
O1 ⊂ O2, the Zariski closure of O2).

We recall [GGS17a, Theorem C] as follows.

Proposition 2.1 (Theorem C, [GGS17a]). Let π be an automorphic representation of
G(A). Given a neutral pair (s, u) and a Whittaker pair (s′, u), if Fs′,u(π) is non-zero,
then Fs,u(π) is non-zero.
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In the rest of the paper, we consider the case of G = GLn. In this case, nilpotent
orbits are in one-to-one correspondence with partitions of n. Here we recall some notions
about partitions, and the basic references are [CM93] and [G06]. For convenience, we
define a partition of n to be a tuple µ = [q1 q2 · · · qm] of non-negative integers such
that

∑m
i=1 qi = n. For any partition µ = [q1 q2 · · · qm], we may reorder it as [q′1 · · · q′m]

such that q′1 ≥ q′2 ≥ · · · ≥ q′m, which we denote by µN. We identify two partitions
µ = [q1 q2 · · · qm] and ν = [p1 p2 · · · pl] of n if the non-zero parts of µN and νN agree.
There is a partial ordering structure on the set of partitions of n. Given two partitions
µ = [q1 q2 · · · qm] and ν = [p1 p2 · · · pm] of n (adding zeros if necessary), we say that µ ≥
ν if µN = [q′1 · · · q′m] ≥ νN = [p′1 · · · p′m] under the dominance ordering, i.e.

∑k
i=1 q

′
i ≥∑k

i=1 p
′
i for all 1 ≤ k ≤ m.

We also define some operations on the set of partitions. For any partition µ =
[q1 q2 · · · qm] of n, one defines its transpose µt = [q1 q2 · · · qm]t to be [qt1 · · · qtm], where
qti = ]{j | qj ≥ i}. Moreover, for two partitions µ = [q1 q2 · · · qm] and ν = [p1 p2 · · · pm]
of n (adding zeros if necessary), we define

µ+ ν = [(q′1 + p′1) (q′2 + p′2) · · · (q′m + p′m)]

with µN = [q′1 · · · q′m] and νN = [p′1 · · · p′m].
Given a partition µ of n, by a Fourier coefficient of an automorphic form φ attached

to µ, we mean a generalized Whittaker-Fourier coefficient of φ attached to the corre-
sponding nilpotent orbit. Given an automorphic representation π of GLn(A), let p(π)
and pm(π) be the set of partitions parametrizing nilpotent orbits in n(π) and nm(π),
respectively.

For latter use, we introduce a particular degenerated Whittaker-Fourier coefficients
in the case of GLn. Let λ = [p1 p2 · · · pm] be a partition of n. Let Ei,j(x) be the matrix
with (i, j)-entry being x and zeros elsewhere. Let

(2.2) uλ =
1

2n

(
m∑
i=1

pi−1∑
j=1

E∑i−1
k=1 pk+j+1,

∑i−1
k=1 pk+j(1)

)

be a representative of the nilpotent orbit corresponding to λ. Here we follow the con-
vention that the summation

∑i−1
k=1 pk vanishes if i = 1. We also let sn be the semi-simple

element

diag (n− 1, n− 3, . . . , 1− n) .

Then (sn, uλ) is a Whittaker pair. Here the multiplication by 1
2n

in uλ is due to the
difference between the Killing form and the trace form for general linear Lie algebras.
For an automorphic form φ on GLn(A), we will consider the degenerate Whittaker-
Fourier coefficient

Fsn,uλ(φ)(g) :=

∫
[Nsn,uλ ]

φ(ng)ψ−1
uλ

(n) dn .

We note that this is the λ-semi-Whittaker coefficient of φ defined in [C18].
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2.2. A criterion on determining local top orbits. The generalized and degenerate
Whittaker-Fourier coefficients also have their local analogues, which are certain local
models. Let k be a local field. For an irreducible smooth admissible representation
π of GLn(k), we say that π has a non-zero degenerate Whittaker model attached to a
Whittaker pair (s, u) if

(2.3) HomNs,u(k)(π, ψu) 6= 0 .

Here Ns,u and ψu have the same definitions as in the global setting in §2.1, and we use
the same convention for admissible representations as in [GGS17a, §1.1]. Moreover, if
(s, u) is a neutral pair, then we say that π has a non-zero generalized Whittaker model
attached to (s, u) in case that (2.3) holds. We also have the analogous definitions for
n(π), nm(π), p(π), and pm(π), respectively.

We have the following criterion for pm(π):

Proposition 2.2. Let µ = [p1 p2 · · · pm] be a partition of n. Let π be an irreducible
admissible representation of GLn(k), then the following are equivalent:

(1) pm(π) = {µ};
(2) the representation π has a non-zero degenerate Whittaker model attached to the

Whittaker pair (sn, uµ), and has no non-zero degenerate Whittaker model attached
to the Whittaker pair (sn, uλ) for any partition λ of n which is bigger than or not
related to µ.

Proof. The criterion is a special case of the general results in [MW87] and [V14]. �

Remark 2.3. The more recent works of Gomez, Gourevitch and Sahi ([GGS17a, GGS17b])
generalize the works in [MW87] and [V14], and hence also give the above local criterion.
In [C18], Cai also suggested a global criterion (see [C18, Proposition 5.3]). However, we
found that there is a gap in the argument for [C18, Lemma 5.7], where the non-trivial
orbit in the expansion of the inner integral can not always give the Fourier coefficient
for the claimed larger partition. As pointed out to us by Cai, this global criterion can be
deduced from the global results [GGS17a, Theorem C] and [GGS17b, Theorem 8.0.3].

3. Certain automorphic representations of GLn

3.1. Structure of discrete spectrum for GLn. It was a conjecture of Jacquet ([J84])
and then a theorem of Mœglin and Waldspurger ([MW89]) that an irreducible automor-
phic representation π of GLn(A) occurring in the discrete spectrum of the space of all
square-integrable automorphic forms on GLn(A) is parameterized by a pair (τ, b) with τ
being an irreducible unitary cuspidal automorphic representation of GLa(A) such that
n = ab. In particular, we have b = 1 if π is cuspidal.

For any partition [p1p2 · · · pm] of n, we denote by Pp1,...,pm the standard parabolic
subgroup of GLn with Levi part isomorphic to GLp1 × · · · × GLpm . To describe the
discrete spectrum more precisely, we take n = ab with b > 1, then the standard parabolic
subgroup Pab = MabNab of GLab has Levi part Mab isomorphic to GL×ba = GLa×· · ·×GLa
(b copies). Following the theory of Langlands (see [L76] and [MW95]), there is an
Eisenstein series E(φτ⊗b , s, g) attached to the cuspidal datum (Pab , τ

⊗b) of GLab(A),
where s = (s1, · · · , sb) ∈ Cb. This Eisenstein series converges absolutely for the real
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part of s belonging to a certain cone and has a meromorphic continuation to the whole
complex space Cb. Moreover, it has an iterated residue at

Λb := (
b− 1

2
,
b− 3

2
, . . . ,

1− b
2

) ,

which can be written as

(3.1) E−1(φτ⊗b , g) = lim
s→Λb

b−1∏
i=1

(si − si+1 − 1)E(φτ⊗b , s, g) .

It is square-integrable, and hence belongs to the discrete spectrum of the space of all
square-integrable automorphic forms of GLab(A). Denote by ∆(τ, b) the automorphic
representation generated by all the residues E−1(φτ⊗b , g). Mœglin and Waldspurger (see
[MW89]) proved that ∆(τ, b) is irreducible, and any irreducible non-cuspidal automor-
phic representation occurring in the discrete spectrum of the general linear group GLn(A)
is of this form for some a ≥ 1 and b > 1 such that n = ab, and has multiplicity one.
Moreover, the representation ∆(τ, b) can be regarded as the unique irreducible quotient
of the induced representation

πτ,b := Ind
GLn(A)
P
ab

(A) τ |·|
b−1
2 ⊗ τ |·|

b−3
2 ⊗ · · · ⊗ τ |·|

1−b
2 .

Here the notation |·| stands for |det(·)| for short.
Let `b = d b

2
e and kb = b b

2
c. Define ιτ,b to be the evaluation map

t
(`b)
b 7→ b− 1

2
,

t
(`b−1)
b 7→ b− 3

2
,

· · ·

h
(kb−1)
b 7→ 3− b

2
,

h
(kb)
b 7→ 1− b

2
,

on a set of parameters {t(`b)b , . . . , t
(1)
b , h

(1)
b , . . . , h

(kb)
b } with b entries. Let

(3.2) π′τ,b := Ind
GLn(A)
P
ab

(A) τ |·|
t
(`b)

b ⊗ · · · ⊗ τ |·|t
(1)
b ⊗ τ |·|h

(1)
b ⊗ · · · ⊗ τ |·|h

(kb)

b .

Then the map ιτ,b naturally induces a map from π′τ,b to πτ,b, which we still denote by
ιτ,b.

3.2. Certain automorphic representations of GLn. Write n =
∑r

i=1 aibi, where ai
and bi are both positive integers. For 1 ≤ i ≤ r, let τi be an irreducible unitary cuspidal
automorphic representation of GLai(A), and ∆(τi, bi) be the corresponding representa-
tion in the discrete spectrum of GLaibi(A). Let P = MN be a parabolic subgroup of
GLn with Levi subgroup M isomorphic to GLa1b1 × · · · ×GLarbr . Consider the induced
representation

Πs = Ind
GLn(A)
P (A) ∆(τ1, b1)|·|s1 ⊗ · · · ⊗∆(τr, br)|·|sr ,
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where s = (s1, · · · , sr) ∈ Cr. Sometimes we will also denote such induced representations
by

∆(τ1, b1)|·|s1 × · · · ×∆(τr, br)|·|sr

for short.
For

s = (s
(1)
1 , . . . , s

(1)
b1
, s

(2)
1 , . . . , s

(2)
b2
, . . . , s

(r)
1 , . . . , s

(r)
br

) ∈ Cb1+···+br ,

we define the Eisenstein series attached to the cuspidal datum

(P
a
b1
1 ,...,abrr

, τ⊗b11 ⊗ · · · ⊗ τ⊗brr )

to be the meromorphic continuation of the series

(3.3) E(φ
τ
⊗b1
1 ,...,τ⊗brr

, s, g) =
∑

γ∈P
a
b1
1 ,...,a

br
r

(F )\GLn(F )

φ
τ
⊗b1
1 ,...,τ⊗brr ,s

(γg) ,

where φ
τ
⊗b1
1 ,...,τ⊗brr ,s

is a holomorphic section in

Ind
GLn(A)
P
a
b1
1 ,...,a

br
r

(A)τ1|·|s
(1)
1 ⊗· · ·⊗τ1|·|s

(1)
b1 ⊗τ2|·|s

(2)
1 ⊗· · ·⊗τ2|·|s

(2)
b2 ⊗· · ·⊗τr|·|s

(r)
1 ⊗· · ·⊗τr|·|s

(r)
br .

In the latter parts, we always denote vectors in Cr by s, and vectors in Cb1+···+br by s.
Recall that we have defined the notation Λb in the definition of ∆(τ, b). By Langlands’
theory of Eisenstein series (see [L76, L79a]), for Re(si − sj) � 0 (1 ≤ i < j ≤ r), the
automorphic representation Πs can be realized via the residues of the Eisenstein series
E(φ

τ
⊗b1
1 ,...,τ⊗brr

, s, g) at

Λs = (Λb1 + s1, . . . ,Λbr + sr) ∈ Cb1+···+br .

If s = (0, . . . , 0), the automorphic representation Π can be realized via the residues of
the Eisenstein series E(φ

τ
⊗b1
1 ,...,τ⊗brr

, s, g) at

Λ = (Λb1 , . . . ,Λbr) ∈ Cb1+···+br .

In sense of [L79b, Section 2] (see also [A13, Section 1.3]), the representation Π is isobaric.

4. Non-vanishing for the top orbit

In this section, we show that the representations Π and Πs have non-zero generalized
Whittaker-Fourier coefficients attached to the partition

[ab11 ] + · · ·+ [abrr ] ,

under the assumptions in Theorem 1.3 and Theorem 1.1, respectively.

4.1. The case s = (0, . . . , 0). We consider the isobaric automorphic representation
Π at first. This case includes all main ingredients of our approach, and also some
additional treatments which can be avoided for Πs by the assumption Re(si − sj) � 0
(1 ≤ i < j ≤ r).

The main idea is to show that Π is a subquotient of a representation induced from
certain parabolic subgroup and generic data. Before carrying out the argument, we first
explain the steps using an explicit example.
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Example 4.1. We consider the representation

Π = ∆(τ1, 3)×∆(τ2, 4)×∆(τ3, 5) ,

where τi is a unitary cuspidal representation of GLai(A), 1 ≤ i ≤ 3. Note that ∆(τ1, 3)
is the unique irreducible quotient of

πτ1,3 = τ1|·|1 × τ1|·|0 × τ1|·|−1 ;

∆(τ2, 4) is the unique irreducible quotient of

πτ2,4 = τ2|·|
3
2 × τ2|·|

1
2 × τ2|·|−

1
2 × τ2|·|−

3
2 ;

and ∆(τ3, 5) is the unique irreducible quotient of

πτ3,5 = τ3|·|2 × τ3|·|1 × τ3|·|0 × τ3|·|−1 × τ3|·|−2 .

Then Π is also an irreducible quotient of

πτ3,5 × πτ2,4 × πτ1,3 .

We put the above inducing data in a table as follows:

τ3|·|−2 τ3|·|−1 τ3|·|0 τ3|·|1 τ3|·|2

τ2|·|−
3
2 τ2|·|−

1
2 τ2|·|

1
2 τ2|·|

3
2

τ1|·|−1 τ1|·|0 τ1|·|1

Here the rules of the placement are:

(1) We put the inducing data from ∆(τi, bi) with largest bi into the first row (here it
is ∆(τ3, 5)), and so on with bi’s in non-increasing order.

(2) For ∆(τi, bi)’s with bi being odd, (here they are ∆(τ1, 3) and ∆(τ3, 5)), we put the
inducing components τi|·|0 into the same column, and for ∆(τi, bi)’s with bi being

even, (here it is ∆(τ2, 4)), we also put τi|·|
1
2 into the same column as those τj|·|0.

(3) Then we put the other inducing components belonging to the same ∆(τi, bi), with
exponents increasing, into the corresponding rows.

The placement of the data is not unique, for example, for the inducing data of ∆(τ2, 4),

we can also put τ2|·|−
1
2 into the center column of the above table. Now we rearrange all

the inducing data by columns of the above table from the left to the right, i.e., let

η1 = τ3|·|−2 × τ2|·|−
3
2 ,

η2 = τ3|·|−1 × τ2|·|−
1
2 × τ1|·|−1 ,

η3 = τ3|·|0 × τ2|·|
1
2 × τ1|·|0 ,

η4 = τ3|·|1 × τ2|·|
3
2 × τ1|·|1 ,

η5 = τ3|·|2 ,

then ηi’s are irreducible generic representations of certain general linear groups. It fol-
lows that, the representation Π, realizing as residues of the Eisenstein series (3.3) at
s = Λ, has a non-zero constant term with respect to the parabolic subgroup whose Levi
subgroup is

GLa2+a3(A)×GL3
a1+a2+a3

(A)×GLa3(A) .
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Moreover, the constant term gives a non-zero vector in the representation

η1 × η2 × η3 × η4 × η5 .

One can see the proof of Proposition 4.2 for more details, note that we need to use As-
sumption 1.2. It follows that Π has a non-zero degenerate Whittaker-Fourier coefficient
attached to the partition [(a2 + a3)(a1 + a2 + a3)3a3] = [(a1 + a2 + a3)3(a2 + a3)a3] (see
§2.1 for the definition). By Proposition 2.1, Π also has a non-zero generalized Whittaker-
Fourier coefficient attached to the partition [(a1 + a2 + a3)3(a2 + a3)a3], which is exactly
[a3

1] + [a4
2] + [a5

3].

Now we carry out the general argument and prove the following proposition.

Proposition 4.2. Under Assumption 1.2, the representation Π has a non-zero general-
ized Whittaker-Fourier coefficient attached to the partition µ = [a1]b1 + · · ·+ [ar]

br .

Proof. Without loss of generality (note that Π is irreducible), we may reorder ∆(τ1, b1)×
· · · ×∆(τr, br) such that b1 ≥ · · · ≥ br.

Recall from §3.1 that given an integer b, we have defined `b = d b
2
e and kb = b b

2
c. For

1 ≤ i ≤ r, we form parameters(
t
(`b1 )

bi
, . . . , t

(1)
bi
, h

(1)
bi
, . . . , h

(kb1 )

bi

)
with b1 entries by adding zeros from the front if `bi < `b1 , and adding zeros from the end

if kbi < kb1 (note that b1 ≥ bj for 2 ≤ j ≤ r). In other words, one has t
(j)
bi

= 0 if j > `bi ,

and h
(j)
bi

= 0 if j > kbi . Then, for 1 ≤ j ≤ kb1 , we construct representations

σ1
j = τ1|·|h

(j)
b1 × · · · × τr|·|h

(j)
br ,

where we omit the τi|·|h
(j)
bi -term if j > kbi (1 ≤ i ≤ r). Similarly, for 1 ≤ q ≤ `b1 , we

construct representations

ρ1
q = τ1|·|t

(q)
b1 × · · · × τr|·|t

(q)
br ,

where we omit the τi|·|t
(q)
bi -term if q > `bi (1 ≤ i ≤ r).

For 1 ≤ j ≤ kb1 , we assume that σ1
j is a representation of GLnj(A), and for 1 ≤ q ≤ `b1 ,

we assume that ρ1
q is a representation of GLmq(A). Note that the nj’s and mq’s are among

the integers {
r∑
i=1

δiai | δi = 0 or 1

}
.

Let t1 = nkb1 , t2 = nkb1−1, . . ., tkb1 = n1, tkb1+1 = m1, tkb1+2 = m2, . . ., tb1 = m`b1
, then

the partition [t1 t2 · · · tb1 ] is just the partition [ab11 ] + · · · + [abrr ] (see the definitions and
conventions in §2.1). We rename the representations {σ1

j , 1 ≤ j ≤ kb1 , ρ
1
q, 1 ≤ q ≤ `b1}

as {ε1, . . . , εb1}, where ε1 = σ1
kb1

, ε2 = σ1
kb1−1, . . ., εkb1 = σ1

1, εkb1+1 = ρ1
1, εkb1+2 = ρ1

2,

. . ., εb1 = ρ1
`b1

. Here each εi is a representation of GLti(A) (1 ≤ i ≤ b1).

Consider the induced representation

(4.1) Ind
GLn(A)
Q(A) ε1 ⊗ · · · ⊗ εb1 ,
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where Q = LV is the parabolic subgroup of GLn with Levi subgroup L ⊂ Q isomorphic
to GLt1 × · · · ×GLtb1 . Recall that we have defined maps ιτi,bi in §3.1. We denote by

Ind
GLn(A)
Q(A) η1 ⊗ · · · ⊗ ηb1

the image of (4.1) under the set of maps

{ιτ1,b1 , . . . , ιτr,br}.
We suppose Assumption 1.2 in the rest of the proof. We need two lemmas to finish

the proof. The first one is:

Lemma 4.3. Each representation ηi is an irreducible generic representation of GLti(A).

Proof of Lemma 4.3. In fact, by the construction above, each ηi is of the form

τκ1 |·|e1 × · · · × τκα |·|eα (1 ≤ α ≤ r) ,

with integers or half-integers ei’s such that ei − ej = 0,±1
2

for 1 ≤ i < j ≤ α. Consider
the Eisenstein series corresponding to an induced representation

ρ1|·|ν1 × · · · × ρk|·|νk (νi ∈ C) ,

with ρi’s being irreducible unitary cuspidal automorphic representations. The calcula-
tion of constant term (see, for example, [Sh10, Chapter 6]) implies that the poles of the
Eisenstein series are given by the ratio of Rankin-Selberg L-functions∏

1≤i<j≤k

L(νi − νj, ρi × ρ̃j)
L(1 + νi − νj, ρi × ρ̃j)

.

By [MW89, Appendice, Proposition and Corollaire], L(νi − νj, ρi × ρ̃j) has only simple
poles at νi− νj = 0, 1, and by [JS76, JS81, Sh80, Sh81] (see also [Cog07, Theorem 4.3]),
L(νi − νj, ρi × ρ̃j) is non-vanishing for Re(νi − νj) ≥ 1 or Re(νi − νj) ≤ 0. It follows
that the Eisenstein series is non-zero holomorphic at the point (e1, . . . , eα) (recall that
we have L(1

2
, τi × τ̃j) 6= 0 by Assumption 1.2), and hence each ηi is irreducible generic.

This proves Lemma 4.3. �

As in (2.2), let

uµ =
1

2n

b1∑
i=1

ti−1∑
j=1

E∑i−1
k=1 tk+j+1,

∑i−1
k=1 tk+j(1)

be a representative of the nilpotent orbitO corresponding to the partition µ = [t1t2 . . . tb1 ],
and let s be the semi-simple element

diag (t1 − 1, . . . , 1− t1, t2 − 1, . . . , 1− t2, . . . , tb1 − 1, . . . , 1− tb1) .
It is easy to see that s is a neutral element for u, and hence (s, u) is a neutral pair.
Recall that we have defined another semi-simple element

sn = diag (n− 1, n− 3, . . . , 1− n)

in §2.1, and (sn, uµ) is also a Whittaker pair.
Take 0 6= f ∈ Π, and consider the degenerate Fourier coefficient Fsn,uµ(f) attached to

the Whittaker pair (sn, uµ). It is easy to see that Fsn,uµ(f) is the constant term integral
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along the parabolic subgroup Q composed with the Whittaker-Fourier coefficient along
the Levi subgroup L. The following is the second lemma we need:

Lemma 4.4. The constant term of f along Q gives us a non-zero vector in the irreducible
generic representation η1 ⊗ · · · ⊗ ηb1 of L(A).

Proof of Lemma 4.4. Using the notation in §3.2, we may write

(4.2) f(g) = lim
s→Λ

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)E(φ

τ
⊗b1
1 ,...,τ⊗brr

, s, g) .

Since the multi-residue operator lims→Λ

∏r
j=1

∏bi−1
i=1 (s

(j)
i − s

(j)
i+1 − 1) and the constant

term operator are interchangeable, we consider the constant term EQ(φ
τ
⊗b1
1 ,...,τ⊗brr

, s, g)

of the Eisenstein series (3.3) first. For simplicity we denote P0 = P
a
b1
1 ,...,abrr

, and denote

its Levi subgroup by M0. By [MW95, Proposition II.1.7 (ii)], the constant term is given
by

(4.3) EQ(φ
τ
⊗b1
1 ,...,τ⊗brr

, s, g) =
∑

ω−1∈W c(P0,Q)

EQ(M(ω, s)φ
τ
⊗b1
1 ,...,τ⊗brr

, ωs, g) .

Recall that

s = (s
(1)
1 , . . . , s

(1)
b1
, s

(2)
1 , . . . , s

(2)
b2
, . . . , s

(r)
1 , . . . , s

(r)
br

) ∈ Cb1+···+br ,

Here

(1) the set W c(P0, Q) consists of Weyl elements ω−1 ∈ W (GLn) (the Weyl group
of GLn) with the properties that ω(α) > 0 for any α ∈ Φ+(M0) (the positive
roots in M0), ω−1(β) > 0 for any β ∈ Φ+(L) (the positive roots in L), and
ωM0ω

−1 ⊂ L;
(2) the Eisenstein series EQ(φ

τ
⊗b1
1 ,...,τ⊗brr

, s, g) is defined as the meromorphic contin-

uation of the series

EQ(φ
τ
⊗b1
1 ,...,τ⊗brr

, s, g) =
∑

γ∈(P0∩L)(F )\L(F )

φ
τ
⊗b1
1 ,...,τ⊗brr ,s

(γg) .

Note that by construction, elements in W c(P0, Q) can be viewed as certain elements
in the permutation group Sb1+···+br , which permute the cuspidal support

(4.4) τ1|·|
b1−1

2 ⊗· · ·⊗ τ1|·|
1−b1

2 ⊗ τ2|·|
b2−1

2 ⊗· · ·⊗ τ2|·|
1−b2

2 ⊗· · ·⊗ τr|·|
br−1

2 ⊗· · ·⊗ τr|·|
1−br

2 .

Let ω0 be an element in Sb1+···+br which permutes the blocks in (4.4) to those corre-
sponding to η1 ⊗ · · · ⊗ ηb1 . It is clear that ω−1

0 ∈ W c(P0, Q). We consider the summand

EQ(M(ω0, s)φτ⊗b11 ,...,τ⊗brr
, ω0s, g)

in the constant term (4.3). The occurrence of this summand (which can not be canceled)
is guaranteed by Part (i) of Assumption 1.2. We are going to show that

lim
s→Λ

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)M(ω0, s)



TOP FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS 13

is non-zero holomorphic, and hence the Eisenstein series

EQ

(
lim
s→Λ

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)M(ω0, s)φτ⊗b11 ,...,τ⊗brr

, ω0s, g

)

= lim
s→Λ

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)EQ(M(ω0, s)φτ⊗b11 ,...,τ⊗brr

, ω0s, g)

on L(A) gives a non-zero vector in η1 ⊗ · · · ⊗ ηb1 .
For simplicity, we denote

(4.5) τ1|·|s
(1)
1 ⊗ · · · ⊗ τ1|·|s

(1)
b1 ⊗ τ2|·|s

(2)
1 ⊗ · · · ⊗ τ2|·|s

(2)
b2 ⊗ · · · ⊗ τr|·|s

(r)
1 ⊗ · · · ⊗ τr|·|s

(r)
br

by

(4.6) ρ1|·|s1 ⊗ ρ2|·|s2 ⊗ · · · ⊗ ρb1+···+br |·|sb1+···+br .
Define

inv(ω0) = {(i, j) | 1 ≤ i < j ≤ b1 + · · ·+ br, ω0(i) > ω0(j)} .
For each local place v of F , we define

rv(ω0, s) =
∏

(i,j)∈inv(ω0)

L(si − sj, ρi,v × ρ̃j,v)
L(1 + si − sj, ρi,v × ρ̃j,v)ε(si − sj, ρi,v × ρ̃j,v, ψv)

,

then we define

r(ω0, s) =
∏
v

rv(ω0, s) =
∏

(i,j)∈inv(ω0)

L(si − sj, ρi × ρ̃j)
L(1 + si − sj, ρi × ρ̃j)ε(si − sj, ρi × ρ̃j, ψ)

.

Here ε(si − sj, ρi,v × ρ̃j,v, ψv) is the local ε-factor defined in [JPSS83]. We normalize the
intertwining operator M(ω0, s) by

N(ω0, s) = r(ω0, s)
−1M(ω0, s) .

Recall the following features between the orders of cuspidal blocks in (4.4) and those
in η1 ⊗ · · · ⊗ ηb1 :

• we have b1 ≥ b2 ≥ · · · ≥ br;
• in η1 ⊗ · · · ⊗ ηb1 , the order of the cuspidal blocks in every single ∆(τi, bi) are

totally reversed.

Then if si in (4.6) corresponds to s
(l)
l in (4.5), then for (i, j) ∈ inv(ω0), we must have

sj = s
(k)
k with k ≥ l. It follows that for s = Λ, one has si− sj > 0 for all (i, j) ∈ inv(ω0).

Recall from Part (ii) of Assumption 1.2 that all τi are locally tempered, hence, by [MW89,
§I.1], the normalized intertwining operator N(ω0, s) is holomorphic non-zero at s = Λ.
Then it suffices to show that the limit

(4.7) lim
s→Λ

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)r(ω0, s)

exists and is non-zero. Again regarding to the order of the cuspidal blocks in η1⊗· · ·⊗ηb1 ,
all the pairs (i, i + 1) such that (si, si+1) in (4.6) corresponding to (s

(k)
l , s

(k)
l+1) (1 ≤ k ≤

r, 1 ≤ l ≤ bk − 1) in (4.5) lie in inv(ω0). Taking limit s → Λ, we have s
(k)
l − s

(k)
l+1 = 1
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for 1 ≤ k ≤ r and 1 ≤ l ≤ bk − 1, which give poles in r(ω0, s), and are canceled by the
limit in (4.7). On the other hand, for other pairs (i, j) ∈ inv(ω0), when taking limit

s → Λ, we have si − sj ≥ 1
2
, and if (si, sj) corresponds to (s

(k)
l , s

(k)
t ) for the 1 ≤ k ≤ r

and any 1 ≤ l, t ≤ bk − 1, we also have si − sj 6= 1. Then by Assumption 1.2 and the
results on Rankin-Selberg L-functions we have used in the proof of Lemma 4.3, the other
terms in r(ω0, s) is non-zero holomorphic at s = Λ. This shows that (4.7) is non-zero
holomorphic, and hence finishes the proof of Lemma 4.4. �

Granting Lemma 4.4, and recall that ηi is an irreducible generic representation of
GLti(A) for 1 ≤ i ≤ b1 by Lemma 4.3, we have Fsn,uµ(f) 6= 0. Moreover, we also
have Fs,uµ(f) 6= 0 by Proposition 2.1, this means that Π has a non-zero generalized
Whittaker-Fourier coefficient attached to the partition µ.

This completes the proof of the proposition. �

Remark 4.5. We apply the general result in [GGS17a] (Proposition 2.1) to show that
Π has a non-zero generalized Whittaker-Fourier coefficient attached to the partition
µ = [ab11 ] + · · · + [abrr ], from the result that Fsn,uµ(f) 6= 0 for some f ∈ Π. Similar
arguments have been used in [JLX19] in the study of certain twisted automorphic descent
constructions and a reciprocal branching problem related to the global Gan-Gross-Prasad
conjecture, and are expected to be applied in more general situations.

4.2. The case Re(si−sj)� 0 (1 ≤ i < j ≤ r). Now we consider Πs with Re(si−sj)� 0
for all 1 ≤ i < j ≤ r. The proof follows the same path as the case s = (0, . . . , 0), with
some small modifications.

Proposition 4.6. For Re(sj − sj) � 0 (1 ≤ i < j ≤ r), the representation Πs has a
non-zero generalized Whittaker-Fourier coefficient attached to the partition µ = [a1]b1 +
· · ·+ [ar]

br .

Proof. Let b0 = max1≤i≤r{bi}, and recall that we denote s = (s1, . . . , sr) ∈ Cr. As in
§4.1, for 1 ≤ i ≤ r, we form parameters(

t
(`b0 )

bi
, . . . , t

(1)
bi
, h

(1)
bi
, . . . , h

(kb0 )

bi

)
with b0 entries by adding zeros from the front if `bi < `b0 , and adding zeros from the end

if kbi < kb0 (note that b0 ≥ bj for 1 ≤ j ≤ r). In other words, one has t
(j)
bi

= 0 if j > `bi ,

and h
(j)
bi

= 0 if j > kbi . For 1 ≤ j ≤ kb0 , we construct representations

σ1
j,s = τ1|·|h

(j)
b1

+s1 × · · · × τr|·|h
(j)
br

+sr ,

where we omit the τi|·|h
(j)
bi

+si-term if j > kbi (1 ≤ i ≤ r). Similarly, for 1 ≤ q ≤ `b0 , we
construct representations

ρ1
q,s = τ1|·|t

(q)
b1

+s1 × · · · × τr|·|t
(q)
br

+sr ,

where we omit the τi|·|t
(q)
bi

+si-term if q > `bi (1 ≤ i ≤ r). Then we get representations

ε1,s, . . . , εb0,s
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analogous to εi’s in §4.1, where ε1,s = σ1
kb0 ,s

, ε2,s = σ1
kb0−1,s, . . ., εkb0 ,s = σ1

1,s, εkb0+1,s =

ρ1
1,s, εkb0+2,s = ρ1

2,s, . . ., εb0,s = ρ1
`b0 ,s

. We also suppose that each εi is a representation

of GLti(A), 1 ≤ i ≤ b0, and hence {t1, . . . , tb0} are among the parts in the partition
[a1]b1 + · · ·+ [ar]

br .
We also denote by

Ind
GLn(A)
Q(A) η1,s ⊗ · · · ⊗ ηb0,s

the image of the induced representation

Ind
GLn(A)
Q(A) ε1,s ⊗ · · · ⊗ εb0,s

under the set of maps {ιτ1,b1 , . . . , ιτr,br}, where Q = LV is the parabolic subgroup of GLn
with Levi subgroup L ⊂ Q isomorphic to GLt1 × · · · ×GLtb0 .

Following the approach in §4.1, Proposition 4.6 will follow from the lemma below:

Lemma 4.7. For Re(si − sj)� 0 (1 ≤ i < j ≤ r), we have

(1) Each representation ηi,s is an irreducible generic representation of GLti(A).
(2) For any f ∈ Πs, the constant term of f along Q gives us a non-zero vector in

the irreducible generic representation η1 ⊗ · · · ⊗ ηb0 of L(A).

Proof of Lemma 4.7. The proof is similar to the proof of Lemma 4.3 and Lemma 4.4
in §4.1. We just give a sketch and indicate the use of the assumption Re(si − sj) � 0
(1 ≤ i < j ≤ r).

Note that each ηi,s is of the form

τκ1 |·|e1+sκ1 × · · · × τκα |·|eα+sκα (sκi ∈ C, 1 ≤ α ≤ r) ,

with integers or half-integers ei’s such that ei − ej = 0,±1
2

for 1 ≤ i < j ≤ α. By
assumption, we can take Re(sκi − sκj) (1 ≤ i < j ≤ α) large enough such that the ratio
of Rankin-Selberg L-functions∏

1≤i<j≤α

L(ei + sκi − ej − sκj , τκi × τ̃κj)
L(1 + ei + sκi − ej − sκj , τκi × τ̃κj)

is non-zero and holomorphic. Then by the same arguments as in the proof of Lemma
4.3 we get Part (1) of the lemma.

Now we prove Part (2) of the lemma. We also write

(4.8) f(g) = lim
s→Λs

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)E(φ

τ
⊗b1
1 ,...,τ⊗brr

, s, g) ,

and consider the constant term of E(φ
τ
⊗b1
1 ,...,τ⊗brr

, s, g) along Q. In particular, as in the

proof of Lemma 4.4, we denote ω0 to be the permutation which permutes the blocks in

τ1|·|
b1−1

2
+s1 ⊗ · · · ⊗ τ1|·|

1−b1
2

+s1 ⊗ · · · ⊗ τr|·|
br−1

2
+sr ⊗ · · · ⊗ τr|·|

1−br
2

+sr

to those corresponding to η1,s ⊗ · · · ⊗ ηb0,s, and consider summand

EQ(M(ω0, s)φτ⊗b11 ,...,τ⊗brr
, ω0s, g)
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in the constant term. We want to show that

lim
s→Λs

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)M(ω0, s)

is non-zero holomorphic provided Re(si − sj) � 0 (1 ≤ i < j ≤ r), and hence Part (2)
follows.

Let

r(ω0, s) =
∏
v

rv(ω0, s)

be the normalizing factor we have defined in the proof of Lemma 4.4, and let

N(ω0, s) = r(ω0, s)
−1M(ω0, s)

be the normalized intertwining operator. By [MW89, Proposition I.10], the normalized
intertwining operator is non-zero holomorphic at s = Λs if Re(si − sj) � 0 for all
1 ≤ i < j ≤ r. Then it suffices to show that

(4.9) lim
s→Λs

r∏
j=1

bi−1∏
i=1

(s
(j)
i − s

(j)
i+1 − 1)r(ω0, s)

exists and is non-zero, under the same assumption. But this is clear since the limit

lims→Λs

∏r
j=1

∏bi−1
i=1 (s

(j)
i − s

(j)
i+1 − 1) cancels the poles of r(ω0, s) coming from the pairs

(i, i+ 1) such that (si, si+1) in (4.6) corresponds to (s
(k)
l , s

(k)
l+1) (1 ≤ k ≤ r, 1 ≤ l ≤ bk− 1)

in (4.5), and the other terms in r(ω0, s) (ratios of L-functions) are holomorphic non-zero
provided Re(si − sj)� 0 for all 1 ≤ i < j ≤ r. �

�

5. Vanishing for bigger and not related orbits

In this section, we show that for any si (1 ≤ i ≤ r), the induced representation

Πs = Ind
GLn(A)
P (A) ∆(τ1, b1)|·|s1 ⊗ · · · ⊗∆(τr, br)|·|sr

has no non-zero generalized Whittaker-Fourier coefficients attached to any partition
either bigger than or not related to the partition

µ = [ab11 ] + · · ·+ [abrr ] .

Combining with Proposition 4.2 and Proposition 4.6, this completes the proof of The-
orem 1.1 and Theorem 1.3. Note that µt = [ba11 · · · barr ] from the definitions related
to partitions in §2.1. For any partition ν = [d1 d2 · · · dl] of n, let Pν be the standard
parabolic subgroup of GLN whose Levi subgroup is Mν ' GLd1×· · ·×GLdl , and denote
the corresponding unipotent subgroup by Nν . The main result in this section is the
following.

Proposition 5.1. The representation Πs has no non-zero generalized Whittaker-Fourier
coefficients attached to any partition either bigger than or not related to the partition
µ = [ab11 ] + · · ·+ [abrr ].
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Proof. Let b0 = max1≤i≤r{bi} as before. We may write µ = [t1 t2 · · · tb0 ] with t1 ≥
· · · ≥ tb0 . Let Π′ be any constituent of Πs. By Proposition 4.2 and Proposition 4.6, Πs

has a non-zero degenerate Whittaker-Fourier coefficient attached to the Whittaker pair
(sn, uµ), and hence for any finite place v, Π′v has a non-zero degenerate Whittaker model
attached to this same Whittaker pair. We claim that at some finite place v, Π′v has no
non-zero degenerate Whittaker model attached to the Whittaker pair (sn, uλ), for any
partition λ = [p1 p2 · · · pm] (p1 ≥ · · · ≥ pm) of n which is bigger than or not related to
µ. With this claim, by Proposition 2.2, pm(Π′v) = {µ}, in particular, Π′v has no non-zero
generalized Whittaker model attached to any partition either bigger than or not related
to µ. Therefore, Πs has no non-zero generalized Whittaker-Fourier coefficients attached
to any partition either bigger than or not related to µ.

In the following, we will prove the above claim. Note that for any such partition λ,
there exists 1 ≤ i ≤ m such that p1 + · · ·+ pi > t1 + · · ·+ ti.

By [L79a, Lemma 1], constituents of Πs are pairwise nearly equivalent. We consider
the local unramified components of any constituent Π′. Let v be a finite place such

that Π′v is unramified. For 1 ≤ i ≤ r, write τi,v = χ
(i)
1 × · · · × χ

(i)
ai with χ

(i)
j ’s being

unramified characters of F×v , then Π′v is the unique irreducible unramified constituent of
the following induced representation

Ind
GLn(Fv)
Pµt (Fv) σ1,v|·|s1 ⊗ · · · ⊗ σr,v|·|sr ,

where

σi,v = χ
(i)
1 (detGLbi

)× · · · × χ(i)
ai

(detGLbi
)

is a representation of GLaibi(Fv).
Write %v = σ1,v|·|s1 ⊗ · · · ⊗ σr,v|·|sr . Let U = Nsn,uλ for simplicity. We claim that

(5.1) HomU(Fv)(Ind
GLn(Fv)
Pµt (Fv) %v, ψuλ,v) = 0

provided that there exists 1 ≤ i ≤ m such that p1 + · · ·+ pi > t1 + · · ·+ ti. This implies
that Π′v has no non-zero degenerate Whittaker model attached to the Whittaker pair
(sn, uλ), for any partition λ = [p1p2 · · · pm] (p1 ≥ · · · ≥ pm) of n which is bigger than or
not related to µ. Recall that ψuλ,v is defined in §2.2.

We use Bernstein’s localization principle (see [BZ76, §6]) to study the Hom-space

(5.2) HomU(Fv)(Ind
GLn(Fv)
Pµt (Fv) %v, ψuλ,v) .

For h ∈ GLn(Fv), define two actions on the space C∞c (GLn(Fv)), the compactly sup-
ported smooth functions on GLn(Fv), by

(lh · f)(g) = f(h−1g) and (rh · f)(g) = f(gh) ,

here f ∈ C∞c (GLn(Fv)). Let

(5.3) C∞c (GLn(Fv)/U(Fv), ψuλ,v)

be the subspace of C∞c (GLn(Fv)) such that

(ru · f)(g) = ψuλ,v(u)f(g)
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for all u ∈ U(Fv). The parabolic subgroup Pµt(Fv) has a left action on the space (5.3)
given by f 7→ lp ·f (p ∈ Pµt(Fv)), which is constructive ([BZ76, §6.1]) by [BZ76, Theorem
6.15]. Let D be the space of complex linear functionals T on (5.3) such that

T (lp · f) = δ
1
2
Pµt

(p)%v(p)
−1T (f)

for all p ∈ Pµt(Fv). Consider the restriction of T ∈ D to the double coset Pµt(Fv)wU(Fv)
with w ∈ Pµt(Fv)\GLn(Fv)/U(Fv). It is associated to the Hom-space

(5.4) HomU(Fv)(ind
U(Fv)

U(Fv)∩(w−1Pµt (Fv)w)%
w
v , ψuλ,v) ,

where
ind

U(Fv)

U(Fv)∩(w−1Pµt (Fv)w)%
w
v

is the compact induced representation with %wv being defined by %wv (g) = %v(wgw
−1) for

g ∈ U(Fv)∩w−1Pµt(Fv)w. Note that by construction, we have %wv |U(Fv)∩(w−1Pµt (Fv)w) ≡ 1.

Moreover, (5.4) is isomorphic to

(5.5) HomU(Fv)∩(w−1Pµt (Fv)w)(%
w
v , ψuλ,v)

by Frobenius reciprocity. By a root-theoretic result [C18, Theorem 1.3], if there ex-
ists 1 ≤ i ≤ m such that p1 + · · · + pi > t1 + · · · + ti, then for any representative
w ∈ Pµt(Fv)\GLn(Fv)/U(Fv), there exists u ∈ U(Fv) such that ψuλ,v(u) 6= 1 and
wuw−1 ∈ Pµt(Fv). Therefore, the space (5.5), and hence the space (5.4), is zero for
all w ∈ Pµt(Fv)\GLn(Fv)/U(Fv). Then by Bernstein’s localization principle (see [BZ76,
Theorem 6.9]), we see that the Hom-space (5.2) is zero. This proves the claim above
and completes the proof of the proposition. �
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