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ABSTRACT

Let G be the F -rational points of the split group SO2n, where F is a

non-Archimedean local field of characteristic 0. In this paper, we give the

complete description of the generic dual of G. Based on this result and

the local descent result of Jiang and Soudry, we show that the functorial

lifting map constructed by Cogdell, Kim, Piatetski-Shapiro and Shahidi

is surjective. Along the way, we prove that for any irreducible generic

representation σ, if σ � cσ (c an element of O2n(F )\SO2n(F )), then they

have the same lifting image and the same twisted local factors, matching

Arthur’s current results on local Langlands correspondence. Then, for any

local Langlands parameter φ of G, we construct a representation σ such

that φ and σ have the same twisted local factors.

As an application, we prove the G-case of a conjecture of Gross–Prasad

and Rallis, that is, a local Langlands parameter φ of G is generic (i.e., the

associated representation σ constructed above is generic) if and only if the

adjoint L-function of φ is regular at s = 1. As another application, we give

an alternate proof of a result of Shahidi that for each local Arthur param-

eter ψ, the representation associated to the corresponding local Langlands

parameter φψ is generic if and only if φψ is tempered.
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1. Introduction

Let G be a connected reductive algebraic group split over F , where F is a non-

Archimedean local field of characteristic 0. Let G = G(F ) be the F -rational

points. Let Π(G) be the set of all equivalence classes of irreducible admissible

representations of G. Elements in Π(G) having nonzero Whittaker models are

called generic representations, which have great importance in both theories of

representations of p-adic groups and automorphic forms because of the unique-

ness of Whittaker models. For classical groups G = SO2n+1(F ), Sp2n(F ),

the generic duals are described by Muić ([M2]). The result has been used

extensively to study the local Langlands reciprocity conjecture and the local

Langlands functoriality conjecture for these two groups; see [JngS1], [JngS2],

[CKPSS], [Liu].

As the first main result of this paper, we give a complete description of the

generic dual Π(g)(SO2n) of the split SO2n(F ). To discuss this result, we first

briefly recall some notation. A standard parabolic subgroup of SO2n(F ) has

the form P = MU with M = GLn1(F ) × · · · × GLnf
(F ) × SO2n0(F ), where

n1+· · ·+nf+n0 = n. If τ1, . . . , τf are representations of GLn1(F ), . . . GLnf
(F ),

resp., and τ a representation of SO2n0(F ), we write τ1 × · · · × τf � τ for the

parabolically induced representation IndGP (F ). Note that if n0 = 0, we use

τ = 1 ⊗ e and 1 ⊗ c to disinguish between the two non-conjugate standard

parabolic subgroups of this form. (We use τ1 × · · · × τk as the corresponding

induced representation in GLn1+···+nk
(F ).) See Sections 2 and 3.1 for more

details.

The generic dual of GLn(F ) is known from [Jac]; for SLn(F ), it may be ob-

tained by restriction (see [Td1]). The classification for other classical groups—in

particular, Sp(2n, F ) and SO(2n+1, F )—is done in [M2], as mentioned above.

Our techniques and results are similar to those in [M2].

By the Langlands classification (cf. [B-W], [Sil1], [Ko], etc.) and the results

of [M3], every irreducible generic representation of SO2n(F ) may be realized in

the form

(1.1) νx1δ1 × · · · × νxf δf � σ(t),

where ν = |det|, δ1, . . . , δf are irreducible square-integrable representations of

general linear groups (automatically generic by [Jac]), σ(t) a generic irreducible

tempered representation of SO2n0(F ) (possibly 1⊗c), and x1 ≥ · · · ≥ xf > 0. In
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particular, the induced representation is irreducible. Conversely, an irreducible

representation of this form is necessarily generic. Thus, to understand generic

representations of SO2n(F ), we need to understand when (1.1) is irreducible.

To set up such a result, we first need to discuss generic tempered and generic

square-integrable representations of SO2n(F ), as characterizations of these are

needed to produce explicit reducibility criteria. We use the following notation:

if ξ is an irreducible supercuspidal representation of a general linear group, we

let Σ = [νcξ, νdξ] = {νcξ, νc+1ξ, . . . , νdξ} and δ(Σ) be the unique irreducible

quotient of νcξ × νc+1ξ × · · · × νdξ (square-integrable up to central character).

Proposition 1.1:

Generic discrete series: Let Δi = [ν−aiτi, νbiτi], 1 ≤ i ≤ k, where τi

is an irreducible unitary supercuspidal representation if a general linear

group. Assume that if i < j has τi ∼= τj , then ai < bi < aj < bj. Let

σ(0) be an irreducible supercuspidal generic representation of SO2n′(F )

(possibly 1 ⊗ c) and assume that for each i, one of the following holds

(necessarily exclusive):

(1) ντi � σ(0) is reducible, in which case ai ∈ Z \ {0} and ai ≥ −1;

(2) ν
1
2 τi � σ(0) is reducible, in which case ai ∈ 1

2 + Z≥0;

(3) τi � σ(0) is reducible, in which case ai ∈ Z≥0;

(4) νxτi � σ(0) is irreducible for all x ≥ 0 and τi ∼= τ̃i, in which case

ai ∈ Z≥0.

Then, if π is the generic subquotient of δ(Δ1)× · · · × δ(Δk)� σ(0), π is

square-integrable. Conversely, any generic irreducible square-integrable

π of an even special orthogonal group is of this form (with Δ1, . . . ,Δk

unique up to permutation), and further

π ↪→ δ(Δ1)× · · · × δ(Δk)� σ(0).

Generic tempered representations: Let β1, . . . , βc be generic irre-

ducible unitary supercuspidal representations of general linear groups

and σ(2) a generic irreducible square-integrable representation of an

even special orthogonal group. Then the generic component

σ(t) ≤ δ([ν
−k′

1+1

2 β1, ν
k′
1−1

2 β1])× · · · × δ([ν
−k′

c+1

2 βc, ν
k′
c−1

2 βc])� σ(2)
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is a generic tempered representation. Further, any generic tempered

representation may be realized this way (with inducing representation

unique up to Weyl conjugation).

Note that the tempered claims above follow directly from a result of Harish-

Chandra (cf. Proposition III.4.1 [W]). In the next result, for a segment Σ =

[νaξ, νbξ], we define Σ̃ = [ν−bξ̃, ν−aξ̃], so that δ̃(Σ) = δ(Σ̃) (where ˜ denotes

contragredient).

Theorem 1.2: Put

δ(Σi) = νxiδi, i = 1, 2, . . . , f

as above (i.e., x1 ≥ x2 ≥ · · · ≥ xk > 0). Then, the representation

δ(Σ1)× · · · × δ(Σk)� σ(t)

is irreducible if and only if {Σj}fj=1 and σ(t) satisfy the following properties:

(1) δ(Σi) × δ(Σj) and δ(Σi) × δ(Σ̃j) are irreducible for all 1 ≤ i �= j ≤ f ;

and

(2) δ(Σi)� σ(t) is irreducible for all 1 ≤ i ≤ f .

The reducibility for (1) is known from [Z]; for (2) we write σ(t) as in Proposi-

tion 1.1 as above. Then δ(Σ) � σ(t) is irreducible if and only if the following

hold:

(1) δ(Σ)× δ([ν
−k′

j+1

2 βj , ν
k′
j−1

2 βj ]) and δ(Σ̃)× δ([ν
−k′

j+1

2 βj , ν
k′
j−1

2 βj ]) are ir-

reducible for all 1 ≤ j ≤ c; and

(2) δ(Σ)� σ(2) is irreducible.

To understand when the second condition above holds, write σ(2) as in Propo-

sition 1.1. Then, δ(Σ)� σ(2) is irreducible if and only if the following hold:

(1) δ(Σ)×δ(Δi) and δ(Σ̃)×δ(Δi) are irreducible for all i = 1, 2, . . . , k′; and
(2) either (a) δ(Σ) � σ(0) is irreducible, or (b) δ(Σ) = δ([νξ, νbξ]), with

ξ � σ(0) reducible and some i having δ(Δi) = δ([νξ, νbiξ]) and bi ≥ b.

Finally, for the second condition above, we have δ(Σ)�σ(0) is irreducible if and

only if one of the following hold: for Σ = [ν−aξ, νbξ], we have

(1) ξ �∼= ξ̃; or

(2) ξ ∼= ξ̃ and the following: (i) if νxξ�σ(0) is reducible for some (necessarily

unique) x = α ≥ 0, then ±α �∈ {−a,−a+ 1, . . . , b}; (ii) if νxξ � σ(0) is

irreducible for all x ≥ 0, then a /∈ Z≥0.
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Since the Langlands dual group of SO2n(F ) is SO2n(C), which has a natural

embedding into GL2n(C), by the local Langlands functoriality conjecture, there

would have to exist a local functorial lifting l : Π(SO2n) → Π(GL2n).

In [CKPSS], Cogdell, Kim, Piatetski-Shapiro and Shahidi constructed a local

functorial lifting l from Π(g)(SO2n) to a subset Π(go)(GL2n) (consists of cer-

tain representations of orthogonal type, see Section 4.4 for the definition) of

Π(GL2n), satisfying the following conditions:

L(σ × π, s) = L(l(σ)× π, s),

ε(σ × π, s, ψ) = ε(l(σ)× π, s, ψ),

for any irreducible generic representation π of GLk(F ), with k ∈ Z>0, where

ψ is a fixed nontrivial character of F . The left-hand sides are the local factors

defined by Shahidi [S1], and the right-hand sides are the local factors defined

by Jacquet, Piatetski-Shapiro and Shalika [JPSS]; both sides are the Langlands

local factors with respect to the standard representations, called standard local

factors.

In [JngS3], Jiang and Soudry constructed the descent map from supercuspidal

representations of GL2n(F ) which are of orthogonal type and have trivial cen-

tral characters, to irreducible supercuspidal generic representations of SO2n(F ),

showing that the local Langlands functorial lifting from irreducible supercuspi-

dal generic representations of SO2n(F ) is surjective.

As the second main result of this paper, based on the complete description

of the generic dual Π(g)(SO2n) of SO2n(F ) and the above result of Jiang and

Soudry, we show that the local functorial lifting l : Π(g)(SO2n) → Π(go)(GL2n)

constructed above by Cogdell, Kim, Piatetski-Shapiro and Shahidi is surjective.

Note that for SO2n+1, in [JngS2], Jiang and Soudry have already constructed

the corresponding local Langlands functorial lifting, and proved that it is actu-

ally bijective. In [Liu], Liu proved the surjectivity for Sp2n. The method used

here and for the case of Sp2n is the same as the case of SO2n+1 in [JngS2]. We

remark that, for Sp2n and SO2n, l is expected not to be injective by Jiang’s con-

jecture (see Conjecture 3.7 in [Jng]), which is a refinement of the local converse

theorem conjecture.

Let Φ(SO2n) be the set of local Langlands parameters for SO2n (for a def-

inition and discussion of the local Langlands reciprocity conjecture, see the

Introduction to [Liu] and the references therein). These are SO2n(C)-conjugacy

classes of admissible homomorphisms WF × SL2(C) → SO2n(C), where
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WF × SL2(C) is the Weil–Deligne group. Note that there is a natural embed-

ding SO2n(C) → GL2n(C). Given a local Langlands parameter φ ∈ Φ(GL2n),

φ : WF × SL2(C) → GL2n(C), assume that it factors through SO2n(C) and

φ � cφ within SO2n(C), where cφ is the c-conjugate of φ. Then φ gives two

elements in Φ(SO2n) (see Chapter 1 of [A2]), which are denoted by φ and cφ.

To identify φ and cφ in this situation, let Φ̃(SO2n) be the set of c-conjugacy

classes of φ ∈ Φ(SO2n). For any φ ∈ Φ(SO2n), denote its c-conjugacy class by

φ̃. Note that for any φ ∈ Φ(SO2n), if φ � cφ, then they automatically have

the same twisted local factors since they come from the same local Langlands

parameter φ ∈ Φ(GL2n). Define the twisted local factors of φ̃ to be those of φ.

The local functorial lifting l enables us to assign a parameter φ ∈ Φ̃(SO2n)

to each σ ∈ Π(g)(SO2n), which is exactly the parameter corresponding to l(σ).

That is, there is a map ι : Π(g)(SO2n) → Φ̃(g)(SO2n), where Φ̃(g)(SO2n) is

the set of parameters corresponding to representations in Π(go)(GL2n). The

surjectivity of l implies that of ι.

Along the way to proving the surjectivity of l and ι, we prove that for any

supercuspidal generic representation σ of SO2n(F ) with σ � cσ (c an element of

O2n(F )\SO2n(F )), both σ and cσ have the same lifting image (see Proposition

4.4). This is done by embedding it into a generic cuspidal representation and

using Corollary 7.1 of [CKPSS], which says that weak lifting is actually strong.

This eventually leads us to the following result:

Theorem 1.3: For any σ ∈ Π(g)(SO2n), if σ � cσ, then l(σ) = l(cσ), and

ι(σ) = ι(cσ), that is, they have the same lifting image and the same twisted

local factors.

As the third main result of this paper, for any local Langlands parameter

φ ∈ Φ(SO2n), by an explicit analysis of its structure, we construct a distin-

guished irreducible representation σ of SO2n(F ) such that φ̃ and σ have the

same twisted local factors, as in [JngS2] and [Liu]. We now describe this result.

Consider the set of equivalence classes of irreducible admissible representa-

tions of SO2n(F ). These may be realized as the Langlands quotients of induced

representations

δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t),

where σ(t) is an irreducible tempered representation of SO2n∗(F ) (possibly

σ(t) = 1 ⊗ c—for the definition, see Section 3.1) and Σ1,Σ2, . . . ,Σf are im-

balanced segments whose exponents are positive and in non-increasing order.
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We let Π′(SO2n) be the subset consisting of those irreducible admissible repre-

sentations having σ(t) generic.

Theorem 1.4: There is a surjective map ι from Π′(SO2n) to the set Φ̃(SO2n).

Moreover, the map ι preserves the local factors:

L(σ × τ, s) = L(ι(σ) ⊗ r−1(τ), s),

ε(σ × τ, s, ψ) = ε(ι(σ) ⊗ r−1(τ), s, ψ),

for all σ ∈ Π′(SO2n) and all irreducible admissible representations τ of GLk(F ),

with all k ∈ Z>0. Here, r−1(τ) ∈ Φ(GLk) corresponding to τ by the local

Langlands reciprocity map for GLk as in [HT] and [H].

In [A2], under an assumption on stabilization of twisted trace formulas for

GL(N) and SO(2n), Arthur first classified the set of c-conjugacy classes of

Π(SO2n) up to local packets which are parametrized by Φ̃(SO2n). He then

refined the classification by classifying the set Π(SO2n) up to local packets

which are parametrized by the set Φ(SO2n). Although a canonical matching

between two sets of order 2 (an irreducible representation σ and its c-conjugate,

a local Langlands parameter φ and its c-conjugate) is still to be determined

(see Section 8.4 of [A2]), Arthur’s result essentially gives the local Langlands

correspondence. Note that by Remark 5.4, for any σ ∈ Π′(SO2n), if σ � cσ,

then σ and cσ have the same lifting image and the same twisted local factors,

matching Arthur’s results.

Given φ̃ ∈ Φ̃(SO2n), let σ be the representation attached to φ̃ in Theorem

1.4. If σ � cσ, then φ � cφ. Since a canonical matching between two sets of

order 2—{σ, cσ} and {φ, cφ}—is still to be determined (as mentioned above),

we say that σ is also attached to φ.

There are two applications of the above three main results of this paper. As

one application, we prove a conjecture of Gross–Prasad [GP] and Rallis [Ku],

saying that a local Langlands parameter φ is generic (i.e., there is a generic

representation attached to φ) if and only if the associated adjoint L-function

is regular at s = 1. The case of SO2n+1 was proved by Jiang and Soudry

([JngS2]), and the case of Sp2n was proved by Liu ([Liu]). We use the same ideas

here. Note that for G = SO2n, a local Langlands parameter φ is generic if the

representation attached to φ in Theorem 1.4 is generic. There is no ambiguity

here, since if σ is generic and attached to φ̃, then cσ � σ is also generic, and

they are in different local packets corresponding to φ and cφ, respectively ([A2]).
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Therefore, at least one generic representation is attached to φ. We state the

result as follows:

Theorem 1.5: For each local Langlands parameter φ ∈ Φ(SO2n), the repre-

sentation σ attached to φ in Theorem 1.4 is generic if and only if the local

adjoint L-function

L(AdSO2n ◦ φ, s)

is regular at s = 1.

In [GR] (see Page 446, Formula (14)), Gross and Reeder proved that for

any connected reductive group G with the maximal torus in the center of G

anisotropic over F , if φ is discrete, then the associated adjoint L-function is

regular at s = 1. In [AS], Asgari and Schmidt proved this conjecture for GSp4.

As another application, we give an alternate proof of a result of Shahidi

that for each local Arthur parameter ψ (for the definition, see Section 7) with

corresponding local Langlands parameter φψ , the representation σ attached to

φψ in Theorem 1.4 is generic if and only if φψ is tempered.

Ban proved a similar result for the case of SO2n+1 in [Ban2], using the result

of Jiang and Soudry in [JngS2]. Liu used the same method later, proving a

similar result for the case of Sp2n in [Liu] by generalizing the result of Jiang

and Soudry in [JngS2] to the Sp2n case. Since we have given the classification

of irreducible generic representations for split SO2n, and generalized the result

of Jiang and Soudry in [JngS2] to this case, we are able to use the same idea to

prove the above result.

Recently, Shahidi (see Theorem 5.1 of [S4]) proved a similar result for any

quasi-split connected reductive group G, with an assumption on the validity of

local Langlands conjecture for appropriate Levi subgroups M of G and data.

Kim was able to remove this assumption for split GSpin groups, thus fully

proving it in this case (see [Kim]). Note that by Lemma 7.2 [CKPSS] and

Theorem 1.3 [H1], Theorem 5.1 [S4] implies that the SO2n case of this result is

true. We give a different proof here based on our classification. We state the

result as follows:

Theorem 1.6 (Shahidi [S4]): For each local Arthur parameter ψ, and corre-

sponding local Langlands parameter φψ , the representation σ attached to φψ in

Theorem 1.4 is generic if and only if φψ is tempered.
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Note that now for the representation σ attached to the local Langlands φψ,

we have two criteria to determine its genericity, i.e., those in Theorem 1.5 and

Theorem 1.6.

We now discuss the contents by section. The next section introduces nota-

tion and background material used in the paper. Section 3 contains an analysis

of generic representations which is needed in the later sections. This is bro-

ken into four parts. In the first subsection, using a convention regarding the

trivial representation of SO0(F ) (the trivial group), we formulate some basic

representation theoretic results for SO2n(F ) in a fashion which renders them

very similar to their counterparts for other classical groups, thereby facilitat-

ing proofs which occur in the rest of the section. Sections 3.2 and 3.3 cover

Proposition 1.1; Section 3.4 covers Theorem 1.2. The proofs are based on those

obtained by Muić ([M2]; also [M1]), though they use subsequent developments

to shorten the arguments and are adapted to the case of even-orthogonal groups

(facilitated by the results of Section 3.1). In Section 4, we prove the surjectivity

of the local functorial lifting l, construct the map ι, prove its surjectivity, and

prove Theorem 1.3. Section 5 analyzes the structure of local Langlands param-

eters and proves Theorem 1.4. In Section 6, we prove the SO2n case of the

Gross–Prasad and Rallis conjecture, i.e., Theorem 1.5. In Section 7, we prove

Theorem 1.6.
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2. Notation and preliminaries

Let F be a non-archimedean local field of characteristic zero. We fix a non-trivial

character ψ of F . Here SO2n(F ) denotes the group of F -rational points of the
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split group SO2n. More precisely, if τX denotes the transpose of X taken with

respect to the second diagonal, then SO2n(F ) = {X ∈ SL2n(F )|τXX = I}.
Next, we recall the structures of standard parabolic subgroups of SO2n, which

are quite different with those of SO2n+1 and Sp2n, and distinguish the classifi-

cation theory of representations of SO2n from those of SO2n+1 and Sp2n.

To start, we fix a Borel subgroup B = TU consisting of the upper triangular

matrices in SO2n(F ), where T consists of diagonal matrices and U is the unipo-

tent radical. Given an n-tuple a = {a1, . . . , an} ∈ (F ∗)n, let ψa be a character

of U defined as follows:

ψa(u) = ψ(a1u1,2 + a2u2,3 + · · ·+ an−1un−1,n + anun−1,n+1).

A representation (σ, Vσ) of SO2n(F ) has a nonzero Whittaker model with re-

spect to ψa if there is a nontrivial linear functional l on Vσ such that

l(σ(u)v) = ψa(u)l(v),

for any u ∈ U and any v ∈ Vσ. For any t ∈ T , let t ◦ ψa(u) = ψa(t
−1ut). Note

that having a nonzero Whittaker model for σ depends only on the T -orbit of

ψa (see [Jng], Section 3.2), and it is easy to see that for any ψa, there is a t ∈ T

and an a ∈ F ∗, such that t ◦ ψa = ψa, where

ψa(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + aun−1,n+1).

Therefore, we simply say σ is generic if it has a nonzero Whittaker model with

respect to ψa for some a ∈ F ∗.
Let

c =

⎛⎜⎜⎜⎝
In−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 In−1

⎞⎟⎟⎟⎠ ∈ O2n(F ),

which gives rise to the outer conjugation c(g) = cgc−1. Assume σ is an irre-

ducible generic representation of SO2n(F ) with respect to ψa, a ∈ F ∗. And

assume that σ � cσ, where cσ(g) = σ(cgc−1). Then cσ is also an irreducible

generic representation, but with respect to cψa, defined by cψa(u) = ψa(cuc
−1).

We remark that cψa = ta ◦ ψa, where ta = diag(In−1, a, a
−1, In−1). Therefore,

both σ and cσ are generic with respect to the same character ψa.

Let Π = {α1, . . . , αn−1, αn} denote the simple roots in the usual ordering,

so that cαn−1 = αn. The standard parabolic subgroups P = MU are in bijec-

tive correspondence with subsets ΠM of Π. In particular, these have the form
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P =MN with Levi factorM ∼= GLk1×· · ·×GLkr×SO2m, wherem ≥ 0. When

m = 0 and kr > 1, we also have standard parabolic subgroups c(P ) = c(M)c(N)

with Levi factor c(M) ∼= c(GLk1 ×· · ·×GLkr) �∼ GLk1 ×· · ·×GLkr ∼=M , where

the non-equivalence means that they are not conjugate inside SO2n.

We now take a moment to recall some notation from [BZ], [Td2]. First, for

P =MN a standard parabolic subgroup of a p-adic group G, we let iG,M (resp.,

rM,G) denote normalized induction (resp., the normalized Jacquet module) with

respect to P . Let G = GLk(F ) and P =MU the standard parabolic subgroup

with M = GLk1(F )× · · · ×GLkr(F ). If τ1 ⊗ · · · ⊗ τr is a representation of M ,

we let

τ1 × · · · × τr = iG,M (τ1 ⊗ · · · ⊗ τr).

Similarly, suppose P =MU is a standard parabolic subgroup of SO2n(F ) with

M = GLk1(F )×· · ·×GLkr(F )×SO2m(F ). For τ1⊗· · ·⊗τr⊗σ a representation

of M , we let

τ1 × · · · × τr � σ = iG,M (τ ⊗ · · · ⊗ τr ⊗ σ).

Note that this allows σ = 1 (the trivial representation of SO0(F ), the trivial

group).

As in [Z],we consider segments of the form

[νaτ, νb, τ ] = {νaτ, νa+1τ, . . . , νb−1τ, νbτ}

for τ a supercuspidal representation of a general linear group (usually assumed

to be unitarizable) and a ≡ bmod 1. The induced representation νaτ×· · ·×νbτ
has a unique irreducible quotient (resp., subrepresentation) which we denote

δ([νaτ, νbτ ]) (resp., ζ([νaτ, νbτ ])). The representations δ([νaτ, νbτ ]) are essen-

tially square-integrable (i.e., square-integrable after twisting by a character),

and every irreducible essentially square-integrable representation has this form.

In what follows, we also use St(τ, 2m+1) to denote δ([v−mτ, vmτ ]). We remark

that discrete series for general linear groups are generic (cf. [Jac]).

3. Classification of generic representations

In this section, we give the classification of irreducible generic representations

of SO2n(F ). Here, we focus on generic with respect to a fixed ψa, noting there

are |F×/(F×)2| classes of such characters.
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3.1. Background on the representation theory of SO2n(F ). We be-

gin by introducing some notation and conventions to be used in this section.

Following [Jan5], we let both 1 ⊗ e and 1 ⊗ c denote the trivial representation

of SO0(F ), but with different interpretations when used with parabolic induc-

tion. In particular, suppose P = MU is a standard parabolic subgroup with

αn �∈ ΠM . ThenM = GLm1(F )×· · ·×GLmk
(F ). For representations τ1, . . . , τk

of GLm1(F ), . . . , GLmk
(F ), we let τ1⊗· · ·⊗τk⊗ (1⊗e) denote a representation

of M , while τ1 ⊗ · · · ⊗ τk ⊗ (1 ⊗ c) denotes a representation of c(M) (the Levi

factor of the standard parabolic subgroup c(P )). Thus, we write

τ1 × · · · × τk � (1⊗ e) = iG,M (τ1 ⊗ · · · ⊗ τk),

and

τ1 × · · · × τk � (1⊗ c) = c(iG,M (τ1 ⊗ · · · ⊗ τk)).

In terms of the action of c, we take c(1 ⊗ e) = 1 ⊗ c and c(1 ⊗ c) = 1 ⊗ e.

Note that if χ is a character of F×, then the representations χ � (1 ⊗ e) and

χ−1 � (1 ⊗ c) constitute the same representation of SO2(F ) ∼= F× (for M =

GLm(F ) × SO0(F ) with m > 1, we have M and c(M) nonconjugate and the

corresponding induced representations are not in general equivalent). Note

that it is a straightforward consequence of induction in stages and c ◦ iG,M ∼=
iG,c(M) ◦ c that

(3.1) τ1 � (τ2 � σ) ∼= (τ1 × τ2)� σ

in this context.

We now discuss the Casselman criterion (cf. [Cas], [W]) for SO2n(F ), n > 1.

Let π0 be an irreducible representation of SO2n(F ). Suppose

νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ0 ≤ rM,Gπ0

has ρi an irreducible unitary supercuspidal representation of GLmi(F ) for

i = 1, . . . , k and σ0 an irreducible supercuspidal representation of SO2m(F ).

If m = 1, use both χ⊗ (1⊗ e) and χ−1 ⊗ (1⊗ c) in the inequalities below. The
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Casselman criterion tells us that if π0 is tempered, the following hold:

m1x1 ≥ 0,

m1x1 +m2x2 ≥ 0,

...

m1x1 +m2x2 + · · ·+mkxk ≥ 0.

Conversely, if these inequalities hold for all such νx1ρ1 ⊗ · · · ⊗ νxkρk ⊗ σ0 ≤
rM,Gπ0, then π0 is tempered. The criterion for square-integrability is the same

except that the inequalities are strict. Note that if n = 1, the representations

χ � (1 ⊗ e) and χ � (1 ⊗ c) are considered tempered if χ is unitary, but not

square-integrable or supercuspidal (consistent with other cases of irreducible

ρ� σ with ρ, σ supercuspidal).

To describe the Langlands classification (the Langlands quotient theorem)

for SO2n(F ), let δ1, . . . , δk be irreducible square-integrable representations of

GLm1(F ), . . . , GLmk
(F ), resp., and τ an irreducible tempered representation

of SO2m(F ) (possibly m = 0 and τ = 1 ⊗ e or 1 ⊗ c). If x1 ≥ · · · ≥ xk > 0,

then the induced representation νx1τ1×· · ·× νxkτk� τ has a unique irreducible

quotient which we denote L(νx1δ1⊗ · · ·⊗ νxkδk⊗ τ). Further, every irreducible

admissible representation of SO2n(F ) may be written in this form, uniquely up

to permutations among those νxiδi having the same exponent. Note that if δi

is a representation of GLni(F ),

L(νx1δ1 ⊗ · · · ⊗ νxkδk ⊗ τ) ↪→ ν−x1 δ̃1 × · · · × ν−xk δ̃k � cn1+···+nkτ

(essentially the subrepresentation formulation of the Langlands classification).

We now discuss some structure theory from [Z]. Let

R =
⊕
n≥0

R(GLn(F )) and R[D] =
⊕
n≥0

R(SO2n(F )),

where R(G) denotes the Grothendieck group of the category of smooth finite-

length representations of G. Note that this is slightly different than the R[D]

in [Jan4] as we have both 1 ⊗ e and 1 ⊗ c for SO0(F ). We define multiplica-

tion on R by extending the semisimplification of × to give the multiplication

× : R × R −→ R. To describe the comultiplication on R, let M(i) denote the

standard Levi factor for GLn(F ) having M(i) = GLi(F ) × GLn−i(F ). For a
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representation τ of GLn(F ), we define

m∗(τ) =
n∑
i=0

rM(i),Gτ,

the sum of semisimplified Jacquet modules (lying in R ⊗ R). This extends

to a map m∗ : R −→ R ⊗ R. We note that with this multiplication and

comultiplication—and antipode map given by the Zelevinsky involution (a spe-

cial case of the general duality operator of [Aub], [S-S])—R is a Hopf algebra.

Further, if we extend the semisimplification of� to a map μ : R⊗R[D] −→ R[D]

(also using � for this map), it follows from (3.1) that we have R[D] as a module

over R. It remains to construct a comodule structure.

With this convention, one can construct a μ∗ structure which closely resem-

bles that of [Td3] and [Ban1] for the other classical groups (more so than what

is done in [Jan4]). To this end, we set

Ωk =

⎧⎪⎪⎨⎪⎪⎩
Π \ {αk} if k ≤ n− 2,

Π \ {αn−1, αn} if k = n− 1,

Π \ {αn} if k = n.

Note cΩn = Π \ {αn−1}. For π an irreducible representation of G = SO2n(F )

with n ≥ 2, and 0 ≤ k ≤ n, write

rMΩk
,G(π) =

∑
i∈Ik

τi,k ⊗ θi,k

and

rMcΩn ,G(π) =
∑
j∈J

τj ⊗ (1⊗ c).

We then define

μ∗(π) =
n∑
k=0

∑
i∈Ik

τi,k ⊗ θi,k +
∑
j∈J

τj ⊗ (1⊗ c).

For n = 0, we have only 1⊗ e and 1⊗ c; for d = e or c, we define

μ∗(1 ⊗ d) = 1⊗ (1⊗ d).

For n = 1, an irreducible representation of SO2(F ) has the form χ� (1⊗ e) =

χ−1 � (1⊗ c) for χ a (quasi)character of F× (noting that under SO2(F ) ∼= F×,
this corresponds to the character χ), and we set

μ∗(χ� (1⊗ e)) = 1⊗ (χ� (1⊗ e)) + χ⊗ (1⊗ e) + χ−1 ⊗ (1⊗ c).
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We then linearly extend μ∗ to a map μ∗ : R[D] −→ R⊗R[D].

We define M∗
D : R −→ R ⊗ R ⊗ Z[C], where C = O2n(F )/SO2n(F ), as in

Definition 3.1 [Jan4]. If we define the action of R⊗R⊗ Z[C] on R⊗R[D] by

(τ1 ⊗ τ2 ⊗ d)� (τ ⊗ θ) = (τ1 × τ) ⊗ (τ2 � dθ),

we have the following:

Theorem 3.1: With notation as above,

μ∗(τ � θ) =M∗
D(τ) � μ∗(θ).

Proof. Let K = span
Z
{θ ⊗ c− cθ ⊗ e}, where θ runs over irreducible represen-

tations of SO2n(F ) for all n > 0 and set RD = (R[D]⊗ Z[C])/K.

Consider the map defined on irreducible representations by

ψ : R[D] −→RD

θ �−→
⎧⎨⎩θ ⊗ e+K if θ �= 1⊗ d,

θ ⊗ d+K if θ = 1⊗ d.

This map extends to an isomorphism of vectors spaces, with inverse given on

irreducible representations by

ψ−1 : RD −→R[D]

θ ⊗ d+K �→
⎧⎨⎩dθ if θ �= 1,

1⊗ d if θ = 1.

It is a straightforward matter to check that these maps respect the module and

comodule structures, i.e., we have ψ◦μ = μD◦(id⊗ψ) and (id⊗ψ)◦μ∗ = μ∗
D◦ψ,

where μD and μ∗
D are defined in Section 3 of [Jan4]. Noting that the former

says ψ(τ � θ) = τ � ψ(θ), we have

μ∗(τ � θ) = (id⊗ψ−1) ◦ μ∗
D ◦ ψ(τ � θ) = (id⊗ψ−1) ◦ μ∗

D(τ � ψ(θ)).

By Theorem 3.4 [Jan4], we then obtain

μ∗(τ � θ) = (id⊗ψ−1)[M∗
D(τ)� μ∗

D(ψ(θ))]

= (id⊗ψ−1)[M∗
D(τ)� (id⊗ψ) ◦ μ∗(θ)].
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It is a straightforward matter to check that id⊗ψ respects the � on the right-

hand side above, i.e.,

(τ1 ⊗ τ2)� (id⊗ψ)(τ ⊗ θ) = (id⊗ψ) ((τ1 ⊗ τ2)� (τ ⊗ θ))

(which one could write as μD ◦ ((id⊗id)⊗ (id⊗ψ)) = (id⊗ψ) ◦ μ for the corre-

sponding μD, μ). That μ
∗(τ � θ) =M∗

D(τ) � μ∗(θ) now follows.

Remark 3.2: Assume σ is an irreducible supercuspidal representation of SO2l,

and ρ is an irreducible unitary representation of GLk. It follows from [Sil3]

(also see [Mœ], [Zh]) that νxρ � σ has at most one nonnegative x for which

it is reducible. If it is reducible for x = α ≥ 0, we say (ρ, σ) satisfies (Cα).

Characterizations of α, assuming certain conjectures, are given in [Mœ], [Zh];

Shahidi has shown that if σ is generic, α ∈ {0, 12 , 1} (see [S1], [S3]). Further,

we note that if ρ̃ ∼= ρ, then (ρ, σ) satisfies (Cα) for some α ≥ 0 unless k is odd

and cσ �∼= σ (e.g., see Lemma 2.2 [Zh]). If this holds (i.e., ρ̃ ∼= ρ, k is odd and

cσ �∼= σ), then νxρ � σ is irreducible for all x ∈ R (e.g., see Lemma 4.3 [Ban4]

and Proposition 3.5(b) [S3]) and we say (ρ, σ) satisfies (CN).

By Theorem 8.1 of [S1], a pair (ρ, σ)with σ generic is (C1) if and only if

L(ρ×σ, s) has a pole at s = 0, and a pair (ρ, σ) is (C 1
2 ) if and only if L(ρ,∧2, s)

has a pole at s = 0.

3.2. Square-integrable generic representations. Let P ′ be a finite set

of irreducible supercuspidal self-contragredient (unitary) representations of gen-

eral linear groups. If τ is such a representation, let GLkτ (F ) denote the under-

lying group. Assume that for each τ ∈ P ′, there is a sequence of segments

Di(τ) = [ν−ai(τ)τ, νbi(τ)τ ], i = 1, 2, . . . , eτ ,

satisfying

(3.2) 2ai(τ) ∈ Z and 2bi(τ) ∈ Z≥0,

and

(3.3) a1(τ) < b1(τ) < a2(τ) < b2(τ) < · · · < aeτ (τ) < beτ (τ).

Let σ(0) be an irreducible supercuspidal ψa-generic representation of SO2n′(F ),

n′ ≥ 0 (n′ �= 1). Assume the following hold:

(DS1′) if (τ, σ(0)) satisfies (C1), then −1 ≤ ai(τ) ∈ Z � {0} for 1 ≤ i ≤ eτ ;

(DS2′) if (τ, σ(0)) satisfies (C0), then ai(τ) ∈ Z≥0 for 1 ≤ i ≤ eτ ;

(DS3′) if (τ, σ(0)) satisfies (C 1
2 ), then ai(τ) ∈ − 1

2 + Z≥0 for 1 ≤ i ≤ eτ ;
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(DS4′) if (τ, σ(0)) satisfies (CN), then ai(τ) ∈ Z≥0 for 1 ≤ i ≤ eτ .

Then the unique ψa-generic constituent of

(3.4) (×τ∈P ′ ×eτi=1 δ(Di(τ))) � σ(0)

(possibly σ(0) = 1⊗c) is square-integrable (see [Ban3] or Proposition 3.3 below;

the proof of Proposition 3.3 is needed as well as the statement). Further, we

show below that every irreducible square-integrable ψa-generic representation

of G is obtained in this way for a unique set of data—consisting of a finite set

P ′, segments {Di(τ)|1 ≤ i ≤ eτ , τ ∈ P ′} and a ψa-generic supercuspidal rep-

resentation σ(0)—satisfying conditions (3.2), (3.3), (DS1′)–(DS4′) (see [Ban3]).

Further, we have an embedding into (3.4) (see Proposition 3.6). Our proof is

based on that in [M2], but uses subsequent developments to shorten parts.

Let Π(dg)(SO2n) be the set of all equivalence classes of irreducible discrete

series generic representations of G.

Proposition 3.3: Let π be the ψa-generic subquotient of δ(Δ1)×· · ·×δ(Δk)�σ

(possibly σ = 1⊗ c), where σ = σ(0), and Δi, i = 1, . . . , k is an enumeration of

{Di′(τ) | 1 ≤ i′ ≤ eτ , τ ∈ P ′} above. Then π is square-integrable.

Proof. To set up the proof, let us define μ∗
GL to be the sum of everything in

μ∗ of the form τ ⊗ θ with θ supercuspidal and M∗
D,GL to be the sum of all

terms τ1 ⊗ τ2 ⊗ cj in M∗
D having τ2 = 1. It follows from Theorem 3.1 that

μ∗
GL(τ � θ) =M∗

D,GL(τ)�μ∗
GL(θ), as for other classical groups. Now, following

Lemma 4.6 [Td5], we prove the following by induction on k:

(3.5)

μ∗
GL(π)≤d

|a1|∑
i1=−a1

· · ·
|ak|∑

ik=−ak
δ([ν−i1+1τ1, ν

a1τ1])×δ([νi1τ1, νb1τ1])×· · ·

×δ([ν−ik+1τk, ν
akτk])×δ([νikτk, νbkτk])⊗ci1,...,ikσ

for some d depending on σ and the segments and suitable power of ci1,...,ik of

c (the particular power is not important in what follows). The case k = 1 is

known (follows from duality and degenerate principal series results, e.g.).

Now, observe that for any 1 ≤ j ≤ k,

π ≤ δ(Δj)� (δ(Δ1)× · · · × δ(Δj−1)× δ(Δj+1)× · · · × δ(Δk)� σ)

⇓
π ≤ δ(Δj)� λ
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for some λ ≤ δ(Δ1) × · · · × δ(Δj−1) × δ(Δj+1) × · · · × δ(Δk)� σ. By generic-

ity, it is the ψa-generic subquotient, δ(Δ1, . . .Δj−1,Δj+1, . . . ,Δk;σ)ψa ; square-

integrable by inductive hypothesis. Thus,

μ∗
GL(π) ≤ μ∗

GL(δ(Δj)� δ(Δ1, . . .Δj−1,Δj+1, . . . ,Δk;σ)ψa)

=M∗
D,GL(δ(Δj))� μ∗

GL(δ(Δ1, . . .Δj−1,Δj+1, . . . ,Δk;σ)ψa).

Thus, for each such j, we get

(3.6)

μ∗
GL(π) ≤ dj

|a1|∑
i1=−a1

· · ·
|aj−1|∑

ij−1=−aj−1

bj+1∑
ij=−aj

|aj+1|∑
ij+1=−aj+1

· · ·
|ak|∑

ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])× · · ·
× δ([ν−ik+1τk, ν

akτk])× δ([νikτk, ν
bkτk])⊗ ci1,...,ikσ.

Without loss of generality, we may assume that if τi = τj for some i < j,

then ai < bi < aj < bj. Looking at (3.6) for j = 1 (noting k > 1), we see that

ν−ak−1τk, ν
−ak−2τk, . . . , ν

−bkτk do not appear in the supercuspidal support of

π. Therefore, looking at (3.6) for j = k, we may refine the bound by removing

those terms which contain one of ν−ak−1τk, ν
−ak−2τk, . . . , ν

−bkτk, i.e., if ak > 0,

those terms having ik > ak + 1. (If ak ≤ 0—which can happen if τi �= τk for

any i < k—all but ik = |ak| are removed and we immediately obtain the needed

bound.) This gives

(3.7)

μ∗
GL(π) ≤ dk

|a1|∑
i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

ak+1∑
ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])

× δ([νi1τ1, ν
b1τ1])× · · · × δ([ν−ik+1τk, ν

akτk])

× δ([νikτk, ν
bkτk])⊗ ci1,...,ikσ.

The only terms in (3.7) which are not part of (3.5) are those corresponding

to ik = ak + 1, i.e.,

dk

|a1|∑
i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik−1+1τk−1, ν
ak−1τk−1])× δ([νik−1τk−1, ν

bk−1τk−1])

× δ([ν−akτk, νakτk])× δ([νak+1τk, ν
bkτk])⊗ ci1,...,ikσ.
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Now, observe that

δ([ν−akτk, νakτk])× δ([νak+1τk, ν
bkτk])

= δ([ν−akτk, νbkτk]) + Lsub(δ([ν−akτk, νakτk]), δ([νak+1τk, ν
bkτk]))

in the subrepresentation setting of the Langlands classification for general linear

groups. We note that in any term in the Jacquet module of

Lsub(δ([ν−akτk, νakτk]), δ([νak+1τk, ν
bkτk])),

the copy of νakτk always precedes the copy of νak+1τk; the opposite holds

for δ([ν−akτk, νbkτk]). Now, looking at (3.6) with j = 1, we see the only

terms there having ν−akτk in their supercuspidal support are those

corresponding to ij = −ak, which all have the form · · · × δ([ν−akτk, νbkτk]).
In particular, the only copy of νak+1τk in such a term always precedes the only

copy of νakτk. This means that the terms above coming from

Lsub(δ([ν−akτk, νakτk]), δ([νak+1τk, ν
bkτk]))× · · · cannot contribute to μ∗

GL(π).

Thus, removing those terms from (3.7), we get

μ∗
GL(π)

≤dk
|a1|∑

i1=−a1
· · ·

|ak−1|∑
ik−1=−ak−1

|ak|∑
ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])⊗ ci1,...,ikσ

+ dk

|a1|∑
i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik−1+1τk−1, ν
ak−1τk−1])× δ([νik−1τk−1, ν

bk−1τk−1])

× δ([ν−akτk, νbkτk])⊗ ci1,...,ikσ.

If we take ik = −ak in the first set of sums, we obtain the second set of sums.

Therefore,

μ∗
GL(π)

≤2dk

|a1|∑
i1=−a1

· · ·
|ak−1|∑

ik−1=−ak−1

|ak|∑
ik=−ak

δ([ν−i1+1τ1, ν
a1τ1])× δ([νi1τ1, ν

b1τ1])

× · · · × δ([ν−ik+1τk, ν
akτk])× δ([νikτk, ν

bkτk])⊗ ci1,...,ikσ

the needed inequality.
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Remark 3.4: Observe that the proof shows more: any irreducible subquotient

appearing in both

δ(Δ1)� δ(Δ2, . . . ,Δk;σ)ψa

and

δ(Δk)� δ(Δ2, . . . ,Δk−1;σ)ψa

is square-integrable.

The following is Lemma 2.2 in [M2], which was taken from [Sil2]. For G and

Z (the F -points of) a reductive F -group and maximal split torus in the center

of G, we have the following:

Lemma 3.5: Let Π be a tempered representation of G with central character.

If π is any square-integrable (mod Z) subquotient of Π, then Hom(π,Π) �= 0.

Proposition 3.6: Let π be an irreducible ψa-generic discrete series represen-

tation. Then π is of the form δ(Δ1, . . . ,Δk;σ)ψa for some Δ1, . . . ,Δk as in

Proposition 3.3 (possibly σ = 1 ⊗ c). That is, if i < j and τi ∼= τj , then

ai < bi < aj < bj . Further,

π ↪→ δ(Δ1)× · · · × δ(Δk)� σ.

Proof. First, we show π is of the form δ(Δ1, . . . ,Δk;σ)ψa . If π
∗ is a component

of Ind
O2n(F )
SO2n(F )(π) (which has at most two components), it follows from [MT] or

[Jan3] that

π∗ ≤ νb1τ1 × νb1−1τ1 × · · · × ν−a1τ1 × · · · × νbkτk × νbk−1τk × · · · × ν−akτk � σ∗,

for some τ1, . . . , τk, a1, . . . , ak, b1, . . . , bk satisfying (3.2), (3.3), (DS1′)–(DS3′)
(note that there is no (CN) case for O2n(F )) and some σ∗ an irreducible su-

percuspidal representation of an even orthogonal group (e.g., in the context of

[MT], the number of times ν±xτ appears in the supercuspidal support of π

depends only on Jordτ (π)—see Lemma 3.1 [Jan3]). Therefore,

π ≤ νb1τ1 × νb1−1τ1 × · · · × ν−a1τ1 × · · · × νbkτk × νbk−1τk × · · · × ν−akτk � σ

for some σ ≤ Res
O2n(F )
SO2n(F )(σ

∗). Since this has π as unique irreducible ψa-generic

subquotient and δ(Δ1, . . . ,Δk;σ)ψa appears as a subquotient, we must have

π = δ(Δ1, . . . ,Δk;σ)ψa .
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To see that π ↪→ δ(Δ1) × · · · × δ(Δk) � σ, we work inductively. For k = 1,

it follows from [M4], e.g., that the representation δ(Δ) � σ∗ has a unique non-

tempered irreducible subquotient, and the remaining irreducible subquotients

are square-integrable. It then follows from restriction that the same holds for

δ(Δ) � σ (noting that the nontempered subquotient has the form L(δ(Δ);σ∗),
hence splits upon restriction if and only if σ∗ does—see Lemmas 4.1 and 4.6

[BJ1]). For k > 1, let Π denote the intersection of δ(Δ1) � δ(Δ2, . . . ,Δk;σ)ψa

and δ(Δk)�δ(Δ1, . . . ,Δk−1;σ)ψa . Note that it follows easily from the inductive

assumption that Π ↪→ δ(Δ1) × · · · × δ(Δk) � σ. Now, by Remark 3.4, all the

subquotients of Π are square-integrable, hence tempered. Therefore, Lemma 3.5

implies π ↪→ Π, from which the desired embedding follows.

By Remark 3.2, (DS1′)–(DS4′) can be described as follows, and it is conve-

nient for us to use this description:

(DS1) In the (C1) case, if L(σ(0) × τ, s) has a pole at s = 0, then

−1 ≤ ai(τ) ∈ Z � {0}, for 1 ≤ i ≤ eτ ;

(DS2) in the (C0) or (CN) cases, if L(τ, Sym2, s) has a pole at s = 0, but

L(σ(0) × τ, s) is holomorphic at s = 0, then ai(τ) ∈ Z≥0, for 1 ≤ i ≤ eτ ;

(DS3) in the (C 1
2 ) case, if L(τ,∧2, s) has a pole at s = 0, then ai(τ) ∈ − 1

2 +

Z≥0, for 1 ≤ i ≤ eτ .

Remark 3.7: If L(σ(0)×τ, s) has a pole at s = 0 (case (C1)), then L(τ, Sym2, s)

has a pole at s = 0. So, we can see that (DS1) and (DS2) cover all possible

cases where L(τ, Sym2, s) has a pole at s = 0.

3.3. Tempered generic representations. Let σ(2) be a ψa-generic discrete

series representation of SO2n′′(F ). Let β1, . . . , βc (with possible repetitions) be

irreducible unitary supercuspidal representations of GLkβ1
(F ), . . . , GLkβc

(F ),

respectively. Take a sequence of square-integrable representations

{St(βi, 2ei + 1)}ci=1, 2ei ∈ Z≥0

of GLkβi
(2ei+1)(F )(i = 1, 2, . . . , c). Then the unique ψa-generic constituent σ

of

(3.8) St(β1, 2e1 + 1)× · · · × St(βc, 2ec + 1)� σ(2)

(possibly σ(2) = 1 ⊗ c) is a tempered representation of SO2n(F ) (n =

n′′ +
∑c

i=1(2ei + 1)kβi).
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It follows from a result of Harish-Chandra (cf. Proposition III.4.1 [W]) that

all tempered generic representations of G are obtained this way, and the in-

ducing representation is unique up to conjugation. In particular, the data

{St(βi, 2ei + 1)}ci=1 and σ(2) are uniquely determined up to replacements of

the following form:

St(βi, 2ei + 1) ↔ St(β̃i, 2ei + 1), σ(2) ↔ cniσ(2),

where ni = (2ei + 1)kβi (noting not all such replacements are nontrivial).

Let Π(tg)(SO2n) be the equivalence classes of irreducible tempered generic

representations of G.

3.4. Generic representations. We consider the following representations of

general linear groups: δ(Σ1), . . . , δ(Σf ), where

(3.9)

Σ1 = [v−q1ξ1, v−q1+w1ξ1],

Σ2 = [v−q2ξ2, v−q2+w2ξ2],

...

Σf = [v−qf ξf , v−qf+wf ξf ],

where ξ1, ξ2, . . . , ξf are irreducible unitary and supercuspidal, with possible rep-

etitions, qi ∈ R, wi ∈ Z≥0 and qi �= wi/2. Let σ
(t) ∈ Π(tg)(SO2n∗) as in (3.8).

We are interested in the induced representation δ(Σ1)×· · ·× δ(Σf )�σ(t). In

the Grothendieck group, we have δ(Σi) × δ(Σj) = δ(Σj) × δ(Σi) and

δ(Σi)� σ(t) = δ(Σ̃i)� cniσ(t) (where δ(Σi) is a representation of GLni(F )).

Therefore, replacing σ(t) by cσ(t) if necessary, we may assume that the ex-

ponents of δ(Σ1), δ(Σ2), . . . , δ(Σf ) are positive and in non-increasing order (the

Langlands inducing data), i.e.,

w1

2
− q1 ≥ w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0.

First, we have Theorem 3.8 below. The proof is essentially the same as in

[Jan1] (see Theorem 3.3 and Remark 3.4 in [Jan1]), which in turn is based on

that in [Td2]. As the only difference for SO2n(F ) is that we must keep track

of sign changes on σ(t)—and these do not affect the argument—we omit the

details.

Theorem 3.8: The representation σ of G defined by

σ := δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t)
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is irreducible if and only if {Σj}fj=1 and σ(t) satisfy the following properties:

(G1) δ(Σi) × δ(Σj) and δ(Σi) × δ(Σ̃j) are irreducible for all 1 ≤ i �= j ≤ f

(i.e., the segment Σi is not linked to either Σj or Σ̃j for 1 ≤ i �= j ≤ f);

(G2) δ(Σi)� σ(t) is irreducible for all 1 ≤ i ≤ f.

From Theorem 3.8, assume that {Σj}fj=1 and ρ(t) satisfy the conditions (G1)

and (G2). Then, the representation σ of G defined by

σ := δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t)

(possibly σ(t) = 1 ⊗ c) is irreducible and ψa-generic. Moreover, it follows from

[M3] that all irreducible ψa-generic representations of G can be obtained in this

way, and the collection δ(Σ1), δ(Σ2), . . . , δ(Σf ), σ
(t) is uniquely determined.

Let Π(g)(SO2n) be the set of equivalence classes of irreducible generic repre-

sentations of G.

To understand the irreducibility condition in (G2), we give several theorems

below, which are SO2n-analogues of Theorems 4.2 and 4.3 of [M2]. Before this,

however, we begin with a lemma which is used in some of the proofs (and also

helps explain the similarity of the results below with those of [M2]).

Lemma 3.9: Suppose σ
(0)
SO ≤ ResOSO(σ

(0)
O ) are irreducible supercuspidal repre-

sentations and (ρ;σ
(0)
SO) satisfies (Cα) with α ∈ {0, 12 , 1}. Let π be an irre-

ducible representation of O(2n, F ) whose supercuspidal support is contained

in {νxρ}x∈α+Z ∪ {σ(0)
O } and π′ ≤ ResOSO(π), also irreducible. If τ is an irre-

ducible representation of a general linear group having supercuspidal support

in {νxρ}x∈α+Z, then

τ � π is irreducible ⇔ τ � π′ is irreducible.

Proof. First, suppose ĉσ
(0)
O

∼= σ
(0)
O , where ĉ is the character of O2n(F ) which

is 1 on SO2n(F ) and −1 on O2n(F )\SO2n(F ). Since (ρ, σ(0) is (Cα) for some

α ∈ {0, 12 , 1}, the hypotheses of Theorem 5.3 [Jan5] are satisfied. Now, if τ � π

is irreducible, it follows from Theorem 5.3 [Jan5] that ResOSO(τ � π) has two

components. However, applying Theorem 5,3 [Jan5] also tells us ResOSO(π) =

π′ ⊕ cπ′, with cπ′ �∼= π′. We then have (see Lemma 4.2 [BJ1], e.g.)

ResOSO(τ � π) = (τ � π′)⊕ (τ � cπ′),

from which we see that τ � π′ and τ � cπ′ must both be irreducible. On

the other hand, if τ � π =
∑

i λi is reducible, Theorem 5.3 [Jan5] tells us
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ResOSO(λi) = λ′i ⊕ cλ′i for each i. Therefore,

ResOSO(τ � π) = (τ � π′) + (τ � cπ′) =
∑
i

(λ′i + cλ′i),

which implies the reducibility of τ � π′ and τ � cπ′.
Now, suppose ĉσ

(0)
O �∼=σ(0)

O . By Theorem 4.1 [Jan5], we then have ResOSO(π)=π
′

with cπ′ ∼= π′. We then have (cf. Lemma 4.2 [BJ1])

ResOSO(τ � π) = τ � π′.

It then follows immediately that τ � π′ irreducible implies τ � π irreducible.

On the other hand, by Theorem 4.1 [Jan5], we have τ � π irreducible implies

ResOSO(τ � π) = τ � π′ irreducible, finishing this case and the lemma.

Theorem 3.10: For Σ = [ν−qξ, ν−q+wξ] as above, δ(Σ)� σ(t) is irreducible if

and only if the following hold:

(G3) δ(Σ)× St(βj , 2ej + 1) and δ(Σ̃)× St(βj , 2ej + 1) are irreducible for all

1 ≤ j ≤ c (i.e., Σ and Σ̃ not linked to any [ν−ejβj , νejβj ], 1 ≤ j ≤ c),

and

(G4) δ(Σ)� σ(2) is irreducible.

Proof. Let δi = St(βi, 2ei + 1).

First, suppose (G3) and (G4) hold. We must show νxδ � σ(t) is irreducible.

Let π = L(δ(Σ)⊗ σ(t)). Then,

π ↪→ δ(Σ̃)× δ1 × · · · × δc � cnσ(2)

(using (G3))

∼= δ1 × · · · × δc × δ(Σ̃)� cnσ(2)

(using (G4))

∼= δ1 × · · · × δc � δ(Σ)� σ(2)

(using (G3))

∼= δ(Σ)× δ1 × · · · × δc � σ(2).

Therefore, π ↪→ δ(Σ) � T ′ for some irreducible T ′ ≤ δ1 × · · · × δc � σ(2). Now,

π appears as the Langlands quotient of δ(Σ) � σ(t), from which it follows that

T ′ = σ(t). We now have π appearing as the unique irreducible quotient of

the standard module δ(Σ) � σ(t) and as a subrepresentation. This contradicts

multiplicity one unless we have irreducibility, as needed.
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Now, suppose (at least) one of (G3) or (G4) fails. We must show δ(Σ)� σ(t)

is reducible.

First, suppose (G3) fails with some δ(Σ̃) × δi reducible; without loss of gen-

erality, say δ(Σ̃) × δ1. Write σ(t) ↪→ δ1 � T ′. Now, suppose δ(Σ) � σ(t) were

irreducible. Then, δ(Σ)� σ(t) = π as above. We have

π ∼= δ(Σ̃)� cnΣσ(t) ↪→ δ(Σ̃)× δ1 � T ′.

Since δ1 = St(β1, 2e1 + 1), reducibility implies ξ̃ ∼= β1 and q − w + 1 ≤ −e1 ≤
q + 1 ≤ e1. Now, since (in the Grothendieck group)

δ([νq−wβ1, νqβ1])× δ([ν−e1β1, νe1β1])

=Lsub(δ([νq−wβ1, νqβ1])⊗ δ([ν−e1β1, νe1β1]))

+ δ([νq−wβ1, νe1β1])× δ([ν−e1β1, νqβ1])

(subrepresentation version of the Langlands classification for general linear

groups), Lemma 5.5 [Jan2] tells us

π ↪→ Lsub(δ([νq−wβ1, νqβ1])⊗ δ([ν−e1β1, νe1β1]))� T ′

or

δ([νq−wβ1, νe1β1])× δ([ν−e1β1, νqβ1])� T ′.

Now, δ([νq−wβ1, νe1β1]) × δ([ν−e1β1, νqβ1]) is the generic subquotient of

δ([νq−wβ1, νqβ1])× δ([ν−e1β1, νe1β1]). Therefore, we must have

π ↪→ δ([νq−wβ1, νe1β1])× δ([ν−e1β1, νqβ1])� T ′.

On the other hand, π appears as a subrepresentation in

Lsub
(
δ([νq−wβ1, νqβ1])⊗ δ([ν−e1β1, νe1β1])

)
� T ′

(a fairly easy consequence of the Langlands classification). Also, π appears with

multiplicity one in δ([νq−wβ1, νqβ1])� σ(t), hence with multiplicity one in

δ([νq−wβ1, νqβ1])× δ([ν−e1β1, νe1β1])� T ′

(noting that if δ([ν−e1β1, νe1β1]) � T ′ = σ(t) ⊕ T ∗, π does not appear in

δ([νq−wβ1, νqβ1])�T ∗ as L(δ([ν−qβ1, ν−q+wβ1])⊗T ∗) is the unique irreducible
subquotient of (δ([νq−wβ1, ν−q+wβ1]) � T ∗ having its central character—see

[BJ2], e.g.). In particular, π cannot then appear in

δ([νq−wβ1, νe1β1])× δ([ν−e1β1, νqβ1])� T ′,

a contradiction. Thus, we must have δ(Σ)� σ(t) reducible, as needed.
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Now, suppose it is δ(Σ) × δ1 which is reducible. Observe that δ(Σ) × δ1 is

reducible if and only if δ(Σ̃)× δ̃1 is reducible. The same argument as above then

shows that δ(Σ̃)� σ̃(t) is reducible, implying δ(Σ)� σ(t) reducible, as needed.

The proof for (G4) is similar. Here, since (G3) has been addressed above, we

are free to assume (G3) holds but (G4) fails. Then,

π ↪→ δ(Σ)× δ1 × · · · × δc � σ(2) ∼= δ1 × · · · × δc × δ(Σ)� σ(2).

Write δ(Σ)�σ(2) = L(δ(Σ)⊗σ(2))+
∑

j Qj . Note that by [M3], L(δ(Σ)⊗σ(2))

is not generic. Again, by Lemma 5.5 [Jan2],

π ↪→ δ1 × · · · × δc × δ(Σ)� σ(2)

⇓
π ↪→ δ1 × · · · × δc � L(δ(Σ)⊗ σ(2))

or

π ↪→ δ1 × · · · × δc �Qi

for some i. As above, genericity implies it must be the second, but properties of

the Langlands classification require it be the first. We again have π appearing

with multiplicity one in δ1 × · · · × δc × δ(Σ)� σ(2), giving a contradiction and

finishing the proof.

Theorem 3.11: For Σ as above, δ(Σ) � σ(2) is irreducible if and only if the

following hold:

(G5) δ(Σ) × δ(Di(τ)) and δ(Σ̃) × δ(Di(τ)) are irreducible for any Di(τ) =

[v−ai(τ)τ, vbi(τ)τ ], i = 1, 2, . . . , eτ , τ ∈ P ′ (i.e., Σ and Σ̃ are not linked

to any segment [v−ai(τ)τ, vbi(τ)τ ], i = 1, 2, . . . , eτ , τ ∈ P ′), and
(G6) either (a) δ(Σ) � σ(0) is irreducible, or (b) q = −1 (so (ξ, σ(0)) satisfies

(C1)) , and ξ ∈ P ′ with aj(ξ) = −1 and bj(ξ) ≥ −q + w = 1 + w for

some 1 ≤ j ≤ eξ.

Note that if we letX ′ = {τ ∈ P ′ | (τ, σ(0)) satisfies (C1)}, we may reformulate

(G6) as follows: either δ(Σ) is not linked to any τ ∈ X ′ or there is a τ ∈ X ′

such that τ ∼= ξ, q = −1, and aj(ξ) = −1, 1 + w ≤ bj(ξ) (linked to τ meaning

linked to the segment consisting of τ only).

Proof. We first address (⇐). That is, we assume (G5) and (G6) both hold

and show δ(Σ)� σ(2) is irreducible. We assume it is (G6)(a) which holds, and
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comment on the changes needed for (G6)(b) afterwards. Let π ↪→ δ(Σ) � σ(2)

be an irreducible subrepresentation. Then,

(3.10)

π ↪→ δ(Σ)× δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� σ(0)

(using (G5))

∼= δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])× δ(Σ)� σ(0)

(using (G6)(a))

↪→ δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])× δ(Σ̃)� cnΣσ(0)

(using (G5))

∼= δ(Σ̃)× δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� cnΣσ(0).

In particular, π has a term of the form δ(Σ̃) ⊗ θ in its Jacquet module. From

properties of the Langlands classification ([BJ2]), the only term of the form

δ(Σ̃) ⊗ θ in the Jacquet module of δ(Σ̃) � cnΣσ(2) is δ(̃Σ) ⊗ cnΣσ(2). Thus

θ = cnΣσ(2). Now,

π ↪→ δ(Σ̃)� cnΣσ(2)

⇓
π ∼= L(δ(Σ)⊗ σ(2))

as L(δ(Σ)⊗ σ(2)) is the Langlands subrepresentation of δ(Σ̃)� cnΣσ(2). Thus,

π appears as both irreducible subrepresentation (from above) and unique irre-

ducible quotient in δ(Σ)� σ(2), contradicting multiplicity one in the Langlands

classification unless we have irreducibility.

We now discuss the changes needed if it is (G6)(b) which holds. Since

δ([ν−aiτi, νbiτi]) × δ([ν−aj τj , νbj τj ]) is irreducible for all i �= j (hence may be

commuted while preserving equivalences), we may without loss of generality as-

sume τk ∼= ξ with ak = −1. Then, to produce the inversion of δ(Σ) of Equation

(3.10), we do the following:

π ↪→δ(Σ)×δ([ν−a1τ1, νb1τ1])×· · ·×δ([ν−ak−1τk−1, ν
bk−1τk−1])×δ([νξ, νbkξ])�σ(0)

(using (G5))

∼=δ([ν−a1τ1, νb1τ1])×· · ·×δ([ν−ak−1τk−1, ν
bk−1τk−1])×δ(Σ)×δ([νξ, νbkξ])�σ(0)

⇓ (Lemma 5.5 [Jan2])

π ↪→ δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−ak−1τk−1, ν
bk−1τk−1])× δ(Σ)� θ
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for some irreducible θ ≤ δ([νξ, νbkξ])� σ(0). By genericity,

θ = δ([νξ, νbkξ];σ(0)).

We now claim that

δ(Σ)� δ([νξ, νbkξ];σ(0)) ∼= δ(Σ̃)� cnΣδ([νξ, νbkξ];σ(0))

by irreducibility. By [M5] the corresponding representation of O2n(F ) is ir-

reducible; the claim then follows from Lemma 3.9. The rest of the argument

proceeds the same way.

We now turn to (⇒). First, suppose (G5) fails. We first suppose

δ(Σ̃)× δ([ν−aiτi, νbiτi]) is reducible;

without loss of generality, δ(Σ̃)×δ([ν−a1τ1, νb1τ1]) is reducible. Then ξ ∼= τ̃1∼=τ1
and we may write σ(2) ↪→ δ([ν−a1τ1, νb1τ1]) � δ′SO. Now, suppose δ(Σ) � σ(2)

were irreducible. Then, δ(Σ)� σ(2) = π as above. We have

π ∼= δ(Σ̃)� cnΣσ(2) ↪→ δ(Σ̃)× δ([ν−a1τ1, νb1τ1])� cnΣδ′SO.

As δ(Σ̃) = δ([ν−w+qτ1, ν
qτ1]), reducibility implies −w + q < −a1 ≤ q + 1 and

q < b1. Now, since (in the Grothendieck group)

δ([ν−w+qτ1, ν
qτ1])× δ([ν−a1τ1, νb1τ1])

=Lsub(δ([ν−w+qτ1, ν
qτ1])⊗ δ([ν−a1τ1, νb1τ1]))

+ δ([ν−a1τ1, νqτ1])× δ([ν−w+qτ1, ν
b1τ1]),

we have (Lemma 5.5 [Jan2])

π ↪→ Lsub(δ([ν−w+qτ1, ν
qτ1])× δ([ν−a1τ1, νb1τ1]))� cnΣδ′SO

or

δ([ν−a1τ1, νqτ1])× δ([ν−w+qτ1, ν
b1τ1])� cnΣδ′SO.

As δ([ν−a1τ1, νqτ1]) × δ([ν−w+qτ1, ν
b1τ1]) is the generic subquotient of

δ([ν−w+qτ1, ν
qτ1])× δ([ν−a1τ1, νb1τ1]), we must have

π ↪→ δ([ν−a1τ1, νqτ1])× δ([ν−w+qτ1, ν
b1τ1])� cnΣδ′SO.

However, we claim that this is not the case.

To see this, note that by Frobenius reciprocity,

μ∗(π) ≥ δ([ν−w+qτ1, ν
qτ1])⊗ cnΣσ(0).
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Now, in the notation of Section 3.1, we have (in general)

(3.11) M∗
D

(
δ([ν−aτ, νbτ ])

)
=

b+1∑
x=−a

b+1∑
s=x

δ([ν1−xτ̃ , νaτ̃ ])× δ([νsτ, νbτ ]) ⊗ δ([νxτ, νs−1τ ])⊗ cnτ (x+a).

If μ∗(cnΣδ′SO) =
∑

i λi ⊗ θi, looking at

μ∗ (δ([ν−a1τ1, νqτ1])× δ([ν−w+qτ1, ν
b1τ1])� cnΣδ′SO

)
,

we see that we must have

δ([ν−w+qτ1, ν
qτ1]) ≤δ([ν1−xτ1, ν−q+wτ1])× δ([νsτ1, ν

b1τ1])× δ([ν1−yτ1, νa1τ1])

× δ([νtτ1, ν
qτ1])× λi,

with −w + q ≤ x ≤ s ≤ b1 + 1 and −a1 ≤ y ≤ t ≤ q + 1. Since b1,−q + w > q,

we must have s = b1 + 1 and 1− x = −q + w + 1, eliminating those terms and

leaving

δ([ν−w+qτ1, ν
qτ1]) ≤ δ([ν1−yτ1, νa1τ1])× δ([νtτ1, ν

qτ1])× λi,

with −a1 ≤ y ≤ t ≤ q+1. Since t ≥ −a1 > −w+q and y ≤ q+1 < w−q+1 ⇒
1−y > −w+q, we cannot have ν−w+qτ1 appearing in the supercuspidal support

of δ([ν1−yτ1, νa1τ1]) × δ([νtτ,ν
qτ1]), hence it must come from λi. However, by

the Casselman criterion, any contribution δ([ν−w+qτ1, ν
jτ1]) from λi must have

j > w − q—in particular, j too large to allow us to get δ([ν−w+qτ1, ν
qτ1]).

Thus there are no terms of the form δ([ν−w+qτ1, ν
qτ1]) ⊗ · · · in the Jacquet

module of δ([ν−a1τ1, νqτ1])×δ([ν−w+qτ1, ν
b1τ1])�cnΣδ′SO, providing the needed

contradiction and finishing the proof for this case.

Next, suppose (G5) fails with δ(Σ)×δ([ν−a1τ1, νb1τ1]) reducible. Then τ1 = ξ

and either −q < −a1 ≤ −q + w + 1 and −q + w < b1, or −a1 < −q ≤ b1 + 1

and b1 < −q + w. The former has δ(Σ̃) × δ([ν−a1τ1, νb1τ1]) reducible, hence

is covered by the previous discussion. Thus we may assume −a1 < −q ≤
b1 + 1, b1 < −q + w ⇒ −q + w > b1 > a1 > q. We have

π ≤ δ([ν−qτ, ν−q+wτ ]) × δ([ν−a1τ, νb1τ ])� δ′SO
⇓

π ≤ δ([ν−a1τ, ν−q+wτ ]) × δ([ν−qτ, νb1τ ])� δ′SO
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by genericity. Again, if δ(Σ) � σ(2) were irreducible, we would have to have at

least one term of the form δ([ν−w+qτ, νqτ ])⊗ . . . in

μ∗(π) ≤ μ∗(δ([ν−a1τ, ν−q+wτ ]) × δ([ν−qτ, νb1τ ]) � δ′SO).

The proof that this does not happen is similar, but significantly easier, than

that in the previous case.

It remains to deal with (G6). From above, we may assume (G5) holds.

Suppose δ([ν−qξ, ν−q+wξ]) � σ(0) were reducible. By [M5] (applied to the

corresponding representation of O(2n, F )) and restriction, this has unique ir-

reducible quotient L(δ([ν−qξ, ν−q+wξ]) ⊗ σ(0)) (the Langlands quotient) and

remaining subquotients tempered subrepresentations (almost always discrete

series). By [M3], the ψa-generic subquotient is one of the tempered subrepre-

sentations. Let

δψa([ν
−qξ, ν−q+wξ]);σ(0))

denote the ψa-generic subrepresention.

Now, since δ([ν−qξ, ν−q+wξ])� σ(2) is irreducible, we have

π ↪→ δ([ν−qξ, ν−q+wξ])� σ(2)

↪→ δ([ν−qξ, ν−q+wξ])× δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� σ(0)

∼= δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])× δ([ν−qξ, ν−q+wξ)� σ(0)

using the irreducibility for (G5) already proved. By Lemma 5.5 [Jan2], this

implies

π ↪→ δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� θ

for some θ ≤ δ([ν−qξ, ν−q+wξ])� σ(0). We must have θ ψa-generic, so

π ↪→ δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� δψa([ν
−qξ, ν−q+wξ];σ(0)).

Since π ∼= δ([ν−w+qξ, νqξ]) � cnσ(2) by irreducibility, we must have a term of

the form δ([ν−w+qξ, νqξ])⊗ · · · in

μ∗(δ([ν−a1τ1, νb1τ1])× · · · × δ([ν−akτk, νbkτk])� (δψa([ν
−qξ, ν−q+wξ];σ(0)))

=M∗
D(δ([ν

−a1τ1, νb1τ1])×· · ·×δ([ν−akτk, νbkτk]))�μ∗(δψa([ν
−qξ, ν−q+wξ];σ(0)))

(see Theorem 3.1). If

μ∗(δψa([ν
−qξ, ν−q+wξ];σ(0))) =

∑
i

λi ⊗ θi,
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this requires (using Equation (3.11))

δ([ν−w+qξ, νqξ]) ≤δ([ν1−x1 τ̃1, ν
a1 τ̃1])× δ([νs1τ1, ν

b1τ1])×
· · · × δ([ν1−xk τ̃k, ν

ak τ̃k])× δ([νskτk, ν
bkτk])× λi.

We show this cannot happen.

To show this, we focus on where ν−w+qξ can appear above. First, it

cannot appear in λi as this would require (by Equation (3.11) applied to

δψa([ν
−qξ, ν−q+wξ];σ(0)) ≤ δ([ν−qξ, ν−q+wξ])� σ(0))

μ∗(δψa([ν
−qξ, ν−q+wξ];σ(0))) ≥ δ([ν−w+qξ, νqξ])⊗ · · · ,

contradicting the Casselman criterion. It clearly cannot appear in

δ([ν1−xi τ̃i, ν
ai τ̃i]) × δ([νsiτi, ν

biτi]) if τi �∼= ξ, so assume τi ∼= ξ. Now, if

ν−w+qξ appears in δ([νsiξ, νbiξ]), we must have si = −w + q and bi ≤ q to

contribute to a δ([ν−w+qξ, νqξ]). However, −a ≤ −w+ q ≤ si and bi ≤ q imply

q ≥ bi > ai ≥ w − q, contradicting w > 2q. Thus ν−w+qξ cannot appear in

δ([νsiξ, νbiξ]).

The only possibility remaining is that ν−w+qξ appears in δ([ν1−xiξ, νaiξ]).

In this case, we must have 1 − xi = −w + q and ai ≤ q to contribute to a

δ([ν−w+qξ, νqξ]). Now,

−ai ≤ x = 1 + w − q ≤ bi + 1

implies δ([ν−w+qξ, νqξ])×δ([ν−aiξ, νbiξ]) is reducible—hence (G5) fails—unless

either −ai ≤ −q+w or q < −ai−1. Since −ai ≤ −q+w implies ai ≥ w−q > q—

a contradiction—we must have q < −ai − 1. Combining this with ai ≥ q, we

have that ai = −1. Further, combining −1 = a ≤ q and q < −a − 1 = 0, we

see that we must also have q = −1. Since bi ≥ w − q = w + 1, we see that

(G6)(b) holds. Therefore, we have proved that if (G6)(a) does not hold, then

either there is a contradiction, or (G6)(b) holds. This completes the proof of

this theorem.

Remark 3.12: See Remark 4.9 for further discussion of the condition 1+w≤bj(τ)
in (G6).

Theorem 3.13: For Σ as above, δ(Σ) � σ(0) is irreducible if and only if the

following hold:

(G7) ξ �∼= ξ̃; or
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(G8) ξ ∼= ξ̃ and the following: (i) if (ξ, σ(0)) is (Cα), α ∈ {0, 12 , 1}, then
±α �∈ {−q,−q + 1, . . . ,−q + w}; (ii) if (ξ, σ(0)) is (CN), then q /∈ Z≥0.

Proof. First, if (G7) holds, let π = L(δ([ν−qξ, ν−q+wξ]) ⊗ σ(0)). Then, noting

that νxξ × νy ξ̃ and νxξ � σ(0) are irreducible for all x, y ∈ R, we may argue as

in the proof of Theorem 3.8 to get

π ↪→ δ([ν−w+q ξ̃, νq ξ̃])� cnΣσ(0)

↪→ ν−w+q ξ̃ × ν−w+q+1ξ̃ × · · · × νq ξ̃ � cnΣσ(0)

...

∼= ν−qξ × ν−q+1ξ × · · · × ν−q+wξ � σ(0).

By Lemma 5.5 [Jan2],

π ↪→ λ� σ(0)

for some irreducible λ ≤ ν−qξ × ν−q+1ξ × · · · × ν−q+wξ; necessarily λ ∼=
δ([ν−qξ, ν−q+wξ]) (as it is the only λ ≤ ν−qξ × ν−q+1ξ × · · · × ν−q+wξ which

has ν−qξ⊗· · ·⊗ν−q+wξ⊗σ(0) in the Jacquet module of λ�σ(0)). We now have

π as a subrepresentation of δ([ν−qξ, ν−q+wξ])� σ(0) and the unique irreducible

quotient (the Langlands quotient). As π must appear with multiplicity one,

this implies the needed irreducibility.

We now turn to (G8). Let us write σ
(0)
SO for the irreducible supercuspidal

representation of SO2n(F ) and σ
(0)
O for a component of IndOSO(σ

(0)
SO) (so that

σSO ≤ ResOSO(σO)). In the cases (C0),(C1/2),(C1), Lemma 3.9 tells us the

reducibility points of δ(Σ)�σ(0)
SO match those of δ(Σ)�σ(0)

O . Those reducibility

points are given in Theorem 9.1 of [Td4], and match those given in the statement

of the theorem above. We note that [Td4] mentions only symplectic and odd-

orthogonal groups. This is because it predates results such as [Ban1]—necessary

extensions of certain key results to the non-connected case. The combinatorics

is the same, and the results hold for (non-connected) orthogonal groups as well.

We now turn our attention to the (CN) case. The dual to δ(Σ) � σ
(0)
SO is

ζ̃(Σ) � cnσ
(0)
SO = ζ(Σ) � σ

(0)
SO, equality in the Grothendieck group. These have

the same reducibility points. In the (CN) case, these duals have been analyzed

in [BJ1]—see Proposition 5.2 of that paper. Again, the reducibility points match

those in the statement of this theorem.
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From the discussion above and based on the three theorems above, we make

the following definition:

Definition 3.14: Let {Σi}fi=1 and σ(t) be given as above. Then {Σi}fi=1 is called

an SO2n-generic sequence of segments with respect to σ(t) if it satisfies

the following conditions:

(1) the segment Σi is not linked to either Σj or Σ̃j for 1 ≤ i �= j ≤ f ;

(2) for 1 ≤ i ≤ f , Σi and Σ̃i are not linked to any segment, which corre-

sponds to a representation in any of the families

δ(Di(τ)), i = 1, 2, . . . , eτ , τ ∈ P ′,

{St(βj, 2ej + 1)}cj=1, {St(β̃j , 2ej + 1)|βj �∼= β̃j, 1 ≤ j ≤ c};
(3) one of the following three conditions holds:

(3a) ξi �∼= ξ̃i; or

(3b) there exists τ ∈ X ′, such that τ ∼= ξi, qi = −1, and there is some

1 ≤ j ≤ eτ , with aj(τ) = −1 and 1 + wi ≤ bj(τ); or

(3c) (ξi, σ
(0)) is (Cα) (α=0, 12 , 1), but±α �∈{−qi,−qi+1, . . . ,−qi+wi};

(ξi, σ
(0)) is (CN), but qi /∈ Z≥0.

4. Surjectivity of local Langlands functorial lifting maps

In this section, first we summarize the results on the local Langlands functorial

lifting from Π(sg)(SO2n) to Π(sgo)(GL2n), then using the same descent method

as in [JngS2], we prove that the rest of local Langlands functorial lifting given

by Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPSS] is also surjective. In

each case, we write down the corresponding local Langlands parameters. Due to

the similarity between the SO2n case here and the cases of SO2n+1 in [JngS2],

Sp2n in [Liu], most of the proofs are omitted.

4.1. Supercuspidal generic representations. Let Π(sg)(SO2n) be the set

of all equivalence classes of irreducible supercuspidal generic representations of

G. Let Π(sgo)(GL2n) be the set of all equivalence classes of irreducible tem-

pered representations of GL2n(F ) with trivial central characters which have

the following form:

(4.1) τ1 × τ2 × · · · × τr,
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where for each 1 ≤ i ≤ r, τi is an irreducible supercuspidal self-contragredient

representation of GLni(F ) such that L(τi, Sym
2, s) has a pole at s = 0 and for

i �= j, τi �∼= τj .

From the definition, we can see that any ρ ∈ Π(go)(GL2n) is of orthogonal

type. For properties of symmetric square and exterior square L-functions, see

[S3].

Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPSS] gave the following local

Langlands functorial lifting map:

Theorem 4.1 (Cogdell–Kim–Piatetski-Shapiro–Shahidi): There is a map l

from Π(sg)(SO2n) to Π(sgo)(GL2n). Moreover, the map l preserves local L and

ε factors with GL twists, namely,

L(σ × π, s) = L(l(σ)× π, s),

ε(σ × π, s, ψ) = ε(l(σ)× π, s, ψ),

for any σ ∈ Π(sg)(SO2n) and any irreducible generic representation π of GLk(F )

(k any positive integer).

Jiang and Soudry [JngS3] constructed the local descent map from supercus-

pidal representations of GL2n to irreducible supercuspidal representations of

SO2n, and proved the following theorem, which is one of the main ingredients

of this paper.

Theorem 4.2 (Jiang–Soudry): The map l in Theorem 4.1 is surjective.

Remark 4.3: For σ ∈ Π(sg)(SO2n), assume τ1 × τ2 × · · · × τr ∈ Π(sgo)(GL2n) is

the lifting of σ. Then it is clear that L(τi × σ, s) has a pole at s = 0, 1 ≤ i ≤ r.

Therefore, by Remark 3.2, each pair (τi, σ) must be (C1).

We have the following proposition about lifting images of σ and cσ when

σ � cσ ∈ Π(sg)(SO2n).

Proposition 4.4: If σ � cσ ∈ Π(sg)(SO2n), then l(σ) = l(cσ) ∈ Π(sgo)(GL2n).

In particular,

L(σ × τ, s) = L(cσ × τ, s),

ε(σ × τ, s, ψ) = ε(cσ × τ, s, ψ),

for any irreducible generic representation τ of GLm(F ), where m is any positive

integer.
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Proof. By Proposition 5.1 of [S1], we can embed σ as a local component of

a generic cuspidal representation Σ of SO2n(A), with Σv = σ for some local

place v. Assume that Π is the lifting of Σ to GL2n(A). Consider cΣ. Since

for unramified places v, Σv and cΣv lift to the same representation, and by

[CKPSS] the weak lifting is actually strong, cΣ also lifts to Π. Therefore, σ and

cσ lift to the same representation, and hence

L(σ × τ, s) = L(cσ × τ, s),

ε(σ × τ, s, ψ) = ε(cσ × τ, s, ψ),

for any irreducible generic representation τ of GLm(F ), where m is any positive

integer, by Lemma 7.2 of [CKPSS].

Next, we will figure out the corresponding parameters of irreducible super-

cuspidal generic representations of G. For this, we need to recall the following,

Proposition 4.4 of [Liu]:

Proposition 4.5 (Liu): (1) Assume τ is an irreducible supercuspidal self-

contragredient representation of GLm(F ) having local Langlands parameter

φ (which is an irreducible admissible m-dimensional complex representation of

WF ) and whose local symmetric square L-function L(τ, Sym2, s) has a pole at

s = 0. Then φ is orthogonal.

(2) Let φ = φ1 ⊕φ2 be an admissible completely reducible complex represen-

tation of WF with the property that

HomWF (φ1 ⊗ φ2, 1) = 0.

Then φ is orthogonal if and only if φ1 and φ2 are both orthogonal.

Let Φ(sg)(SO2n) be the subset of Φ(SO2n) consisting of all parameters of type

φ =
⊕
i

φi

with the properties that:

(1) φi �∼= φj if i �= j;

(2) for each i, φi is orthogonal.

Let Φ̃(sg)(SO2n) be the image of Φ(sg)(SO2n) in Φ̃(SO2n) (for the definition

and related discussion, see the Introduction). As a consequence of Theorem

4.2 and Proposition 4.5, we have the following result for irreducible generic

supercuspidal representations of G:
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Theorem 4.6: There is a surjective map ι from Π(sg)(SO2n) to the set

Φ̃(sg)(SO2n). The map ι preserves the local factors as follows:

L(σ × τ, s) = L(ι(σ) ⊗ r−1(τ), s),

ε(σ × τ, s, ψ) = ε(ι(σ) ⊗ r−1(τ), s, ψ),

for any σ ∈ Π(sg)(SO2n) and any irreducible generic representations τ of

GLkτ (F ), with all kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible rep-

resentation of WF × SL2(C) of dimension kτ which corresponds to τ under the

local Langlands reciprocity map for GLkτ .

Remark 4.7: Note that as mentioned in the Introduction, for any φ̃ ∈ Φ̃(SO2n),

its twisted local factors are defined to be those of φ (a representative of φ̃).

Also note that by Proposition 4.4 and Theorem 4.6, if σ � cσ ∈ Π(sg)(SO2n),

then they have the same lifting image and the same twisted local factors.

4.2. Discrete series generic representations. Let Π(dgo)(GL2n) be the

set of all equivalence classes of irreducible tempered representations of GL2n(F )

with trivial central characters which have the following form:

(4.2) St(τ1, 2m1 + 1)× St(τ2, 2m2 + 1)× · · · × St(τr, 2mr + 1),

where the balanced segments [v−miτi, v
miτi] are pairwise distinct, self-contra-

gredient (i.e., τi ∼= τ̃i), and satisfy the following properties for each i:

(1) if L(τi,∧2, s) has a pole at s = 0, then mi ∈ 1
2 + Z≥0;

or,

(2) if L(τi, Sym
2, s) has a pole at s = 0, then mi ∈ Z≥0.

From the definition, we can see that any π ∈ Π(dgo)(GL2n) is of orthogonal

type.

Then we have the following theorem:

Theorem 4.8: There is a surjective map l (which extends the one in Theorem

4.2) from Π(dg)(SO2n) to Π(dgo)(GL2n). Moreover, l preserves local factors:

(4.3) L(σ × π, s) = L(l(σ)× π, s),

(4.4) ε(σ × π, s, ψ) = ε(l(σ)× π, s, ψ),

for any σ ∈ Π(dg)(SO2n) and any irreducible generic representation π of any

GLk(F ), k ∈ Z>0.
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Proof. The idea of the proof is the same as in [JngS2].

Let Π(ss)(GLk) be the set of equivalence classes of irreducible self-dual su-

percuspidal representations of GLk(F ) (k ∈ Z>0). Given a ρ ∈ Π(dgo)(GL2n),

let

P (ρ) := {τ ∈ Π(ss)(GLk)|L(ρ× τ, s) has a pole in R, k ∈ Z>0}.
Then P (ρ) is finite. For τ ∈ P (ρ), we list the real poles of L(ρ× τ, s) as follows:

(4.5) −mdτ (τ) < · · · < −m2(τ) < −m1(τ) ≤ 0.

Put dτ = 0 if L(ρ × τ, s) is holomorphic for τ irreducible supercuspidal (self-

contragredient or not). We consider the following subset of P (ρ):

A(ρ) ={τ ∈ P (ρ)|L(τi, Sym2, s) has a pole at s = 0, and dτ is odd},
B(ρ) ={τ ∈ P (ρ)|L(τi, Sym2, s) has a pole at s = 0, and dτ is even},
C(ρ) ={τ ∈ P (ρ)|L(τi,∧2, s) has a pole at s =0}.

Then

P (ρ) = A(ρ) ∪B(ρ) ∪C(ρ).
Further, if τ ∈ A(ρ) ∪ B(ρ), then {mi(τ)}dτi=1 ⊂ Z≥0; if τ ∈ C(ρ), then

{mi(τ)}dτi=1 ⊂ 1
2 + Z≥0.

Observe that for τ ∈ A(ρ), dτ is odd and the central character ωτ is quadratic;

for τ ∈ B(ρ), dτ is even and the central character ωτ is quadratic; for τ ∈ C(ρ),

L(τ,∧2, s) has a pole at s = 0 which implies that the central character ωτ is

trivial. Hence, the following character is trivial:∏
τ∈A(ρ)

ωdτ−1
τ

∏
τ∈B(ρ)

ωdττ
∏

τ∈C(ρ)

ωdττ .

Therefore, the representation ×τ∈A(ρ)τ is a representation of GL2k(F ) with

trivial central character, k is an integer, 2k =
∑
τ∈A(ρ) kτ , where kτ is so de-

fined that τ is a representation of GLkτ (F ). Since for τ ∈ A(ρ), L(τ, Sym2, s)

has a pole at s = 0, it follows from Theorem 4.2 that there exists an irre-

ducible supercuspidal generic representation σ(0) (not necessarily unique up to

equivalence) of SO2k(F ), such that

(4.6) l(σ(0)) = ×τ∈A(ρ)τ

on GL2k(F ).
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Let

A0(ρ) ={τ ∈ A(ρ)|dτ = 1 and m1(τ) = 0},
A1(ρ) ={τ ∈ A(ρ)|dτ ≥ 3 and m1(τ) = 0},
A2(ρ) ={τ ∈ A(ρ)|m1(τ) ≥ 1}.

Then they form a partition of A(ρ). For τ ∈ A1(ρ), let

(4.7) Δi(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]), i = 1, 2, . . . ,
dτ − 1

2
;

for τ ∈ A2(ρ), let

(4.8) Δ0(τ) = δ([ντ, νm1(τ)τ ]), Δi(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]),

i = 1, 2, . . . ,
dτ − 1

2
.

For τ ∈ B(ρ), let

(4.9) Δi(τ) = δ([ν−m2i−1(τ)τ, νm2i(τ)τ ]), i = 1, 2, . . . ,
dτ
2
.

Similarly, for τ ∈ C(ρ), if dτ is odd, let

(4.10) Δ0(τ) = δ([ν
1
2 τ, νm1(τ)τ ]), Δi(τ) = δ([ν−m2i(τ)τ, νm2i+1(τ)τ ]),

i = 1, 2, . . . ,
dτ − 1

2
.

Finally, for τ ∈ C(ρ), if dτ is even, let

(4.11) Δi(τ) = δ([ν−m2i−1(τ)τ, νm2i(τ)τ ]), i = 1, 2, . . . ,
dτ
2
.

We now define

Jτ =

⎧⎪⎪⎨⎪⎪⎩
{1, 2, . . . , dτ−1

2 }, in case (4.7),

{0, 1, 2, . . . , dτ−1
2 }, in cases (4.8), (4.10),

{1, 2, . . . , dτ2 }, in cases (4.9), (4.11),

and let σρ be the unique irreducible generic constituent of

(4.12) (×τ∈P (ρ)�A0(ρ) ×j∈Jτ Δj(τ)) � σ(0),

where possibly σ(0) = 1⊗ c. Observe that σρ is a representation of G. It is now

easy to see that the sequence of segments in (4.7)–(4.11), together with σ(0)

satisfy (3.2), (3.3), (DS1)–(DS3), hence σρ is square-integrable.

The proof that the local factors are preserved is similar to that in [JngS2] or

[CKPSS].
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Remark 4.9: Note that if ρ(2) = l(σ(2)), then the X ′ in Theorem 3.11 is equal

to A2(ρ
(2)).

In this case, by Part (2), Part (3b) and Part (3c) of Definition 3.14, if {Σi}fi=1

is an SO2n-generic sequence of segments with respect to σ(t), then for 1 ≤ i ≤ f ,

Σi and Σ̃i are not linked to any segment associated to ρ(2). That is, as a

representation of GL∗(F ), δ(Σ1)× · · · × δ(Σf )× ρ(2) is irreducible and generic,

where σ(2) is the irreducible discrete series generic representation occurring in

σ(t), and ρ(2) = l(σ(2)).

Note that if in Part (3b) of Definition 3.14, 1 +wi > bj(τ), then Σi is linked

to [ν−bj(τ)τ, νbj(τ)τ ], which is a segment associated to ρ(2) (see the proof of

Theorem 4.8). Then, δ(Σ1) × · · · × δ(Σf ) × ρ(2) is no longer irreducible and

generic.

In the case of irreducible generic representations of SO2n+1(F ) and Sp2n(F )

(see [M2]), Part (2) of Definition 5.1 of [JngS2] and Definition 4.14 of [Liu]

implies that 1 + wi ≤ bj(τ) holds in Part (3b).

Next we generalize Theorem 4.6 to Π(dg)(SO2n).

Let Φ(d)(SO2n) be the subset of Φ(SO2n) consisting of all the local Langlands

parameters of type

φ =
⊕
i

φi ⊗ S2mi+1,

where the φi’s are irreducible self-contragredient representations of WF of di-

mension kφi , the S2mi+1’s are irreducible representations of SL2(C) of dimen-

sion 2mi + 1, and they satisfy the following:

(1) the tensor products φi ⊗ S2mi+1 are irreducible and orthogonal;

(2) φi ⊗ S2mi+1 and φj ⊗ S2mj+1 are not equivalent if i �= j;

(3) the image φ(WF×SL2(C)) is not contained in any proper Levi subgroup

of SO2n(C).

The local Langlands parameters in Φ(d)(SO2n) are called discrete. Let

Φ̃(d)(SO2n) be the image of Φ(d)(SO2n) in Φ̃(SO2n). The following theorem

is parallel to Theorem 2.2 [JngS2] and Theorem 4.9 [Liu].

Theorem 4.10: There is a surjective map ι (which extends the one in Theorem

4.6) from Π(dg)(SO2n) to the set Φ̃(d)(SO2n). The map ι preserves the local
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factors:

L(σ × τ, s) =L(ι(σ)⊗ r−1(τ), s),(4.13)

ε(σ × τ, s, ψ) =ε(ι(σ)⊗ r−1(τ), s, ψ),(4.14)

for all σ ∈ Π(dg)(SO2n) and all irreducible generic representations τ of any

GLkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible representation

of WF × SL2(C) of dimension kτ corresponding to τ by the local Langlands

reciprocity map for GLkτ .

Remark 4.11: Suppose σ(2) ∈ Π(dg)(SO2n) is the unique generic constituent of

(×τ∈P ′ ×eτi=1 δ(Di(τ)))� σ(0) (possibly σ(0) = 1⊗ c) and σ(0) � cσ(0). Then, by

Section 3.2, σ(2) � cσ(2) are both in Π(dg)(SO2n), and cσ
(2) is the unique generic

constituent of (×τ∈P ′ ×eτi=1 δ(Di(τ)))�cσ(0). Note that if (τ, σ(0)) satisfies (Cα)

or (CN), then so does (τ, cσ(0)).

By Remark 4.7, Theorem 4.8 and Theorem 4.10, and by the multiplicativity

of local factors (see [S2], [JngS2] and [CKPSS]), in the above situation, σ(2) and

cσ(2) have the same lifting image and the same twisted local factors.

4.3. Tempered generic representations. Let Π(tgo)(GL2n) be the set of

equivalence classes of tempered representations of GL2n(F ) with trivial central

characters which have the following form:

(4.15) St(λ1, 2h1 + 1)× St(λ2, 2h2 + 1)× · · · × St(λf , 2hf + 1),

where λ1, λ2, . . . , λf are unitary supercuspidal representations, and 2hi ∈ Z≥0,

such that for 1 ≤ i ≤ f :

(1) if λi �∼= λ̃i, then St(λi, 2hi + 1) occurs in (4.15) as many times as

St(λ̃i, 2hi + 1) does;

(2) if L(λi,∧2, s) has a pole at s = 0, and hi ∈ Z≥0, then St(λi, 2hi + 1)

occurs an even number of times in (4.15);

(3) if L(λi, Sym
2, s) has a pole at s=0, and hi∈ 1

2+Z≥0, then St(λi, 2hi+1)

occurs an even number of times in (4.15).

From the definition, we can see that any π ∈ Π(tgo)(GL2n) is of orthogonal

type.

The following theorem is parallel to Theorem 4.1 [JngS2] and Theorem 4.12

[Liu].
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Theorem 4.12: There is a surjective map l (which extends the one in Theorem

4.8) from Π(tg)(SO2n) to Π(tgo)(GL2n). Moreover, l preserves local factors:

L(σ × π, s) =L(l(σ)× π, s),(4.16)

ε(σ × π, s, ψ) =ε(l(σ)× π, s, ψ),(4.17)

for any σ ∈ Π(tg)(SO2n) and any irreducible generic representation π of any

GLk(F ), k ∈ Z>0.

Remark 4.13: By Theorem 4.12, for each σ(t) ∈ Π(tg)(SO2n),

(4.18)
ρ(t) = l(σ(t)) =St(β1, 2e1 + 1)× · · · × St(βc, 2ec + 1)× l(σ(2))

× S̃t(βc, 2ec + 1)× · · · × S̃t(β1, 2e1 + 1).

Therefore, by Remark 4.9, if {Σi}fi=1 is an SO2n-generic sequence of segments

with respect to σ(t), then for 1 ≤ i ≤ f , Σi and Σ̃i are not linked to any segment

associated to ρ(t). That is, as a representation of GL∗(F ),

δ(Σ1)× · · · × δ(Σf )× ρ(t)

is irreducible and generic.

Next, we write down the parameters for representations in Π(tg)(SO2n). From

(4.18), we can see that the local Langlands parameter of σ is

φσ(2) ⊕
c⊕
i=1

[φβi × S2ei+1 ⊕ φ̃βi × S2ei+1].

Let Φ(t)(SO2n) be the subset of Φ(SO2n) consisting of the local Langlands

parameters φ with the property that φ(WF ) is bounded in SO2n(C). The

parameters in Φ(t)(SO2n) are called tempered. Then we have the following

result that the local Langlands parameters corresponding to representations in

Π(tg)(SO2n) are exactly the tempered parameters. Let Φ̃(t)(SO2n) be the image

of Φ(t)(SO2n) in Φ̃(SO2n). The following theorem is parallel to Theorem 4.2

[JngS2] and Theorem 4.13 [Liu].

Theorem 4.14: There is a surjective map ι (which extends the one in Theorem

4.10) from Π(tg)(SO2n) to the set Φ̃(t)(SO2n). It preserves the local factors:

L(σ × τ, s) = L(ι(σ) ⊗ r−1(τ), s),

ε(σ × τ, s, ψ) = ε(ι(σ) ⊗ r−1(τ), s, ψ),
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for all σ ∈ Π(tg)(SO2n) and all irreducible generic representations τ of any

GLkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible representation

of WF × SL2(C) of dimension kτ corresponding to τ by the local Langlands

reciprocity map for GLkτ .

Remark 4.15: By Section 3.3, if σ(t) ∈ Π(tg)(SO2n) is the unique generic con-

stituent of St(β1, 2e1 + 1)× · · · × St(βc, 2ec + 1)� σ(2) (possibly σ(2) = 1⊗ c)

and σ(2) � cσ(2), then σ(t) � cσ(t), both are in Π(tg)(SO2n), and cσ(t) is the

unique generic constituent of St(β1, 2e1 + 1)× · · · × St(βc, 2ec + 1)� cσ(2).

By Remark 4.11, Theorem 4.12, Theorem 4.14, and the multiplicativity of

local factors (see [S2], [JngS2] and [CKPSS]), in the above situation, σ(t) and

cσ(t) have the same lifting image and the same twisted local factors.

4.4. Generic representations. Let Π(go)(GL2n) be the set of equivalence

classes of irreducible self-contragredient representations of GL2n(F ) with trivial

central characters which are Langlands quotients of representations

(4.19) δ(Σ1)× · · · × δ(Σf )× ρ(t) × δ(Σ̃f )× · · · × δ(Σ̃1),

where {Σj}fj=1 are of the form (3.9), ξ1, ξ2, . . . , ξf are irreducible unitary and su-

percuspidal, with possible repetitions, qi ∈ R, wi∈Z≥0, and ρ
(t)∈Π(tg)(GL2n∗),

such that the following hold:

(1) w1

2 − q1 ≥ w2

2 − q2 ≥ · · · ≥ wf

2 − qf > 0.

(2) The segment Σi is not linked to either Σj or Σ̃j for 1 ≤ i �= j ≤ f .

(3) The representations δ(Σi)× ρ(t) and δ(Σ̃i)× ρ(t) are irreducible for all

1 ≤ i ≤ f .

(4) Assume ξi is self-contragredient and 2qi ∈ Z, such that if L(ξi,∧2, s)

has a pole at s = 0, then qi ∈ 1
2 + Z, and if L(ξi, Sym

2, s) has a pole

at s = 0, then qi ∈ Z. Then Σi is not linked to Σ̃i. Moreover, if

L(ρ(0)× ξi, s) has a pole at s = 0 and qi ∈ Z, then either (a) −qi ≥ 2 or

(b) qi = −1, ξi = τ ∈ A2(ρ
(2)) and there is some 1 ≤ j ≤ eτ such that

aj(τ) = −1 and 1 + wi ≤ bj(τ).

From the definition, we can see that any π ∈ Π(go)(GL2n) is of orthogonal

type.

Note that by Remark 4.9, A2(ρ
(2)) here is actually X ′ in Theorem 3.11. The

following theorem is parallel to Theorem 5.1 [JngS2] and Theorem 4.15 [Liu].
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Theorem 4.16: There is a surjective map l (which extends the one in Theorem

4.12) from Π(g)(SO2n) to Π(go)(GL2n). It preserves the local factors:

L(σ × π, s) =L(l(σ)× π, s),(4.20)

ε(σ × π, s, ψ) =ε(l(σ)× π, s, ψ),(4.21)

for any σ ∈ Π(g)(SO2n) and any irreducible generic representation π of any

GLk(F ), k ∈ Z>0.

At last, we write down the corresponding parameters.

Let Φ(g)(SO2n) be the subset of Φ(SO2n) consisting of elements of the fol-

lowing form:

φσ = φ(t) ⊕
f⊕
i=1

[
|·|−qi+wi

2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−wi
2 r−1(ξ̃i)⊗ Swi+1

]
,

where φ(t) is a representative of ι(σ(t)), and the sequence

{Σj = [v−qj ξj , v−qj+wjξj ]}fj=1

is an SO2n-generic sequence of segments with respect to σ(t) (see Definition

3.14), ι is the reciprocity map given in Theorem 4.14 for irreducible tempered

generic representations in Π(tg)(SO2n), r is the reciprocity map for GL∗(F ),
and |·|s is the character of WF normalized as in [T] via local class field theory.

Let Φ̃(g)(SO2n) be the image of Φ(g)(SO2n) in Φ̃(SO2n).

The following theorem is parallel to the result in the last paragraph of Section

5 of [JngS2] and Theorem 4.17 [Liu].

Theorem 4.17: There is a surjective map ι (which extends the one in Theorem

4.14) from Π(g)(SO2n) to Φ̃(g)(SO2n). The map ι preserves the local factors:

L(σ × τ, s) = L(ι(σ) ⊗ r−1(τ), s),

ε(σ × τ, s, ψ) = ε(ι(σ) ⊗ r−1(τ), s, ψ),

for all σ ∈ Π(g)(SO2n) and all irreducible generic representations τ of any

GLkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible representation

of WF × SL2(C) of dimension kτ corresponding to τ by the local Langlands

reciprocity map for GLkτ .
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Proof. Given any σ ∈ Π(g)(SO2n), by the classification of generic representa-

tions of SO2n(F ) in Section 3.4, there exists an irreducible tampered generic

representation σ(t) of SO2n∗(F ) and a sequence of segments

{Σj = [v−qj ξj , v−qj+wjξj ]}fj=1

which is an SO2n-generic sequence of segments with respect to σ(t) (see Defini-

tion 3.14), such that

σ = δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t).

Let φ(t) be a representative of ι(σ(t)), and let

φ = φ(t) ⊕
f⊕
i=1

[
|·|−qi+wi

2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−wi
2 r−1(ξ̃i)⊗ Swi+1

]
.

It is easy to see that φ ∈ Φ(g)(SO2n). Define ι(σ) = φ̃, the image of φ

in Φ̃(SO2n). Therefore, we have constructed a map ι from Π(g)(SO2n) to

Φ̃(g)(SO2n), which naturally extends the one in Theorem 4.14. Using multi-

plicativity of local factors, it is easy to check that ι preserves local factors.

To show that this map is surjective, take any φ̃ ∈ Φ̃(g)(SO2n), and let

φ = φ(t) ⊕
f⊕
i=1

[
|·|−qi+wi

2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−wi
2 r−1(ξ̃i)⊗ Swi+1

]
be a representative, where σ(t) is an irreducible tampered generic representation

of SO2n∗(F ) and the sequence of segments

{Σj = [v−qj ξj , v−qj+wjξj ]}fj=1

is an SO2n-generic sequence of segments with respect to σ(t).

Let

σ = δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t).

Since σ(t) is an irreducible tampered generic representation of SO2n∗(F ) and

the sequence of segments

{Σj = [v−qj ξj , v−qj+wjξj ]}fj=1

is an SO2n-generic sequence of segments with respect to σ(t), by the classifica-

tion of irreducible generic representations in Section 3.4, we can see that σ is

irreducible and generic. Hence σ ∈ Π(g)(SO2n). And we can also easily see that

ι(σ) is actually equal to φ̃. Therefore, ι is indeed surjective.

This completes the proof of the theorem.
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Remark 4.18: Given any σ ∈ Π(g)(SO2n), let ι(σ) = φ̃ ∈ Φ̃(g)(SO2n), and let φ

be a representative of φ̃. Let i : SO2n(C) → GL2n(C) be the canonical embed-

ding. From Theorem 4.16 and Theorem 4.17, we can see that the composition

i ◦ φ is actually the local Langlands parameter corresponding to the lifing l(σ)

of σ under the local Langlands reciprocity map of GL2n(F ).

A local Langlands parameter φ ∈ Φ(SO2n) is called generic if there is a

generic representation in the corresponding local L-packet. From Theorem 4.17,

we can see that Φ(g)(SO2n) is actually the set of all generic local Langlands

parameters of SO2n(F ).

Remark 4.19: By Section 3.4, if σ(g) ∈ Π(g)(SO2n) is the irreducible generic

representation π1 × π2 × · · · × πf � σ(t) (possibly σ(t) = 1⊗ c) and σ(t) � cσ(t),

then σ(g) � cσ(g), both are in Π(g)(SO2n), and cσ
(g) is the irreducible generic

representation π1 × π2 × · · · × πf � cσ(t).

By Remark 4.15, Theorem 4.16 and Theorem 4.17, and by the multiplicativity

of local factors (see [S2], [JngS2] and [CKPSS]), in the above situation, σ(g) and

cσ(g) have the same lifting image and the same twisted local factors. We record

this result as the following theorem.

Theorem 4.20: For any σ ∈ Π(g)(SO2n), if σ � cσ, then l(σ) = l(cσ), and

ι(σ) = ι(cσ). That is, they have the same lifting image and the same twisted

local factors.

5. Representations attached to parameters

In this section, as in [JngS2] and [Liu], we associate one irreducible representa-

tion of G to each local Langlands parameter φ ∈ Φ(SO2n). The key idea is to

analyze the structure of each local Langlands parameter.

Proposition 5.1: Let φ ∈ Φ(SO2n). Then either φ ∈ Φ(t)(SO2n), or

(5.1) φ = φ(t) ⊕ φ(n),

where φ(t) ∈ Φ(t)(SO2n∗) (n∗ < n) and φ(n) ∈ Φ(SO2(n−n∗)) is of the form

(5.2) φ(n) =

f⊕
i=1

[
|·|−qi+wi

2 φi ⊗ Swi+1 ⊕ |·|qi−wi
2 φ̃i ⊗ Swi+1

]
.
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Here, f ∈ Z>0, w1, w2, . . . , wf ∈ Z≥0, q1, q2, . . . , qf ∈ R, such that φi is an

irreducible bounded representation of WF for 1 ≤ i ≤ f , and

w1

2
− q1 ≥ w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0

(with |·| the character of WF normalized as in [T] via local class field theory).

Proof. Given a parameter φ ∈ Φ(SO2n), assume V = C2n is the corresponding

non-degenerate orthogonal space of dimension 2n, with an orthogonal form 〈 , 〉.
Let V1 be the direct sum of all irreducible subspaces which are stable under

the action of WF × SL2(C) and in which φ(WF ) is bounded. Let V2 be the

direct sum of all irreducible subspaces which are stable under the action of

WF × SL2(C) and in which φ(WF ) is unbounded. Then

V = V1 ⊕ V2.

In a similar manner to [JngS2], one can see that both subspaces V1 and V2 are

non-degenerate with respect to the restriction of the non-degenerate orthogonal

form 〈 , 〉.
Denote by φ(t) the subrepresentation of WF ×SL2(C) on V1, and by φ(n) the

subrepresentation of WF × SL2(C) on V2. Then there are two cases:

(a) φ(t) ∈ Φ(t)(SO2n∗) and φ(n) ∈ Φ(SO2(n−n∗));

(b) φ(t) ∈ Φ(t)(Sp2n∗) and φ(n) ∈ Φ(Sp2(n−n∗−1)).

Using an argument similar to that in the proof of Proposition 5.1 of [Liu], we

can prove that case (b) cannot occur. Also, we can see that φ(t) ∈ Φ(t)(SO2n∗),

and φ(n) is of the form (5.2). This completes the proof.

Let Π′(SO2n) be the set of (equivalence classes of) all Langlands quotients

L(νx1δ1 ⊗ · · · ⊗ νxkδk ⊗ σ(t)), where σ(t) is an irreducible tempered generic

representation of SO2n∗(F ) (possibly σ(t) = 1⊗c—for the definition, see Section

3.1), x1 ≥ x2 ≥ · · · ≥ xk > 0, and δi is a square-integrable representation of

GLni(F ), for i = 1, 2, . . . , k. Then, we have the following result:

Theorem 5.2: There is a surjective map ι (which extends the one in Theorem

4.14) from Π′(SO2n) to the set Φ̃(SO2n). It preserves the local factors:

L(σ × τ, s) = L(ι(σ) ⊗ r−1(τ), s),

ε(σ × τ, s, ψ) = ε(ι(σ) ⊗ r−1(τ), s, ψ),
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for all σ ∈ Π′(SO2n) and all irreducible admissible representations τ of any

GLkτ (F ), kτ ∈ Z>0. Here, r−1(τ) is the irreducible admissible representation

of WF × SL2(C) of dimension kτ corresponding to τ by the local Langlands

reciprocity map for GLkτ .

Proof. Given any σ ∈ Π′(SO(2n)) which is the Langlands quotient

L(νx1δ1 ⊗ · · · ⊗ νxkδk ⊗ σ(t)), where σ(t) is an irreducible tempered generic

representation of SO2n∗(F ) (possibly σ(t) = 1 ⊗ c—for the definition, see Sec-

tion 3.1), x1 ≥ x2 ≥ · · · ≥ xk > 0, and δi is a square-integrable representation

of GLni(F ), for i = 1, 2, . . . , k.

Using the surjective map ι in Theorem 4.14, let φ̃(t) = ι(σ(t)) ∈ Φ̃t(SO(2n)),

and let φ(t) be a representative. Assume that φi is the corresponding Langlands

parameter for δi under the local Langlands raciprocity map for GLni(F ), for

i = 1, 2, . . . , k. Then let

φ =

k⊕
i=1

[|·|xiφi ⊕ |·|−xi φ̃i]
⊕

φ(t),

where φ̃i is the contragredient of φi. Define ι(σ) = φ̃, the image of φ in Φ̃(SO2n).

Then using multiplicativity of local factors, it is easy to see that the local

factors are preserved. In this way, we construct a map ι from Π′(SO2n) to

the set Φ̃(SO2n) which preserves local factors and naturally extends the one in

Theorem 4.14.

To prove that this map ι is surjective, take any φ̃ ∈ Φ̃(SO2n), and let

φ ∈ Φ(SO2n) be a representative. By Proposition 5.1, it can be written as

φ = φ(t) ⊕ φ(n),

where φ(t) ∈ Φ(t)(SO2n∗) (n∗ < n) and φ(n) ∈ Φ(SO2(n−n∗)) is of the form

φ(n) =

f⊕
i=1

[
|·|−qi+wi

2 φi ⊗ Swi+1 ⊕ |·|qi−wi
2 φ̃i ⊗ Swi+1

]
.

Here, f ∈ Z>0, w1, w2, . . . , wf ∈ Z≥0, q1, q2, . . . , qf ∈ R, such that φi is an

irreducible bounded representation of WF for 1 ≤ i ≤ f , and

w1

2
− q1 ≥ w2

2
− q2 ≥ · · · ≥ wf

2
− qf > 0.

By Theorem 4.14, there exists σ(t) ∈ Π(tg)(SO2n∗) such that

(5.3) ι(σ(t)) = φ̃(t) ∈ Φ̃(t)(SO2n).
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Using the local Langlands reciprocity map r for GLk(F ), define

(5.4) Σi = [v−qir(φi), v−qi+wir(φi)], 1 ≤ i ≤ f.

Let σ be the Langlands quotient of the induced representation

δ(Σ1)× δ(Σ2)× . . . δ(Σf )� σ(t)

(possibly σ(t) = 1⊗ c). Then, it is easy to see that σ ∈ Π′(SO2n). And we can

easily see that ι(σ) is actually equal to φ̃. Therefore ι is indeed surjective.

This completes the proof of the theorem.

Remark 5.3: When φ̃ ∈ Φ̃(g)(SO2n), the subset of Φ̃(SO2n), let φ ∈ Φ(g)(SO2n)

be a representative, which is a generic local Langlands parameter. Then, by

definition, φ is of the form

φ(t) ⊕
f⊕
i=1

[
|·|−qi+wi

2 r−1(ξi)⊗ Swi+1 ⊕ |·|qi−wi
2 r−1(ξ̃i)⊗ Swi+1

]
,

where σ(t) is an irreducible tampered generic representation of SO2n∗(F ) and

the sequence of segments

{Σj = [v−qj ξj , v−qj+wjξj ]}fj=1

is an SO2n-generic sequence of segments with respect to σ(t).

Then by the classification of generic representations in Section 3.4,

δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t)

is irreducible and generic. And the σ constructed in Theorem 5.2 is actually

equal to δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� σ(t), hence generic. And, from the con-

struction in Theorem 4.17, we can see that this σ matches the one constructed

in Theorem 4.17 for this generic local Langlands parameter φ. Hence, the map

ι constructed in Theorem 5.2 is a natural extension of the one constructed in

Theorem 4.17.

Therefore, we can conclude that φ ∈ Φ(SO2n) is a generic local Langlands

parameter if and only if the representation σ attached to φ in Theorem 5.2 is

generic.

Remark 5.4: If σ ∈ Π′(SO2n) is the Langlands quotient of the induced represen-

tation δ(Σ1)× δ(Σ2)×· · ·× δ(Σf )�σ(t) (possibly σ(t) = 1⊗ c) and σ(t) � cσ(t),

then σ � cσ and cσ is the Langlands quotient of the induced representation
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δ(Σ1)× δ(Σ2)× · · · × δ(Σf )� cσ(t). This matches the local Langlands classifi-

cation for SO2n(F )—see Proposition 6.3 and Section 2 of [BJ1].

By Remark 4.15, Theorem 5.2, and the multiplicativity of local factors (see

[S2], [JngS2] and [CKPSS]), in the above situation, σ and cσ have the same

twisted local factors.

As we discussed in the Introduction, when σ is attached to φ̃ as in Theorem

5.2, we also say it is attached to φ.

6. A conjecture of Gross–Prasad and Rallis

In this section, we give an application of the results in previous sections to

a conjecture of Gross–Prasad [GP] and Rallis [Ku], which says that a local

Langlands parameter φ is generic (i.e., the corresponding local L-packet has a

generic member) if and only if the associated adjoint L-function is regular at

s = 1.

We prove the SO2n case of this conjecture; the method is the same as in the

case of SO2n+1 ([JngS2]) or the case of Sp2n ([Liu]). For a general formulation

and discussion of this conjecture, see [JngS2]. Note that in [GR] (see page 446,

formula (14)), Gross and Reeder proved that for any connected reductive group

G with maximal torus in the center of G anisotropic over F , if φ is discrete,

then the associated adjoint L-function is regular at s = 1. In [AS], Asgari and

Schmidt proved this conjecture for GSp4.

Note that for G = SO2n, by the discussion in Remark 5.3, φ is generic if

and only if the representation σ attached to φ in Theorem 5.2 is generic. Note

that, by the discussion in the Introduction, there is no ambiguity here. By the

classification of irreducible generic representations of G = SO2n(F ) in Section

3, we have the following characterization of the genericity of the local Langlands

parameters of SO2n:

Proposition 6.1: For any local Langlands parameter

φ :WF × SL2(C) → SO2n(C),

the representation σ attached to φ in Theorem 5.2 is generic if and only if

σ(t) and Σi (i = 1, 2, . . . , f) defined in (5.3) and (5.4) satisfy the conditions of

Definition 3.14.
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The following theorem is the SO2n case of the conjecture. It gives a criterion

for determining the genericity of the representation attached to each φ in Section

5. Note that the proof is similar to that for SO2n+1 in [JngS2] and for Sp2n in

[Liu]. To be complete, we give full details here.

Theorem 6.2: For any local Langlands parameter

φ :WF × SL2(C) → SO2n(C),

the representation σ attached to φ in Theorem 5.2 is generic if and only if the

associated adjoint L-function L(AdSO2n ◦ φ, s) is regular at s = 1.

Proof. Step (1) (⇒). Assume that σ is generic. Write φ = φ(t) ⊕ φ(n) as in

(5.1) and (5.2). Put

θ =

f⊕
i=1

| · |wi
2 −qiφi ⊗ Swi+1.

Then φ(n) = θ⊕ θ̃, and we have the following decomposition of L(AdSO2n ◦φ, s):

(6.1)
L(AdSO2n ◦ φ, s) =L(θ ⊗ θ̃, s)L(θ ⊗ φ(t), s)L(θ̃ ⊗ φ(t), s)

· L(AdSO2n∗ ◦ φ(t), s)L(∧2 ◦ θ, s)L(∧2 ◦ θ̃, s).
In what follows, we show that each factor in the above product is holomorphic

at s = 1. Hence, the adjoint L-function L(AdSO2n ◦ φ, s) is regular at s = 1.

By conditions (1) and (2) of Definition 3.14, the representation π = r(θ) × ρ(t)

is irreducible and generic, with r−1(π) = θ⊗φ(t), where r is the local Langlands
reciprocity map for GL. Further, ρ(t) = l(σ(t)) by Theorem 4.12, φ(t) = ι(σ(t))

by Theorem 4.14, and r(θ) = δ(Σ1)× · · ·× δ(Σf ). Assume that π is a represen-

tation of GLn1(F ). Then by Proposition 7.1 of [JngS2], we know that

L(r−1(π)× r̃−1(π), s) = L(AdGLn1
◦ r−1(π), s)

is holomorphic at s = 1.

On the other hand, L(r−1(π)× r̃−1(π), s) has the following decomposition:

(6.2)

L(r−1(π)× r̃−1(π), s) =L((θ ⊗ φ(t))× (θ̃ ⊗ φ(t)), s)

=L(θ × θ̃, s)L(θ × φ(t), s)L(θ̃ × φ(t), s)L(φ(t) × φ(t), s).

By [HT] and [H], L(φ(t) × φ(t), s) = L(ρ(t) × ρ(t), s), which is P (q−s)−1 by

definition, with P (q−s) a polynomial in q−s. Thus, it does not vanish at s = 1.
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Therefore,

L(θ × θ̃, s)L(θ × φ(t), s)L(θ̃ × φ(t), s)

is holomorphic at s = 1.

Since r(φ(t)) = ρ(t), which is irreducible generic and self-contragredient, it

follows from Proposition 7.1 of [JngS2] that

(6.3) L(φ(t) × φ(t), s) = L(φ(t) × φ̃(t), s) = L(AdGL2n∗ ◦ φ(t), s)
is holomorphic at s = 1. Since as polynomials of q−s, L(AdSO2n∗ ◦ φ(t), s)−1

divides L(AdGL2n∗ ◦ φ(t), s)−1, L(AdSO2n∗ ◦ φ(t), s) is holomorphic at s = 1.

From its definition above, we know that θ has positive exponents, so the

L-function L(θ ⊗ θ, s) is holomorphic at s = 1. Since L(θ ⊗ θ, s) =

L(Sym2◦θ, s)L(∧2◦θ, s), and L(Sym2◦θ, s) does not vanish at s = 1, L(∧2◦θ, s)
must be holomorphic at s = 1.

It remains to show that L(∧2 ◦ θ̃, s) is holomorphic at s = 1. Let θi =

φi ⊗ Swi+1. Then, we have the following decomposition:

L(∧2 ◦ θ̃, s) =
f∏
i=1

L(∧2 ◦ θ̃i, s− wi + 2qi)

·
∏

1≤i<j≤f
L(θ̃i ⊗ θ̃j , s− wi + wj

2
+ qi + qj).

For 1 ≤ i < j ≤ f , it follows from [HT], [H], and (0.17) in [JngS2] that

L(θ̃i ⊗ θ̃j , s− wi + wj
2

+ qi + qj) = L(S̃ti ⊗ S̃tj, s− wi + wj
2

+ qi + qj)

= L(δ(Σ̃i)× δ(Σ̃j), s),

where δ(Σ̃i) = νqi−
wi
2 S̃ti.

By Proposition 7.1 in [JngS2], we have the following fact: for i < j, Σi and

Σj are linked if and only if

L(δ(Σi)× δ(Σ̃j), s)L(δ(Σ̃i)× δ(Σj), s)

has a pole at s = 1.

Since there is no linkage between Σ̃i and Σj (by condition (1) of Definition

3.14), by the fact above, we have L(δ(Σ̃i) × δ(Σ̃j), s) is holomorphic at s = 1.

That is,

L(θ̃i ⊗ θ̃j , s− wi + wj
2

+ qi + qj)

is holomorphic at s = 1.
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What is left are the L-factors L(∧2 ◦ θ̃i, zi), for i = 1, 2, . . . , f and zi =

s− wi + 2qi. First, we have

∧2 ◦ θ̃i = ∧2 ◦ (φ̃i ⊗ Swi+1)

= (∧2 ◦ φ̃i)⊗ (Sym2 ◦ Swi+1)⊕ (Sym2 ◦ φ̃i)⊗ (∧2 ◦ Swi+1)

= (∧2 ◦ φ̃i)⊗ (Sym2 ◦ SymwiC2)⊕ (Sym2 ◦ φ̃i)⊗ (∧2 ◦ SymwiC2),

where Swi+1 = SymwiC2 is the (wi +1)-dimensional irreducible representation

of SL2(C). Then, by Sections 11.2 and 11.3 of [FH],

Sym2(SymmC2) =

[m2 ]⊕
k=0

Sym2m−4kC2,

∧2(SymmC2) =

[m−1
2 ]⊕

k=0

Sym2(m−1)−4kC2.

Therefore,

∧2 ◦θ̃i

=

[ [
wi
2 ]⊕

k=0

(∧2 ◦ φ̃i)⊗ S2wi−4k+1

]
⊗
[ [

wi−1

2 ]⊕
k=0

(Sym2 ◦ φ̃i)⊗ S2(wi−1)−4k+1

]
.

Hence, by [HT], [H], and (0.17) in [JngS2],

(6.4)

L(∧2 ◦ θ̃i, zi)

=

[
wi
2 ]∏

k=0

L(∧2 ◦ φ̃i, zi + wi − 2k) ·
[
wi−1

2 ]∏
k=0

L(Sym2 ◦ φ̃i, zi + wi − 1− 2k)

=

[
wi
2 ]∏

k=0

L(∧2 ◦ φ̃i, s+ 2qi − 2k) ·
[
wi−1

2 ]∏
k=0

L(Sym2 ◦ φ̃i, s+ 2qi − 1− 2k).

Since φi is an irreducible representation of WF , by [HT] and [H], ξi = r(φi)

is an irreducible supercuspidal representation of GL∗(F ). If φi is not self-

contragredient, then by Theorem 4.3 of [JngS2],

L(φ̃i × φ̃i, s) = L(∧2 ◦ φ̃i, s)L(Sym2 ◦ φ̃i, s) = L(ξ̃i,∧2, s)L(ξ̃i, Sym
2, s)
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is holomorphic on the real line. Therefore, we only have to deal with the case

of φi self-contragredient, that is, ξi self-contragredient. Then

L(∧2 ◦ φ̃i, s)L(Sym2 ◦ φ̃i, s) = L(ξ̃i,∧2, s)L(ξ̃i, Sym
2, s)

has a pole at s = 0.

If L(ξi,∧2, s + 2qi − 2k) has a pole at s = 1, for some 0 ≤ k ≤ [wi

2 ], then

1 + 2qi − 2k = 0, that is

(6.5) −qi = 1

2
− k ∈ 1

2
+ Z≤0.

Since −qi + wi ≥ −qi + wi

2 > 0, we know from (6.5) that −qi + wi ∈ 1
2 + Z≥0.

Also by (6.5), −qi ≤ 1
2 , we can see that

1

2
∈ {−qi,−qi + 1, . . . ,−qi + wi}.

This contradicts condition (3c) in Definition 3.14. On the other hand, the

conditions (3a) and (3b) in Definition 3.14 do not hold. So, we can see that

L(ξi,∧2, s + 2qi − 2k) is holomorphic at s = 1 for all 0 ≤ k ≤ [wi

2 ]. That is,

L(∧2 ◦ φ̃i, s+ 2qi − 2k) is holomorphic at s = 1 for all 0 ≤ k ≤ [wi

2 ].

Similarly, if L(ξi, Sym
2, s + 2qi − 1 − 2k) has a pole at s = 1, for some

0 ≤ k ≤ [wi−1
2 ], then −qi = −k ∈ Z≤0. So, −qi +wi ≥ 1. Therefore, we can see

that

0, 1 ∈ {−qi,−qi + 1, . . . ,−qi + wi}, and qi ∈ Z≥0.

This contradicts conditions (3b) and (3c) in Definition 3.14. On the other

hand, the condition (3a) in Definition 3.14 does not hold. So, we can see that

L(ξi, Sym
2, s+2qi−2k−1) is holomorphic at s = 1, for all 0 ≤ k ≤ [wi−1

2 ]. That

is, L(Sym2 ◦ φ̃i, s+2qi− 1− 2k) is holomorphic at s = 1 for all 0 ≤ k ≤ [wi−1
2 ].

Based on the above discussion, we can see that the adjoint L-function

L(AdSO2n ◦ φ, s) is holomorphic at s = 1 when φ ∈ Φ(SO2n) is a generic pa-

rameter. That is, the representation σ attached to φ in Theorem 5.2 is generic.

Hence, Step (1) has been proved.

Step (2) (⇐). We assume that the adjoint L-function L(AdSO2n ◦ φ, s) is

regular at s = 1. We then show that the representation σ attached to φ in

Theorem 5.2 is generic, that is, {Σi}fi=1 defined in (5.4) is an SO2n-generic

sequence of segments with respect to σ(t) (see Definition 3.14). We do this by

contradiction. Assume that σ is not generic. Then {Σi}fi=1 and σ(t) do not

satisfy all the conditions in Definition 3.14.
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If Part (1) of Definition 3.14 is not satisfied, then there exist 1 ≤ i �= j ≤ f ,

such that Σi is linked to Σj or Σ̃j. Again using the fact above that Σi and Σj

(i < j) are linked if and only if L(δ(Σi)× δ(Σ̃j), s)L(δ(Σ̃i)× δ(Σj), s) has a pole

at s = 0, we know that the following product

(6.6)

L(δ(Σi)× δ(Σ̃j), s)L(δ(Σ̃i)× δ(Σj), s)L(δ(Σi)× δ(Σj), s)L(δ(Σ̃i)× δ(Σ̃j), s)

has a pole at s = 1. Let θ′i = |·|wi
2 −qiφi⊗Swi+1, for 1 ≤ i ≤ f . Then r(θ′i) = Σi.

By (6.6), [HT] and [H], the following product

(6.7) L(θ′i × θ̃′j), s)L(θ̃
′
i × θ′j , s)L(θ

′
i × θ′j , s)L(θ̃′i × θ̃′j , s)

has a pole at s = 1. By the proof for Step (1), L(θ′i × θ̃′j), s)L(θ̃
′
i × θ′j , s) occurs

in L(θ × θ̃, s), L(θ′i × θ′j , s) occurs in L(∧2 ◦ θ, s), and L(θ̃′i × θ̃′j , s) occurs in

L(∧2 ◦ θ̃, s). Therefore, L(AdSO2n ◦ φ, s) has a pole at s = 1—contradiction!

If Part (2) of Definition 3.14 is not satisfied, then the representation r(θ)×ρ(t)
is reducible and its Langlands quotient π is non-generic. Then by Proposition

7.1 of [JngS2], we know that the product in (6.2) has a pole at s = 1. By

(6.3), the last factor is holomorphic at s = 1; the pole at s = 1 must occur

in the product of the first three factors, which, on the other hand, occurs in

L(AdSO2n ◦ φ, s) by (6.1). Therefore, we can see that L(AdSO2n ◦ φ, s) has a

pole at s = 1—contradiction!

If there is an integer 1 ≤ i ≤ f such that Part (3) of Definition 3.14 is not

satisfied, then φi is self-contragredient; Σi is not linked to an element of X ′ or
there exists τ ∈ X ′ such that τ ∼= ξi, qi = −1, and there is some 1 ≤ j ≤ eτ

with aj(τ) = −1 but 1 + wi > bj(τ); and r(φi) does not satisfy condition (3c).

Let σ(2) be the irreducible discrete series generic representation occurring in

σ(t), ρ(t) = l(σ(t)), and σ(0) the irreducible supercuspidal generic representation

occurring in σ(2). Put ξi = r(φi). Then ξi is self-contragredient.

Assume that (ξi, σ
(0)) is (C1), but one of ±1 ∈ {−qi,−qi + 1, . . . ,−qi + wi}.

Then qi ∈ Z. If qi < 0, then qi ≤ −1, and so −qi ≥ 1, which implies −qi = 1.

Since L(ρ(0) × ξi, s) has a pole at s = 1, we have Σi linked to an element of

A(ρ(2)). Then Σi is linked to an element of A0(ρ
(2)) ∪A1(ρ

(2)), or there exists

τ ∈ X ′ = A2(ρ
(2)) such that τ ∼= ξi, qi = −1, and there is some 1 ≤ j ≤ eτ with

aj(τ) = −1 but 1+wi > bj(τ). In any case, Σi is linked to a segment associated

to ρ(t), which means r(θ)×ρ(t) is reducible and its Langlands quotient π is non-

generic. In this case, for the same reason as above, L(AdSO2n ◦ φ, s) has a pole
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at s = 1—contradiction! So we must have qi ≥ 0. Since qi < wi/2, we have

0 ≤ qi ≤
[wi − 1

2

]
, qi ∈ Z.

Now, as L(ξi, Sym
2, s) has a pole at s = 0, the second product in (6.4) must

have a pole at s = 1 if there exists a 0 ≤ k′ ≤ [wi−1
2 ] such that

1 + 2qi − 2k′ − 1 = 0,

that is, k′ = qi. So, the second product in (6.4) has a pole at s = 1, as its factor

corresponding to k′ = qi has a pole at s = 1—contradiction!

Suppose (ξi, σ
(0)) is (C0), but 0 ∈ {−qi,−qi+1, . . . ,−qi+wi}. Then we can

see that qi ∈ Z. So −qi ≤ 0, that is, qi ≥ 0. On the other hand, qi < wi/2, so

we have

0 ≤ qi ≤
[wi − 1

2

]
, qi ∈ Z.

Then, as in the last case, we can see that the second product in (6.4) has a

pole at s = 1—contradiction! If (ξi, σ
(0)) is (CN), but q ∈ Z≥0, then we have

a similar contradiction!

Suppose (ξi, σ
(0)) is (C 1

2 ), but one of ± 1
2 ∈ {−qi,−qi + 1, . . . ,−qi + wi}.

Then qi ∈ 1
2 + Z and −qi ≤ 1

2 , that is, qi +
1
2 ≥ 0. Since L(ξi,∧2, s) has a pole

at s = 0, the first product in (6.4) must have a pole at s = 1 if there exists a

0 ≤ k′ ≤ [wi

2 ] such that

1 + 2qi − 2k′ = 0,

that is, k′ = qi +
1
2 . On the other hand, qi < wi/2, so we have

0 ≤ qi +
1

2
≤
[wi
2

]
, qi ∈ 1

2
+ Z.

Thus, the first product in (6.4) has a pole at s = 1—contradiction!

Therefore {Σi}fi=1 and σ(t) do satisfy all the conditions in Definition 3.14,

that is, σ is not generic. This completes the proof of Step (2), hence proves the

theorem.

7. Genericity and Arthur parameters

In this section, we give another application of the results in Sections 3–5. Given

a local Arthur parameter ψ, and the corresponding local Langlands parameter

φψ , we give an alternate proof of a result of Shahidi that the representations
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attached to φψ in Section 5 are generic if and only if φψ is tempered, that is, ψ

is trivial on the second SL2.

Ban proved a similar result for the case of SO2n+1 in [Ban2], using the result

of Jiang and Soudry in [JngS2]. Liu used the same method later, proving a

similar result for the case of Sp2n by generalizing the result of Jiang and Soudry

in [JngS2] to the Sp2n case. In previous sections, we gave the classification of

irreducible generic representations for split SO2n and generalized the result of

Jiang and Soudry in [JngS2] to this case, so we can use the same strategy to

prove the above result.

Recently, Shahidi (see Theorem 5.1 of [S4]) proved a similar result for any

quasi-split connected reductive group G, with an assumption on the validity

of the local Langlands conjecture for appropriate Levi subgroups M of G and

data. Kim was able to remove this assumption for split GSpin groups, thus

fully proving it in this case (see [Kim]). Note that by Lemma 7.2 [CKPSS] and

Theorem 1.3 [H1], Theorem 5.1 [S4] implies that the SO2n case of this result is

true. We give a different proof here based on our classification.

First, let us recall the definition of local Arthur parameters (see [A1] and

[A2]). The local Arthur parameter (A-parameter) for G is of the following

form, a direct sum of irreducible representations:

ψ :WF × SL2(C)× SL2(C) → SO2n(C)

ψ =

t⊕
i=1

φi ⊗ Smi ⊗ Sni ,

satisfying the following conditions:

(1) φi(WF ) is bounded and consists of semi-simple elements;

(2) the restrictions of ψ to the two copies of SL2(C) are analytic.

For each A-parameter ψ, Arthur associated a local Langlands parameter (L-

parameter) φψ as follows:

(7.1) φψ(w, x) = ψ

(
w, x,

(
|w| 12 0

0 |w|− 1
2

))
.

Note that for any L-parameter φ,

φ(w) ⊗ Sm(x)⊗ Sn

((
|w| 12 0

0 |w|− 1
2

))
=

n−1
2⊕

j=− n−1
2

|w|jφ(w) ⊗ Sm(x).
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Arthur also showed that ψ �→ φψ is injective.

The following is the main theorem in this section:

Theorem 7.1 (Shahidi [S4]): For each A-parameter ψ, and corresponding L-

parameter φψ , the representations attached to φψ in Section 5 are generic if and

only if φψ is tempered.

Proof. Assume ψ =
⊕t

i=1 φi ⊗ Smi ⊗ Sni . Then, by (7.1),

(7.2)

φψ =

t⊕
i=1

ni−1

2⊕
ji=−ni−1

2

|·|jiφi ⊗ Smi

=
⊕

{i |ni even}

ni−1

2⊕
ji=

1
2

|·|jiφi ⊗ Smi ⊕ |·|−ji φ̃i ⊗ Smi

⊕
⊕

{i |ni odd}

( ni−1

2⊕
ji=1

|·|jiφi ⊗ Smi ⊕ |·|−ji φ̃i ⊗ Smi

)
⊕ φi ⊗ Smi .

Assume that σ is a representation attached to φψ in Section 5. If φψ is

tempered, then σ is obviously generic by Theorem 5.2. Therefore, it suffices to

assume that σ is generic and to show ni = 1, for 1 ≤ i ≤ t. To do this, we use

Definition 3.14 to rule out the possibility of ni > 1 for 1 ≤ i ≤ t.

First, from (7.2), we can write down all the segments associated to σ as

follows:

(7.3)

⋃
ni even

{[|·|ji+ 1−mi
2 τi, |·|ji+

mi−1

2 τi], [|·|−ji+
1−mi

2 τ̃i, |·|−ji+
mi−1

2 τ̃i]}
ni−1

2

ji=
1
2

,

⋃
ni odd

{[|·|ji+ 1−mi
2 τi, |·|ji+

mi−1

2 τi], [|·|−ji+
1−mi

2 τ̃i, |·|−ji+
mi−1

2 τ̃i]}
ni−1

2

ji=1 ,⋃
ni odd

{[|·| 1−mi
2 τi, |·|

mi−1

2 τi]},

where τi = r(φi), an irreducible supercuspidal representation under the local

Langlands reciprocity map r for GL.

For the case of ni odd, we claim that ni must be 1. Indeed, otherwise

{[|·|1+ 1−mi
2 τi, |·|1+

mi−1

2 τi], [|·|−1+
1−mi

2 τ̃i, |·|−1+
mi−1

2 τ̃i], [|·|
1−mi

2 τi, |·|
mi−1

2 τi]}
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is a subset of (7.3), which contradicts Part (2) of Definition 3.14 since

[|·|1+ 1−mi
2 τi, |·|1+

mi−1

2 τi] is linked with [|·| 1−mi
2 τi, |·|

mi−1

2 τi]. Therefore, if ni is

odd, then ni = 1.

For the case of ni even, we claim that for any 1 ≤ i ≤ t, φi ⊗ Smi ⊗ Sni is of

orthogonal type. Indeed, otherwise, φ̃i⊗Smi ⊗Sni is also included in φψ. Then

{[|·| 12+ 1−mi
2 τi, |·| 12+

mi−1

2 τi], [|·|− 1
2+

1−mi
2 τ̃i, |·|− 1

2+
mi−1

2 τ̃i]}
∪ {[|·| 12+ 1−mi

2 τ̃i, |·| 12+
mi−1

2 τ̃i], [|·|− 1
2+

1−mi
2 τi, |·|− 1

2+
mi−1

2 τi]}
is a subset of (7.3), which contradicts Part (1) of Definition 3.14, since

[|·| 12+ 1−mi
2 τi, |·| 12+

mi−1

2 τi] is linked with [|·|− 1
2+

1−mi
2 τi, |·|− 1

2+
mi−1

2 τi]. Therefore,

for any 1 ≤ i ≤ t, if ni is even, then φi ⊗ Smi ⊗ Sni is of orthogonal type.

If there exists i, such that ni ≥ 4, even, then we can see that

{[|·| 12+ 1−mi
2 τi, |·| 12+

mi−1

2 τi], [|·|− 1
2+

1−mi
2 τ̃i, |·|− 1

2+
mi−1

2 τ̃i]}
∪ {[|·| 32+ 1−mi

2 τi, |·| 32+
mi−1

2 τi], [|·|− 3
2+

1−mi
2 τ̃i, |·|− 3

2+
mi−1

2 τ̃i]}
is a subset of (7.3), which also contradicts Part (1) of Definition 3.14, since

[|·| 12+ 1−mi
2 τi, |·| 12+

mi−1

2 τi] is linked with [|·| 32+ 1−mi
2 τi, |·| 32+

mi−1

2 τi].

So, it remains to consider the case of ni = 2. By the discussion above,

φi⊗Smi⊗S2 is of orthogonal type. In particular, τi=r(φi) is self-contragredient,

and φi ⊗ Smi is of symplectic type. Since σ is generic, the segment Σ =

[|·| 12+ 1−mi
2 τi, |·| 12+

mi−1

2 τi] must satisfy Part (3b) or Part (3c) of Definition 3.14.

It is easy to see that Σ does not satisfy Part (3b), since 1
2 + 1−mi

2 = 1 implies

mi = 0. For Part (3c), if mi is even, then τi is of orthogonal type, that is,

L(τi, Sym
2, s) has a pole at s = 0. But now, 0, 1 ∈ {−mi

2 + 1, . . . , mi

2 }, and
mi

2 − 1 ∈ Z≥0. If mi is odd, then τi is of symplectic type, that is, L(τi,∧2, s)

has a pole at s = 0. But now, 1
2 ∈ {−mi

2 + 1, . . . , mi

2 }. Therefore, Σ does not

satisfy Part (3c) either. Contradiction!

This completes the proof of the theorem.
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building, Publications Mathématiques. Institut de Hautes Études Scientifiques 85

(1997), 97–191.

[S1] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complemen-

tary series for p-adic groups, Annals of Mathematics 132 (1990), 273–330.

[S2] F. Shahidi, On multiplicativity of local factors, in Festschrift in honor of

I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv,

1989), Israel Mathematical Conference Proceedings, Vol. 3, Weizmann Science Press

of Israel, Jerusalem, 1990, pp. 279–289.

[S3] F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic

groups, Duke Mathematical Journal 66 (1992), 1–41.

[S4] F. Shahidi, Arthur packets and the Ramanujan conjecture, Kyoto Journal of Math-

ematics 51 (2011), 1–23 and Addendum, Kyoto Journal of Mathematics 51 (2011),

502.

[Sil1] A. Silberger, The Langlands quotient theorem for p-adic groups, Mathematische

Annalen 236 (1978), 95–104.

[Sil2] A. Silberger, Introduction to Harmonic Analysis on Reductive p-adic Groups, Based

on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973,

Mathematical Notes, Vol. 23, Princeton University Press, Princeton, N.J.; Univer-

sity of Tokyo Press, Tokyo, 1979.

[Sil3] A. Silberger, Special representations of reductive p-adic groups are not integrable,

Annals of Mathematics 111 (1980), 571–587.
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[Td3] M. Tadić, Structure arising from induction and Jacquet modules of representations

of classical p-adic groups, Journal of Algebra 177(1995), 1–33.
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