ON AUTOMORPHIC DESCENT FROM $G L_{7}$ TO $\boldsymbol{G}_{\mathbf{2}}$

JOSEPH HUNDLEY AND BAIYING LIU

Abstract

In this paper, we study the functorial descent from self-contragredient cuspidal automorphic representations π of $G L_{7}(\mathbb{A})$ with $L^{S}\left(s, \pi, \wedge^{3}\right)$ having a pole at $s=1$ to the split exceptional group $G_{2}(\mathbb{A})$, using Fourier coefficients associated to two nilpotent orbits of E_{7}. We show that one descent module is generic, and under suitable local conditions, it is cuspidal and π is a weak functorial lift of each of its irreducible summands. This establishes the first functorial descent involving the exotic exterior cube L-function. However, we show that the other descent module supports not only the non-degenerate Whittaker-Fourier integral on $G_{2}(\mathbb{A})$ but also every degenerate WhittakerFourier integral. Thus it is generic, but not cuspidal. This is a new phenomenon, compared to the theory of functorial descent for classical and GSpin groups.

1. Introduction

In the theory of automorphic forms one of the major open problems is to construct functorial correspondences between automorphic forms on different groups. This has been accomplished in particular cases by various methods, including the converse theorem, the theta correspondence, the trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It serves as a complement to the constructions of functorial liftings, and can be used to characterize the image of a functorial lifting.

We briefly recall these notions. Let F be a number field, \mathbb{A} its adele ring, and H a connected reductive F-group. Given an irreducible automorphic representation $\pi=\otimes_{v} \pi_{v}$ of $H(\mathbb{A})$ we obtain a finite set S of places of F and a semisimple conjugacy class $\left\{t_{\pi_{v}}\right\}$ in ${ }^{L} H$ for each $v \notin S$. We say that two automorphic representations π and π^{\prime} are nearly equivalent if $\left\{t_{\pi_{v}}\right\}=\left\{t_{\pi_{v}^{\prime}}\right\}$ for all v outside a finite set. Given an L-homomorphism $\varphi:{ }^{L} H \rightarrow{ }^{L} G$ we say that an irreducible automorphic representation Π of $G(\mathbb{A})$ is a weak functorial lift, relative to φ of an irreducible automorphic representation π of $H(\mathbb{A})$ if $\left\{t_{\Pi_{v}}\right\}=\left\{\varphi\left(t_{\pi_{v}}\right)\right\}$ for all v outside a finite set. Clearly, in this situation, every element of the near equivalence class of Π is also a weak functorial lift of every element of the near equivalence class of π. We also say that π is a weak functorial descent of Π. The Langlands functoriality conjecture then predicts that the set of weak functorial lifts is nonempty for all π and all φ. This has been proved in a number of cases, though the general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general case is open but the problem has been solved in some cases. For example, Ginzburg, Rallis and Soudry showed, using descent together with the lifting results of Cogdell, Kim, Piatetski-Shapiro, and Shahidi, that an automorphic representation of $G L_{2 n}(\mathbb{A})$ is a weak functorial lift from a generic cuspidal representation of $S O_{2 n+1}(\mathbb{A})$ (for the inclusion $S p_{2 n}(\mathbb{C}) \rightarrow G L_{2 n}(\mathbb{C})$) if and only if it is

[^0]an isobaric sum $\tau_{1} \boxplus \cdots \boxplus \tau_{r}$ of distinct cuspidal representations τ_{i} of $G L_{2 n_{i}}(\mathbb{A})$ for $1 \leq i \leq r$, such that $L^{S}\left(s, \tau_{i}, \wedge^{2}\right)$ has a pole at $s=1$ for each i. In particular, a cuspidal representation of $G L_{2 n}(\mathbb{A})$ has a weak functorial descent to $S O_{2 n+1}(\mathbb{A})$ if and only if its exterior square L-function has a pole. Notice that $S p_{2 n}(\mathbb{C})$ is embedded into $G L_{2 n}(\mathbb{C})$ as the stabilizer of a point in general position in the exterior square representation. Ginzburg, Rallis and Soudry also obtained similar results for other classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was an earlier result of Ginzburg, Rallis, and Soudry, that $L^{S}\left(s, \tau, \wedge^{2}\right)$ has a pole at $s=1$ whenever τ is a weak functorial lift relative to the above inclusion. Moreover, this result was predicted by the functoriality and generalized Ramanujan conjectures, before it was proved. If a cuspidal representation τ of $G L_{2 n}(\mathbb{A})$ is the weak functorial lift of a cuspidal representation σ of $S O_{2 n+1}(\mathbb{A})$ relative to the inclusion $S p_{2 n}(\mathbb{C}) \rightarrow G L_{2 n}(\mathbb{C})$, then $L^{S}\left(s, \tau, \wedge^{2}\right)=L^{S}\left(s, \sigma, \wedge_{0}^{2}\right) \zeta^{S}(s)$, where \wedge_{0}^{2} is the second fundamental representation of $S p_{2 n}(\mathbb{C})$, which satisfies $\wedge^{2}=\wedge_{0}^{2} \oplus \mathbf{1}$, where $\mathbf{1}$ is the trivial representation. Clearly $\zeta^{S}(s)$ has a pole at $s=1$ for all finite sets S. Further, the functoriality conjecture predicts that $L^{S}\left(s, \sigma, \wedge_{0}^{2}\right)$ should be the standard L-function of the weak functorial lift of σ to $G L_{\operatorname{dim} \wedge_{0}^{2}}$, relative to \wedge_{0}^{2}. This lift may not be cuspidal, but the generalized Ramanujan conjecture predicts that σ will be tempered at all places, in which case its lift will be as well. This forces the cuspidal support of any weak functorial lift to be unitary, which is sufficient to ensure nonvanishing of its L-function on the line $\operatorname{Re}(s)=1$.

In general, by the same reasoning, if r is a finite dimensional representation of ${ }^{L} G$ and the image of $\varphi:{ }^{L} H \rightarrow{ }^{L} G$ is contained in the stabilizer of some nonzero point in the space of r, and if π is an irreducible globally generic cuspidal representation of $H(\mathbb{A})$ then $L^{S}(s, \Pi, r)$ is expected to have a pole at $s=1$ for any weak functorial lift Π of π to G relative to φ.

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if $L^{S}(s, \Pi, r)$ has a pole at $s=1$, then Π should be a weak functorial lift relative to the inclusion of a reductive group which stabilizes a nonzero point in the space of r. (A more refined conjecture is given in [L04.)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin groups (which are not classical, but have classical L-groups) in [HS16]. The preprint [G18] investigates the extension of the method of descent into exceptional groups. Ginzburg has also investigated descent from E_{6} to F_{4}, together with the first named author, in an unpublished preprint. In this paper, we investigate an interesting case in the exceptional group $G E_{7}$.

The method may be described as follows. Suppose that there is a reductive group A such that
(1) G is a Levi subgroup of A
(2) r appears in the restriction to ${ }^{L} G$ of the adjoint representation of ${ }^{L} A$
(3) H is the stabilizer in A of some $\mathfrak{s l}_{2}$-triple in the Lie algebra \mathfrak{a} of A.

Then the descent method proceeds by the following steps:
(1) Take an irreducible cuspidal automorphic representation π of $G(\mathbb{A})$.
(2) Consider Eisenstein series on $A(\mathbb{A})$ induced from π. The L-function $L^{S}(s, \pi, r)$ appears in the constant term of these Eisenstein series. Consider the corresponding residual representation.
(3) Consider a Fourier coefficient attached to the $\mathfrak{s l}_{2}$-triple with stabilizer H. This Fourier coefficient will map automorphic forms on $A(\mathbb{A})$ to smooth automorphic functions of uniformly moderate growth on $H(\mathbb{A})$ (or in some cases the metaplectic double cover of $H(\mathbb{A})$). Applying this Fourier coefficient to our residual representation, we obtain a space of functions on $H(\mathbb{A})$ (or its double cover) which we call the descent module.
For example, in the classical work of Ginzburg, Rallis and Soudry, the group $G L_{2 n}$ appears as a Levi of $S O_{4 n}$, and for suitable $\mathfrak{s l}_{2}$-triples in $\mathfrak{s o}_{4 n}$ the stabilizer in $S O_{4 n}$ is isomorphic to $S O_{2 n+1}$. We remark that in some cases $L^{S}(s, \pi, r)$ will appear in the constant term along with other L-functions,
and it will be necessary to add some assumption above and beyond $L^{S}(s, \pi, r)$ having a pole. For example, in the descent from $G L_{2 n}$ to $\widetilde{S p}_{2 n}$ one must assume that the exterior square L-function has a pole at 1 , and that the standard L-function is nonvanishing at $\frac{1}{2}$.

As mentioned, in some cases the descent module consists of genuine functions on a metaplectic double cover. Since this does not apply to the case we consider in this paper, we will not go further into this. We remark that while the functions in the descent module are easily seen to be smooth, invariant by $H(F)$ on the left, of uniformly moderate growth, and finite under translations of a maximal compact subgroup of $H(\mathbb{A})$, it is not easy to see whether or not they are finite under the action of the center of the universal enveloping algebra. So, they are not necessarily automorphic forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that descent module is cuspidal (hence L^{2}, so that its closure is a Hilbert space direct sum of irreducibles), and that every summand is a weak descent of the original representation on $G L_{2 n}(\mathbb{A})$. Moreover, it is orthogonal to the kernel of the non-degenerate Whittaker-Fourier integral on $H(\mathbb{A})$, which implies that it is multiplicity free and that every summand is globally generic. In some cases, it can even be shown that the descent module is irreducible. In HS16, it is shown that the descent module is cuspidal, that every summand is a weak descent, and that the non-degenerate Whittaker-Fourier integral does not vanish on the descent module (so at least one summand is globally generic). The stronger result - that the descent module is orthogonal to the kernel of the non-degenerate Whittaker-Fourier integral - should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being one of the exceptional groups. In this paper we consider the case when $A=G E_{7}$, and $G=G L_{7} \times G L_{1}$. The embedding of $G L_{7} \times G L_{1}$ into $G E_{7}$ can be chosen so that r is the product of the \wedge^{3} representation of $G L_{7}$ and the standard representation of $G L_{1}$. We show that it suffices to consider the case when the automorphic representation of $G L_{7}$ is self-contragredient and the character of $G L_{1}$ is trivial. The group $G L_{7} \times G L_{1}$ acts on our space with a Zariski-open orbit and the stabilizer of any point in this orbit is the product of the center of $G E_{7}$ and a subgroup of $G L_{7}$ of type G_{2}. The stabilizer of any nonzero point which is not in the Zariski open orbit is not reductive. Thus we consider irreducible self-contragredient cuspidal automorphic representations π of $G L_{7}(\mathbb{A})$ such that the $\wedge^{3} L$-function has a pole at $s=1$, i.e., of G_{2} type by Definition 4.2.10. The philosophy discussed above predicts that such cuspidal representations should be weak functorial lifts from G_{2}. We first construct square integrable residual representations of $G E_{7}(\mathbb{A})$. At this point, an interesting feature emerges, which was not present in the classical setting: it turns out that there are two orbits of $\mathfrak{s l}_{2}$ triples in \mathfrak{e}_{7} with stabilizers of type G_{2}. Thus, we have two different Fourier coefficients which we can apply to obtain two descent modules on the exceptional group $G_{2}(\mathbb{A})$. In this paper we study both descent modules.

The functorial lifting corresponding to this case is known, at least for generic cuspidal representations. By [GRS97] generic cuspidal representations of $G_{2}(\mathbb{A})$ can be lifted to $S p_{6}(\mathbb{A})$ using the minimal representation of E_{7}. It can then be lifted to $G L_{7}$ using the work of Cogdell-Kim-Piatetski-Shapiro-Shahidi [CKPSS04], Arthur [A13], and Cai-Friedberg-Kaplan [CFK18]. It is very natural to ask whether the descent from $G L_{7}$ to G_{2} could be constructed by combining the descent from $G L_{7}$ to $S p_{6}$ from [GRS11] with the theta-type correspondence from $S p_{6}$ to G_{2} in GRS97. To the best of our understanding, this should be possible, but would require proving the following conjecture.

Conjecture 1.0.1. Let π be an irreducible self-contragredient cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ such that $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, and let σ denote the irreducible descent of π to $S p_{6}(\mathbb{A})$. Then σ has trivial central character and satisfies the three equivalent conditions of Theorem 1.1 of [GJ01].

An analogy with the earlier work of Ginzburg-Rallis-Soudry, as well as HS16, would predict that the descent module should be cuspidal, support the non-degenerate Whittaker-Fourier integral, and be a direct sum of weak descents of our original cuspidal representation of $G L_{7}$. In this respect, the two descent modules behave totally differently.

In one case we prove that the descent module is generic, and under suitable local conditions, it is cuspidal and π is a weak functorial lift of each irreducible summand. One piece that is missing, in comparison to [GRS11, HS16, is a means of showing that when π is self-contragredient and $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, the Satake parameters of the components of π at unramified places must contain conjugacy classes of $G_{2}(\mathbb{C})$. We show cuspidality under the assumption that at least one of them does, and weak functorial lifting under the assumption that all but finitely many of them do. In particular, we prove the following theorem (cf. Theorem 7.0.1).
Theorem 1.0.2. Let F be a number field and let π be an irreducible cuspidal automorphic representation of $G L_{7}\left(\mathbb{A}_{F}\right)$. Suppose that the following conditions hold.
(1) The partial L-function $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, for some finite set S.
(2) For almost all places v of F at which π_{v} is unramified, the Satake parameter of the local component π_{v} is conjugate, in $G L_{7}(\mathbb{C})$, to an element of $r_{7}\left(G_{2}(\mathbb{C})\right.$, where r_{7} is standard representation of G_{2}.
Then there exists a globally generic cuspidal automorphic representation σ of $G_{2}\left(\mathbb{A}_{F}\right)$ such that for almost all places v of F at which σ_{v} is unramified, the Satake parameter of π_{v} is conjugate, in $G L_{7}(\mathbb{C})$, to the Satake parameter of σ_{v}.

We believe that it should be possible to replace the second condition with the weaker condition that π is self-contragredient or has trivial central character. That is, we have the following conjecture.
Conjecture 1.0.3. Let π be an irreducible self-contragredient cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ such that $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$. Then for almost all places v of F at which π_{v} is unramified, the Satake parameter of the local component π_{v} is conjugate, in $G L_{7}(\mathbb{C})$, to an element of $r_{7}\left(G_{2}(\mathbb{C})\right.$, where r_{7} is standard representation of G_{2}.

This conjecture turns out to be equivalent to Conjecture 1.0.1. More generally, if π satisfies conditions (1) and (2) of Theorem 1.0.2, then its descent to G_{2} contains an irreducible generic cuspidal automorphic representation of $G_{2}(\mathbb{A})$, which we may theta-lift to $S p_{6}(\mathbb{A})$ using the lifting from GRS97. By a result of Savin, HKT19, Appendix A], the lifting is generic, and lifts weakly to π (which forces it to be cuspidal due to the Strong Multiplicity One Theorem for $G L_{7}$), and so, by Strong Multiplicity One Theorem for $S p_{6}$, it contains the descent of π, which therefore satisfies the equivalent conditions of [GJ01]. Conversely, if the descent of π to $S p_{6}$ satisfies the equivalent conditions of [GJ01], then it is the theta lift of a generic cuspidal representation of $G_{2}(\mathbb{A})$, and this lifting is functorial. It follows that π itself is a functorial lift from G_{2} and condition (2) of Theorem 1.0 .2 is satisfied.

The result above establishes the first functorial descent which involves the exotic exterior cube L-function. This is an important step towards fully understanding the Langlands functoriality from G_{2} to $G L_{7}$ which is not an endoscopic type. As pointed out to us by Michael Harris, Theorem 1.0.2 has interesting applications already, for example, to [BHKT19, Conjecture 11.6] and the surjectivity of local Langlands correspondence (HKT19]).

The other descent module behaves totally differently. It supports not only the non-degenerate Whittaker-Fourier integral on $G_{2}(\mathbb{A})$, but also every degenerate Whittaker-Fourier integral. Thus it is generic, but not cuspidal. It has a nontrivial constant term for each proper parabolic of G_{2}, and its constant terms for the two maximal parabolics are generic representations of $G L_{2}(\mathbb{A})$. And this holds for every cuspidal representation of $G L_{7}(\mathbb{A})$ such that the $\wedge^{3} L$-function has a pole! This
is a new phenomenon, compared to the theory of functorial descent for classical and GSpin groups. See Theorem 8.0.1.

This outcome is not entirely without precedent. Descent constructions in the exceptional group F_{4} were previously studied in [G18] from a different point of view. In [G18], Ginzburg introduces a general family of lifting integrals which interpolates between theta type liftings at one end of the spectrum and descent constructions at the other end. He also introduces a "dimension equation" which is said to hold in every known case where an integral of his type gives a functorial correspondence. He then uses the dimension equation to decide which automorphic representations to apply a Fourier coefficient to (instead of using a residual representation obtained from a pole of $\left.L^{S}(s, \pi, r)\right)$.

This approach makes sense from the perspective of the techniques which are used to prove genericity and cuspidality, namely identities of unipotent periods. The approach taken in [G18] is to take the unipotent period obtained by composing the descent Fourier coefficient with either a Whittaker integral or a constant term on the stabilizer H, and relate this period to some combination of coefficients attached to $\mathfrak{s l}_{2}$-triples and constant terms.

One case of particular interest is when $A=F_{4}, G=G S p_{6}, r$ is the spin representation of ${ }^{L} G=G \operatorname{Spin}_{7}(\mathbb{C})$, and $H=G_{2}$. In this case, it is shown in [G18] that
(1) The non-degenerate Whittaker-Fourier integral of the descent module of any representation \mathcal{E} can be expressed in terms of coefficients attached to the orbits $F_{4}, F_{4}\left(a_{1}\right)$, and $F_{4}\left(a_{2}\right)$, as well as the constant term along the C_{3} parabolic, and
(2) The constant terms of the descent module can be expressed in terms of exactly the same four unipotent periods!

This is very similar to our result, which relates both the non-degenerate Whittaker-Fourier integral and all degenerate Whittaker-Fourier integrals of the descent to the same unipotent period on $G E_{7}$. This period is not one of the types considered by Ginzburg, but it is in a more general family, introduced by Gomez, Gourevich and Sahi in GGS17.

Another case which has been studied somewhat is when $A=E_{8}, G=G E_{6} \times G L_{1}, r$ is 27dimensional, and $H=F_{4}$. This case is considered in work in progress of Ginzburg and the first named author. In that case, also, it appears that the descent module is generic, but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has a decomposition into irreducibles, or even a spectral decomposition in terms of cuspidal data. Moreover, there would seem to be little reason to think that its irreducible subquotients - should they exist - will be weak descents of the original cuspidal representation of $G L_{7}(\mathbb{A})$. Indeed, if our representation of $G L_{7}(\mathbb{A})$ was a weak functorial lift of a cuspidal representation of $G_{2}(\mathbb{A})$ which is not CAP, then no weak descent of it has a constant term - and the descent module does. If one is still optimistic enough to believe that the descent module contains a generic weak descent of our cuspidal representation of $G L_{7}(\mathbb{A})$, then one is led to the questions of what else it contains, and whether this "extra" depends on the choice of the representation.

Another natural question is the following: what other automorphic representations of $G L_{7}(\mathbb{A})$ should descend to $G_{2}(\mathbb{A})$? And can our construction generalize to construct their descents? For example, there is a lifting, constructed in GRS97 and shown to be functorial in GJ01, attached to the embedding $S L_{3}(\mathbb{C}) \leftrightarrow G_{2}(\mathbb{C})$. If we compose this with an embedding $G_{2}(\mathbb{C}) \leftrightarrow G L_{7}(\mathbb{C})$ the result is conjugate to the map

$$
g \mapsto\left(\begin{array}{ccc}
g & & \\
& 1 & \\
& & \\
& & g^{-1}
\end{array}\right) .
$$

Thus, if an irreducible cuspidal automorphic representation π of $G_{2}(\mathbb{A})$ is the lift of a cuspidal representation τ of $P G L_{3}(\mathbb{A})$ then the lift of π to $G L_{7}(\mathbb{A})$ is the isobaric sum $\tau \boxplus \mathbf{1} \boxplus \widetilde{\tau}$, where $\mathbf{1}$
is the one-dimensional trivial representation of $G L_{1}(\mathbb{A})$. Thus, it is very natural to ask whether π can be recovered from $\tau \boxplus \mathbf{1} \boxplus \widetilde{\tau}$, by some generalization of our construction. (Note that this would then give an alternate construction of the lifting from GRS97.) We hope to return to this and related questions in the future.

The organization of the paper is as follows: we introduce some notation in Section 2 , preliminaries and some general results in Section 3, the A_{6} Levi and the residual representation of the similitude exceptional group $G E_{7}(\mathbb{A})$ in Section 4, and the nilpotent orbit A_{6} of E_{7} in Section 5. Then we introduce in Section 6 the two descent Fourier coefficients attached to the two nilpotent orbits, from which we obtain two descent modules. In Section 7, we show that one descent module is generic, and under suitable local conditions, it is cuspidal and having π as a weak functorial lift of each irreducible summand. In Section 8, we show that the other descent module supports not only the non-degenerate Whittaker-Fourier integral on $G_{2}(\mathbb{A})$ but also every degenerate Whittaker-Fourier integral. Thus it is generic, but not cuspidal.

Acknowledgements: Part of the work was done when the authors were visiting the Simons Center for Geometry and Physics during the program: Automorphic forms, mock modular forms and string theory in 2016, and when the second named author was visiting University of Buffalo. The authors would like to thank both institutes for the hospitality and support. The authors also would like to thank David Ginzburg, Dihua Jiang and Freydoon Shahidi for their interest, constant support and encouragement, and Michael Harris for helpful communication on possible applications of the results in this paper. The authors also would like to thank Michael Harris and Stephen Miller for helpful comments and suggestions. Notably, it was Michael Harris who first pointed out to us how the result of Savin and Strong Multiplicity One for $S p_{6}$ could be used to connect Conjectures 1.0 .1 and 1.0.3.

2. Notation

Let F be a number field, \mathbb{A} its adele ring, and $\mathbb{A}_{\text {fin }}$ its ring of finite adeles. (Our results are restricted to number fields because we make use of GGS17. We expect that both the results of GGS17 and our results should extend to function fields, except possibly for a few small primes. For a discussion of the relevant issues, see [GGS17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional group $G E_{7}$. This group can be realized as the maximal Levi subgroup of split E_{8} whose derived group is of type E_{7}. For us, this will be the definition. The derived group is in fact the unique split connected simply connected quasi-simple group of type E_{7}. For the split group E_{8}, we label the simple roots as following

We assume that $G E_{7}$ is equipped with a choice of split maximal torus T and Borel subgroup B. We write Φ for the set of roots of T in $G E_{7}, \Phi^{+}$for the set of positive roots determined by the choice of B and Δ for the set of simple roots. If H is T-stable subgroup of $G E_{7}$, we denote the set of roots of T in H by $\Phi(H, T)$ For $\alpha \in \Phi$ we denote the corresponding root subgroup by U_{α} and the corresponding coroot $\mathbb{G}_{m} \rightarrow T$ by α^{\vee}. Let \mathfrak{t} and \mathfrak{u}_{α} be the Lie algebras of T and U_{α}, respectively. We use an exponential notation for rational characters and cocharacters: $t \mapsto t^{\alpha}, t \in T$ and $a \mapsto a^{\alpha^{\vee}}, a \in \mathbb{G}_{m}$. We also equip $G E_{7}$ with a realization in the sense of $[\mathrm{Sp}$, i.e. a family
$\left\{x_{\alpha}: \mathbb{G}_{a} \rightarrow U_{\alpha}\right\}$ of parametrizations of the root subgroups (subject to some compatibility relations). This determines a basis of the Lie algebra $\mathfrak{g e}_{7}$. Indeed, for each root α the differential $D x_{\alpha}$ of x_{α} is an isomorphism $\mathbb{G}_{a} \rightarrow \mathfrak{u}_{\alpha}$ and we denote $D x_{\alpha}(1)$ by X_{α}. The differential of $\alpha^{\vee}: \mathbb{G}_{m} \rightarrow T$ is an injective map $D \alpha^{\vee}: \mathbb{G}_{a} \rightarrow \mathfrak{t}$, and we denote $D \alpha^{\vee}(1)$ by H_{α}. Then $\left\{X_{\alpha}: \alpha \in \Phi\left(G E_{7}, T\right)\right\} \cup\left\{H_{\alpha_{i}}: 1 \leq i \leq 8\right\}$ is a basis for $\mathfrak{g e}_{7}$, and by taking a suitable realization, we can arrange for it to be a Chevalley basis. We also fix a $G E_{7}$-invariant bilinear form κ on $\mathfrak{g e}_{7}$ such that $\kappa\left(X_{\alpha}, X_{-\alpha}\right)=1$ for each root α.

We denote the Weyl group of $G E_{7}$ relative to T by W. We denote the simple reflection attached to the simple root α_{i} by $w[i]$, and the product $w\left[i_{1}\right] \ldots w\left[i_{l}\right]$ by $w\left[i_{1} \ldots i_{l}\right]$. There is a standard representative for $w[i]$, namely $\dot{w}[i]:=x_{\alpha_{i}}(1) x_{-\alpha_{i}}(-1) x_{\alpha_{i}}(1)$. This then gives rise to a standard representative $\dot{w}\left[i_{1} \ldots i_{l}\right]:=\dot{w}\left[i_{1}\right] \ldots \dot{w}\left[i_{l}\right]$ for $w\left[i_{1} \ldots i_{l}\right]$. But note that $\dot{w}\left[i_{1} \ldots i_{l}\right]$ depends on the expression for $w\left[i_{1} \ldots i_{l}\right]$ as a word in the simple reflections and not only on the Weyl group element.

Let $P=M U$ be the standard parabolic subgroup of $G E_{7}$ whose unipotent radical contains $U_{\alpha_{i}}$ if and only if $i=2$, with Levi subgroup M and unipotent radical U. Then M is isomorphic to $G L_{7} \times G L_{1}$ (see Lemma 4.1.1 for details). Let Q be the standard parabolic subgroup of $G E_{7}$ whose unipotent radical contains $U_{\alpha_{i}}$ if and only if $i=4$ or 6 . More generally, for $S \subset\{1,2,3,4,5,6,7\}$, let $P_{S}=M_{S} U_{S}$ denote the standard parabolic subgroup whose Levi subgroup M_{S} contains the root subgroups attached to the simple roots $\left\{\alpha_{i}: i \in S\right\}$ and unipotent radical U_{S} contains the root subgroups attached to the simple roots $\left\{\alpha_{i}: i \notin S\right\}$. Hence, $P=P_{\{1,3,4,5,6,7\}}$ and $Q=P_{\{1,2,3,5,7\}}$. We also fix once and for all a maximal compact subgroup K of $G E_{7}(\mathbb{A})$.

We shall also consider automorphic representations of the split exceptional group G_{2}. We denote the long simple root of G_{2} by β and the short one by α. For $\gamma \in\{\beta, \alpha\}$ we let P_{γ} denote the maximal parabolic subgroup of G_{2} whose Levi, M_{γ} contains the root subgroup U_{γ} attached to γ. We let N_{γ} denote the unipotent radical of P_{γ}.

Let \mathfrak{g}_{2} and $\mathfrak{g l}_{7}$ be the Lie algebras of G_{2} and $G L_{7}$, respectively. Following [FH91] we embed \mathfrak{g}_{2} into $\mathfrak{g l}_{7}$ by letting it act on a seven-dimensional vector space. We order the basis vectors as follows: $v_{4}, v_{3}, v_{1}, u, w_{1}, w_{3}, w_{4}$. Then it follows from the formulae on p. 354 of [FH91] that the matrices of Y_{1} and Y_{2} (using notation on p. 340 of [FH91]) are

$$
\left(\begin{array}{ccccccc}
0 & & & & & & \\
1 & 0 & & & & & \\
& 0 & 0 & & & & \\
& & 1 & 0 & & & \\
& & & 2 & 0 & & \\
& & & & 0 & 0 & \\
& & & & & -1 & 0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ccccccc}
0 & & & & & & \\
0 & 0 & & & & & \\
& -1 & 0 & & & & \\
& & 0 & 0 & & & \\
& & & 0 & 0 & & \\
& & & & 1 & 0 & \\
& & & & & 0 & 0
\end{array}\right) \text {, respectively. }
$$

The matrices attached to H_{1} and H_{2} are easily computed by looking at the images of H_{1} and H_{2} under the weights.

weight	H_{1}	H_{2}
α	2	-1
β	-3	2
$\omega_{1}=2 \alpha+\beta$	1	0
$\omega_{1}-\alpha$	-1	1
$\omega_{1}-\alpha-\beta$	2	-1
$\omega_{1}-2 \alpha-\beta$	0	0
$\omega_{1}-3 \alpha-\beta$	-2	1
$\omega_{1}-3 \alpha-2 \beta$	1	-1
$\omega_{1}-4 \alpha-2 \beta$	-1	0
7		

The matrices are

$$
\left(\begin{array}{llllll}
1 & & & & & \\
& -1 & & & & \\
& & 2 & & & \\
& & & 0 & & \\
& & & & -2 & \\
& & & & & 1 \\
& & & & & \\
& -1
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{cccccc}
0 & & & & & \\
& 1 & & & & \\
& & -1 & & & \\
\\
& & & 0 & & \\
\\
& & & 1 & & \\
& & & & & -1 \\
& & & & & \\
&
\end{array}\right) \text { respectively. }
$$

Finding the action of X_{1} and X_{2} takes a little work. In some cases, we use our knowledge about the set of weights. For example $X_{1} w_{3}$ must be zero because w_{3} is weight $\omega_{1}-3 \alpha-2 \beta$ and $\omega_{1}-2 \alpha-2 \beta$ is not a weight of this representation. For the others we use our knowledge of the action of $Y_{1}, Y_{2}, H_{1}, H_{2}$, and bracket relations. For example, since $X_{1} v_{4}=0$, it follows that

$$
X_{1} v_{3}=X_{1} Y_{1} v_{4}=\left(H_{1}+Y_{1} X_{1}\right) v_{4}=H_{1} v_{4}=v_{4} .
$$

After similar computations we get that the matrices of X_{1} and X_{2} are

$$
\left(\begin{array}{ccccccc}
0 & 1 & & & & & \\
& 0 & 0 & & & & \\
& & 0 & 2 & & & \\
& & & 0 & 1 & & \\
& & & & 0 & 0 & \\
& & & & & 0 & -1 \\
& & & & & & \\
\hline
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ccccccc}
0 & 0 & & & & & \\
& 0 & -1 & & & & \\
& & 0 & 0 & & & \\
& & & 0 & 0 & & \\
& & & & 0 & 1 & \\
& & & & & 0 & 0 \\
& & & & & & 0
\end{array}\right) \text {, respectively. }
$$

Finally, for a matrix g we denote the transpose by ${ }^{t} g$. When g is a square matrix, we also denote by $t g$ the transpose about the second diagonal, which may be obtained by conjugating ${ }^{t} g$ by the $\operatorname{matrix}\left(\begin{array}{ll} & \\ 1 & \end{array}\right)$, i.e., with ones from lower left corner to upper right corner and zeros elsewhere.

3. Preliminaries and some general results

3.1. Fourier coefficients attached to nilpotent orbits. In this section, we recall Fourier coefficients of automorphic forms attached to nilpotent orbits, following the formulation in [GGS17. Let G be a reductive group defined over F, or a central extension of finite degree. Fix a nontrivial additive character ψ of $F \backslash \mathbb{A}$. Let \mathfrak{g} be the Lie algebra of $G(F)$ and u be a nilpotent element in \mathfrak{g}. The element u defines a function on $\mathfrak{g}(\mathbb{A})$:

$$
\psi_{u}: \mathfrak{g}(\mathbb{A}) \rightarrow \mathbb{C}^{\times}
$$

by $\psi_{u}(x)=\psi(\kappa(u, x))$, where κ is a G-invariant symmetric bilinear form on $\mathfrak{g}(\mathbb{A})$ which is nondegenerate on every simple summand of \mathfrak{g} (such as the Killing form, or a convenient scalar multiple).

Given any semi-simple element $s \in \mathfrak{g}$, under the adjoint action, \mathfrak{g} is decomposed to a direct sum of eigenspaces \mathfrak{g}_{i}^{s} of h corresponding to eigenvalues i. For any rational number $r \in \mathbb{Q}$, let $\mathfrak{g}_{\geq r}^{s}=\oplus_{r^{\prime} \geq r} \mathfrak{g}_{r^{\prime}}^{s}$. The element s is called rational semi-simple if all its eigenvalues are in \mathbb{Q}. Given a nilpotent element u, a Whittaker pair is a pair (s, u) with $s \in \mathfrak{g}$ being a rational semi-simple element, and $u \in \mathfrak{g}_{-2}^{s}$. The element s in a Whittaker pair (s, u) is called a neutral element for u if there is a nilpotent element $v \in \mathfrak{g}$ such that (v, s, u) is an $\mathfrak{s l}_{2}$-triple. For any $X \in \mathfrak{g}$, let \mathfrak{g}_{X} be the centralizer of X in \mathfrak{g}.

Given any Whittaker pair (s, u), define an anti-symmetric form ω_{u} on \mathfrak{g} by $\omega_{u}(X, Y):=\kappa(u,[X, Y])$. Let $\mathfrak{u}_{s}=\mathfrak{g}_{\geq 1}^{s}$ and let $\mathfrak{n}_{s, u}=\operatorname{ker}\left(\omega_{u}\right)$ be the radical of $\omega_{u} \mid \mathfrak{u}_{s}$. Then $\left[\mathfrak{u}_{s}, \mathfrak{u}_{s}\right] \subset \mathfrak{g}_{\geq 2}^{s} \subset \mathfrak{n}_{s, u}$. By GGS17, Lemma 3.2.6], $\mathfrak{n}_{s, u}=\mathfrak{g}_{\geq 2}^{s}+\mathfrak{g}_{1}^{s} \cap \mathfrak{g}_{u}$. Note that if the Whittaker pair (s, u) comes from an $\mathfrak{s l}_{2}$-triple (v, s, u), then $\mathfrak{n}_{s, u}=\mathfrak{g}_{\geq 2}^{s}$. Let $U_{s}=\exp \left(\mathfrak{u}_{s}\right)$ and $N_{s, u}=\exp \left(\mathfrak{n}_{s, u}\right)$ be the corresponding unipotent
subgroups of G. Abusing of notation, we define a character of $N_{s, u}$ by $\psi_{u}(n)=\psi(\kappa(u, \log (n)))$. Let $N_{s, u}^{\prime}=N_{s, u} \cap \operatorname{ker}\left(\psi_{u}\right)$. Then $U_{s} / N_{s, u}^{\prime}$ is a Heisenberg group with center $N_{s} / N_{s, u}^{\prime}$. It follows that for each Whittaker pair $(s, u), \psi_{u}$ defines a character of $N_{s, u}(\mathbb{A})$ which is trivial on $N_{s, u}(F)$. Let $\mathfrak{m}_{s}=\mathfrak{g}_{=0}^{S}$ and $M_{s}=\exp \left(\mathfrak{m}_{s}\right)$. Then $P_{s}=M_{s} U_{s}$ is a parabolic subgroup of G with Levi subgroup M_{s} and unipotent radical U_{s}.

Assume that π is an automorphic representation of $G(\mathbb{A})$. Define a degenerate Whittaker-Fourier coefficient of $\varphi \in \pi$ by

$$
\begin{equation*}
\mathcal{F}_{s, u}(\varphi)(g)=\int_{N_{s, u}(F) \backslash N_{s, u}(\mathbb{A})} \varphi(n g) \bar{\psi}_{u}(n) d n, g \in G(\mathbb{A}) . \tag{3.1.1}
\end{equation*}
$$

Let $\mathcal{F}_{s, u}(\pi)=\left\{\mathcal{F}_{s, u}(\varphi) \mid \varphi \in \pi\right\}$. If s is a neutral element for u, then $\mathcal{F}_{s, u}(\varphi)$ is also called a generalized Whittaker-Fourier coefficient of φ. The (global) wave-front set $\mathfrak{n}(\pi)$ of π is defined to the set of nilpotent orbits \mathcal{O} such that $\mathcal{F}_{s, u}(\pi)$ is nonzero, for some Whittaker pair (s, u) with $u \in \mathcal{O}$ and s being a neutral element for u. Note that if $\mathcal{F}_{s, u}(\pi)$ is nonzero for some Whittaker pair (s, u) with $f \in \mathcal{O}$ and s being a neutral element for u, then it is nonzero for any such Whittaker pair (s, u), since the non-vanishing property of such Fourier coefficients does not depend on the choice of representatives of \mathcal{O}. Let $\mathfrak{n}^{m}(\pi)$ be the set of maximal elements in $\mathfrak{n}(\pi)$ under the natural order of nilpotent orbits.

Assume that π is an admissible representation of $G\left(F_{v}\right)$, where v is a finite place of F. Then similarly we can define a twisted Jacquet module of π by $\mathcal{J}_{N_{s, u}, \psi_{u}}(\pi)$ and consider the (local) wave-front set $\mathfrak{n}(\pi)$ and the subset $\mathfrak{n}^{m}(\pi)$.

The following theorem is one of the main results in [GGS17.
Theorem 3.1.2 (Theorem C, GGS17]). Let π be an automorphic representation of $G(\mathbb{A})$. Given two Whittaker pairs (s, u) and $\left(s^{\prime}, u\right)$, with s being a neutral element for u, if $\mathcal{F}_{s^{\prime}, u}(\pi)$ is nonzero, then $\mathcal{F}_{s, u}(\pi)$ is also nonzero.

In the following, we prove a slightly generalized version of Theorem 3.1.2, using similar arguments.
Assume that (s, u) and $\left(s^{\prime}, u\right)$ are two Whittaker pairs with the same u, such that $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$. Let $z=s^{\prime}-s \in \mathfrak{g}_{u}$. And for any rational number $0 \leq t \leq 1$, let $s_{t}=s+t z, \mathfrak{u}_{t}=\mathfrak{g}_{\geq 1}^{s_{t}}, \mathfrak{v}_{t}=\mathfrak{g}_{>1}^{s_{t}}$, and $\mathfrak{w}_{t}=\mathfrak{g}_{1}^{s_{t}} . t$ is called regular if $\mathfrak{u}_{t}=\mathfrak{u}_{t+\epsilon}$ for any small enough $\epsilon \in \mathbb{Q} . t$ is called critical if it is not regular. For convenience, we say that 0 is critical and 1 is regular. Fix a Lagrangian $\mathfrak{m} \subset \mathfrak{g}_{0}^{z} \cap \mathfrak{g}_{1}^{s}$ and let

$$
\begin{aligned}
& \mathfrak{l}_{t}=\mathfrak{m}+\left(\mathfrak{w}_{t} \cap \mathfrak{g}_{<0}^{z}\right)+\mathfrak{v}_{t}+\left(\mathfrak{w}_{t} \cap \mathfrak{g}_{u}\right), \\
& \mathfrak{r}_{t}=\mathfrak{m}+\left(\mathfrak{w}_{t} \cap \mathfrak{g}_{>0}^{z}\right)+\mathfrak{v}_{t}+\left(\mathfrak{w}_{t} \cap \mathfrak{g}_{u}\right) .
\end{aligned}
$$

Note that \mathfrak{l}_{t} and \mathfrak{r}_{t} defined here agree with those in GGS17] by applying [GGS17, Lemma 3.2.6]. For $i, j \in \mathbb{Q}$, let

$$
\mathfrak{g}_{i, j}=\{X \in \mathfrak{g} \mid[s, X]=i X,[z, X]=j X\} .
$$

Then one can see that $\mathfrak{w}_{t}=\oplus_{i+t j=1} \mathfrak{g}_{i, j}, \mathfrak{v}_{t}=\oplus_{i+t j>1} \mathfrak{g}_{i, j}, t$ is a critical number if and only if there exists (i, j) such that $i+t j=1$ and $j \neq 0$, and t is a regular number if and only if $\mathfrak{w}_{t}=\mathfrak{g}_{1,0}=\mathfrak{g}_{0}^{z} \cap \mathfrak{g}_{1}^{s}$. And we can rewrite \mathfrak{l}_{t} and \mathfrak{r}_{t} as follows:

$$
\begin{align*}
& \mathfrak{l}_{t}=\mathfrak{m}+\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t}+\left(\oplus_{i+t j=1, j>0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}+\mathfrak{g}_{1,0} \cap \mathfrak{g}_{u}, \tag{3.1.3}\\
& \mathfrak{r}_{t}=\mathfrak{m}+\oplus_{i+t j=1, j>0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t}+\left(\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}+\mathfrak{g}_{1,0} \cap \mathfrak{g}_{u} . \tag{3.1.4}
\end{align*}
$$

We summarize the results in [GGS17, Lemma 3.2.7] in the following lemma.
Lemma 3.1.5 (Lemma 3.2.7, GGS17). Assume that (s, u) and $\left(s^{\prime}, u\right)$ are two Whittaker pairs with the same u, such that $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$. Then the following properties hold.
(1) For any $t \geq 0, \mathfrak{l}_{t}$ and \mathfrak{r}_{t} are maximal isotropic subspaces of \mathfrak{u}_{t} and $\left[\mathfrak{l}_{t}, \mathfrak{r}_{t}\right] \subset \mathfrak{l}_{t} \cap \mathfrak{r}_{t}$. And

$$
\mathfrak{u}_{t} / \operatorname{ker}\left(\omega_{u}{\mid \mathfrak{u}_{t}}\right)=\mathfrak{w}_{t} /\left(\mathfrak{w}_{t} \cap \mathfrak{g}_{0}^{z}+\mathfrak{w}_{t} \cap \mathfrak{g}_{u}\right)
$$

defines a symplectic structure, with the image of \mathfrak{l}_{t} and \mathfrak{r}_{t} being two complementary Lagrangians.
(2) Suppose that $0 \leq t<t^{\prime}$, and that all the elements in the open interval $\left(t, t^{\prime}\right)$ are regular. Then $\mathfrak{r}_{t} \subset \mathfrak{l}_{t^{\prime}}$.

In the following lemma, we analyze the precise structure of $\mathfrak{l}_{t^{\prime}} / \mathfrak{r}_{t}$, in the situation of Lemma 3.1.5. Part (2).

Lemma 3.1.6. Assume that (s, u) and $\left(s^{\prime}, u\right)$ are two Whittaker pairs with the same u, such that $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$. Suppose that $0 \leq t<t^{\prime}$, and that all the elements in the open interval $\left(t, t^{\prime}\right)$ are regular. Then, $\mathfrak{l}_{t^{\prime}} / \mathfrak{r}_{t}=\left(\oplus_{i+t^{\prime} j=1, j>0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}$, preserving ψ_{u}.
Proof. By (3.1.3) and (3.1.4),

$$
\begin{gather*}
\mathfrak{t}_{t^{\prime}}=\mathfrak{m}+\oplus_{i+t^{\prime} j=1, j<0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t^{\prime}}+\left(\oplus_{i+t^{\prime} j=1, j>0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}+\mathfrak{g}_{1,0} \cap \mathfrak{g}_{u} . \tag{3.1.7}\\
\mathfrak{r}_{t}=\mathfrak{m}+\oplus_{i+t j=1, j>0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t}+\left(\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}+\mathfrak{g}_{1,0} \cap \mathfrak{g}_{u} . \tag{3.1.8}
\end{gather*}
$$

Since $0 \leq t<t^{\prime}$, and all the elements in the open interval $\left(t, t^{\prime}\right)$ are regular, one can see that

$$
\oplus_{i+t j=1, j>0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t}=\oplus_{i+t^{\prime} j=1, j<0} \mathfrak{g}_{i, j}+\mathfrak{v}_{t^{\prime}} .
$$

Therefore,

$$
\mathfrak{l}_{t^{\prime}}+\left(\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}=\mathfrak{r}_{t}+\left(\oplus_{i+t^{\prime} j=1, j>0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u} .
$$

Note that if $i+t j=1$ and $j<0$, then $i+j<1$. Hence, $\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j} \subset \mathfrak{g}_{<1}^{s^{\prime}}$, Since $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$, $\left(\oplus_{i+t j=1, j<0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}=\{0\}$. Therefore, $\mathfrak{l}_{t^{\prime}} / \mathfrak{r}_{t}=\left(\oplus_{i+t^{\prime} j=1, j>0} \mathfrak{g}_{i, j}\right) \cap \mathfrak{g}_{u}$, preserving ψ_{u}.

This completes the proof of the lemma.
For a Whittaker pair (s, u), let $\mathfrak{l}_{s} \subset \mathfrak{u}_{s}$ be any maximal isotropic subalgebra with respect to the form ω_{u}. And let $L_{s}=\exp \left(\mathfrak{l}_{s}\right)$. Then ψ_{u} can be extended trivially to a character of $L_{s}(k) \backslash L_{s}(\mathbb{A})$. Let π be an automorphic representation of $G(\mathbb{A})$. Define the following Fourier coefficient of $f \in \pi$:

$$
\begin{equation*}
\mathcal{F}_{s, u}^{L_{s}}(f)(g)=\int_{L_{s}(k) \backslash L_{s}(\mathbb{A})} f(n g) \bar{\psi}_{u}(n) d n, g \in G(\mathbb{A}) . \tag{3.1.9}
\end{equation*}
$$

Let $\mathcal{F}_{s, u}^{L_{s}}(\pi)=\left\{\mathcal{F}_{s, u}^{L_{s}}(f) \mid f \in \pi\right\}$.
Next, we recall a lemma as follows.
Lemma 3.1.10 (Lemma 6.0.2, GGS17]). Let π be an automorphic representation of $G(\mathbb{A})$. Then, $\mathcal{F}_{s, u}(\pi) \neq 0$ if and only if $\mathcal{F}_{s, u}^{L_{s}}(\pi) \neq 0$.

The next theorem is the global analogue of [GGS17, Corollary 3.0.3] with essentially the same proof. To be complete, we sketch it in the following.
Theorem 3.1.11. Let π be an automorphic representation of $G(\mathbb{A})$. Assume that (s, u) and (s^{\prime}, u) are two Whittaker pairs with the same u, such that $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$. If $\mathcal{F}_{s^{\prime}, u}(\pi)$ is nonzero, then $\mathcal{F}_{s, u}(\pi)$ is also nonzero.
Proof. Let (s, u) and $\left(s^{\prime}, u\right)$ be two Whittaker pairs with the same u, such that $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$. Then it is clear that $s^{\prime}-s \in \mathfrak{g}_{u}$.

Let $t_{0}=0<t_{1}<t_{2}<\cdots<t_{k}$ be the all the critical numbers. Let $t_{k+1}=1$. Then, for $0 \leq i \leq k$, all the rational numbers in the open interval $\left(t_{i}, t_{i+1}\right)$ are regular. Let $R_{t_{i}}=\exp \left(\mathfrak{r}_{t_{i}}\right)$, and $L_{t_{i+1}}=\exp \left(\mathfrak{l}_{t_{i+1}}\right)$. Assume that $\mathcal{F}_{s_{t_{i+1}}, u}^{R_{t i+1}}(\pi) \neq 0$, then $\mathcal{F}_{s_{t_{i+1}}, u}^{L_{t_{i+1}}}(\pi) \neq 0$ by Lemma 3.1.10. By Lemma 3.1.5, $\mathfrak{r}_{t_{i}} \subset \mathfrak{l}_{t_{i+1}}$, and
by Lemma 3.1.6, $\mathfrak{t}_{t_{i+1}} / \mathfrak{r}_{t_{i}}=\left(\oplus_{\ell+t_{i+1} j=1, j>0} \mathfrak{g}_{\ell, j}\right) \cap \mathfrak{g}_{u} \subset \mathfrak{w}_{t_{i+1}} \cap \mathfrak{g}_{u}$, which is abelian and normalizes ψ_{u}. Then it is clear that $\mathcal{F}_{s_{t_{i}}, u}^{R_{i}}(\pi) \neq 0$.

Note that $\mathcal{F}_{s_{t_{k+1}}, u}^{R_{t_{k+1}}}(\pi)=\mathcal{F}_{s^{\prime}, u}(\pi) \neq 0$. Therefore, by the above discussion, $\mathcal{F}_{s, u}(\pi)=\mathcal{F}_{s_{t_{0}}, u}(\pi)=$ $\mathcal{F}_{s_{t_{0}}, u}^{R_{t_{0}}}(\pi) \neq 0$. This completes the proof of the theorem.
3.2. A few general results. Before we turn to matters that are specific to the problem of descent from $G L_{7}$ to G_{2} by way of $G E_{7}$, we would like to present some results in a general setting. These are related to the general problem of computing the twisted Jacquet module

$$
\mathcal{J}_{U, \psi_{U}}\left(\operatorname{Ind}_{Q}^{G} \chi\right),
$$

where G is a reductive p-adic group, Q is a parabolic subgroup of G, U is a subgroup of the unipotent radical of a second parabolic subgroup, P of G, U is normalized by P, χ is a character of Q and ψ_{U} is a character of U. In this direction, the most general result of which we are aware is theorem 5.2 of [BZ77]. This result considers a set-up which is more general than the one we shall consider here, but it has the defect that one must check a certain finiteness condition which, for many applications is unnecessary.

The group P acts on the space of characters of U by $p \cdot \psi_{U}(u)=\psi_{U}\left(p^{-1} u p\right)$. In fact, this action may be realized as the rational representation of P dual to its action on $U /(U, U)$. Let $R_{\psi_{U}}$ denote the stabilizer of ψ_{U} in P. Then for any admissible representation π of G, the twisted Jacquet module $\mathcal{J}_{U, \psi_{U}}(\pi)$ has the structure of an $R_{\psi_{U}}$-module.

We assume that G is equipped with a choice of minimal parabolic subgroup P_{0} and that P and Q are both standard, i.e., both contain P_{0}. We also choose a maximal split torus T_{0} contained in P_{0}. The space $\operatorname{Ind}_{Q}^{G} \chi$ has a filtration by P-modules I_{w} indexed by the elements of $Q \backslash G / P$. As representatives, we choose minimal-length elements of the relative Weyl group. The P-module I_{w} corresponding to w may be realized as $c-i n d_{P \cap w^{-1} Q w}^{P} \chi \delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}(\dot{w})$, where \dot{w} is any representative for w in G.

We say that $p \in P$ is \boldsymbol{w}-admissible if $p \cdot \psi_{U}$ is trivial on $U \cap w^{-1} Q w$. (Clearly this is relative to ψ_{U}, and Q.)

Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P.
Proof. Write $[U /(U, U)]^{*}$ for the rational representation of P that is dual to $U /(U, U)$. Then ψ_{U} corresponds to an element X of $[U /(U, U)]^{*}(F)$. Let V denote the image of $U \cap w^{-1} Q w$ in $U /(U, U)$. Then p is w-admissible if and only if $\langle\operatorname{Ad}(p) \cdot X, v\rangle=0$ for all $v \in V$. Here \langle,$\rangle is the canonical pairing$ between $U /(U, U)$ and $[U /(U, U)]^{*}$. Taking a basis of V we obtain a finite number of polynomial conditions in p which define the w-admissible subvariety.

Now fix w and let X_{w} denote the open subset of w-inadmissible elements in P. Let I_{w}^{o} denote $\left\{f \in I_{w}: \operatorname{supp}(f) \subset X_{w}\right\}$. Then I_{w}^{o} is a sub $R_{\psi_{U}}$-module of I_{w}. Let \bar{I}_{w} denote the quotient, so we have a short exact sequence of $R_{\psi_{U}}$ - modules

$$
0 \rightarrow I_{w}^{o} \rightarrow I_{w} \rightarrow \bar{I}_{w} \rightarrow 0
$$

Lemma 3.2.2.

$$
\mathcal{J}_{U, \psi_{U}}\left(I_{w}^{o}\right)=0, \quad \text { hence } \quad \mathcal{J}_{U, \psi_{U}}\left(I_{w}\right) \cong \mathcal{J}_{U, \psi_{U}}\left(\bar{I}_{w}\right) .
$$

Proof. In general, for an admissible representation (π, V) of P the kernel of the map $V \rightarrow \mathcal{J}_{U, \psi_{U}}(V)$ is the subspace of elements v such that

$$
\int_{N} \overline{\psi_{U}(n)} \pi(n) \cdot v d n=0
$$

for some compact subgroup N of U. In the case of an induced representation, this is equivalent to

$$
\int_{N} f(p n) \overline{\psi_{U}(n)} d n=0 \quad \forall p \in P
$$

For each fixed p,

$$
\int_{N} f(p n) \overline{\psi_{U}(n)} d n=\int_{N} f(n p) \overline{p \cdot \psi_{U}(n)} d n
$$

where $p \cdot \psi_{U}(u)=\psi_{U}\left(p^{-1} u p\right)$. It's clear that if $p \cdot \psi_{U}$ is nontrivial on $U \cap w^{-1} Q w$, then this integral will be zero for all sufficiently large N, and if $f \in I_{w}^{o}$, then this holds for all p in the support of f. We need to show that N can be chosen independently of p. This follows because $p \cdot \psi_{U}$ depends continuously on p and the support of f is compact modulo $P \cap w^{-1} Q w$.

For each w in our set of representatives for $Q \backslash G / P$ let $P_{w}=P \cap w^{-1} Q w$. Note that the w admissible subvariety of P is a union of $P_{w}, R_{\psi_{U}}$-double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single $P_{w}, R_{\psi_{U}}$-double $\operatorname{coset} P_{w} x R_{\psi_{U}}$. Then, as an $R_{\psi_{U}}$-module, $\bar{I}_{w} \cong c-i n d_{R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x}^{R_{\psi_{U}}} \chi \delta_{Q}^{1 / 2} \circ \operatorname{Ad}(\dot{w} x)$.
Proof. Recall that I_{w}^{o} is the subset of elements of I_{w} whose support is in the open set X_{w} of inadmissible elements. So, the canonical quotient map $I_{w} \rightarrow I_{w} / I_{w}^{o}=\bar{I}_{w}$ may be realized as restriction to the admissible subvariety. Write $\bar{I}_{w}^{(1)}$ for this realization of \bar{I}_{w} as a subspace of $C^{\infty}\left(P_{w} x R_{\psi_{U}}\right)$.

Clearly, each element $f \in \bar{I}_{w}^{(1)}$ is determined by the function $h_{f}(r)=f(x r) \in C^{\infty}\left(R_{\psi_{U}}\right)$. Thus we obtain a second realization of \bar{I}_{w} as a subspace of $C^{\infty}\left(R_{\psi_{U}}\right)$ which we denote $\bar{I}_{w}^{(2)}$. We claim that $\bar{I}_{w}^{(2)}$ is precisely $c-i n d_{R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x}^{R_{\psi_{U}}} \chi \delta_{Q}^{1 / 2} \circ \operatorname{Ad}(\dot{w} x)$.

It's clear that $h_{f}(p r)=\chi \delta_{Q}^{1 / 2}\left(\dot{w} x p x^{-1} \dot{w}^{-1}\right) h_{f}(r)$ for each $p \in R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x$, and $r \in R_{\psi_{U}}$. Moreover, since $R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x \backslash R_{\psi_{U}}$ maps injectively into $P \cap w^{-1} Q w$, the support of h_{f} will be compact modulo $x^{-1} w^{-1} Q w x$. Thus $\bar{I}_{w}^{(2)}$ is contained in $c-i n d_{R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x}^{R_{\psi_{U}}} \chi \delta_{Q}^{1 / 2} \circ \operatorname{Ad}(\dot{w} x)$. What remains is to show that this map from $\bar{I}_{w}^{(2)}$ to $c-i n d_{R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x}^{R_{\psi_{U}}} \chi \delta_{Q}^{1 / 2} \circ \operatorname{Ad}(\dot{w} x)$ is surjective.

Given $h \in c-i n d_{R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x}^{R_{\psi_{U}}} \chi \delta_{Q}^{1 / 2} \circ \operatorname{Ad}(\dot{w} x)$, we can choose Ω a compact open set such that h is supported on ($\left.R_{\psi_{U}} \cap x^{-1} w^{-1} Q w x\right) \Omega$, a compact open subgroup K_{1} of $R_{\psi_{U}}$ such that that h is right- K_{1}-invariant, and a compact open subgroup K_{2} of P such that $K_{2} \cap R_{\psi_{U}}=K_{1}$. Then we can define

$$
f(g)= \begin{cases}\chi \delta_{Q}^{1 / 2}\left(\dot{w} q \dot{w}^{-1}\right) h(r), & g=q x r k, q \in P_{w}, r \in R_{\psi_{U}}, k \in K_{2}, \\ 0, & g \notin P_{w} x R_{\psi_{U}} K_{2} .\end{cases}
$$

Using the form κ, the space $[U /(U, U)]^{*}$ may be identified with a subspace $[U /(U, U)]^{-}$of the Lie algebra \mathfrak{u}_{P}^{-}of the unipotent radical U_{P}^{-}of the parabolic that is opposed to P. It is important to keep in mind that this identification is an isomorphism of M_{P}-modules, where M_{P} is the Levi of P, but that it is not an isomorphism of P-modules. More precisely, the form κ gives us a linear isomorphism $\mathfrak{g}_{\text {der }} \rightarrow \mathfrak{g}_{\text {der }}^{*}$ that sends $X \in \mathfrak{g}_{\text {der }}$ to the linear form $Y \mapsto \kappa(X, Y)$. Here, $\mathfrak{g}_{\text {der }}$ is the derived subalgebra of \mathfrak{g}. We can decompose \mathfrak{g} into irreducible M_{P}-submodules and those that are not contained in \mathfrak{m}_{P} come in dual pairs. More precisely, each irreducible in \mathfrak{u}_{P} is paired with an irreducible in \mathfrak{u}_{P}^{-}. The Lie algebra of U is a direct sum of irreducible components in \mathfrak{u}_{P} so its dual is identified with a subspace of \mathfrak{u}_{P}^{-}. Then the dual of the quotient $U /(U, U)$ is a subspace of the dual of U. Since (U, U) is M_{P}-invariant $[U /(U, U)]^{*}$ is again a direct sum of irreducible
M_{P}-submodules of \mathfrak{u}_{P}^{-}. Notice that $X \in[U /(U, U)]^{-}$implies $\operatorname{Ad}(m) X \in[U /(U, U)]^{-}$for all m in M but not $\operatorname{Ad}(p) X \in[U /(U, U)]^{-}$for p in P but not in M.

The Lie algebra \mathfrak{g} decomposes as $\mathfrak{q}^{-} \oplus \mathfrak{u}_{Q}$ where \mathfrak{q}^{-}is the Lie algebra of the parabolic \mathfrak{q}^{-}opposed to Q and \mathfrak{u}_{Q} is the Lie algebra of the unipotent radical of Q. Conjugating by w we have also $\mathfrak{g}=\operatorname{Ad}\left(w^{-1}\right) \mathfrak{q}^{-} \oplus \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$.
Lemma 3.2.4. $[U /(U, U)]^{-}=\left([U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{q}^{-}\right) \oplus\left([U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}\right)$.
Proof. Let M_{Q} be the standard Levi factor of Q (containing T_{0}). Let $Z_{M_{Q}}$ denote its center, and $A_{M_{Q}}=Z_{M_{Q}} \cap T_{0}$. Because the space $[U /(U, U)]^{-}$is preserved by $w^{-1} A_{M_{Q}} w$, we can decompose $[U /(U, U)]^{-}$into eigenspaces of $w^{-1} A_{M_{Q}} w$. If λ is one of the eigencharacters, then $\lambda \circ \operatorname{Ad}(w)$ is either trivial or a relative root for the torus $A_{M_{Q}}$. If it is trivial or negative then the λ-eigenspace lies in $\operatorname{Ad}\left(w^{-1}\right) \mathfrak{q}^{-}$and if it is positive then the λ-eigenspace lies in $\operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$.

Take $X \in[U /(U, U)]^{-}$. Then using this eigenspace decomposition we can write $X=X_{1}+X_{2}$ where $\left.X_{1} \in[U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{q}^{-}\right)$and $X_{2} \in\left([U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}\right)$.

Notice that p is w-admissible if and only if the projection of $\operatorname{Ad}(p) X$ onto $[U /(U, U)]^{-}$is in $[U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$.

Now write U_{P} for the unipotent radical of the parabolic P. Inside $[U /(U, U)]^{*}$ we have the subspace of $\left[U /\left(U, U_{P}\right)\right]^{*}$ of linear forms which corresponds to the space of characters of U that are trivial on $\left(U, U_{P}\right)$. This is an M_{P}-invariant subspace which we can identify with a subspace $\left[U /\left(U, U_{P}\right)\right]^{-}$of $[U /(U, U)]^{-}$.

If $X \in\left[U /\left(U, U_{P}\right)\right]^{-}$and $p=m u$ with $m \in M_{P}$ and $u \in U_{P}$ then the projection of $\operatorname{Ad}(p)$. X onto $[U /(U, U)]^{-}$is $\operatorname{Ad}(m) . X$. Put differently, if ψ_{U} is trivial on $\left(U, U_{P}\right)$ then U_{P} fixes ψ_{U}, and hence $p \cdot \psi_{U}=m \cdot \psi_{U}$.

Assume now that ψ_{U} is trivial on $\left(U, U_{P}\right)$. Then $p=m u$ is w-admissible if and only if $\operatorname{Ad}(m) \cdot X$ is in $[U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$, or, equivalently, if $\operatorname{Ad}(w m) X \in \mathfrak{u}_{Q}$. In particular, X must be conjugate to an element of the subspace $[U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$.
Corollary 3.2.5. If ψ_{U} is trivial on $\left(U, U_{P}\right)$ and the space $[U /(U, U)]^{-} \cap \operatorname{Ad}\left(w^{-1}\right) \mathfrak{u}_{Q}$ does not contain any elements of the orbit of X, then the w-admissible subvariety of P is empty.

Corollary 3.2.6. Suppose that ψ_{U} is trivial on $\left(U, U_{P}\right)$ and the w-admissible subvariety of P is nonzero. Then the nilpotent element X attached to ψ_{U} is conjugate to an element of \mathfrak{u}_{Q}.

Corollary 3.2.7. If ψ_{U} is trivial on $\left(U, U_{P}\right)$ and the space \mathfrak{u}_{Q} does not contain any elements of the orbit of X, then the w-admissible subvariety of P is empty for all w, and

$$
\mathcal{J}_{\left(U, \psi_{U}\right)}\left(\operatorname{Ind}_{Q}^{G}(\chi)\right)=0 .
$$

Corollary 3.2.8. Let \mathcal{O} be the Richardson orbit of Q (the largest stable orbit that intersects \mathfrak{u}_{Q}). Let \mathcal{O}^{\prime} be an orbit that is greater than or not related to \mathcal{O}. Let (s, u) be any Whittaker pair with $u \in \mathcal{O}^{\prime}$. Let $U=\exp \left(\mathfrak{g}_{\geq 2}^{s}\right)$. Then

$$
\mathcal{J}_{\left(U, \psi_{u}\right)}\left(\operatorname{Ind}_{Q}^{G}(\chi)\right)=0 .
$$

Proof. Let $P=\exp \left(\mathfrak{g}_{\geq 0}^{s}\right)$, then $U_{P}=\exp \left(\mathfrak{g}_{\geq 1}^{s}\right)$. The previous corollary applies to this situation, since $\left(U, U_{P}\right)=\exp \left(\mathfrak{g}_{\geq 3}^{s}\right)$ and ψ_{u} is trivial on it.

Corollary 3.2.9. Let \mathcal{O} be the Richardson orbit of Q. Let \mathcal{O}^{\prime} be an orbit that is greater than or not related to \mathcal{O}. Let (s, u) be any Whittaker pair with $u \in \mathcal{O}^{\prime}$ then $\mathcal{J}_{N_{s, u}, \psi_{u}}\left(\operatorname{Ind}_{Q}^{G} \chi\right)=0$.
Proof. Define U as in the previous corollary. Then it follows from the definition of $\mathcal{J}_{N_{s, u}, \psi_{u}}$, because $\mathcal{J}_{N_{s, u}, \psi_{u}}(\pi)$ is a quotient of $\mathcal{J}_{\left(U, \psi_{u}\right)}(\pi)$ for any π.

Remark 3.2.10. Suppose that the weighted Dynkin diagram of \mathcal{O} consists of 0's and 2's (namely \mathcal{O} is even) and let Q be the parabolic whose Levi contains the simple roots labeled 0 and whose unipotent radical contains the simple roots labeled 2. Then \mathcal{O} is the Richardson orbit of Q. Cf. CM93, Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7].

4. The A_{6} Levi of $G E_{7}$ and Eisenstein series

Recall that $P=M U$ is the standard parabolic subgroup of $G E_{7}$ whose unipotent radical contains $U_{\alpha_{i}}$ if and only if $i=2$, with Levi subgroup M and unipotent radical U. In this section, we show that this Levi subgroup M which is of type A_{6} is isomorphic to $G L_{7} \times G L_{1}$. Then we introduce the Eisentein series associated to P whose residues at $s=1$ generate a residual representation. This residual representation serves as automorphic kernel of our descent construction.

4.1. The \boldsymbol{A}_{6} Levi.

Lemma 4.1.1. The group M is isomorphic to $G L_{7} \times G L_{1}$.
Proof. Recall that the derived group of a Levi subgroup of a simply connected group is simply connected. In particular the derived group $M_{\text {der }}$ of M is simply connected, semisimple, of type A_{6}. This means that it is isomorphic to $S L_{7}$. To pin down a particular isomorphism we first require that $T \cap M_{\text {der }}$ is mapped to the standard torus of $S L_{7}$ (the diagonal elements), and $B \cap M_{\text {der }}$ is mapped to the standard Borel of $S L_{7}$ (the upper triangular elements. Any isomorphism satisfying these requirements induces a bijection on the set of simple roots which respects the structure of the root system. There are only two such bijections. For reasons which will become apparent, we choose to map α_{7} to the first simple root of $S L_{7}$ and α_{1} to the last. These conditions determine the isomorphism up to conjugation by an element of $T \cap M_{\text {der }}$. To make it unique, we can use the parametrizations x_{α} : there is a unique isomorphism $\iota_{0}: M_{d e r} \rightarrow S L_{7}$ such that

Now M is the product of its derived group and the maximal torus T. A general element of T is of the form $\prod_{i=1}^{8} t_{i}^{\alpha_{i}^{\vee}}$. Of course $\prod_{i \neq 2,8} t_{i}^{\alpha_{i}^{v}}$ lies in M which is mapped to (under ι_{0})

$$
\left(\begin{array}{ccccccc}
t_{7} & & & & & & \\
& t_{7}^{-1} t_{6} & & & & & \\
& & t_{6}^{-1} t_{5} & & & & \\
& & & t_{5}^{-1} t_{4} & & & \\
& & & & t_{4}^{-1} t_{3} & & \\
& & & & & t_{3}^{-1} t_{1} & \\
& & & & & t_{1}^{-1}
\end{array}\right) .
$$

Since

$$
\left(t_{2}^{\alpha_{2}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}\right)^{\alpha_{j}}= \begin{cases}t_{2}^{-1}, & j=4 \\ t_{8}^{-1}, & j=7 \\ 1, & \text { otherwise } \\ 14\end{cases}
$$

we can extend ι_{0} to a homomorphism $\iota_{1}: M \rightarrow G L_{7}$ such that

$$
\iota_{1}\left(t_{2}^{\alpha_{2}^{\vee}}\right)=\left(\begin{array}{lllllll}
1 & & & & & & \\
& 1 & & & & & \\
& & 1 & & & & \\
& & & 1 & & & \\
& & & & t_{2} & & \\
& & & & & t_{2} & \\
& & & & & & t_{2}
\end{array}\right), \iota_{1}\left(t_{8}^{\alpha_{8}^{\vee}}\right)=\left(\begin{array}{cccccc}
t_{8}^{-1} & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
\\
& & & & 1 & \\
& & & & & \\
& & & & & \\
&
\end{array}\right)
$$

For any $m \in M$, assume that $m=m_{0} t_{2}(m)^{\alpha_{2}^{\vee}} t_{8}(m)^{\alpha_{8}^{\vee}}$, where $m_{0} \in M_{\text {der }}$. Define the map

$$
\begin{aligned}
\iota: M & \rightarrow G L_{7} \times G L_{1} \\
m & \mapsto\left(\iota_{1}(m), t_{2}(m)\right),
\end{aligned}
$$

which is a group homomorphism. We claim that ι is an isomorphism between M and $G L_{7} \times G L_{1}$. Indeed, assume that $\iota(m)=\left(I_{7}, 1\right)$, then $t_{2}(m)=1$. And then $\operatorname{det}\left(\iota_{1}(m)\right)=t_{8}^{-1}(m)$, which is equal to $\operatorname{det}\left(I_{7}\right)=1$. Hence, $\iota_{1}(m)=\iota_{0}\left(m_{0}\right)=I_{7}$. Since ι_{0} is an isomorphism, we get that m_{0} is the identity of M. Hence $m=m_{0} t_{2}(m)^{\alpha_{2}^{\vee}} t_{8}(m)^{\alpha_{8}^{\vee}}$ is the identify of M. Therefore, ι is an isomorphism. This completes the proof of the lemma.

Remark 4.1.2. The inverse of ι can be described explicitly as follows: for $g \in G L_{7}$ write $g=$ $g_{1}\left(a^{-1} I_{6}\right)$, with $g_{1} \in S L_{7}$, then

$$
\iota^{-1}(g, b)=\iota_{0}^{-1}\left(g_{1}\right) a^{\alpha_{8}^{\vee}} b^{\alpha_{2}^{\vee}-\alpha_{5}^{\vee}-2 \alpha_{6}^{\vee}-3 \alpha_{7}^{\vee}-4 \alpha_{8}^{\vee}} .
$$

Remark 4.1.3. The center of $G E_{7}$ is the image of $2 \alpha_{1}^{\vee}+3 \alpha_{2}^{\vee}+4 \alpha_{3}^{\vee}+6 \alpha_{4}^{\vee}+5 \alpha_{5}^{\vee}+4 \alpha_{6}^{\vee}+3 \alpha_{7}^{\vee}+2 \alpha_{8}^{\vee}$.
Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means of their root data) which underlies the definition of the L-group. By this duality, the isomorphism $\iota: M \rightarrow G L_{7} \times G L_{1}$ induces a dual isomorphism $\iota^{\vee}: G L_{7} \times G L_{1} \rightarrow M$.

Remark 4.1.5. For $1 \leq i \leq 7$ let e_{i} denote the rational character of the standard maximal torus of $G L_{7}$ which maps a matrix to its i th diagonal entry. Treat e_{i} also as a rational character of $G L_{7} \times G L_{1}$ which is trivial on the second factor and let e_{8} denote projection onto the second factor, so that e_{1}, \ldots, e_{8} is a \mathbb{Z}-basis for the lattice of rational characters of the standard maximal torus of $G L_{7} \times G L_{1}$. Let $e_{1}^{*}, \ldots, e_{8}^{*}$ be the dual basis for the lattice of cocharacters. Then we see at once that
$\alpha_{7}^{\vee}=e_{1}^{*}-e_{2}^{*}, \quad \alpha_{6}^{\vee}=e_{2}^{*}-e_{3}^{*}, \quad \alpha_{5}^{\vee}=e_{3}^{*}-e_{4}^{*}, \quad \alpha_{4}^{\vee}=e_{4}^{*}-e_{5}^{*}, \quad \alpha_{3}^{\vee}=e_{5}^{*}-e_{6}^{*}, \quad \alpha_{1}^{\vee}=e_{6}^{*}-e_{7}^{*}$,

$$
\alpha_{2}^{\vee}=e_{5}^{\star}+e_{6}^{*}+e_{7}^{*}+e_{8}^{*}, \quad \alpha_{8}^{\vee}=-e_{1}^{*}
$$

4.2. Eisenstein series. Take π an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ and $\chi: \mathbb{A}^{\times} \rightarrow \mathbb{C}^{\times}$a Hecke character. Having fixed above an isomorpism $\iota: M \rightarrow G L_{7} \times G L_{1}$, we may regard $\pi \otimes \chi$ as an irreducible cuspidal automorphic representation of $M(\mathbb{A})$. Restriction maps the lattice $X(M)$ of rational characters of M isomorphically onto a subgroup of the lattice $X(T)$ of rational characters of T. This sublattice is generated by the second and eighth fundamental weights ϖ_{2} and ϖ_{8}. We denote their preimages in $X(M)$ by $\widetilde{\varpi}_{2}$ and $\widetilde{\varpi}_{8}$. Then $\widetilde{\varpi}_{8}$ extends to a generator for the lattice of rational characters of $G E_{7}$ itself. Abusing notation, we still denote this extension by $\widetilde{\varpi}_{8}$. Let P be the standard parabolic whose Levi is M. We consider the family of induced representations $\operatorname{Ind}_{P(\mathbb{A})}^{G E A_{7}(\mathbb{A})}(\pi \otimes \chi) \cdot\left|\widetilde{\varpi}_{2}\right|^{s}, s \in \mathbb{C}$ (normalized induction), and the corresponding space of Eisenstein series.

Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant term of these Eisenstein series is

$$
\begin{equation*}
\frac{L^{S}\left(s, \pi \otimes \chi, \wedge^{3} \times \mathrm{St}\right) L^{S}\left(2 s, \widetilde{\pi} \otimes \chi^{2} \omega_{\pi}, \mathrm{St} \times \mathrm{St}\right)}{L^{S}\left(s+1, \pi \otimes \chi, \wedge^{3} \times \mathrm{St}\right) L^{S}\left(2 s+1, \widetilde{\pi} \otimes \chi^{2} \omega_{\pi}, \mathrm{St} \times \mathrm{St}\right)} \tag{4.2.2}
\end{equation*}
$$

Proof. This is standard from the Gindikin-Karpalevic formula and the L-group formalism. The Lie algebra of the unipotent radical of the parabolic P^{\vee} is a direct sum of two irreducible M^{\vee} submodules. The highest weights correspond to the coroots $\alpha_{1}^{\vee}+\alpha_{2}^{\vee}+2 \alpha_{3}^{\vee}+3 \alpha_{4}^{\vee}+3 \alpha_{5}^{\vee}+2 \alpha_{6}^{\vee}+\alpha_{7}^{\vee}$, and $2 \alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}+3 \alpha_{3}^{\vee}+4 \alpha_{4}^{\vee}+3 \alpha_{5}^{\vee}+2 \alpha_{6}^{\vee}+\alpha_{7}^{\vee}$. We must view the corresponding coroots as weights on the maximal torus of $G L_{7}(\mathbb{C}) \times G L_{1}(\mathbb{C})$. In terms of the basis $e_{1}^{*}, \ldots, e_{8}^{*}$ these two cocharacters are $e_{1}^{*}+e_{2}^{*}+e_{3}^{*}+e_{8}^{*}$ and $e_{1}^{*}+e_{2}^{*}+e_{3}^{*}+e_{4}^{*}+e_{5}^{*}+e_{6}^{*}+2 e_{8}^{*}$, respectively. The highest weight of \wedge^{3} is $e_{1}^{*}+e_{2}^{*}+e_{3}^{*}$, and projection to the $G L_{1}$ factor is e_{8}^{*} and determinant of the $G L_{7}$ factor. The weight $e_{1}^{*}+e_{2}^{*}+e_{3}^{*}+e_{4}^{*}+e_{5}^{*}+e_{6}^{*}$ is the highest weight of the \wedge^{6} representation, which can also be regarded as the dual to the standard representation twisted by the determinant.

Let $w_{0}=w[243154234565423143542765423143542654376542]$, which is the unique nontrivial Weyl word which is reduced by the Weyl group of $G L_{7}$ on both the left and the right. By [MW95, II.1.7] the constant term of the Eisenstein series applied to a section f of the induced space is given by $f+M\left(w_{0}\right) . f$, where $M\left(w_{0}\right)$ is the standard intertwining operator as in [MW95, II.1.6]. By [MW95, IV.1.11], $M\left(w_{0}\right) \cdot f$ can have at most a simple pole at $s=1$. By (3.1) and (3.5, c) of [KS04], it follows that 4.2 .2 can have at most a simple pole at $s=1$.

Since the standard L-functions of cuspidal representations of $G L(n)$ are nonzero on the half plane $\operatorname{Re}(s)>1\left(\right.$ see [JS81, Theorem 5.3]) and are entire on the whole complex plane, $\frac{L^{S}\left(2 s, \tilde{\pi} \otimes \chi^{2} \omega_{\pi}, \mathrm{St} \times \mathrm{St}\right)}{L^{S}\left(2 s+1, \tilde{\pi} \otimes \chi^{2} \omega_{\pi}, \mathrm{St} \times \mathrm{St}\right)}$ has no pole and no zero at $s=1$. So, $\frac{L^{S}\left(s, \pi \otimes \chi, \wedge^{3} \times S t\right)}{L^{S}\left(s+1, \pi \otimes \chi, \wedge^{3} \times S t\right)}$ has at most a simple pole at $s=1$. Moreover, from (3.5, b) of KS04] a pole of the intertwining operator in the half plane $\operatorname{Re}(s) \geq 1$ must come from $\frac{L^{S}\left(s, \pi \otimes \chi, \wedge^{3} \times S t\right)}{L^{S}\left(s+1, \pi \otimes \chi, \wedge^{3} \times S t\right)}$.
Proposition 4.2.3. If the Eisenstein series has a pole in the half plane $\operatorname{Re}(s)>0$, then the residual representation is square integrable.
Proof. This is an easy application of the square integrability in MW95] I.4.11.
According to Lemma 7.5 of [L76], the Eisenstein series can have a square integrable residue only if $\pi \otimes \chi \circ \operatorname{Ad}\left(\dot{w}_{0}\right) \cong \pi \otimes \chi$. We investigate what this condition says explicitly about π and χ.

Lemma 4.2.4. There is a representative \dot{w}_{0} for w_{0} such that the automorphism of $G L_{7} \times G L_{1}$ induced by $\operatorname{Ad}\left(\dot{w}_{0}\right)$ and our choice of isomorphism $M \rightarrow G L_{7} \times G L_{1}$ is

$$
(g, a) \mapsto\left(t g^{-1} \frac{a^{3}}{\operatorname{det} g}, \frac{a^{8}}{(\operatorname{det} g)^{3}}\right)
$$

Proof. For any choice of representative, the $\operatorname{Ad}\left(\dot{w}_{0}\right)$ induces an automorphism of $G L_{7} \times G L_{1}$ which preserves the chosen torus and Borel. When such an automorphism is restricted to $S L_{7}$ there are two possibilities: either it is given by conjugation by an element of the torus of $G L_{7}$ (in which case we can adjust the representative \dot{w}_{0} to make it trivial), or else it is given by $g \mapsto_{t} g^{-1}$ composed with conjugation by an element of the torus of $G L_{7}$ (in which case we can adjust the representative \dot{w}_{0} to make it $g \mapsto_{t} g^{-1}$).

By inspecting the action of w_{0} on the fundamental weights, one can see that $\operatorname{Ad}\left(\dot{w}_{0}\right)$ maps $h\left(t_{1}, \ldots, t_{8}\right)$ to

$$
h\left(\frac{t_{7} t_{8}}{t_{2}}, \frac{t_{8}^{3}}{t_{2}}, \frac{t_{6} t_{8}^{3}}{t_{2}^{3}}, \frac{t_{5} t_{8}^{5}}{t_{2}^{3}}, \frac{t_{4} t_{8}^{4}}{t_{2}^{3}}, \frac{t_{3} t_{8}^{3}}{t_{2}^{2}}, \frac{t_{1} t_{8}^{2}}{t_{2}}, t_{8}\right) .
$$

If we push this through the isomorphism with $G L_{7} \times G L_{1}$ it becomes

$$
\left.\left(\begin{array}{ccccccc}
\frac{t_{7}}{t_{8}} & & & & & & \\
& \frac{t_{6}}{t_{7}} & & & & & \\
& & \frac{t_{5}}{t_{6}} & & & & \\
& & & \frac{t_{4}}{t_{5}} & & & \\
& & & & \frac{t_{2} t_{3}}{t_{4}} & & \\
& & & & & \frac{t_{1} t_{2}}{t_{3}} & \\
& & & & & & \frac{t_{2}}{t_{1}}
\end{array}\right), t_{2}\right) \mapsto\left(\left(\begin{array}{lllllll}
\frac{t_{1} t_{8}}{t_{2}} & & & & & \\
& \frac{t_{3} t_{8}}{t_{1} t_{2}} & & & & \\
& & \frac{t_{4} t_{8}}{t_{3} t_{2}} & & & & \\
& & & \frac{t_{5} t_{8}}{t_{4}} & & & \\
& & & & \frac{t_{6} t_{8}}{t_{5}} & & \\
& & & & & \frac{t_{7} t_{8}}{t_{6}} & \\
& & & & & & \frac{t_{8}^{2}}{t_{7}}
\end{array}\right), \frac{t_{8}^{3}}{t_{2}}\right) .
$$

We see that on the torus of $S L_{7}$ (obtained by setting $t_{2}=t_{8}=1$) this agrees with $g \mapsto_{t} g^{-1}$. In general, it can be expressed as $\left(t, t_{2}\right) \mapsto\left({ }_{t} t^{-1} t_{8}, \frac{t_{8}^{3}}{t_{2}}\right)$, and t_{8} can be expressed as $\frac{t_{2}^{3}}{\operatorname{det} g}$.

Corollary 4.2.5. If η is a character, we write $\eta \cdot \pi$ for the twist of π by $\eta \circ$ det. Then for any π, χ we have

$$
\pi \otimes \chi \circ \operatorname{Ad}\left(\dot{w}_{0}\right) \cong\left(\omega_{\pi}^{-1} \chi^{-3} \cdot \widetilde{\pi}\right) \otimes\left(\omega_{\pi}^{3} \chi^{8}\right)
$$

Corollary 4.2.6. If

$$
\pi \otimes \chi \circ \operatorname{Ad}\left(\dot{w}_{0}\right) \cong \pi \otimes \chi,
$$

then there is a self-contragredient cuspidal representation π_{0} with trivial central character, and a character η such that $\pi \cong \eta^{-1} \pi_{0}$ and $\chi=\eta^{3}$.
Proof. If $\chi=\omega_{\pi}^{3} \chi^{8}$ then $\omega_{\pi}^{3}=\chi^{-7}$, so $\chi=\left(\omega_{\pi} \chi^{2}\right)^{-3}$. Setting $\eta=\omega_{\pi}^{-1} \chi^{-2}$, we have $\chi=\eta^{3}$ and $\omega_{\pi}=\chi^{-2} \eta^{-1}=\eta^{-7}$. Then $\omega_{\pi}^{-1} \chi^{-3} \cdot \widetilde{\pi}=\eta^{-2} \widetilde{\pi}$. If this is isomorphic to π then $\pi_{0}:=\pi \otimes \eta$ is selfcontragredient with trivial central character.
Remark 4.2.7. $L^{S}\left(s, \eta^{-1} \pi_{0} \otimes \eta^{3}, \wedge^{3} \otimes \mathrm{St}\right)=L^{S}\left(s, \pi_{0}, \wedge^{3}\right)$.
Remark 4.2.8. If a representation π of $G L_{7}$ is self-contragredient, then $L^{S}\left(s, \pi, \operatorname{sym}^{2}\right)$ has a simple pole at $s=1$. Indeed, each self-contragredient representation of $G L_{n}$ is of either orthogonal type ($L^{S}\left(s, \pi_{0}, \operatorname{sym}^{2}\right)$ has a pole) or symplectic type ($L^{S}\left(s, \pi_{0}, \wedge^{2}\right)$ has a pole). When n is odd π_{0} must be of orthogonal type, because $L^{S}\left(s, \pi_{0}, \wedge^{2}\right)$ has no poles in the odd case (see [JS90, S81, K99]).

Corollary 4.2 .6 implies that a cuspidal representation whose twisted $\wedge^{3} L$-function has a pole is simply a twist of a representation whose untwisted $\wedge^{3} L$-function has a pole. Since there is no essential loss of generality, we shall henceforth restrict our attention to untwisted $\wedge^{3} L$-function, i.e., we shall assume that χ is trivial. In this case we get the following simplification of Corollary 4.2.6.

Lemma 4.2.9. If $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole, then $\pi=\eta \cdot \pi_{0}$ where η is cubic, π_{0} is self-contragredient with trivial central character and $L^{S}\left(s, \pi_{0}, \mathrm{sym}^{2}\right)$ has a pole at $s=1$.

Definition 4.2.10. Given an irreducible cuspidal automorphic representation π of $G L_{7}(\mathbb{A})$, we say that π is of G_{2} type if it is self-contragredient, and $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$.
Remark 4.2.11. By [KS04, Theorem 1], if $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, then it is simple. By Lemma 4.2.9, given an irreducible cuspidal automorphic representation π of $G L_{7}(\mathbb{A})$, if it is of G_{2} type, then the central character of π is trivial and $L^{S}\left(s, \pi, \operatorname{sym}^{2}\right)$ has a pole at $s=1$.
Proposition 4.2.12. If π is of G_{2} type then the Eisenstein series has a simple pole at $s=1$.
Proof. We've already explained that the Eisenstein series has the same poles as $\frac{L^{S}\left(s, \pi, \wedge^{3}\right)}{L^{S}\left(s+1, \pi, \wedge^{3}\right)}$ in $\operatorname{Re}(s) \geq 1$.

The exterior cube L-function is holomorphic at 2 by [KS04, Lemma 5.1], so a pole at 1 will be inherited by the ratio and hence the Eisenstein series.

Definition 4.2.13. When π is of G_{2} type, we can see that the Eisenstein series above has a simple pole at $s=1$. Denote the residual representation by \mathcal{E}_{π}.

Remark 4.2.14. (1) It is possible for the Eisenstein series to have a pole at one even if $L^{S}\left(s, \pi, \wedge^{3}\right)$ has no pole, namely, if $L\left(s, \pi, \wedge^{3}\right)$ vanishes at $s=2$. One expects that this does not occur. For example, if Langlands functoriality holds, then $L^{S}\left(s, \pi, \wedge^{3}\right)$ is simply the standard L function of the \wedge^{3} lift of π. This lift doesn't need to be cuspidal, but if the Ramanujan conjecture also holds, then both π and its lift will be tempered at every place, so that the lift will be an isobaric sum of unitary cuspidal representations. In this case its standard L function is holomorphic and nonvanishing in $\operatorname{Re}(s)>1$.
(2) For similar reasons, one expects that $L^{S}\left(s, \pi, \wedge^{3}\right)$ will have no poles other than possibly at 0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric summand of the \wedge^{3} lift.
(3) If π is of G_{2} type, then $L^{S}\left(s, \pi, \wedge^{3}\right)$ must be nonvanishing at $s=2$, since the intertwining operator can have at most a simple pole.
(4) If π is not of G_{2} type but $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, then we can still obtain a residual representation \mathcal{E}_{π}.

Lemma 4.2.15. If an irreducible automorphic representation π of $G L_{7}(\mathbb{A})$ is the weak functorial lift of an irreducible automorphic representation σ of $G_{2}(\mathbb{A})$, then
(1) π is nearly equivalent to it's contragredient $\widetilde{\pi}$,
(2) $L^{S}\left(s, \pi, \wedge^{3}\right)=L^{S}\left(s, \pi, \operatorname{sym}^{2}\right) L^{S}(s, \pi)$.

Proof. The embedding of G_{2} into $G L_{7}$ factors through an embedding of the special orthogonal group $\mathrm{SO}_{7} \hookrightarrow G L_{7}$. It follows that if π is a weak functorial lift associated with this embedding, then $\pi_{v} \cong \widetilde{\pi}_{v}$ at every unramified place v.

Write $\Gamma_{a, b}$ for the irreducible representation of $G_{2}(\mathbb{C})$ with highest weight $a \varpi_{1}^{G_{2}}+b \varpi_{2}^{G_{2}}$. (Here $\varpi_{1}^{G_{2}}, \varpi_{2}^{G_{2}}$ are the fundamental weights of $G_{2}(\mathbb{C})$.) The seven-dimensional "standard" representation of $G_{2}(\mathbb{C})$ is $\Gamma_{1,0}$. Then $\wedge^{3} \Gamma_{1,0} \cong \Gamma_{0,0} \oplus \Gamma_{1,0} \oplus \Gamma_{2,0}$, while $\operatorname{sym}^{2} \Gamma_{1,0} \cong \Gamma_{0,0} \oplus \Gamma_{2,0}$, so $\wedge^{2} \Gamma_{1,0} \cong \operatorname{sym}^{2} \Gamma_{1,0} \oplus$ $\Gamma_{1,0}$. It follows that for π the weak functorial lift of σ we have

$$
L^{S}\left(s, \pi, \wedge^{3}\right)=L^{S}\left(s, \sigma, \wedge^{3} \Gamma_{1,0}\right)=L^{S}\left(s, \sigma, \operatorname{sym}^{2} \Gamma_{1,0}\right) L^{S}\left(s, \sigma, \Gamma_{1,0}\right)=L^{S}\left(s, \pi, \operatorname{sym}^{2}\right) L^{S}(s, \pi)
$$

Lemma 4.2.16. If an irreducible cuspidal representation π of $G L_{7}(\mathbb{A})$ is the weak functorial lift of an irreducible cuspidal representation σ of $G_{2}(\mathbb{A})$, then π is self-contragredient and $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a simple pole at $s=1$.

Proof. From part (1) of lemma 4.2.15, and strong multiplicity one for $G L_{7}$, it follows that $\pi=\widetilde{\pi}$.
From part (2) of lemma 4.2 .15 , we have

$$
L^{S}\left(s, \pi, \wedge^{3}\right)=L^{S}\left(s, \pi, \operatorname{sym}^{2}\right) L^{S}(s, \pi)
$$

Now, $L^{S}(s, \pi)$ is holomorphic and nonvanishing in $\operatorname{Re}(s) \geq 1$, while $L^{S}\left(s, \pi, \operatorname{sym}^{2}\right)$ has a simple pole at $s=1$, because π is self-contragredient. It follows that $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a simple pole at $s=1$.

5. The nilpotent orbit A_{6} of E_{7}

In this section we consider the rational orbit structure for the nilpotent orbit of E_{7} whose BalaCarter label is A_{6} and whose weighted Dynkin diagram is

We will show that this nilpotent orbit consists of a single rational orbit and the residual representation \mathcal{E}_{π} has a nonzero generalized Whittaker-Fourier coefficient attached to it.

First, we introduce some notation related to nilpotent orbits. One of the most convenient ways to specify a nilpotent orbit \mathcal{O} in a reductive Lie algebra is by a weighted Dynkin diagram. This method of specifying nilpotent elements relies on two facts:
(1) Orbits of nilpotent elements are in bijection with orbits of $\mathfrak{s l}_{2}$-triples [C93, Theorem 5.5.11].
(2) Once a split maximal torus T and a base Δ of simple roots (relative to T) have been fixed, each $\mathfrak{s l}_{2}$-triple is conjugate to a triple (v, s, u) such that $s \in \mathfrak{t}$, and $\alpha(s) \geq 0$ for all $\alpha \in \Delta$. (Since each torus is contained in a maximal one, all maximal tori are conjugate, and every weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element $s=s_{\mathcal{O}}$ as above is called the standard semisimple element attached to the orbit \mathcal{O} in question. Let $P_{\mathcal{O}}=M_{\mathcal{O}} U_{\mathcal{O}}$ be the parabolic subgroup $P_{s}=M_{s} U_{s}$ defined in Section 3.1, with Levi subgroup $M_{\mathcal{O}}=M_{s}$ and unipotent radical $U_{\mathcal{O}}=U_{s}$.

Each element s of \mathfrak{t} determines a weighted Dynkin diagram

$$
\begin{array}{llll}
\alpha_{1}(s) \quad \alpha_{3}(s) & \alpha_{4}(s) & \alpha_{5}(s) \quad \alpha_{6}(s) \quad \alpha_{7}(s) \\
& \alpha_{2}(s)
\end{array}
$$

The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram of its standard semisimple element.

The map from \mathfrak{t} to weighted Dynkin diagrams is not injective, but each fiber has a unique element which is contained in the span of the coroots of G. For any nilpotent orbit, the standard semisimple element is contained in this subspace of \mathfrak{t}. In addition, if the weights of the Dynkin diagram are integral, then the diagram canonically determines a homomorphism from the root lattice into \mathbb{Z}, i.e., a coweight. Whenever convenient, we will use integrally weighted Dynkin diagrams to specify coweights, nilpotent orbits, and elements of \mathfrak{t}.

To study the nilpotent orbit A_{6}, we consider the parabolic subgroup $Q=L V$ whose Levi, L contains the root subgroups attached to α_{4} and α_{6} and whose unipotent radical, V contains the root subgroups attached to the other simple roots. The derived group of L is isomorphic to $S L_{3} \times S L_{2} \times S L_{2} \times S L_{2}$, and we can map L into $G L_{3} \times G L_{2} \times G L_{2} \times G L_{2}$ so that the induced map on Lie algebras maps $\sum_{i=1}^{8} t_{i} H_{\alpha_{i}}+\sum_{i=1,2,3,5,7} x_{i} X_{\alpha_{i}}+y_{i} X_{-\alpha_{i}}$ to

$$
\left(\left(\begin{array}{ccc}
t_{3}-t_{4} & x_{3} & \\
y_{3} & t_{1}-t_{3} & x_{1} \\
& y_{1} & -t_{1}
\end{array}\right),\left(\begin{array}{cc}
t_{2}-t_{4} & x_{2} \\
y_{2} & -t_{2}
\end{array}\right),\left(\begin{array}{cc}
t_{5}-t_{6} & x_{5} \\
y_{5} & t_{4}-t_{5}
\end{array}\right),\left(\begin{array}{cc}
t_{7}-t_{8} & x_{7} \\
y_{7} & t_{6}-t_{7}
\end{array}\right)\right)
$$

The image is

$$
\begin{equation*}
\left\{\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \in G L_{3} \times G L_{2} \times G L_{2} \times G L_{2}: \operatorname{det} g_{1}=\operatorname{det} g_{2}\right\} \tag{5.0.2}
\end{equation*}
$$

Denote the isomorphism from L to $\sqrt{5.0 .2}$ by ι_{L}. Denote the projection of $G L_{3} \times G L_{2} \times G L_{2} \times G L_{2}$ onto the $i \underline{\text { th }}$ factor by p_{i} for $i=1,2,3,4$. We write D for the differential, i.e., the induced map on Lie algebras. Thus, for example $D p_{2} \circ D \iota_{L}$ maps $\mathfrak{l} \rightarrow \mathfrak{g l}_{2}$.

The space of characters of V is identified with the sum of the root spaces $\mathfrak{g}_{-\alpha}$ attached to roots α such that $\alpha=\sum_{i=1}^{7} c_{i} \alpha_{i}$ and $2 c_{4}+2 c_{6}=2$. Clearly, this is the direct sum of two subspaces

$$
\mathfrak{v}_{1}^{-}:=\bigoplus_{\alpha: c_{4}=1, c_{6}=0} \mathfrak{g}_{-\alpha}, \quad \text { and } \quad \mathfrak{v}_{2}^{-}:=\bigoplus_{\alpha: c_{4}=0, c_{6}=1} \mathfrak{g}_{-\alpha} .
$$

Lemma 5.0.3. Write $G S O_{4}$ for the usual split similitude orthogonal group in four variables. In other words, let

$$
J_{4}=\left(\begin{array}{ccc}
& & \\
& & \\
& 1 & \\
1 & &
\end{array}\right), \quad G S O_{4}:=\left\{g \in G L_{4}: g J_{4}{ }^{t} g=\lambda(g) J_{4}, \lambda(g) \in G L_{1}\right\}
$$

There is an surjective homomorphism of algebraic groups pr : GL $L_{2} \times G L_{2} \rightarrow G S O_{4}$

$$
\operatorname{pr}\left(\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right),\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)\right)=\left(\begin{array}{cccc}
a_{1} & b_{1} & & \\
c_{1} & d_{1} & & \\
& & a_{1} & -b_{1} \\
& & -c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{cccc}
a_{2} & & -b_{2} & \\
& a_{2} & & b_{2} \\
-c_{2} & & d_{2} & \\
& c_{2} & & d_{2}
\end{array}\right),
$$

which satisfies $\lambda\left(\operatorname{pr}\left(g_{1}, g_{2}\right)\right)=\operatorname{det} g_{1} \operatorname{det} g_{2}$.
Proof. Write $E_{i j}$ for the 2×2 matrix with a 1 at the i, j entry and zeros elsewhere. Then pr sends (g_{1}, g_{2}) to the matrix of the linear operator $X \mapsto g_{1} X^{t} g_{2}$ relative to the ordered basis $\left(E_{1,1}, E_{2,1},-E_{1,2}, E_{2,2}\right)$ of $\operatorname{Mat}_{2 \times 2}$. Notice that the coordinate vector for the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ relative to this ordered basis is ${ }^{t}\left[\begin{array}{llll}a & b & c & d\end{array}\right]$. Thus the quadratic form determined by the matrix J_{4} corresponds to twice the determinant form on $\mathrm{Mat}_{2 \times 2}$, from which it easily follows that $G L_{2} \times G L_{2}$ maps into GSO_{4} (which can also be checked by hand on the matrices above). The formula for $\lambda \circ \mathrm{pr}$ also follows easily.

It remains to show that the map is surjective. It suffices to show that the image contains all four root subgroups and the full torus, and this is straightforward.

Lemma 5.0.4. There is an isomorphism of vector groups $\iota_{\mathfrak{v}_{2}^{-}}: \mathfrak{v}_{2}^{-} \rightarrow$ Mat $_{2 \times 2}$ which is compatible with ι_{L} in the sense that

$$
\iota_{\mathfrak{v}_{2}^{-}}\left(\operatorname{Ad}\left(\iota_{L}^{-1}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)\right) \cdot X\right)=g_{3} \iota_{\mathfrak{v}_{2}^{-}}(X) g_{4}^{-1}
$$

Proof. We consider the action of $S L_{3} \times S L_{2} \times S L_{2} \times S L_{2}$ on \mathfrak{v}_{2}^{-}, and easily see that the copies of $S L_{2}$ attached to the roots α_{5} and α_{7} act nontrivially, while the copy of $S L_{2}$ attached to α_{2} and the $S L_{3}$ factor act trivially. There is a unique four-dimensional representation of $S L_{2} \times S L_{2}$ on which both factors act trivially. Hence, the given action on $\mathrm{Mat}_{2 \times 2}$ is one realization of it, while inclusion into $S L_{3} \times S L_{2} \times S L_{2} \times S L_{2}$ at the third and fourth positions composed with $A d \circ \iota_{L}^{-1}$ is another.

To construct a specific isomorphism we start by matching our preferred highest weight vectors and generating the correspondence on the complete bases of weight vectors. Thus, we map $X_{-0000010}$ (a highest weight vector in \mathfrak{v}_{2}^{-}) to E_{12} (a highest weight vector in Mat ${ }_{2 \times 2}$). Then, since the differential of ι_{L} maps $X_{-0000100}$ to $\left(E_{21}, 0\right)$ It follows that ad $\left(X_{-0000100}\right) X_{-0000010}$. must be mapped to E_{21}. $E_{12}=E_{2,2}$. Of course $\operatorname{ad}\left(X_{-0000100}\right) X_{-0000010}$ is a scalar multiple of $X_{-0000110}$. The scalar depends on the structure constants for our realization (or equivalently of the corresponding Chevalley basis). We fix structure constants as in Gilkey and Seitz, so structure constant is -1 . Continuing in this fashion, we compute $\sqrt{1}$
$\iota_{\mathfrak{v}_{2}^{-}}\left(x_{0000010} X_{-0000010}+x_{0000011} X_{-0000011}+x_{0000110} X_{-0000011}+x_{0000111} X_{-0000111}\right)=\left(\begin{array}{cc}-x_{0000011} & x_{0000010} \\ x_{0000111} & -x_{0000110}\end{array}\right)$.

[^1]What remains is to check that the action of $t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}$ is the same on both sides. And this is easy, since

$$
\begin{aligned}
& \left(\begin{array}{cc}
t_{6}^{-1} & \\
& t_{4}
\end{array}\right)\left(\begin{array}{cc}
-x_{0000011} & x_{0000010} \\
x_{0000111} & -x_{0000110}
\end{array}\right)\left(\begin{array}{cc}
t_{8}^{-1} & \\
& t_{6}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-\frac{t_{8}}{t_{6}} x_{0000011} & \frac{1}{t_{2}^{2}} x_{0000010} \\
t_{4} t_{8} x_{0000111} & -\frac{t_{4}}{t_{6}} x_{0000110}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-\left(t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}\right)^{-0000011} & x_{0000011} & \left(t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}\right)^{-0000010}{ }_{0000010} \\
\left(t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}\right)^{-0000111} & x_{0000111} & -^{-0000110}\left(t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}\right) x_{0000110}
\end{array}\right) .
\end{aligned}
$$

Lemma 5.0.5. There is an isomorphism of vector groups $\iota_{\mathfrak{v}_{1}^{-}}: \mathfrak{v}_{1}^{-} \rightarrow$ Mat $_{3 \times 4}$ which is compatible with ι_{L} in the sense that

$$
\iota_{\mathfrak{v}_{1}^{1}}\left(\operatorname{Ad}\left(\iota_{L}^{-1}\left(g_{1}, g_{2}, g_{3}, g_{4}\right)\right) \cdot X\right)=g_{1} \iota_{\mathfrak{v}_{1}^{-}}(X) \operatorname{pr}\left(g_{2}, g_{3}\right)^{-1}
$$

Proof. This is proved by the same method. We record only the essential information. The correspondence between roots α such that X_{α} lies in \mathfrak{v}_{1}^{-}and entries in an element of Mat ${ }_{3 \times 4}$ is succinctly expressed by the following matrix:

$$
\left(\begin{array}{llll}
-0101100 & -0001100 & -0101000 & -0001000 \\
-0111100 & -0011100 & -0111000 & -0011000 \\
-1111100 & -1011100 & -1111000 & -1011000
\end{array}\right) .
$$

In the next matrix we record the image of $t_{4}^{\alpha_{4}^{\vee}} t_{6}^{\alpha_{6}^{\vee}} t_{8}^{\alpha_{8}^{\vee}}$ under these twelve roots:

$$
\left(\begin{array}{cccc}
t_{6} & \frac{t_{6}}{t_{4}} & \frac{1}{t_{4}} & \frac{1}{t_{4}^{2}} \\
t_{6} t_{4} & t_{6} & 1 & \frac{1}{t_{4}} \\
t_{6} t_{4} & t_{6} & 1 & \frac{1}{t_{4}}
\end{array}\right)
$$

Each entry matches exactly the effect of multiplying by $\operatorname{diag}\left(t_{4}^{-1}, 1,1\right)$ on the left and $\operatorname{diag}\left(t_{6} t_{4}, t_{6}, 1, t_{4}^{-1}\right)$ on the right. Finally, one has to check that $\operatorname{diag}\left(t_{6} t_{4}, t_{6}, 1, t_{4}^{-1}\right)^{-1}=\operatorname{pr}\left(\left(\begin{array}{ll}t_{4}^{-1} & 1\end{array}\right),\left(\begin{array}{ll}t_{6}^{-1} & t_{4}\end{array}\right)\right)$.

Next we compute the rational orbit structure for the action of $G L_{3} \times G S O_{4}$ on $\mathrm{Mat}_{3 \times 4}$ by $\left(g_{1}, g_{2}\right) . Y=g_{1} Y g_{2}^{-1}$. Write Mat ${ }_{3 \times 3}^{\text {sym }}$ for the space of 3×3 symmetric matrices. The group $G L_{3} \times G L_{1}$ acts by $(g, a) \cdot Z=a g Z^{t} g$. We have a map Mat ${ }_{3 \times 4} \rightarrow \mathrm{Mat}_{3 \times 3}^{\text {sym }}$ given by $Y \mapsto Y J_{4}^{t} Y$. Clearly

$$
\left(g_{1} Y g_{2}^{-1}\right) J_{4}{ }^{t}\left(g_{1} Y g_{2}^{-1}\right)=\lambda\left(g_{2}^{-1}\right) g_{1} Y J_{4}{ }^{t} Y .
$$

Thus Y_{1} and Y_{2} lie in the same $G L_{3} \times G S O_{4}$-orbit if and only if $Y_{1}{ }^{t} Y_{1}$ lies in the same $G L_{3} \times G L_{1}-$ orbit as $Y_{2}{ }^{t} Y_{2}$. It is clear that $\operatorname{Rank} Y$ and $\operatorname{Rank} Y^{t} Y$ are both invariants of a $G L_{3} \times G S O_{4}$-orbit, and that the latter is bounded by the former. It is relatively easy to show that $\left\{Y \in \operatorname{Mat}_{3 \times 4}: \operatorname{Rank} Y=\right.$ $\left.i, \operatorname{Rank} Y^{t} Y=j\right\}$ is nonempty and a single $G L_{3} \times G S O_{4}$-orbit for $(i, j)=(0,0),(1,0),(1,1),(2,0)$, and (2,1). Also, one can easily find a matrix Y of rank 2 such that $Y^{t} Y=\operatorname{diag}(a, b, 0)$ for any a, b.

Lemma 5.0.6. Take F a field and $Y \in \operatorname{Mat}_{3 \times 4}(F)$ rank three. Then there exists $g \in G L_{3}$ such that $\left(g Y^{t} Y^{t} g\right)$ is of the form

$$
\left(\begin{array}{lll}
& & 1 \\
1 & a &
\end{array}\right)
$$

Proof. Write V for the span of the rows of Y. We choose a suitable basis for V such that the quadratic form attached to J_{4}, when written in terms of the new basis, has a matrix of the specified form.

We may write $\operatorname{Mat}_{1 \times 4}=W_{1} \oplus W_{2}$ where W_{1}, W_{2} are two-dimensional isotropic subspaces. Since $\operatorname{dim} V>\operatorname{dim} W_{1}$ there exist nontrivial elements of v which project to $0 \operatorname{in} W_{1}$. That is $V \cap W_{1} \neq 0$. Likewise $V \cap W_{2} \neq 0$. Select $v_{1} \in V \cap W_{1}$ and $v_{2} \in V \cap W_{2}$.

First suppose that v_{1} is orthogonal to v_{2}. Then the span of v_{1} and v_{2} is a maximal isotropic subspace W_{1}^{\prime}. Select v_{3} in the orthogonal complement of W_{1}^{\prime} and then replace v_{1}, v_{2} by a new basis $v_{1}^{\prime}, v_{2}^{\prime}$ for W_{1}^{\prime} such that $v_{2}^{\prime} J_{4} v_{3}=0$ and $v_{1}^{\prime} J_{4} v_{3}=1$. Then the basis $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}$ fits the bill.

Now suppose that v_{1} is not orthogonal to v_{2}, and let v_{3} be any element of V which is linearly independent of v_{1} and v_{2}. Then there exist a, b such that $v_{3}-b v_{1}-c v_{2}$ is orthogonal to both v_{1} and v_{2}, and the basis v_{1}, v_{3}, v_{2} fits the bill.

Corollary 5.0.7.

$$
\left\{Y \in \operatorname{Mat}_{3 \times 4}(F): \operatorname{Rank} Y^{t} Y=3\right\}
$$

is a Zariski open $G L_{3}(F) \times G S O_{4}(F)$ orbit over any field F.
Proof. The set is clearly Zariski open. We have shown that each orbit with $\operatorname{Rank} Y^{t} Y=3$ contains an element with

$$
Y^{t} Y=\left(\begin{array}{ll}
& \\
& a \\
1 &
\end{array}\right)
$$

If the rank is 3 then a is nonzero and we can scale by a^{-1} in $G L_{1}$ and then act by $\operatorname{diag}(a, 1,1)$ in $G L_{3}$ to get $\left.\left(1_{1}^{1}\right)^{1}\right)$, which completes the proof that our set is a single orbit.
Corollary 5.0.8. The nilpotent orbit A_{6} consists of a single rational orbit.
Proof. We know that each rational orbit in A_{6} has a representative that lies in $\mathfrak{v}_{1}^{-}(F) \oplus \mathfrak{v}_{2}^{-}(F)$, and that two elements of this space Lie in the same $G(F)$ orbit if and only if they lie in the same $L(F)$ orbit. We can identify $\mathfrak{v}_{1}^{-}(F) \oplus \mathfrak{v}_{2}^{-}(F)$ with $\operatorname{Mat}_{3 \times 4}(F) \oplus \operatorname{Mat}_{2 \times 2}(F)$. It is clear that the action of $L(F)$ preserves the Zariski open subset $\left\{(Y, X) \in \operatorname{Mat}_{3 \times 4}(F) \times \operatorname{Mat}_{2 \times 2}(F): \operatorname{Rank} Y^{t} Y=3\right.$, $\operatorname{Rank} X=$ $2\}$. We show that this set is a single $L(F)$ orbit. Take $\left(Y_{1}, X_{1}\right)$ and $\left(Y_{2}, X_{2}\right)$ two elements. Recall that L is identified with $\left\{\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \in G L_{3} \times G L_{2} \times G L_{2} \times G L_{2}: \operatorname{det} g_{1}=\operatorname{det} g_{2}\right\}$, and note that $\left(g_{1}, g_{2}, g_{3}, g_{4}\right) \mapsto\left(g_{1}, \operatorname{pr}\left(g_{2}, g_{3}\right)\right)$ gives a surjective mapping onto $G L_{3} \times G S O_{4}$. Thus, there exists $\left(g_{1}, g_{2}, g_{3}\right)$ such that $\operatorname{Ad}\left(g_{1}, g_{2}, g_{3}, I_{2}\right) \cdot\left(Y_{1}, X_{1}\right)=\left(Y_{2}, X_{2}^{\prime}\right)$. Then $\operatorname{Ad}\left(I_{3}, I_{2}, I_{2}, X_{2}^{-1}\left(X_{2}^{\prime}\right)\right) \cdot\left(Y_{2}, X_{2}^{\prime}\right)=$ $\left(Y_{2}, X_{2}\right)$.

It will be convenient to select a representative for our open orbit. A representative in $\mathrm{Mat}_{3 \times 4} \times \mathrm{Mat}_{2 \times 2}$ would be

$$
\left(\left(\begin{array}{llll}
1 & & & \\
& 1 & 1 & \\
& & & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right)\right)
$$

A convenient representative in $\mathfrak{v}_{1}^{-} \oplus \mathfrak{v}_{2}^{-}$would be $X_{-0101100}+X_{-0111000}+X_{-0011100}+X_{-1011000}+$ $X_{-0000110}+X_{-0000011}$. This will correspond to the above pair of matrices up to some signs. In particular it will be an element of the correct orbit. Let $w_{0}=w[2,4,3,1,5,4,2,3,4,6,5,4,2,3,7,6,5,4]$. Then there is a representative \dot{w}_{0} for w_{0} such that

$$
\begin{gathered}
\operatorname{Ad}\left(\dot{w}_{0}\right) \cdot X_{-0101100}+X_{-0111000}+X_{-0011100}+X_{-1011000}+X_{-0000110}+X_{-0000011} \\
=X_{-\alpha_{4}}+X_{-\alpha_{7}}+X_{-\alpha_{1}}+X_{-\alpha_{5}}+X_{-\alpha_{6}}+X_{-\alpha_{3}} .
\end{gathered}
$$

This nilpotent element corresponds to the regular orbit of the A_{6} Levi. (We remark that if a standard representative \ddot{w}_{0} is used then

$$
\begin{gathered}
\operatorname{Ad}\left(\ddot{w}_{0}\right) \cdot X_{-0101100}+X_{-0111000}+X_{-0011100}+X_{-1011000}+X_{-0000110}+X_{-0000011} \\
=-X_{-\alpha_{4}}+X_{-\alpha_{7}}-X_{-\alpha_{1}}+X_{-\alpha_{5}}+X_{-\alpha_{6}}-X_{-\alpha_{3}} .
\end{gathered}
$$

For the sake of completeness, we record our findings regarding the rational orbit decomposition of $\mathrm{Mat}_{3 \times 4}$.
Proposition 5.0.9. The set

$$
\left\{Y \in \operatorname{Mat}_{3 \times 4}: \operatorname{Rank} Y=i, \operatorname{Rank} Y J_{4}{ }^{t} Y=j\right\}
$$

is nonempty if and only if $0 \leq j \leq i \leq 2$ or $i=3$ and $2 \leq j \leq 3$. It is a single $G L_{3} \times G S O_{4}$ orbit unless $i=j=2$, in which case it is a union of orbits which are in one-to-one correspondence with the action of $G L_{2} \times G L_{1}$ on $\mathrm{Mat}_{2 \times 2}^{\text {sym }}$.
Theorem 5.0.10. \mathcal{E}_{π} has a nonzero generalized Fourier coefficient attached to the rational nilpotent orbit labeled by A_{6}.
Proof. Take $u=X_{-\alpha_{4}}+X_{-\alpha_{7}}+X_{-\alpha_{1}}+X_{-\alpha_{5}}+X_{-\alpha_{6}}+X_{-\alpha_{3}}$ and s^{\prime} a rational semisimple element which acts by 2 on each simple root space. Then $\mathcal{F}_{s^{\prime}, u}$ maps an automorphic form to the $G L_{7}$ nondegenerate Whittaker-Fourier integral of its constant term along the A_{6} parabolic. It is clear that the residual representation supports this coefficient. Therefore, by Theorem 3.1.2, it also supports $\mathcal{F}_{s, u}$, where s is a neutral element for u.
Remark 5.0.11. We expect that in fact $\mathfrak{n}^{m}\left(\mathcal{E}_{\pi}\right)=\left\{A_{6}\right\}$. Indeed, we expect that if π is of G_{2} type then at each unramified place v, π_{v} is attached to a semisimple conjugacy class of $G L_{7}(\mathbb{C})$ which intersects the subgroup $G_{2}(\mathbb{C})$. By Corollary 3.2 .8 , Remark 3.2 .10 , it follows from the discussion in $\$ 7.3 .2$ below that if there is even one unramified finite place where this condition holds, then $\mathfrak{n}^{m}\left(\mathcal{E}_{\pi}\right)=\left\{A_{6}\right\}$.

6. Descent Fourier coefficients and descent modules

From the table on pp. 403-04 of [C93], we learn that there are two conjugacy classes of $\mathfrak{s l}_{2}$-tiples in $G E_{7}$ such that the stabilizer is of type G_{2}. They are known as $A_{5}^{\prime \prime}$ and $A_{2}+3 A_{1}$. For the sake of completeness, we consider Fourier coefficients and associated descent modules attached to both of them.
6.1. $\boldsymbol{A}_{5}^{\prime \prime}$. The weighted Dykin diagram of this orbit is $\begin{array}{cccccc}2 & 0 & 0 & 0 & 2 & 2 \\ & 0 & & & \text {. Let } s \text { be the standard }\end{array}$ semisimple element attached to the orbit. Then the Levi subgroup whose Lie algebra is \mathfrak{g}_{0}^{s} is the semidirect product of a derived group isomorphic to Spin_{8} and a four-dimensional torus, while the space \mathfrak{g}_{-2} is the direct sum of two nonisomorphic irreducible eight-dimensional representations of this Levi and one one-dimensional representation. On each eight-dimensional representation we have a Spin $_{8}$-invariant quadratic form, which is unique up to scalar (cf. [FH91], exercise 20.38). The Levi acts on $\mathfrak{g}_{-2}^{s_{A}^{\prime \prime}}$ with an open orbit. It is not hard to check that in this case the open orbit consists of triples such that each eight-dimensional component is anisotropic relative to the Spin_{8}-invariant form and the one-dimensional component is nonzero (cf. [JN05). The stabilizer of any point in this open orbit is the product of the center of $G E_{7}$ and a group isomorphic to G_{2}. It's not hard to check that

$$
f_{0}:=X_{-0000001}+X_{-1111000}+X_{-1011100}+X_{-0101110}+X_{-0011110}
$$

is in this open orbit. The corresponding copy of \mathfrak{g}_{2} is generated by

$$
X_{ \pm 0001000}, X_{ \pm 0100000}-X_{ \pm 0010000}+X_{ \pm 0000100}
$$

Recall that $P_{A_{5}^{\prime \prime}}=M_{A_{5}^{\prime \prime}} U_{A_{5}^{\prime \prime}}=P_{s}=M_{s} U_{s}$ is the parabolic subgroup defined as in Section 3.1, where s is the standard semisimple element (cf. Definition 5.0.1) attached to $A_{5}^{\prime \prime}, M_{A_{5}^{\prime \prime}}=M_{s}$ is the Levi subgroup, and $U_{A_{5}^{\prime \prime}}=U_{s}$ is the unipotent radical. Then $U_{A_{5}^{\prime \prime}}$ contains $U_{\alpha_{i}}$ if and only if $i=2,3,4,5$. Let $\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}$ be the character of $U_{A_{5}^{\prime \prime}}(F) \backslash U_{A_{5}^{\prime \prime}}(\mathbb{A})$ attached to f_{0}.

Definition 6.1.1. Let π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type (as in Definition 4.2.10). Let \mathcal{E}_{π} be the residual representation as in Definition 4.2.13. We define the corresponding descent module $\mathcal{D}_{\pi}=\mathcal{D}_{\pi}^{A_{5}^{\prime \prime}}$ to be

$$
\mathcal{D}_{\pi}:=\left\{\left.\varphi^{\left(U_{A_{5}^{\prime \prime}}, \psi_{A_{5}^{\prime \prime}}^{f_{0}}\right)}\right|_{G_{2}(\mathbb{A})}: \varphi \in \mathcal{E}_{\pi}\right\},
$$

where $\left.\varphi^{\left(U_{A_{5}^{\prime \prime}, \psi^{\prime}}^{f_{0}}\right.}{ }_{A_{5}^{\prime \prime}}\right)(g):=\int_{U_{A_{5}^{\prime \prime}}(F) \backslash U_{A_{5}^{\prime \prime}}(\mathbb{A})} \varphi(u g) \overline{\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}(u) d u, g \in G E_{7}(\mathbb{A})$.
6.2. $\boldsymbol{A}_{\mathbf{2}}+\boldsymbol{3} \boldsymbol{A}_{\mathbf{1}}$. The weighted Dykin diagram of this orbit is $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$. Recall that M is the standard Levi subgroup isomorphic to $G L_{7} \times G L_{1}, P$ is the standard parabolic which contains it, and U is the unipotent radical of P. Then $P=M U=P_{A_{2}+3 A_{1}}=M_{A_{2}+3 A_{1}} U_{A_{2}+3 A_{1}}$ as in Definition 5.0.1, $M=M_{A_{2}+3 A_{1}}, U=U_{A_{2}+3 A_{1}}$.

$$
\begin{aligned}
& \text { Let } e_{0}=X_{-1122100}+X_{-1112110}+X_{-1111111}+X_{-0112210}+X_{-0112111} \text { and } \\
& \qquad \psi_{U}^{e_{0}}(u)=\psi\left(u_{1122100}+u_{1112110}+u_{1111111}+u_{0112210}+u_{0112111}\right)
\end{aligned}
$$

be the corresponding character of $U(F) \backslash U(\mathbb{A})$. We write $u \in U$ as $\Pi_{\alpha} x_{\alpha}\left(u_{\alpha}\right)$ with the roots taken in some fixed order. The coordinate u_{α} is independent of the choice of order provided the second coordinate of α is 1 .
Lemma 6.2.1. The stabilizer of $\psi_{U}^{e_{0}}$ in M is the product of the center and a group isomorphic to G_{2}.
Proof. We can identify the space of characters of $U(F) \backslash U(\mathbb{A})$ with the space

$$
\mathfrak{u}_{2}^{(-1)}=\bigoplus_{\left\langle\alpha, w_{2}^{*}\right\rangle=-1} \mathfrak{u}_{\alpha}
$$

As representation of $\mathfrak{g l}_{7}$, this representation is isomorphic to the exterior cube representation of $G L_{7}$. It is well known (cf. pp. 356-57 of [FH91]) that $G L_{7}$ acts on this representation with an open orbit, and that the stabilizer of any point in this open orbit is of type G_{2}. Using SageMath, with adjoint matrices from GAP, we verified that $\psi_{U}^{e_{0}}$ is fixed by

$$
\begin{gathered}
x_{1000000}(a) x_{0001100}\left(a^{2}\right) x_{0000100}(2 a) x_{0001000}(a) x_{0000001}(-a), \\
x_{0010000}(b) x_{0000010}(b), \quad x_{-0010000}(b) x_{-0000010}(b), \\
x_{-1000000}(a) x_{-0001100}\left(a^{2}\right) x_{-0000100}(a) x_{-0001000}(2 a) x_{-0000001}(-a) .
\end{gathered}
$$

These subgroups generate a split subgroup of $G L_{7}$ of type G_{2}. The stabilizer also contains the center of $G E_{7}$. It remains to prove that the stabilizer is no larger. For this purpose it suffices to prove that our character corresponds to a point in the open orbit. On p. 357 of [FH91] a specific point in the open orbit is written down; it is a sum of five weight vectors. We easily check that these five weights correspond to the five roots which appear in $\psi_{U}^{e_{0}}$. Over an algebraically closed field, the torus acts transitively on the set of linear combinations of these five weight vectors such that all five coefficients are nonzero. Therefore the point corresponding to $\psi_{U}^{e_{0}}$ is also in the open orbit.

We remark that the embedding of G_{2} into $G L_{7}$ obtained in this way agrees with the one from [FH91.

It is convenient to know that the roots in $\operatorname{supp}\left(\psi_{U}^{e_{0}}\right)$ can be simultaneously conjugated to simple roots. Let $R_{1}=\{1122100,1112110,1111111,0112210,0112111\}$, and $w_{6}=w[423546542314376542]$. Then $w_{6} \cdot R_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{7}\right\}$.

Definition 6.2.2. Let π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type (as in Definition 4.2.10). Let \mathcal{E}_{π} be the residual representation as in Definition 4.2.13. We define the corresponding descent module $\mathcal{D}_{\pi}=\mathcal{D}_{\pi}^{A_{2}+3 A_{1}}$ to be

$$
\mathcal{D}_{\pi}:=\left\{\left.\varphi^{\left(U, \psi_{U}^{e_{0}}\right)}\right|_{G_{2}(\mathbb{A})}: \varphi \in \mathcal{E}_{\pi}\right\},
$$

where $\varphi^{\left(U, \psi_{U}^{e_{0}}\right)}(g):=\int_{U(F) \backslash U(\mathbb{A})} \varphi(u g) \overline{\psi_{U}^{e_{0}}}(u) d u, g \in G E_{7}(\mathbb{A})$.
Remark 6.2.3. The embedding of G_{2} which comes from the orbit $A_{2}+3 A_{1}$ is closely related to the appearance of \wedge^{3} in the constant term. Indeed, $L^{S}(s, \pi, r)$ appears in the constant term of an Eisenstein series of a group G if and only if r appears in the action of the relevant Levi of ${ }^{L} G$ on the nilpotent radical of the Lie algebra of the corresponding parabolic. That is, r appears equipped with a realization as a space of nilpotent elements. In fact, the realization of \wedge^{3} is precisely as the space \mathfrak{g}_{2}^{s} where s is the standard semisimple element attached to $A_{2}+3 A_{1}$. That is, the embedding of $G_{2}(\mathbb{C})$ into $G E_{7}(\mathbb{C})$ on the L-group side as the stabilizer of a point in the representation obtained from an L-function, and the embedding of G_{2} into $G E_{7}$ as the stabilizer of a Fourier coefficient are essentially the same embedding. This phenomenon does not occur in the classical situation of [GRS11], as it requires self-contragredientity of both the group denoted by H and the one denoted by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where $H=G_{2}$ and $A=F_{4}$, as well as prior work of Ginzburg-Hundley where $H=F_{4}$ and $A=E_{8}$, where the descent modules fail to be cuspidal. It is noteworthy that in both of those cases, H and A are self-contragredient and the embedding of H into A obtained from the L-function is the only embedding of H into A.

7. The $A_{5}^{\prime \prime}$ CASE

Recall from Definition 6.1.1 that in the $A_{5}^{\prime \prime}$ case the descent module \mathcal{D}_{π} is defined by applying the Fourier coefficient $\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$ from Section 6.1 to the residual representation \mathcal{E}_{π}, where π is an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type. In this section, we prove the following theorem.

Theorem 7.0.1. Assume that π is an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type, and \mathcal{D}_{π} is defined as in Definition 6.1.1. Then
(1) \mathcal{D}_{π} is generic.
(2) Suppose that there exists a finite place v_{0} such that $\pi_{v_{0}}$ is a principal series representation of $G L_{7}\left(F_{v_{0}}\right)$ which is attached to a semisimple conjugacy class of $G L_{7}(\mathbb{C})$, and intersects the subgroup $G_{2}(\mathbb{C})$. Then \mathcal{D}_{π} is cuspidal.
(3) Suppose that for almost all finite places v, π_{v} is a principal series representation of $G L_{7}\left(F_{v}\right)$ which is attached to a semisimple conjugacy class of $G L_{7}(\mathbb{C})$, and intersects the subgroup $G_{2}(\mathbb{C})$. Then π is a weak functorial lift of each irreducible summand of \mathcal{D}_{π}.
7.1. Genericity of the $\boldsymbol{A}_{5}^{\prime \prime}$ descent module. The purpose of this section is to prove that the descent module \mathcal{D}_{π} is generic. The proof can be explained using the language of "unipotent periods" introduced in [HS16]. Let $U_{\max }^{G_{2}}$ be the standard maximal unipotent subgroup of G_{2}. Let $\psi^{G_{2}}$ be any character of $U_{\max }^{G_{2}}$. Then the composite $\left(U_{\max }^{G_{2}}, \psi^{G_{2}}\right) \circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$ makes sense as a unipotent period on $C^{\infty}\left(G E_{7}(F) \backslash G E_{7}(\mathbb{A})\right)$. Explicitly, it maps $\varphi \in C^{\infty}\left(G E_{7}(\stackrel{5}{F}) \backslash G E_{7}(\mathbb{A})\right)$ to

$$
\int_{U_{\max }^{G_{2}}(F) \backslash U_{\max }^{G_{2}(\mathbb{A})}} \int_{U(F) \backslash U(\mathbb{A})} \varphi\left(u_{1} u_{2} g\right) \overline{\psi_{U_{A_{5}^{\prime \prime}}^{f_{0}}}}\left(u_{1}\right) \overline{\psi^{G_{2}}}\left(u_{2}\right) d u_{1} d u_{2}
$$

In our discussion of unipotent periods it is helpful to note that

$$
S \longleftrightarrow \prod_{\alpha \in S} U_{\alpha}
$$

is a bijection
$\{S \subset \Phi: \alpha, \beta \in S, \alpha+\beta \in \Phi \cup\{0\} \Longrightarrow \alpha+\beta \in S\} \longleftrightarrow\left\{T\right.$ - stable unipotent subgroups of $\left.G E_{7}\right\}$.
Thus, it is often convenient to specify a unipotent subgroup V of $G E_{7}$ by identifying $\Phi(V, T)$. We adopt a convenient abuse of notation. Let V be a T-stable unipotent subgroup of $G E_{7}$ and let ψ_{V} be a character of it. We shall call $\left\{\alpha \in \Phi(V, T):\left.\psi_{V}\right|_{U_{\alpha}(\mathbb{A})} \equiv 1\right\}$ the "support" of ψ_{V} and denote it $\operatorname{supp} \psi_{V}$. We denote by $\left(V, \psi_{V}\right)$ or $\varphi^{\left(V, \psi_{V}\right)}$ the following attached unipotent period

$$
\int_{V(F) \backslash V(\mathbb{A})} \varphi(v g) \overline{\psi_{V}}(v) d v, g \in G E_{7}(\mathbb{A})
$$

Given two unipotent periods $\left(V, \psi_{V}\right)$ and $\left(U, \psi_{U}\right)$, if $\varphi^{\left(V, \psi_{V}\right)}$ is left-invariant by $U(F)$, then we denote the composed period by $\left(U, \psi_{U}\right) \circ\left(V, \psi_{V}\right)$.

We recall the concept of equivalence of unipotent periods. Denote by $\mathcal{P}_{1} \mid \mathcal{P}_{2}$ if \mathcal{P}_{2} vanishes identically on any automorphic representation on which \mathcal{P}_{1} vanishes identically. Two periods \mathcal{P}_{1} and \mathcal{P}_{2} are said to be equivalent (denoted $\mathcal{P}_{1} \sim \mathcal{P}_{2}$) if $\mathcal{P}_{1} \mid \mathcal{P}_{2}$ and $\mathcal{P}_{2} \mid \mathcal{P}_{1}$.

In the study of Fourier coefficients of automorphic forms, in particular concerning the global nonvanishing property, a technical lemma from GRS11] has been very useful in the theory. We recall it as follows. Let G be any connected reductive group defined over F. Let C be an F-subgroup of a maximal unipotent subgroup of G, and let ψ_{C} be a non-trivial character of $[C]=C(F) \backslash C(\mathbb{A})$. X, Y are two unipotent F-subgroups, satisfying the following conditions:
(1) X and Y normalize C;
(2) $X \cap C$ and $Y \cap C$ are normal in X and Y, respectively, $(X \cap C) \backslash X$ and $(Y \cap C) \backslash Y$ are abelian;
(3) $X(\mathbb{A})$ and $Y(\mathbb{A})$ preserve ψ_{C};
(4) ψ_{C} is trivial on $(X \cap C)(\mathbb{A})$ and $(Y \cap C)(\mathbb{A})$;
(5) $[X, Y] \subset C$;
(6) there is a non-degenerate pairing $(X \cap C)(\mathbb{A}) \backslash X(\mathbb{A}) \times(Y \cap C)(\mathbb{A}) \backslash Y(\mathbb{A}) \rightarrow \mathbb{C}^{*}$, given by $(x, y) \mapsto \psi_{C}([x, y])$, which is multiplicative in each coordinate, and identifies $(Y \cap$ $C)(F) \backslash Y(F)$ with the dual of $X(F)(X \cap C)(\mathbb{A}) \backslash X(\mathbb{A})$, and $(X \cap C)(F) \backslash X(F)$ with the dual of $Y(F)(Y \cap C)(\mathbb{A}) \backslash Y(\mathbb{A})$.
Let $B=C X$ and $D=C Y$, and extend ψ_{C} trivially to characters of $[B]=B(F) \backslash B(\mathbb{A})$ and $[D]=D(F) \backslash D(\mathbb{A})$, which will be denoted by ψ_{B} and ψ_{D} respectively. When there is no confusion, we will denote both ψ_{B} and ψ_{D} by ψ_{C}.

Lemma 7.1.1 (Lemma 7.1, and Corollary 7.1 GRS11]). Assume that (C, ψ_{C}, X, Y) satisfies all the above conditions. Let f be an automorphic function of uniformly moderate growth on $G(\mathbb{A})$. Then

$$
\int_{[B]} f(v g) \overline{\psi_{B}}(v) d v=\int_{(X \cap C)(\mathbb{A}) \backslash X(\mathbb{A})} \int_{[D]} f(u x g) \overline{\psi_{D}}(u) d u d x, \forall g \in G(\mathbb{A}) .
$$

The right hand side of the the above equality is convergent in the sense

$$
\int_{(X \cap C)(\mathbb{A}) \backslash X(\mathbb{A})}\left|\int_{[D]} f(u x g) \overline{\psi_{D}}(u) d u\right| d x<\infty,
$$

and this convergence is uniform as g varies in compact subsets of $G(\mathbb{A})$. Moreover $\left(B, \psi_{B}\right) \sim$ $\left(D, \psi_{D}\right)$.

We consider the unipotent period $\left(U_{1}, \psi_{U_{1}}^{a}\right)$ where U_{1} is the T-stable unipotent group attached to the set of positive roots whose complement is $\{1011000,0001110,1010000,0000110,1000000,0000010\}$. Also $\psi_{U_{1}}^{\frac{a}{(}}(u)=\psi\left(u_{0000001}+u_{1111000}+u_{1011100}+u_{0101110}+u_{0011110}+a_{1} u_{\alpha_{2}}+a_{2} u_{\alpha_{3}}+a_{3} u_{\alpha_{5}}+a_{4} u_{\alpha_{4}}\right)$. For $\underline{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in F^{4}$, we define a character $\psi \stackrel{\underline{U_{\max }}}{\underline{G_{2}}}$ of $U_{\max }^{G_{2}}$ by $\psi_{U_{\max }^{G_{2}}}^{\underline{a}}(u)=\psi\left(a_{4} u_{\beta}+\left(a_{1}-a_{2}+a_{3}\right) u_{\alpha}\right)$.
Lemma 7.1.2. The period $\left(U_{1}, \psi_{U_{1}}^{\underline{a}}\right)$ is equivalent to the composed period $\left(U_{\max }^{G_{2}}, \psi_{U_{\max }^{G_{2}}}^{\underline{a}}\right) \circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$.
Proof. The proof consists of three applications of the "exchange lemma", Lemma 7.1.1. Each time, the group X is a product of two commuting root subgroups $U_{\gamma_{1}}, U_{\gamma_{2}}$ of $G E_{7}$, and there are three roots $\beta_{1}, \beta_{2}, \beta_{3}$ of $G E_{7}$ and a root δ of G_{2} such that $\mathfrak{g}_{2} \cap \oplus_{i=1}^{3} \mathfrak{u}_{\beta_{i}}=\mathfrak{u}_{\delta}$. For the group Y we may use any complement to U_{δ} in $U_{\beta_{1}} U_{\beta_{2}} U_{\beta_{3}}$. The roots which determine the groups X and Y in the successive applications of Lemma 7.1.1 are given in the table below.

X	Y	δ
1000000,0000010	$0111000,0101100,0011100$	$2 \alpha+\beta$
1010000,0000110	$0101000,0011000,0001100$	$\alpha+\beta$
1011000,0001110	$0100000,0010000,0000100$	α

Checking conditions (1) to (6) for Lemma 7.1.1 is similar to the proof of Lemma 8.1.3.

Note that the character $\psi_{\tilde{U}_{1}}^{a}$ is attached to

$$
f_{\underline{\underline{a}}}:=f_{0}+a_{1} X_{-\alpha_{2}}+a_{2} X_{-\alpha_{3}}+a_{3} X_{-\alpha_{5}}+a_{4} X_{-\alpha_{4}} .
$$

Lemma 7.1.3. (1) Let X be a nilpotent element of \mathfrak{e}_{7}. Then X is in the closure of A_{6} if and only if $\operatorname{ad}(X)^{14}=0$. In this case $\operatorname{ad}(X)^{13}$ is also 0 .
(2) Let X be in the closure of A_{6}. Then X is in A_{6} itself if and only if $\operatorname{ad}(X)^{12} \neq 0$.

Proof. We inspect the rank sequences for all nilpotent orbits in E_{7}, obtained from GAP.
Lemma 7.1.4. (1) For \underline{a} in general position $f_{\underline{a}}$ is in the orbit $E_{7}\left(a_{4}\right)$.
(2) The orbit of $f_{\underline{a}}$ is in the closure of A_{6} if and only if at least one of the following conditions holds:
(a) $a_{4}=0$;
(b) $a_{3}=0$ and $a_{1}=a_{2}$;
(c) $a_{1}=a_{3} c_{1}\left(c_{1}+2\right)$ and $a_{2}=a_{3} c_{1}\left(c_{1}+1\right)$ for some c_{1}.
(3) If $a_{4}=0$, or, $a_{3}=0$ and $a_{1}=a_{2}$, then the orbit of $f_{\underline{a}}$ is strictly less than A_{6}.
(4) If $a_{1}=a_{3} c_{1}\left(c_{1}+2\right)$ and $a_{2}=a_{3} c_{1}\left(c_{1}+1\right)$, then $f_{\underline{a}}$ is in A_{6} if and only if a_{4} and $a_{1}-a_{2}+a_{3}$ are both nonzero, i.e., the character $\psi_{U_{\max }^{G_{2}}}^{\underline{a}}$ is generic.
Proof. Using GAP and SageMath, we compute that for \underline{a} in general position, Rank $\operatorname{ad}\left(f_{\underline{a}}\right)^{14}=$ $1, \operatorname{Rank} \operatorname{ad}\left(f_{\underline{\underline{a}}}\right)^{13}=2, \operatorname{Rank} \operatorname{ad}\left(f_{\underline{\underline{a}}}\right)^{12}=4$. It follows that for \underline{a} in general position, $f_{\underline{a}}$ is an element of the orbit $E_{7}\left(a_{4}\right)$. An element \bar{f} of \mathfrak{e}_{7} lies in the closure of A_{6} if and only if $\operatorname{ad}(f)^{13}=0$. It lies in A_{6} itself, if and only if $\operatorname{Rank} \operatorname{ad}(f)^{12}=3$. Further, $\operatorname{Rank} \operatorname{ad}\left(f_{\underline{a}}\right)^{14}=0$ if and only if $a_{4}=0$ or

$$
\begin{equation*}
\left(a_{1}-a_{2}\right)^{2}+a_{3}\left(a_{1}-2 a_{2}\right)=0 . \tag{7.1.5}
\end{equation*}
$$

If $a_{4}=0$, then $\operatorname{Rank} \operatorname{ad}\left(f_{\underline{a}}\right)^{11}=0$, and $f_{\underline{a}}$ is in an orbit which is less than A_{6}. If $a_{3}=0$ and $a_{2}=a_{1}$, the same is true.

If $a_{3} \neq 0$ then we may let $b_{1}=a_{1}-a_{2}$, and 7.1.5) becomes $b_{1}-a_{2}=-\frac{b_{1}^{2}}{a_{3}}$. Then letting $c_{1}=\frac{b_{1}}{a_{3}}$, this becomes $a_{2}=c_{1} a_{3}+c_{1}^{2} a_{3}$. Also $a_{1}=c_{1} a_{3}+a_{2}=2 c_{1} a_{3}+c_{1}^{2} a_{3}$. We may compute $\operatorname{ad}\left(f_{\underline{a}}\right)$, with a_{1}, a_{2} defined by these formulas, using SageMath. We find that if $a_{4} \neq 0$ then $\operatorname{Rank} \operatorname{ad}\left(f_{\underline{a}}\right)^{12}$ is either 3
or zero, and it is 3 if and only if a_{3}, a_{4} and $c_{1}+1$ are all nonzero. Further, when a_{1}, a_{2} are defined by these formulas, we have $a_{1}-a_{2}+a_{3}=\left(c_{1}+1\right) a_{3}$. From this we conclude that for any \underline{a} such that $f_{\underline{a_{2}}} \in A_{6}$, the character $\psi_{U_{\text {max }}}^{\underline{a}} \frac{G_{2}}{}$ is generic.
Remark 7.1.6. Note that the character $\psi_{U_{\max }}^{\underline{a}}$ is trivial if and only if $a_{4}=a_{1}-a_{2}+a_{3}=0$. We found that in this case $f_{\underline{a}}$ is always in the orbit $A_{5}^{\prime \prime}$.
Lemma 7.1.7. Let U_{2} be the T-stable unipotent subgroup such that

$$
\Phi\left(T, U_{2}\right)=\Phi^{+} \backslash\{0000100,0000110,0001100,0010000,0011000,1010000\}
$$

and $\psi_{U_{2}}^{a}: U_{2}(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$the character of $U_{2}(F) \backslash U_{2}(\mathbb{A})$ given by
$\psi_{U_{2}}^{a}(u)=\psi\left(u_{0000111}+u_{0101100}+u_{0001110}+u_{0111000}+u_{1011000}+a_{3} u_{0000010}+a_{4} u_{0011100}+a_{1} u_{0100000}+a_{2} u_{1000000}\right)$.
Let $*$ denote entrywise multiplication in $F^{4}:\left(c_{1}, c_{2}, c_{3}, c_{4}\right) *\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(c_{1} a_{1}, c_{2} a_{2}, c_{3} a_{3}, c_{4} a_{4}\right)$. Then there exists $\underline{c}=\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \in\{ \pm 1\}^{4}$ such that $\left(U_{1}, \psi \psi_{U_{1}}^{\underline{a}}\right) \sim\left(U_{2}, \psi_{U_{2}}^{\underline{c} \underline{a}}\right)$ for all $\underline{a} \in F^{4}$.
Proof. Conjugate by a suitable representative of w [5631]. For any representative, $\dot{w}[5631]$, we have $\dot{w}[5631] x_{\alpha}(r) \dot{w}[5631]^{-1}=x_{w[5631] \alpha}\left(c_{\dot{w}[5631], \alpha} r\right)$, for some constants $c_{\dot{w}[5631], \alpha}$ which depends on α, the choice of representative, $\dot{w}[5631]$, and the structure constants of the Chevalley basis. Moreover, there exist representatives such that $c_{\dot{w}[5631], \alpha} \in\{ \pm 1\}$ for all α. Since the five roots from the original $A_{5}^{\prime \prime}$ character can be simultaneously conjugated to simple roots, it follows that we can adjust our representative by an element of the torus to make these five coefficients one.

The character $\psi_{U_{2}}^{\frac{a}{}}$ is attached to $\operatorname{Ad}(\dot{w}[5631]) f_{\underline{c^{*}} \underline{a}}$, which is, of course, in the same orbit as $f_{\underline{c}^{*} \underline{a}}$. We have seen in Lemma 7.1 .4 that if this orbit is greater than or equal to A_{6}, then $\psi_{U_{\text {max }}^{c}}^{G_{2} \times a}$ will be a generic character of $U_{\max }^{G_{2}}$. But the set of such characters is permuted transitively by the torus of G_{2}. Hence, all such characters are equivalent. That is $\left(U_{2}, \psi_{U_{2}}^{a}\right) \sim\left(U_{2}, \psi_{U_{2}}^{b}\right)$ whenever the nilpotent elements attached to $\psi_{U_{2}}^{a}$ and $\psi_{U_{2}}^{\frac{b}{2}}$ are both attached to orbits that are greater than or equal to A_{6}.
Lemma 7.1.8. Let U_{3} be the unipotent group such that T-stable unipotent subgroup such that $\Phi\left(T, U_{2}\right)=\Phi^{+} \backslash\{0000001,0000100,0001000,0001100,0010000,0011000\}$, and let $\psi_{U_{3}}^{a}: U_{3}(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$ be the character given by $\psi_{U_{3}}^{a}(u)=\psi\left(u_{0001110}+u_{0101100}+u_{0000111}+u_{0111000}+u_{1010000}+a_{3} u_{0000011}+\right.$ $\left.a_{4} u_{0011100}+a_{1} u_{0101000}+a_{2} u_{1000000}\right)$. Then there exists $\underline{d} \in\{ \pm 1\}^{4}$ such that $\left(U_{2}, \psi_{U_{2}}^{\underline{a}}\right) \sim\left(U_{3}, \psi \psi_{U_{3}}^{\underline{d} * \underline{a}}\right)$ for all $\underline{a} \in F^{4}$.
Proof. Exchange α_{7} for 0000110 and α_{4} for 1010000, applying Lemma 7.1.1, and then conjugate by a suitable representative for $w[47]$.

Lemma 7.1.9. Let U_{5} be the unipotent subgroup attached to $E_{7}\left(a_{4}\right)$. Thus $U_{\alpha_{i}}$ is in U_{5} for $i=1,4$ and 7 . Let U_{4} be the subgroup of U_{5} defined by the condition $u_{\alpha_{4}}=0$. And $\psi_{U_{4}}^{a}$ be the character of this group defined by the same formula as $\psi_{U_{3}}^{a}$. Then $\left(U_{3}, \psi \frac{a}{U_{3}}\right) \sim\left(U_{4}, \psi \psi_{U_{4}}^{\frac{a}{4}}\right)$.
Proof. We exchange 0100000 for 0011000 , 0000010 for 0001100 , and then 0000110 for 0000001 , applying Lemma 7.1.1.
Proposition 7.1.10. For $\underline{a} \in F^{4}$ and $b \in F$, let $\psi_{U_{5}}^{a, b}$ be the character given by $\psi_{U_{5}}^{a, b}\left(u x_{\alpha_{4}}(r)\right)=$ $\psi_{U_{4}}^{a}(u) \psi(b r)$, for $u \in U_{4}(\mathbb{A})$ and $r \in \mathbb{A}$. Then an automorphic representation supports the period $\left(U_{4}, \psi_{U_{4}}^{a}\right)$ if and only if it supports $\left(U_{5}, \psi_{U_{5}}^{a, b}\right)$ for some b.
Proof. Given an automorphic form φ we perform Fourier expansion of $\left.\varphi^{\left(U_{4}, \psi_{U_{4}}\right.} \frac{a}{a}\right)$ along the onedimensional unipotent group $U_{\alpha_{4}}(F) \backslash U_{\alpha_{4}}(\mathbb{A})$.

Let $M_{\{2,3,5,6\}}$ be the standard Levi subgroup of $G E_{7}$ which contains $U_{\alpha_{i}}$ if and only if $i=2,3,5$, or 6 . (Thus, $M_{\{2,3,5,6\}}$ is the standard Levi factor of a standard parabolic whose unipotent radical is the group U_{5}.)

Proposition 7.1.11. Let $y_{\underline{a}}=X_{-0001110}+X_{-0101100}+X_{-0000111}+X_{-0111000}+X_{-1010000}+a_{3} X_{-0000011}+$ $a_{4} X_{-0011100}+a_{1} X_{-0101000}+\bar{a}_{2} X_{-1000000}$, which is the nilpotent element associated to $\psi_{U_{4}}^{\frac{a}{U_{4}}}$ and $\psi_{U_{5}}^{\frac{a}{A_{0}}}$. Let $e_{0}^{\prime}=X_{-1010000}+X_{-0000011}+X_{-0111000}+X_{-0101100}+X_{-0011100}+X_{-0001110}$. If y_{a} is in the orbit A_{6} then there exists m in $M_{\{2,3,5,6\}}$ such that $\operatorname{Ad}(m) \cdot y_{\underline{a}}=e_{0}^{\prime}$. In particular, if $\psi_{U_{5}}^{e_{0}^{\prime}}$ is the character of $U_{5}(\mathbb{A})$ attached to e_{0}^{\prime}, then the periods $\left(U_{5}, \psi_{U_{5}}^{a, 0}\right)$ and $\left(U_{5}, \psi_{U_{5}}^{e_{0}^{\prime}}\right)$ are equivalent.

Proof. Computations that are very similar to those done in the proof of Lemma 7.1.4 show that $y_{\underline{a}}$ is in A_{6} if and only if $a_{4}, a_{3} \neq 0, a_{1}=2 c_{1} a_{3}+c_{1}^{2} a_{3}, a_{2}=-\left(c_{1}^{2} a_{3}+c_{1} a_{3}\right)$, with $c_{1} \neq-1$. Let

$$
\begin{gathered}
u_{1}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)=x_{0100000}\left(b_{1}\right) x_{0010000}\left(b_{2}\right) x_{0000100}\left(b_{3}\right) x_{0000010}\left(b_{4}\right) x_{0000110}\left(b_{5}\right) \\
l_{1}\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)=x_{-0100000}\left(b_{1}\right) x_{-0010000}\left(b_{2}\right) x_{-0000100}\left(b_{3}\right) x_{-0000010}\left(b_{4}\right) x_{-0000110}\left(b_{5}\right)
\end{gathered}
$$

Then $u_{1}\left(a_{3} a_{4} c_{1},-\left(a_{3} c_{1}^{2}+a_{3} c_{1}\right), c_{1} a_{3},-a_{3} a_{4} c_{1}^{2}, a_{3}^{2} a_{4} c_{1}^{2}\right)$ maps $y_{\underline{a}}$ to

$$
X_{-0001110}+X_{-0101100}+X_{-0000111}+X_{-0111000}+X_{-1010000}+\left(a_{3}+a_{3} c_{1}\right) X_{-0000011}+a_{4} X_{-0011100}
$$

Then acting on this by

$$
l_{1}\left(\frac{1}{2 a_{3} a_{4}\left(c_{1}+1\right)},-\frac{1}{2 a_{3}\left(c_{1}+1\right)},-\frac{1}{a_{3}\left(c_{1}+1\right)},-\frac{1}{2 a_{3} a_{4}\left(c_{1}+1\right)},-\frac{1}{4 a_{3}^{2} a_{4}\left(c_{1}+1\right)^{2}}\right)
$$

produces

$$
X_{-0001110}+X_{-0101100}+X_{-0111000}+X_{-1010000}+\left(a_{3}+a_{3} c_{1}\right) X_{-0000011}+a_{4} X_{-0011100}
$$

Then acting by a suitable torus element produces e_{0}^{\prime}.
Lemma 7.1.12. Let $w_{3}=w[24315423465423765]$. Then there is a representative \dot{w}_{3} for w_{3} in $G E_{7}(F)$ such that $\dot{w}_{3} e_{0}^{\prime}=X_{-\alpha_{1}}+X_{-\alpha_{3}}+X_{-\alpha_{4}}+X_{-\alpha_{5}}+X_{-\alpha_{6}}+X_{-\alpha_{7}}$.

Proof. One may check (using LiE, for example) that w_{3} maps the six roots which appear in the expression for e_{0}^{\prime} to the six negative simple roots in the $G L_{7}$ subgroup. It follows that the identity holds up to nonzero scalars for any representative $\dot{w}[24315423465423765]$. We may then adjust by an element of $T(F)$ to make all the scalars one.

Remark 7.1.13. Let $s=\begin{array}{lllllll}2 & 0 & 2 & 0 & 0 & 2\end{array}$ be the standard semisimple element attached to the orbit $E_{7}\left(a_{4}\right)$. Then $\left(U_{5}, \psi_{U_{5}}^{e_{0}^{\prime}}\right)=\mathcal{F}_{s, e_{0}^{\prime}}$.

Proof. Let $e_{2}=w_{3} e_{0}^{\prime}=X_{-\alpha_{1}}+X_{-\alpha_{3}}+X_{-\alpha_{4}}+X_{-\alpha_{5}}+X_{-\alpha_{6}}+X_{-\alpha_{7}}$ and $s^{\prime \prime}=\begin{array}{llllll}2 & 2 & 2 & 2 & 2 & 2 \\ & & 2 & & & \text {. Then }\end{array}$ as in the proof of Theorem 5.0.10, $\mathcal{F}_{s^{\prime \prime}, e_{2}}$ maps an automorphic form to the $G L_{7}$ non-degenerate Whittaker-Fourier integral of its constant term along the A_{6} parabolic. Therefore, $\mathcal{F}_{s^{\prime \prime}, e_{2}}\left(\mathcal{E}_{\pi}\right) \neq 0$. Since for $\varphi \in \mathcal{E}_{\pi}, \mathcal{F}_{s^{\prime}, e_{0}^{\prime}}(\varphi)(g)=\mathcal{F}_{s^{\prime \prime}, e_{2}}(\varphi)\left(w_{3} g\right), \mathcal{F}_{s^{\prime}, e_{0}^{\prime}}\left(\mathcal{E}_{\pi}\right) \neq 0$.

Lemma 7.1.15. $\mathcal{F}_{s, e_{0}^{\prime}} \mid \mathcal{F}_{s^{\prime}, e_{0}^{\prime}}$. Hence, $\mathcal{F}_{s, e_{0}^{\prime}}\left(\mathcal{E}_{\pi}\right) \neq 0$.

Proof. By Theorem 3.1.11, we only need to check that

$$
\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}
$$

Here $u=e_{0}^{\prime}, s=\begin{array}{lllllll}2 & 0 & 2 & 0 & 0 & 2 \\ & & 0 & & & & \end{array}$. In order to check this condition, it is convenient to embed u into a neutral pair. The element u is in the orbit A_{6} and it is not hard to check that $w[4] . u$ lies in the unipotent radical determined by $\begin{array}{lllllll}0 & 0 & 2 & 0 & 2 & 0\end{array}$. It follows that $w[4] . u$ forms a neutral pair with $\begin{array}{lllllll}0 & 0 & 2 & 0 & 2 & 0 \\ & & 0 & & & \end{array}$, and thence that u forms a neutral pair with

$$
w[4] . \begin{array}{cccccccccccc}
0 & 0 & 2 & 0 & 2 & 0 \\
& & 0 & & & & =\begin{array}{ccc}
0 & 2 & -2 \\
2
\end{array} & 2 & 2 & 0 & \\
2
\end{array} s_{0} .
$$

Now, we know that $\mathfrak{g}_{u} \subset \mathfrak{g}_{\leq 0}^{s_{0}}$. Hence $\mathfrak{g}_{u} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\leq 0}^{s_{0}} \cap \mathfrak{g}_{\geq 1}^{s}$. It's not hard to check that $\mathfrak{g}_{\leq 0}^{s_{0}} \cap \mathfrak{g}_{\geq 1}^{s}$ is the sum of the root subgroups attached to the following roots:

$$
\{1011000,0001000,0101000,0011000,0001100,1000000,0000001\}
$$

and from there its not hard to check that $\mathfrak{g}_{\leq 0}^{s_{0}} \cap \mathfrak{g}_{\geq 1}^{s} \subset \mathfrak{g}_{\geq 1}^{s^{\prime}}$.
In fact, it turns out that $s^{\prime}=7 s-6 s_{0}$. It immediately follows that if s acts on X with a positive eigenvalue, and s_{0} acts on X with a nonpositive eigenvalue, then s^{\prime} acts on X with a positive eigenvalue, which is what we wanted.
Corollary 7.1.16. If $\psi \underset{U_{\max }}{\underline{a}}$ is generic, then $\mathcal{E}_{\pi} \operatorname{supports}\left(U_{\max }^{G_{2}}, \psi_{U_{\max }^{G_{2}}}^{\underline{a}}\right) \circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$.
Proof. If $\psi \psi_{U_{\max }^{G_{2}}}^{\underline{a}}$ is generic, then - since $\psi \frac{\underline{U_{\max }}}{G_{2}}$ depends only on $a_{1}-a_{2}+a_{3}-$ we may assume that $a_{1}=a_{2}=0$. In this case, by Lemma 7.1.4 the element $f_{\underline{a}}$ is in A_{6}. Hence, if \underline{c} and \underline{d} are as in Lemmas 7.1 .7 and 7.1 .8 respectively, then $y_{\underline{c} * d} \neq \underline{a}$, which is conjugate to $f_{\underline{a}}$, is also in A_{6}. From Proposition 7.1.11, Lemmas 7.1.12 and 7.1.15, and Remark 7.1.13, it follows that \mathcal{E}_{π} supports $\left(U_{5}, \psi \frac{a, 0}{U_{5}}\right)$. Then, by Proposition 7.1 .10 and Lemmas 7.1.9, 7.1.8, 7.1.7, and 7.1.2, it supports $\left(U_{\max }^{G_{2}}, \psi \frac{\underline{a}}{U_{\max }^{G_{2}}}\right) \circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}^{f_{0}}}^{\theta_{\max }}\right)$ as well.

Reformulating Corollary 7.1.16 gives the main theorem of this section.
Theorem 7.1.17. \mathcal{D}_{π} is generic.
Remark 7.1.18. It can be shown that for each $\underline{a} \in F^{4}$ there is a unique $b \in F$ such that the nilpotent element attached to the character $\psi_{\bar{U}_{5}}^{\underline{c}+\underline{d} * a, \bar{b}}$ is in the closure of A_{6}, and that this element is in A_{6} if and only if $\psi{\underset{U_{\max }}{G_{2}}}^{a}$ is a generic character.

If π is not of G_{2} type but $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, then Theorem 7.1.17 is still valid for the residual representation \mathcal{E}_{π} with exactly the same proof.
7.2. Local descent. Since the results of GGS17] hold in both the local and global settings, the same set of arguments given in the global setting above also provides a local analogue.
Theorem 7.2.1. Let F_{v} be a nonarchimedean local field. Suppose that an irreducible admissible representation Π_{v} of $G E_{7}\left(F_{v}\right)$ supports the twisted Jacquet module attached to $\left(U_{5}, \psi \frac{a, 0}{U_{5}}\right)$ with $y_{\underline{a}}$ (see Proposition 7.1 .11) in the orbit A_{6}. Then the $\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}\right)$-twisted Jacquet module of Π_{v} supports twisted Jacquet modules attached to $U_{\max }^{G_{2}}$ and all generic characters of $U_{\max }^{G_{2}}$. In particular, this holds when Π_{v} is the local component of any irreducible summand of \mathcal{E}_{π} where π has the property that $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$.

7.3. Unramified constituents of $\mathcal{E}_{\boldsymbol{\pi}}$.

7.3.1. Unramified lifting. Let χ be an unramified character of $G L_{7}\left(F_{v}\right)$ where F_{v} is nonarchimedean. Recall that our isomorphism of the Levi M of $G E_{7}$ with $G L_{7} \times G L_{1}$ maps $h\left(t_{1}, \ldots, t_{8}\right)$ to

$$
\left(\begin{array}{ccccccc}
t_{8}^{-1} t_{7} & t_{7}^{-1} t_{6} & & & & & \\
& & t_{6}^{-1} t_{5} & & & & \\
& & & t_{5}^{-1} t_{4} & & & \\
& & & & t_{4}^{-1} t_{2} t_{3} & & \\
& & & & & t_{3}^{-1} t_{2} t_{1} & \\
& & & & & t_{1}^{-1} t_{2}
\end{array}\right)
$$

Thus, it identifies χ with a matrix $\widetilde{t}=\operatorname{diag}\left(\widetilde{t}_{1}, \ldots, \widetilde{t}_{7}\right)$ in $G L_{7}(\mathbb{C})$ such that

$$
\chi\left(h\left(t_{1}, \ldots, t_{8}\right)\right)=\widetilde{t}_{1}^{n_{7}-n_{8}} \widetilde{t}_{2}^{n_{6}-n_{7}} \widetilde{t}_{3}^{n_{5}-n_{6}} \widetilde{t}_{4}^{n_{4}-n_{5}} \widetilde{t}_{5}^{n_{2}+n_{3}-n_{4}} \widetilde{t}_{6}^{n_{1}+n_{2}-n_{3}} \widetilde{t}_{7}^{n_{2}-n_{1}},
$$

where $n_{i}=\operatorname{ord}\left(t_{i}\right)$.
If $\widetilde{t} \in G_{2}(\mathbb{C})$ then $\widetilde{t}_{3}=\frac{\widetilde{t}_{1}}{\tilde{t}_{2}}, \widetilde{t}_{4}=1, \widetilde{t_{5}}=\frac{\widetilde{t}_{2}}{\tilde{t}_{1}}, \widetilde{t}_{6}=\widetilde{t}_{2}^{-1}$, and $\widetilde{t}_{7}=\widetilde{t}_{1}^{-1}$, hence

$$
\chi\left(h\left(t_{1}, \ldots, t_{8}\right)\right)=\left(\widetilde{t}_{1}\right)^{n_{1}-2 n_{2}-n_{3}+n_{4}+n_{5}-n_{6}+n_{7}-n_{8}}\left(\widetilde{t}_{2}\right)^{-n_{1}+2 n_{3}-n_{4}-n_{5}+2 n_{6}-n_{7}} .
$$

We can rephrase this as follows. Let $\lambda_{1}=\varpi_{1}-2 \varpi_{2}-\varpi_{3}+\varpi_{4}+\varpi_{5}-\varpi_{6}+\varpi_{7}-\varpi_{8}$, and $\lambda_{2}=$ $-\varpi_{1}+2 \varpi_{3}-\varpi_{4}-\varpi_{5}+2 \varpi_{6}-\varpi_{7}$, and let χ_{i} be the unramified character of $G L_{1}\left(F_{v}\right)$ attached to $\widetilde{t_{i}}$ for $i=1,2$. Then

$$
\begin{equation*}
\chi(t)=\chi_{1}\left(t^{\lambda_{1}}\right) \chi_{2}\left(t^{\lambda_{2}}\right), \text { for } t=h\left(t_{1}, \ldots, t_{8}\right) \in M . \tag{7.3.1}
\end{equation*}
$$

This element $\widetilde{t} \in G_{2}(\mathbb{C}) \subset G L_{7}(\mathbb{C})$ also determines a character μ of the standard torus of G_{2}. If α is the short simple root of G_{2} and β is the long simple root, then α^{\vee} is the long simple coroot and is identified with the long simple root of the dual group, while β^{\vee} is identified with the short simple root of the dual. Then

$$
\mu\left(t_{1}^{\alpha^{\vee}} t_{2}^{\beta^{\vee}}\right)=\left(\frac{\widetilde{t_{1}}}{\widetilde{t_{2}}}\right)^{n_{2}}\left(\frac{\widetilde{t}_{2}^{2}}{\widetilde{t}_{1}}\right)^{n_{1}}=\left(\widetilde{t_{1}}\right)^{-n_{1}+n_{2}}\left(\widetilde{t_{2}}\right)^{2 n_{1}-n_{2}},
$$

where $n_{i}=\operatorname{ord}\left(t_{i}\right)$ for $i=1,2$.
7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of $G E_{7}$ whose unipotent radical contains $U_{\alpha_{i}}$ if and only if $i=2$, and Q is the standard parabolic subgroup of $G E_{7}$ whose unipotent radical contains $U_{\alpha_{i}}$ if and only if $i=4$ or 6 .

Suppose now that π_{v} is a principal series representation of $G L_{7}\left(F_{v}\right)$ which is attached to a character of the form 7.3.1). We consider the representation $\operatorname{Ind}_{P\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)} \pi_{v} \cdot\left|\widetilde{\varpi}_{2}\right|$. If π_{v} is the local component of a cuspidal representation π of G_{2} type, then the residual representation \mathcal{E}_{π} is a quotient of $\operatorname{Ind}_{P(\mathbb{A})}^{G E_{7}(\mathbb{A})} \pi \cdot\left|\widetilde{\varpi}_{2}\right|$. It may be reducible, but it is in the discrete spectrum, and if Π is any irreducible summand, then Π_{v} is a quotient of $\operatorname{Ind}_{P\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)} \pi_{v} \cdot\left|\widetilde{\varpi}_{2}\right|$. Moreover, if Π_{v} is unramified, then it is the unique unramified constituent of $\operatorname{Ind}_{P\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)} \pi_{v} \cdot\left|\widetilde{\varpi}_{2}\right|$.
Lemma 7.3.2. Let w_{6} be $w[423546542314376542]$ as in Section 6.2, so w_{6} maps the five roots in the character $\psi_{U}^{e_{0}}$ to $\left\{\alpha_{i}: i=1,2,3,5,7\right\}$. Let w_{0} denote the longest element of the Weyl group of $G E_{7}$ which is reduced by P on the left and right. Then $w_{6} w_{0}$ maps λ_{1} to $\varpi_{4}-\varpi_{6}-\varpi_{8}, \lambda_{2}$ to $-\varpi_{4}+2 \varpi_{6}-\varpi_{8}$, and ϖ_{2} to $\rho_{Q}-\rho_{B}+16 \varpi_{8}$.

Proof. Inspection (one can check it using LiE, for example).

Since $w_{6} w_{0} \lambda_{1}$ pairs trivially with all coroots in the Levi of Q, it induces a rational character ν_{1} of this Levi. Similarly, $w_{6} w_{0} \lambda_{2}$ induces a rational character ν_{2}.
Corollary 7.3.3. The unramified constituent of $\operatorname{Ind}_{P\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)} \pi_{v}\left|\widetilde{\varpi}_{2}\right|$ is equal to that of

$$
\begin{equation*}
\operatorname{Ind}_{Q\left(F_{v}\right)}^{G E_{v}\left(F_{v}\right)}\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16} . \tag{7.3.4}
\end{equation*}
$$

Proposition 7.3.5. Let (s, u) be a Whittaker pair such that u is contained in an orbit which is greater than or not related to A_{6}. Let $U=\exp \left(\mathfrak{g}_{\geq 2}^{s}\right)$. Then both $\mathcal{J}_{\left(U, \psi_{u}\right)}$ and $\mathcal{J}_{N_{s, u}, \psi_{u}}$ kill the representation (7.3.4).

Proof. This follows from Corollary 3.2.8 (cf. Remark 3.2.10)
7.4. Cuspidality of the $\boldsymbol{A}_{5}^{\prime \prime}$ descent module. The purpose of this section is to show that \mathcal{D}_{π} is cuspidal, provided that there exists a finite place v_{0} such that $\pi_{v_{0}}$ is a principal series representation of $G L_{7}\left(F_{v_{0}}\right)$ which is attached to a character of the form (7.3.1). There are two maximal parabolic subgroups of G_{2}. Recall that β denotes the long simple root of G_{2} and α denotes the short one, and for $\gamma \in\{\beta, \alpha\}, P_{\gamma}$ denotes the maximal parabolic subgroup of G_{2} whose Levi, M_{γ} contains the root subgroup U_{γ} attached to $\gamma . N_{\gamma}$ denotes the unipotent radical of P_{γ}.
7.4.1. Constant term along N_{α}. Let $h_{P_{\alpha}}=2 \alpha^{\vee}+4 \beta^{\vee}$. This is the standard semisimple element of G_{2} which is attached to the parabolic P_{α}. The embedding of G_{2} into $G E_{7}$ identifies $h_{P_{\alpha}}$ with $2 \alpha_{2}^{\vee}+2 \alpha_{3}^{\vee}+4 \alpha_{4}^{\vee}+2 \alpha_{5}^{\vee}$. The weight attached to this semisimple element is $\begin{array}{cccccc}-2 & 0 & 2 & 0 & -2 & 0 \\ 0 & & \end{array}$. The Weyl element $w_{P_{\alpha}}=w[134567245631]$ maps this weight to the dominant weight $\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ & 0 & & & \end{array}$.

Lemma 7.4.1. Let U_{1} be the unipotent subgroup of $G E_{7}$ such that $\Phi\left(U_{1}, T\right)=\Phi^{+}\left(G E_{7}, T\right)$ \} $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}, 1010000,0000110\right\}$. Let $\psi_{U_{1}}^{f_{0}}$ be the character of U_{1} determined by f_{0}, and let tri denote the trivial character of N_{α}. Then the composed period $\left(N_{\alpha}\right.$, tri) $\circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$ is equivalent to $\left(U_{1}, \psi_{U_{1}}^{f_{0}}\right)$.
Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.)
Now let $U_{2}=w_{P_{\alpha}} U_{1} w_{P_{\alpha}}^{-1}$ and

$$
f_{1}=X_{-0100000}+X_{-0011000}+X_{-0001100}+X_{-0000110}+X_{-0000011} .
$$

Then there exists a representative $\dot{w}_{P_{\alpha}}$ for $w_{P_{\alpha}}$ which maps f_{0} to f_{1}, so $\left(U_{1}, \psi_{U_{1}}^{f_{0}}\right)$ is equivalent to $\left(U_{2}, \psi_{U_{2}}^{f_{1}}\right)$.
Lemma 7.4.2. Let S_{3} be the set which contains all positive roots of E_{7} except

$$
0000001,0000100,0010000,1000000,1010000,1011000,1011100,1011110,1011111,
$$

in addition to $-1000000,-1010000$. This set is closed under addition, and hence determines a unipotent subgroup U_{3}. The nilpotent element f_{1} determines a character of $U_{3}(\mathbb{A})$ which we denote by $\psi_{U_{3}}^{f_{1}}$. Then $\left(U_{2}, \psi_{U_{2}}^{f_{1}}\right)$ is equivalent to $\left(U_{3}, \psi_{U_{3}}^{f_{1}}\right)$.
Proof. We apply the exchange lemma (Lemma 7.1.1) six times, exchanging -1111100 for 1122100, -1111000 for $1112100,-1011111$ for $1111111,-1011110$ for $1111110,-1011100$ for 1111100 , and -1011000 for 1111000 .

Lemma 7.4.3. For $a, b \in F$, let $f_{2}(a, b)=f_{1}+a X_{-1011110}+b X_{-1011111}$. Let U_{4} be the product of U_{3} and the two-dimensional unipotent group corresponding to 1011110 and 1011111. Then

$$
\left(U_{3}, \psi_{U_{3}}^{f_{1}}\right)=\sum_{a, b \in F}\left(U_{4}, \psi_{U_{4}}^{f_{2}(a, b)}\right) .
$$

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent group corresponding to 1011110 and 1011111.

Lemma 7.4.4. The element $f_{2}(a, b)$ lies in the orbit $D_{6}\left(a_{1}\right)$ unless $a=b=0$.
Proof. This was checked using GAP and SageMath. An element X of \mathfrak{e}_{7} is in $D_{6}\left(a_{1}\right)$ if and only if $\operatorname{Rank} \operatorname{Ad}(X)^{k}$ is given as in the table for the listed values of k. In particular,

$$
\begin{array}{cccccc}
k & 10 & 11 & 12 & 13 & 14 \\
\operatorname{Rank} \operatorname{Ad}(X)^{k} & 11 & 6 & 3 & 2 & 1
\end{array} .
$$

GAP was used to obtain adjoint matrices for a Chevalley basis of \mathfrak{e}_{7}. These were then loaded into SageMath, in order to work in the polynomial ring $\mathbb{Z}[a, b]$. The matrices $\operatorname{Ad}(f(a, b))^{k}$ were then computed as matrices over this polynomial ring. Next, we deleted any rows and columns consisting entirely of zeros to obtain a smaller matrix. Each of these smaller matrices had a block structure made up of smaller blocks whose rank could be easily determined by visual inspection. For example, the nonzero part of $\operatorname{Ad}(f(a, b))^{12}$ is

$$
\left(\begin{array}{rrrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & -594 a & -594 b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -528 a^{2} & -528 a b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -528 a b & -528 b^{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1188 a^{2} & 1188 a b \\
0 & 0 & 0 & 0 & 1716 a^{2} & 0 & 1716 a b & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1188 a b & 1188 b^{2} \\
0 & 0 & 0 & 0 & 1716 a b & 0 & 1716 b^{2} & 0 & 0 \\
-594 a & -528 a^{2} & -528 a b & 1188 a^{2} & 0 & 1188 a b & 0 & 0 & 0 \\
-594 b & -528 a b & -528 b^{2} & 1188 a b & 0 & 1188 b^{2} & 0 & 0 & 0
\end{array}\right),
$$

and is made up of a 2×5 block, a 2×2 block and a 5×2 block, each of which is rank one unless a and b are both zero. The other cases were similar.

Lemma 7.4.5. Let $U_{4}^{\prime}=w[31] U_{4} w[13]$, which is the unipotent radical of a parabolic subgroup and contains the root subgroup $U_{\alpha_{i}}$ attached to the simple root α_{i} if $i=2,3$, or 6 . Let $\dot{w}[31]$ be a representative for $w[31]$ and $f_{2}^{\prime}(a, b)=\operatorname{Ad}(\dot{w}[31]) f_{2}(a, b)$ then for any smooth automorphic function φ

$$
\varphi^{\left(U_{4}, \psi_{U_{4}}^{f_{2}(a, b)}\right)}(g)=\varphi^{\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a, b)}\right)}(\dot{w}[31] g) .
$$

In particular the periods $\left(U_{4}, \psi_{U_{4}}^{f_{2}(a, b)}\right)$ and $\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a, b)}\right)$ are equivalent.
Proposition 7.4.6. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a, b)}\right)$ for $(a, b) \neq(0,0)$.
Proof. This follows from Corollary 3.2.7, since the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10) and $f_{2}^{\prime}(a, b)$ is in $D_{6}\left(a_{1}\right)$ by Lemma 7.4.4.

Proposition 7.4.7. Let S_{5} be the set which contains all positive roots of E_{7} except

$$
\text { 0000001, 0000100, 0010000, 1000000, } 1010000 .
$$

Then for any smooth automorphic function φ,

$$
\varphi^{\left(U_{4}, \psi_{U_{4}}^{f_{1}}\right)}(g)=\int_{\mathbb{A}} \int_{\mathbb{A}} \varphi^{\left(U_{5}, \psi_{U_{5}}^{f_{1}}\right)}\left(x_{-1000000}\left(r_{1}\right) x_{-1010000}\left(r_{2}\right) g\right) d r_{1} d r_{2}
$$

In particular, $\left(U_{4}, \psi_{U_{4}}^{f_{2}(0,0)}\right)$ is equivalent to $\left(U_{5}, \psi_{U_{5}}^{f_{2}(0,0)}\right)$.
Proof. This is another application of the exchange lemma (Lemma 7.1.1).
Lemma 7.4.8. Let U_{6} be the product of U_{5} and the two-dimensional unipotent group $U_{\alpha_{1}} U_{\alpha_{1}+\alpha_{3}}$. For $a, b \in F$, let $f_{3}(a, b)=f_{1}+a X_{-\alpha_{1}}+b X_{-1010000}$. Then $\left(U_{5}, \psi_{U_{5}}^{f_{2}(0,0)}\right)=\sum_{a, b \in F}\left(U_{6}, \psi_{U_{6}}^{f_{3}(a, b)}\right)$.
Proof. This is again just a Fourier expansion.
Lemma 7.4.9. The residual representation \mathcal{E}_{π} does not support the period $\left(U_{6}, \psi_{U_{6}}^{f_{3}(0,0)}\right)$.
Proof. This holds because U_{6} contains the full unipotent radical of the standard maximal parabolic subgroup of E_{7} whose Levi is of type D_{6}, and the character $\psi_{U_{6}}^{f_{3}(0,0)}$ is trivial on this subgroup. Thus $\left(U_{6}, \psi_{U_{6}}^{f_{3}(0,0)}\right)$ factors through the constant term attached to this maximal parabolic. But that parabolic is not associate to the one used in constructing our Eisenstein series, so neither the Eisenstein series nor its residue will support this constant term.
Proposition 7.4.10. If $(a, b) \neq(0,0)$ then $f_{3}(a, b)$ lies in the orbit D_{6}.
Proof. We use the same method which we used above to find the orbit of $f_{2}(a, b)$.
Proposition 7.4.11. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{6}, \psi_{U_{6}}^{f_{3}(a, b)}\right)$ for $(a, b) \neq(0,0)$.
Proof. This follows from Corollary 3.2.7 and Lemma 7.4.10, because the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10).

Hence, we have the following theorem.
Theorem 7.4.12. Let π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type, such that $\pi_{v_{0}}$ is induced from a character of the form 7.3.1 at some finite place v_{0}. Then the constant term of $\mathcal{E}_{\pi}^{\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)}$ along N_{α} is zero.
7.4.2. Constant term along N_{β}. Let $h_{P_{\beta}}=4 \alpha^{\vee}+6 \beta^{\vee}$. This is the standard semisimple element of G_{2} which is attached to the parabolic P_{β}. The embedding of G_{2} into $G E_{7}$ identifies $h_{P_{\beta}}$ with $4 \alpha_{2}^{\vee}+4 \alpha_{3}^{\vee}+6 \alpha_{4}^{\vee}+4 \alpha_{5}^{\vee}$. The weight attached to this semisimple element is $\begin{array}{llllll}-4 & 2 & 0 & 2 & -4 & 0 \\ & & 2 & & & \end{array}$. The Weyl element $w_{P_{\beta}}=w[3,4,1,3,2,4,5,6,7,4,3,2,4,5,6,4,3,1]$ maps this to the dominant weight $\begin{array}{llllll}0 & 2 & 0 & 0 & 0 & 0 \\ & & 0 & & & \end{array}$.
Lemma 7.4.13. Let U_{1} be the unipotent subgroup of $G E_{7}$ such that $\Phi\left(U_{1}, T\right)=\Phi^{+}\left(G E_{7}, T\right)$, $\{0001000,1011000,0001110,1010000,0000110,1000000,0000010\}$. Let $\psi_{U_{1}}^{f_{0}}$ be the character of U_{1} determined by f_{0}, and let tri denote the trivial character of $N_{\alpha}(\mathbb{A})$ Then the composed period $\left(N_{\alpha}\right.$, tri $) \circ\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)$ is equivalent to $\left(U_{1}, \psi_{U_{1}}^{f_{0}}\right)$.
Proof. This follows from the exchange lemma (Lemma 7.1.1). (Cf. Lemma 7.1.2.)

Now let $U_{2}=w_{P_{\beta}} U_{1} w_{P_{\beta}}^{-1}$ and

$$
f_{1}=X_{-0100000}+X_{-0001000}+X_{-0000100}+X_{-0000010}+X_{-0000001} .
$$

Then there exists a representative $\dot{w}_{P_{\beta}}$ for $w_{P_{\beta}}$ which maps f_{0} to f_{1}, so $\left(U_{1}, \psi_{U_{1}}^{f_{0}}\right)$ is equivalent to $\left(U_{2}, \psi_{U_{2}}^{f_{1}}\right)$.
Lemma 7.4.14. Let S_{3} be the set which contains all positive roots of E_{7} except

$$
\begin{aligned}
& 0010000,0011000,0011100,0111000,1000000,1010000,1011000, \\
& 1011100,1011110,1111000,1111100,1122100,1122110,1122210,
\end{aligned}
$$

in addition to

$$
-1111000,-1011100,-1011000,-0011000,-1122100,-1010000,-0010000,
$$

This set is closed under addition, and hence determines a unipotent subgroup U_{3}. The nilpotent element f_{1} determines a character of $U_{3}(\mathbb{A})$ which we denote $\psi_{U_{3}}^{f_{1}}$. Then $\left(U_{2}, \psi_{U_{2}}^{f_{1}}\right)$ is equivalent to $\left(U_{3}, \psi_{U_{3}}^{f_{1}}\right)$.
Proof. We apply the exchange lemma (Lemma 7.1.1) five times, exchanging - 1122210 for 1123210 , -1122111 for 1122211, -0011100 for $0011110,-0111000$ for $0111100,-1122110$ for 1122111.

Lemma 7.4.15. For $a \in F$, let $f_{2}(a)=f_{1}+a X_{-1122210}$. Let U_{4} be the product of U_{3} and the one-dimensional unipotent group corresponding to 1122210. Then

$$
\left(U_{3}, \psi_{U_{3}}^{f_{1}}\right)=\sum_{a \in F}\left(U_{4}, \psi_{U_{4}}^{f_{2}(a)}\right)
$$

Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent group corresponding to 1122210 .

Lemma 7.4.16. The element $f_{2}(a)$ lies in the orbit $D_{6}\left(a_{1}\right)$ unless $a=0$.
Proof. The method is similar to that of Lemma 7.4.4.
Proposition 7.4.17. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{4}, \psi_{U_{4}}^{f_{2}(a)}\right)$ for $a \neq 0$.

Proof. Recall that for $S \subset\{1,2,3,4,5,6,7\}, P_{S}$ denotes the standard parabolic subgroup whose Levi contains the root subgroups attached to the simple roots $\left\{\alpha_{i}: i \in S\right\}$ and unipotent radical contains the root subgroups attached to the simple roots $\left\{\alpha_{i}: i \notin S\right\}$. Let $w=w$ [425423413]. Let $U_{4}^{\prime}=w U_{4} w^{-1}$, which is contained in the unipotent radical of $P_{\{2,3,5,6\}}$. Let \dot{w} be a representative for w and $f_{2}^{\prime}(a)=\operatorname{Ad}(\dot{w}) f_{2}(a)$ then for any smooth automorphic function φ

$$
\left.\varphi^{\left(U_{4}, \psi_{U_{4}}^{f_{2}(a)}\right.}\right)(g)=\varphi^{\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a)}\right)}(\dot{w} g) .
$$

In particular the periods $\left(U_{4}, \psi_{U_{4}}^{f_{2}(a)}\right)$ and $\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a)}\right)$ are equivalent.
Hence, it suffices to show that \mathcal{E} does not support the coefficient $\left(U_{4}^{\prime}, \psi_{U_{4}^{\prime}}^{f_{2}^{\prime}(a)}\right)$ for $a \neq 0$. This follows from Corollary 3.2.7 and Lemma 7.4.16, because the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10).

Proposition 7.4.18. Let S_{5} be the set which contains all positive roots of E_{7} except 0010000, 0011000, 0111000, 1000000, 1010000, 1011000, 1111000, 1122100, in addition to $-1010000,-0010000$. Then $\left(U_{4}, \psi_{U_{4}}^{f_{2}(0)}\right)$ is equivalent to $\left(U_{5}, \psi_{U_{5}}^{f_{2}(0)}\right)$.
Proof. This is another application of the exchange lemma (Lemma 7.1.1) five times: exchanging -1011100 for 1011110, -1111000 for 1111100, -1122100 for 1122110, - 0011000 for 0011100 , -1011000 for 1011100 .

Lemma 7.4.19. Let U_{6} be the product of U_{5} and the one-dimensional unipotent group

$$
U_{1122100}
$$

For $a \in F$, let $f_{3}(a)=f_{1}+a X_{-1122100}$. Then

$$
\left(U_{5}, \psi_{U_{5}}^{f_{2}(0)}\right)=\sum_{a \in F}\left(U_{6}, \psi_{U_{6}}^{f_{3}(a)}\right)
$$

Proof. This is again just a Fourier expansion.
Proposition 7.4.20. If $a \neq 0$ then $f_{3}(a)$ lies in the orbit D_{6}.
Proof. The method is similar to that of Lemma 7.4.4.
Proposition 7.4.21. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{6}, \psi_{U_{6}}^{f_{3}(a)}\right)$ for $a \neq 0$.
Proof. Let $U_{6}^{\prime}=w[3,4,1,3] U_{6} w[3,4,1,3]$. Let $\dot{w}[3,4,1,3]$ be a representative for $w[3,4,1,3]$ and $f_{3}^{\prime}(a)=\operatorname{Ad}(\dot{w}[3,4,1,3]) f_{3}(a)$ then for any φ

$$
\varphi^{\left(U_{6}, \psi_{U_{6}}^{f_{3}(a)}\right)}(g)=\varphi^{\left(U_{6}^{\prime}, \psi_{U_{6}^{\prime}}^{f_{3}^{\prime}(a)}\right)}(\dot{w}[3,4,1,3] g) .
$$

In particular the periods $\left(U_{6}, \psi_{U_{6}}^{f_{3}(a)}\right)$ and $\left(U_{6}^{\prime}, \psi_{U_{6}^{\prime}}^{f_{3}^{\prime}(a)}\right)$ are equivalent.
Hence, it suffices to show that \mathcal{E} does not support the coefficient $\left(U_{6}^{\prime}, \psi_{U_{6}^{\prime}}^{f_{3}^{\prime}(a)}\right)$ for $a \neq 0$.
Now, write $s_{D_{6}}$ for the standard semisimple element attached to the orbit D_{6}. Let $V_{D_{6}}$ be the unipotent group whose Lie algebra is $\mathfrak{g}_{\geq 2}^{s_{D}}$. Then $U_{6}^{\prime}=V_{D_{6}} U_{0000100} U_{0001100}$, and $\psi_{U_{6}^{\prime}}^{f_{3}^{\prime}(a)}$ is trivial on $U_{0000100} U_{0001100}$. So $\varphi^{\left(U_{6}^{\prime}, \psi_{U_{6}^{\prime}}^{f_{3}^{\prime}(a)}\right)}$ may be written as a double integral with the inner integral being $\left.\varphi^{\left(V_{D_{6}}, \psi_{V_{D_{6}}} f_{3}^{\prime}(a)\right.}\right)$. So, it suffices to show that the coefficient $\left(V_{D_{6}}, \psi_{V_{D_{6}}}^{f_{3}^{\prime}(a)}\right)$ vanishes on \mathcal{E}. This follows from Corollary 3.2.7 and Lemma 7.4.20, because the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10 , and D_{6} is greater than A_{6}. The role of " P " in Corollary 3.2 .7 is played by $P_{\{4\}}$.

Lemma 7.4.22. Let U_{7} be the product of U_{6} and the two-dimensional unipotent group

$$
U_{0111000} U_{1111000}
$$

For $a, b \in F$, let $f_{4}(a, b)=f_{1}+a X_{-0111000}+b X_{-1111000}$. Then

$$
\left(U_{6}, \psi_{U_{6}}^{f_{3}(0)}\right)=\sum_{a, b \in F}\left(U_{7}, \psi_{U_{7}}^{f_{4}(a, b)}\right) .
$$

Proof. This is again just a Fourier expansion.
Proposition 7.4.23. If $(a, b) \neq(0,0)$ then $f_{4}(a, b)$ lies in the orbit $D_{6}\left(a_{1}\right)$.
Proof. The method is similar to that of Lemma $\frac{7.4 .4}{36}$.

Proposition 7.4.24. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{7}, \psi_{U_{7}}^{f_{4}(a, b)}\right)$ for $(a, b) \neq(0,0)$.
Proof. Let $U_{7}^{\prime}=w[13] U_{7} w[31]$, and $f_{4}^{\prime}(a, b)=\operatorname{Ad}(\dot{w}[13]) \cdot f_{4}(a, b)$. Then $U_{7}^{\prime}=U_{\{3,4\}}$. We apply Corollary 3.2.7, with $P=P_{\{3,4\}}$. Since the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10), it follows from Lemma 7.4 .23 that $\mathcal{E}_{v_{0}}$ does not support the coefficient $\left(U_{7}^{\prime}, \psi_{U_{7}^{\prime}}^{f_{4}^{\prime}(a, b)}\right)$, which is clearly equivalent to $\left(U_{7}, \psi_{U_{7}}^{f_{4}(a, b)}\right)$.

Proposition 7.4 .25 . Let S_{8} be the set which contains all positive roots of E_{7} except

$$
0010000,1010000 .
$$

Then $\left(U_{7}, \psi_{U_{7}}^{f_{4}(0,0)}\right)$ is equivalent to $\left(U_{8}, \psi_{U_{8}}^{f_{4}(0,0)}\right)$.
Proof. This is another application of the exchange lemma (Lemma 7.1.1) twice: exchanging -1010000 for $1011000,-0010000$ for 0011000.

Lemma 7.4.26. Let U_{9} be the product of U_{8} and the two-dimensional unipotent group $U_{0010000} U_{1010000}$. For $a, b \in F$, let $f_{5}(a, b)=f_{1}+a X_{-0010000}+b X_{-1010000}$. Then

$$
\left(U_{8}, \psi_{U_{8}}^{f_{4}(0,0)}\right)=\sum_{a, b \in F}\left(U_{9}, \psi_{U_{9}}^{f_{5}(a, b)}\right)
$$

Proof. This is again just a Fourier expansion.
Proposition 7.4.27. If $(a, b) \neq(0,0)$ then $f_{5}(a, b)$ lies in the orbit D_{6}.
Proof. The method is similar to that of Lemma 7.4.4.
Proposition 7.4.28. Let $\mathcal{E}=\otimes_{v} \mathcal{E}_{v}$ be an irreducible automorphic representation of $G E_{7}(\mathbb{A})$ and assume that there is a finite place v_{0} such that $\mathcal{E}_{v_{0}}$ is induced from a character of the group Q from Section 7.3.2. Then \mathcal{E} does not support the coefficient $\left(U_{9}, \psi_{U_{9}}^{f_{5}(a, b)}\right)$ for $(a, b) \neq(0,0)$.
Proof. Note that U_{9} is the full unipotent radical of the parabolic $P_{\{1\}}$. We apply Corollary 3.2 .7 with $P=P_{\{1\}}$. The result follows from Lemma 7.4.27, because the Richardson orbit of Q is A_{6} (cf. Remark 3.2.10.
Lemma 7.4.29. The residual representation \mathcal{E}_{π} does not support the period $\left(U_{9}, \psi_{U_{9}}^{f_{5}(0,0)}\right)$.
Proof. This holds because U_{9} contains the full unipotent radical of the standard maximal parabolic subgroup $P_{\{1,2,4,5,6,7\}}$, and the character $\psi_{U_{9}}^{f_{5}(0,0)}$ is trivial on this subgroup. Thus $\left(U_{9}, \psi_{U_{9}}^{f_{5}(0,0)}\right)$ factors through the constant term attached to this maximal parabolic. But that parabolic is not associate to the one used in constructing our Eisenstein series, so neither the Eisenstein series nor its residue will support this constant term.

Hence, we have the following theorem.
Theorem 7.4.30. Let π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type, such that $\pi_{v_{0}}$ is induced from a character of the form 7.3.1 at some finite place v_{0}. Then the constant term of $\mathcal{E}_{\pi}^{\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)}$ along N_{β} is zero.

Therefore, Theorems 7.4 .12 and 7.4 .30 together imply the following theorem on the cuspidality of our descent module $\mathcal{E}_{\pi}^{\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)}$.

Theorem 7.4.31. Let π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type, such that $\pi_{v_{0}}$ is induced from a character of the form 7.3.1 at some finite place v_{0}. Then $\mathcal{E}_{\pi}^{\left(U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right)}$ is a cuspidal automorphic representation of $G_{2}(\mathbb{A})$.
7.5. Unramified local descent. The purpose of this section is to show that π is a weak functorial lift of each irreducible summand of \mathcal{D}_{π}, provided that for almost all finite places v, π_{v} is a principal series representation of $G L_{7}\left(F_{v}\right)$ which is attached to a character of the form 7.3.1).

Recall that $P_{A_{5}^{\prime \prime}}=M_{A_{5}^{\prime \prime}} U_{A_{5}^{\prime \prime}}=P_{s}=M_{s} U_{s}$ is the parabolic subgroup defined as in Section 3.1, where $s=s_{A_{5}^{\prime \prime}}$ is the standard semisimple element (cf. Definition 5.0.1) attached to $A_{5}^{\prime \prime}, M_{A_{5}^{\prime \prime}}=M_{s}$ is the Levi subgroup, and $U_{A_{5}^{\prime \prime}}=U_{s}$ is the unipotent radical.

We consider the twisted Jacquet module

$$
\mathcal{J}_{U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}\left(\operatorname{Ind}_{Q\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)}\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16}\right)
$$

For χ_{i} and ν_{i}, see $\$ 7.3$. To that end we study the space of double cosets $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / G_{2}\left(F_{v}\right) U_{A_{5}^{\prime \prime}}\left(F_{v}\right)$, where G_{2} is embedded into $M_{A_{5}^{\prime \prime}}$ as the stabilizer of f_{0}.

For $\gamma \in Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / G_{2}\left(F_{v}\right) U_{A_{5}^{\prime \prime}}\left(F_{v}\right)$ we say that γ is admissible if $\left.\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right|_{U_{A_{5}^{\prime \prime}} \cap\left(\gamma^{-1} Q \gamma\right)} \equiv 1$. Each double coset contains elements of the form $w \mu$ with w in the Weyl group of minimal length in its $\left(Q, P_{A_{5}^{\prime \prime}}\right)$-double coset, and $\mu \in M_{A_{5}^{\prime \prime}}\left(F_{v}\right)$. Indeed, μ may be taken modulo $G_{2}\left(F_{v}\right)$ on the right and $M_{A_{5}^{\prime \prime}} \cap w^{-1} Q w$ - which is a standard parabolic subgroup of $M_{A_{5}^{\prime \prime}}$ on the left. Then

$$
\left.\left.\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\right|_{U_{A_{5}^{\prime \prime}} \cap\left(\gamma^{-1} Q \gamma\right)} \equiv 1 \Longleftrightarrow \mu \cdot \psi_{U_{5}^{\prime \prime}}^{f_{0}}\right|_{U_{A_{5}^{\prime \prime} \cap\left(w^{-1} Q w\right)} \equiv 1 ~} \equiv
$$

Note also that $\mu \cdot \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}=\psi_{U_{A_{5}^{\prime \prime}}}^{\operatorname{Ad}(\mu) \cdot f_{0}}$. Clearly $\operatorname{Ad}(\mu) \cdot f_{0}$ is in the open orbit for the action of $M_{A_{5}^{\prime \prime}}$ on $\mathfrak{g}_{-2}^{s_{A}^{\prime \prime}}$.
Lemma 7.5.1. Let $\Phi_{A_{5}^{\prime \prime}}(2)=\left\{\alpha \in \Phi:\left\langle\alpha, s_{A_{5}^{\prime \prime}}\right\rangle=2\right\}$. Then $\sum_{\alpha \in \Phi_{A_{5}^{\prime \prime}}(2)} a_{\alpha} X_{-\alpha}$ is in $A_{5}^{\prime \prime}$ if and only if

$$
\begin{aligned}
& \left(a_{0011110} a_{0101110}-a_{0001110} a_{0111110}-a_{0000110} a_{0112110}-a_{0000010} a_{0112210}\right)^{2} \times \\
\times & \left(a_{1011100} a_{1111000}-a_{1011000} a_{1111100}+a_{1010000} a_{1112100}+a_{1000000} a_{1122100}\right)^{2} a_{0000001} \neq 0 .
\end{aligned}
$$

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP.
Proposition 7.5.2. The set of reduced representatives w for $Q \backslash G E_{7} / P_{A_{5}^{\prime \prime}}$ such that $\left.\psi_{U_{A_{5}^{\prime \prime}}^{\prime}}^{f}\right|_{A_{5}^{\prime \prime} \cap w^{-1} Q w} \equiv$

$$
w_{0}:=w[4231435423165423143542654317654231435426543176] .
$$

Proof. If $\left.\psi_{U_{A_{5}^{\prime \prime}}^{\prime \prime}}^{f}\right|_{U_{A_{5}^{\prime \prime} \cap w^{-1} Q w}} \equiv 1$ with $f=\sum_{\alpha \in \Phi_{A_{5}^{\prime \prime}}(2)} a_{\alpha} X_{-\alpha}$, then

$$
\left\{\alpha \in \Phi_{A_{5}^{\prime \prime}}(2): w \alpha<0\right\}
$$

contains $\left\{\alpha \in \Phi_{A_{5}^{\prime \prime}}(2): a_{\alpha} \neq 0\right\}$. If f is in the open orbit, then it follows from Lemma 7.5.1, that $\left\{\alpha \in \Phi_{A_{5}^{\prime \prime}}(2): a_{\alpha} \neq 0\right\}$ contains
(1) the root 0000001,
(2) two roots of the form $1 * * * * 00$ that add up to 2122100 ,
(3) two roots of the form $0 * * * * 10$ that add up to 0112220 .

One can check using LiE that $Q \backslash G E_{7} / P_{A_{5}^{\prime \prime}}$ has 786 elements. Of these, only 342 map 0000001 to a negative root. Of these 342 only 120 map two roots of the form $1 * * * * 00$ that add up to 2122100 to negative roots, and of these 120 only one maps two roots of the form $0 * * * * 10$ that add up to 0112220 to negative roots. Thus there is only one element of $Q \backslash G E_{7} / P_{A_{5}^{\prime \prime}}$ such that

$$
\left\{f \in \mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}:\left.\psi_{U_{A_{5}^{\prime \prime}}^{f}}^{f}\right|_{U_{A_{5}^{\prime \prime} \cap w^{-1} Q w}} \equiv 1\right\}
$$

contains elements of the orbit $A_{5}^{\prime \prime}$. This element is w_{0}.
Lemma 7.5.3. The orbit $A_{5}^{\prime \prime}$ is a single rational orbit.
Proof. The space $\mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}$ decomposes as a direct sum of three irreducible $M_{A_{5}^{\prime \prime}-\text { modules: }}$
$\left\langle X_{0000001}\right\rangle, \quad \mathfrak{v}_{010}:=\left\langle X_{0000010}, X_{0000110}, X_{0001110}, X_{0101110}, X_{0011110}, X_{0111110}, X_{0112110}, X_{0112210}\right\rangle$,

$$
\mathfrak{v}_{100}:=\left\langle X_{1000000}, X_{1010000}, X_{1011000}, X_{1111000}, X_{1011100}, X_{1111100}, X_{1112100}, X_{1122100}\right\rangle .
$$

We identify an element of $\mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}$ with a triple $(\underline{x}, \underline{y}, z)$ where \underline{x} and \underline{y} are column vectors of size 8 and z is a scalar. The action of $M_{A_{5}^{\prime \prime}}$ on $\mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}$ then induces a rational homomorphism $M_{A_{5}^{\prime \prime}} \rightarrow$ $G L_{8} \times G L_{8} \times G L_{1}$. From Lemma 7.5.1, the triple ($\underline{x}, \underline{y}, z$) corresponds to an element of $A_{5}^{\prime \prime \prime}$ if $q_{1}(\underline{x}) q_{2}(\underline{y}) z \neq 0$, where q_{1} and q_{2} are two quadratic forms. The derived group of $M_{A_{5}^{\prime \prime}}$ is isomorphic to Spin ${ }_{8}$, and its image in $G L_{8} \times G L_{8} \times G L_{1}$ preserves the forms q_{1} and q_{2}. That is, the image the derived group is contained in $S O_{8}\left(q_{1}\right) \times S_{8}\left(q_{2}\right) \times\{1\}$. By Propositions 1 and 4 of [I70], we can map any triple which corresponds to an element of $A_{5}^{\prime \prime}$ to one of the form

$$
\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
a \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
b \\
1 \\
0 \\
0 \\
0
\end{array}\right], z\right)
$$

using an element of the derived group of $M_{A_{5}^{\prime \prime}}$. It then suffices to show that the torus of $G E_{7}$ contains an element t which acts by a^{-1} on $X_{-1111000}$ by b^{-1} on $X_{-0101110}$ by z^{-1} on $X_{-0000001}$ and by 1 on $X_{-1011100}$ and $X_{-0011110}$. Since the images of t under the 7 simple roots of E_{7} can be chosen arbitrarily, this is easy.

Proposition 7.5.4. Let $P_{1, w_{0}}:=M_{A_{5}^{\prime \prime}} \cap w_{0}^{-1} Q w_{0}$. Then $P_{1, w_{0}}$ acts transitively on

$$
\left\{f \in \mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}(F) \cap A_{5}^{\prime \prime}:\left.\psi_{U_{A_{5}^{\prime \prime}}}^{f}\right|_{\left.U_{A_{5}^{\prime \prime} \cap w_{0}^{-1} Q w_{0}} \equiv 1\right\} . . . ~} \equiv 1\right.
$$

In the language of $\$ 3.2$, the w_{0}-admissible subvariety of $P_{A_{5}^{\prime \prime}}$ is equal to $P_{1, w_{0}} \cdot G_{2} U_{A_{5}^{\prime \prime}}$.
Proof. Write $f \in \mathfrak{g}_{-2}^{s_{A_{5}^{\prime \prime}}}$ as $\sum_{\alpha} a_{\alpha} X_{-\alpha}$, and identify it with a triple ($\underline{x}, \underline{y}, z$) as above, given by

$$
\begin{aligned}
{ }^{t} \underline{x} & =\left[\begin{array}{llrrrrrr}
a_{1000000} & a_{1010000} & a_{1011000} & a_{1111000} & a_{1011100} & a_{1111100} & a_{1112100} & a_{1122100}
\end{array}\right], \\
{ }^{t} \underline{y} & =\left[\begin{array}{lrrrrrrr}
a_{0000010} & a_{0000110} & a_{0001110} & a_{0101110} & a_{0011110} & a_{0111110} & a_{0112110} & a_{0112210}
\end{array}\right] .
\end{aligned}
$$

The group $P_{1, w_{0}}$ is the standard parabolic subgroup of $M_{A_{5}^{\prime \prime}}$ whose Levi contains $U_{ \pm \alpha_{2}}$ and $U_{ \pm \alpha_{3}}$, and whose unipotent radical contains $U_{\alpha_{4}}$ and $U_{\alpha_{5}}$. This parabolic preserves a flag in each of the spaces \mathfrak{v}_{100} and \mathfrak{v}_{010} which is compatible with the order placed on the roots above. Specifically write

$$
\underline{x}=\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2} \\
\underline{x}_{3} \\
\underline{x}_{4}
\end{array}\right], \quad \underline{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\underline{y}_{3} \\
y_{4} \\
y_{5}
\end{array}\right],
$$

where \underline{x}_{i} is a column vector of size 2 for each i, \underline{y}_{3} is a column vector of size four, and y_{i} is a scalar for $i=1,2,4,5$. Then the standard Levi subgroup of $P_{1, w_{0}}$ respects this decomposition. The condition $\left.\psi_{U_{A_{5}^{\prime \prime}}^{f}}^{f}\right|_{U_{A_{5}^{\prime \prime}} \cap w_{0}^{-1} Q w_{0}} \equiv 1$ is equivalent to $a_{0112110}=a_{0112210}=a_{1112100}=a_{1122100}=0$, i.e., to $\underline{x}_{4}=0, y_{4}=y_{5}=0$.

The triple ($\underline{x}, \underline{y}, z$) corresponds to an element of $A_{5}^{\prime \prime}$ if $z \neq 0$ and \underline{x} and \underline{y} are each anisotropic relative to a certain quadratic form (cf. Lemma 7.5.1). When \underline{x}_{4}, y_{4} and y_{5} are trivial, this forces \underline{y}_{3}, and $\left(\frac{\underline{x}_{2}}{\underline{x}_{3}}\right)$ to be anisotropic.

The derived group of the Levi of $P_{1, w_{0}}$ is isomorphic to $S L_{2} \times S L_{2}$, its action on the \underline{y}_{3} component of \mathfrak{v}_{010} can be identified with the action of $S L_{2} \times S L_{2}$ on 2×2 matrices by $\left(g_{1}, g_{2}\right) \cdot Y=g_{1} Y g_{2}^{-1}$. Anisotropic elements correspond to matrices Y with $\operatorname{det} Y \neq 0$. Clearly, each such matrix is in the same orbit as a $\operatorname{diag}(a, 1)$ for some a. It follows that each f is in the same orbit as one with $a_{0011110}=a_{0101110}=0, a_{0111110}=1$. The condition $f \in A_{5}^{\prime \prime}$ forces $a_{0001110} \neq 0$. Once \underline{y}_{3} is of this form, the subgroup of $S L_{2} \times S L_{2}$ which preserves it is isomorphic to $S L_{2}$. The four-dimensional space corresponding to \underline{x}_{2} and \underline{x}_{3} can then be identified with 2×2 matrices with this $S L_{2}$ acting by $g \cdot X=g X$ (matrix multiplication). Once again, $\operatorname{det} X \neq 0$ for $\left(\frac{x_{2}}{\underline{x}_{3}}\right)$ anisotropic. Hence we can choose a suitable element of $S L_{2}$ so that $g X=\operatorname{diag}(b, 1)$. Hence we can arrange $a_{1111100}=1, a_{1011100}=$ $a_{1111000}=0$. The condition $f \in A_{5}^{\prime \prime}$ then forces $a_{1011000} \neq 0$. Now, acting by a suitable element of the torus, we can arrange $a_{1011000}=a_{0001110}=a_{0000001}=1$ without changing the existing conditions $a_{0111110}=a_{1111100}=1$. Finally, we can act by an element $x_{0011000}(a) x_{0101100}(b) x_{0001100}(c) x_{0111000}(d)$ to make \underline{x}_{1}, y_{1} and y_{2} trivial.
Proposition 7.5.5. The twisted Jacquet module $\mathcal{J}_{U_{A_{5}^{\prime \prime}, \psi}^{\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}}\left(\operatorname{Ind}_{Q}^{G E_{7}}\left(\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16}\right)\right)$ is isomorphic as a representation of G_{2} to $\operatorname{Ind}_{B_{G_{2}}}^{G_{2}} \mu$, where μ is given in Section 7.3.1, $B_{G_{2}}$ is the Borel subgroup of G_{2} obtained by intersecting G_{2} with our standard Borel of $G E_{7}$.

Proof. It now follows from the results of $\$ 3.2$ that

$$
\mathcal{J}_{U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}\left(\operatorname{Ind}_{Q}^{G E_{7}}\left(\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16}\right)\right)=\mathcal{J}_{U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}\left(\bar{I}_{w_{0}}\right),
$$

where

$$
\bar{I}_{w_{0}} \cong c-i n d_{G_{2} U_{A_{5}^{\prime \prime}} \cap w_{0}^{-1} Q w_{0}}^{G_{2} U_{0}^{\prime \prime}}\left(\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16}\right) \delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}\left(w_{0}\right) .
$$

The group $G_{2} \cap w_{0}^{-1} Q w_{0}$ is the standard Borel subgroup of G_{2}, while $U_{A_{5}^{\prime \prime}} \cap w_{0}^{-1} Q w_{0}$ is the product of the roots subgroups attached to the following five roots:

$$
\{0112110,0112210,0112211,1112100,1122100\} .
$$

Let J denote the sum of these five roots.

We compute

$$
\begin{aligned}
J & =-2 \varpi_{1}+2 \varpi_{4}+\varpi_{5}-2 \varpi_{6}-\varpi_{7}-\varpi_{8}, \\
\nu_{1} \circ \operatorname{Ad}\left(w_{0}\right) & =-\varpi_{1}+\varpi_{4}-\varpi_{5}-\varpi_{6}+\varpi_{7}+\varpi_{8}, \\
\nu_{2} \circ \operatorname{Ad}\left(w_{0}\right) & =-\varpi_{4}+2 \varpi_{5}-2 \varpi_{7}+\varpi_{8}, \\
\widetilde{\varpi}_{8} \circ \operatorname{Ad}\left(w_{0}\right) & =\widetilde{\varpi}_{8}, \\
\delta_{Q}^{\frac{1}{2}} & =3 \varpi_{4}+2 \varpi_{6}-13 \varpi_{8}, \\
\delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}\left(w_{0}\right) & =-8 \varpi_{1}+3 \varpi_{4}+2 \varpi_{5}-8 \varpi_{6}-2 \varpi_{7}+13 \varpi_{8} .
\end{aligned}
$$

Each of these induces a rational character of the standard torus $T_{G_{2}}$ of the embedded G_{2}. If the fundamental weights are denoted $\varpi_{1}^{G_{2}}$ and $\varpi_{2}^{G_{2}}$, then

$$
\begin{aligned}
J & =\varpi_{1}^{G_{2}}+2 \varpi_{2}^{G_{2}}, \\
\left.\nu_{1} \circ \operatorname{Ad}\left(w_{0}\right)\right|_{T_{G_{2}}} & =-\varpi_{1}^{G_{2}}+\varpi_{2}^{G_{2}}, \\
\left.\nu_{2} \circ \operatorname{Ad}\left(w_{0}\right)\right|_{T_{G_{2}}} & =2 \varpi_{1}^{G_{2}}-\varpi_{2}^{G_{2}}, \\
\left.\widetilde{\varpi}_{8} \circ \operatorname{Ad}\left(w_{0}\right)\right|_{T_{G_{2}}} & =0, \\
\left.\delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}\left(w_{0}\right)\right|_{T_{G_{2}}} & =2 \varpi_{1}^{G_{2}}+3 \varpi_{2}^{G_{2}} .
\end{aligned}
$$

Thus $\left.\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16} \circ \operatorname{Ad}\left(w_{0}\right)\right|_{T_{G_{2}}}$ is precisely, the character μ given in Section 7.3.1, and an element h of $\bar{I}_{w_{0}}$ satisfies $h(u t g)=\mu(t) \delta_{Q}^{\frac{1}{2}}\left(w_{0} t w_{0}^{-1}\right) h(g)$ for u in the standard maximal unipotent of G_{2} and $t \in T_{G_{2}}$.

Now, for $h \in \bar{I}_{w_{0}}$ let

$$
W \cdot h(g):=\int_{\left(U_{A_{5}^{\prime \prime \prime}} \cap w_{0}^{-1} Q w_{0}\right) \backslash U_{A_{5}^{\prime \prime}}} h(u g) \overline{\psi_{U_{A_{5}^{\prime \prime}}^{f_{0}}}^{f_{5}}}(u) d u
$$

(This is convergent, since the support of h is compact modulo $\left(U_{A_{5}^{\prime \prime}} G_{2} \cap w_{0}^{-1} Q w_{0}\right)$.) Then the kernel of W is the kernel of the canonical map $\bar{I}_{w_{0}} \rightarrow \mathcal{J}_{U_{A_{5}^{\prime \prime}}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}\left(\bar{I}_{w_{0}}\right)$. That is, the image of W is a concrete realization of $J_{U_{A_{5}^{\prime \prime}}^{\prime \prime}, \psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}}\left(\bar{I}_{w_{0}}\right)$. (The proof is the same as in HS16, Section 10.) Further, direct computation shows that

$$
W . h\left(u_{1} u_{2} t g\right)=\psi_{U_{A_{5}^{\prime \prime}}}^{f_{0}}\left(u_{1}\right) \mu(t) \delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}\left(w_{0}\right)(t)|t|^{-J} W . h(g), \quad u_{1} \in U_{A_{5}^{\prime \prime}}, u_{2} \in U_{\max }^{G_{2}}, t \in T_{G_{2}}, g \in G_{2} .
$$

But

$$
\left.\left(\delta_{Q}^{\frac{1}{2}} \circ \operatorname{Ad}\left(w_{0}\right)-J\right)\right|_{T_{G_{2}}}=\varpi_{1}^{G_{2}}+\varpi_{2}^{G_{2}}=\delta_{B_{G_{2}}}^{\frac{1}{2}} .
$$

Hence restriction from $G_{2} U_{A_{5}^{\prime \prime}}$ to G_{2} is a linear isomorphism from the image of W onto $\operatorname{Ind}_{B_{G_{2}}}^{G_{2}}(\mu)$.

Hence, we have proved the following theorem.
Theorem 7.5.6. Assume that for almost all finite places v, π_{v} is a principal series representation of $G L_{7}\left(F_{v}\right)$ which is attached to a character of the form (7.3.1), then \mathcal{D}_{π} weakly functorial lifts to π.

8. The $A_{2}+3 A_{1}$ CASE

Recall from Definition 6.2 .2 that in the $A_{2}+3 A_{1}$ case the descent module \mathcal{D}_{π} is defined by applying the Fourier coefficient $\left(U, \psi_{U}^{e_{0}}\right)$ from Section 6.2 to the residual representation \mathcal{E}_{π}, where π be an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type. In this section, we prove the following theorem.

Theorem 8.0.1. Assume that π is an irreducible cuspidal automorphic representation of $G L_{7}(\mathbb{A})$ which is of G_{2} type, and \mathcal{D}_{π} is defined as in Definition 6.2.2. Then
(1) \mathcal{D}_{π} is generic.
(2) \mathcal{D}_{π} is not cuspidal. Actually, \mathcal{D}_{π} supports all degenerate Whittaker Fourier coefficients of G_{2}.
We also study the unramified local descent as in Section 7.5, which is motivated by the question of whether irreducible subquotients of \mathcal{D}_{π} would lift functorially back to π, and provides evidence that they might well not.
8.1. Nonvanishing Fourier coefficients of the descent module. The main goal of this subsection is to prove (in the following theorem) that the descent module supports the Whittaker-Fourier integral along the maximal unipotent of G_{2} against any character of this group. In particular, it is globally generic, but not cuspidal, and it's constant term along the Borel is nontrivial.
Theorem 8.1.1. Recall that $U_{\max }^{G_{2}}$ is the standard maximal unipotent subgroup of G_{2}, let $\psi^{G_{2}}$ be any character of $U_{\text {max }}^{G_{2}}(F) \backslash U_{\max }^{G_{2}}(\mathbb{A})$. Write $\left(U_{\max }^{G_{2}}, \psi^{G_{2}}\right)$ for the corresponding (possibly) degenerate Whittaker-Fourier integral. That is for any $f \in C^{\infty}\left(G_{2}(F) \backslash G_{2}(\mathbb{A})\right)$,

$$
f^{\left(U_{\max }^{G_{2}}, \psi^{G_{2}}\right)}(g):=\int_{U_{\max }^{G_{2}}(F) \backslash U_{\max }^{G_{2}}(\mathbb{A})} f(u g) \overline{\psi^{G_{2}}}(u) d u .
$$

Then $\left(U_{\max }^{G_{2}}, \psi^{G_{2}}\right)$ does not vanish identically on the descent module \mathcal{D}_{π}. That is, there is some $D \in \mathcal{D}_{\pi}$ such that $D^{\left(U_{\max }^{G_{2}}, \psi^{G_{2}}\right)} \neq 0$.

Define $V_{1}:=U U_{\max }^{G_{2}}$ and define $\psi_{V_{1}}: V_{1}(F) \backslash V_{1}(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$by $\psi_{V_{1}}\left(u_{1} u_{2}\right)=\psi_{U}^{e_{0}}\left(u_{1}\right) \psi^{G_{2}}\left(u_{2}\right)$, for $u_{1} \in U, u_{2} \in U_{\max }^{G_{2}}$ (this is a well-defined character of $V_{1}(F) \backslash V_{1}(\mathbb{A})$). Then the composed period $\left(U_{\text {max }}^{G_{2}}, \psi^{G_{2}}\right) \circ\left(U, \psi_{U}^{e_{0}}\right)=\left(V_{1}, \psi_{V_{1}}\right)$. Theorem 8.1.1 is therefore an immediate consequence of the following theorem.
Theorem 8.1.2. The period $\left(V_{1}, \psi_{V_{1}}\right)$ does not vanish identically on \mathcal{E}_{π}.
Lemma 8.1.3. Let

$$
S_{2}^{0}=\left\{\begin{array}{c}
0100000,0101000,0111000,0101100,1111000,0111100,0101110,1111100, \\
0112100,0111110,0101111,1112100,1111110,0112110,0111111
\end{array}\right\} .
$$

Let $S_{2}=\Phi^{+} \backslash S_{2}^{0}$ and let $S_{2}^{\prime}=S_{2}^{0} \cup\{1223210,1223211\}$. Let V_{2} and V_{2}^{\prime} be the T-stable unipotent subgroups of $G E_{7}$ corresponding to S_{2} and S_{2}^{\prime}.

Let $\psi_{V_{2}}$ denote a character of V_{2} such that $\operatorname{supp} \psi_{V_{2}}$ is contained in
$\{1000000,0010000,0001000,0000100,0000010,0000001,1111111,1122100,1112110,0112210,0112111\}$, and $\left.\psi_{V_{2}}\right|_{V_{1}(\mathbb{A}) \cap V_{2}(\mathbb{A})}=\left.\psi_{V_{1}}\right|_{V_{1}(\mathbb{A}) \cap V_{2}(\mathbb{A})}$. Then for any automorphic function $f: G E_{7}(F) \backslash G E_{7}(\mathbb{A}) \rightarrow \mathbb{C}$ of uniformly moderate growth, and any $g \in G E_{7}(\mathbb{A})$,

$$
f^{\left(V_{1}, \psi_{V_{1}}\right)}(g)=\int_{\left(V_{2} \cap V_{2}^{\prime}(\mathbb{A})\right) \backslash V_{2}^{\prime}(\mathbb{A})} f^{\left(V_{2}, \psi_{V_{2}}\right)}\left(v_{2}^{\prime} g\right) d v_{2}^{\prime} .
$$

Moreover, $\left(V_{1}, \psi_{V_{1}}\right) \sim\left(V_{2}, \psi_{V_{2}}\right)$.

Proof. The proof is by nine successive applications of Lemma 7.1.1. The applications come in three basic types. In the first type there are two roots $\beta_{1} \in \Phi(M, T), \gamma_{1} \in \Phi(U, T)$ such that $X=U_{\gamma_{1}}$ and $Y=U_{\beta_{1}}$. In these cases $\mathfrak{g}_{2} \cap \mathfrak{u}_{\gamma_{1}}=\{0\}$, and the roots β_{1}, γ_{1} are given in the table below. Recall that \mathfrak{g}_{2} is the Lie algebra of the G_{2}.

In the second type, there are two roots $\beta_{1}, \beta_{2} \in \Phi(M, T)$ and $\delta \in \Phi_{G_{2}}^{\mathrm{lg},+}$ (positive long roots of G_{2}) such that $\mathfrak{g}_{2} \cap \mathfrak{u}_{\beta_{1}} \oplus \mathfrak{u}_{\beta_{2}}=\mathfrak{u}_{\delta}$. In these cases, there is a root $\gamma \in \Phi(U, T)$ such that $X=U_{\gamma}$ which has a pairing with $U_{\beta_{1}} U_{\beta_{2}}$ as in Lemma 7.1.1, and U_{δ}, is the right kernel of this pairing. We may take Y to be any complement of U_{δ} in $U_{\beta_{1} U_{\beta_{2}}}$ so that the group D in Lemma 7.1.1 contains the whole group $U_{\beta_{1}} U_{\beta_{2}}$. For these cases, the roots β_{1}, β_{2} and γ are given in the table below.

The third type is similar to the second, except that δ is a short root of G_{2}. In this case, (cf. proof of Lemma 6.2.1 there are four roots $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in \Phi(M, T)$ such that $\mathfrak{g}_{2} \cap \oplus_{i=1}^{4} \mathfrak{u}_{\beta_{i}}=\mathfrak{u}_{\delta}$. Moreover, there is a unique pair of them such that the sum is another root $\beta_{5} \in \Phi(M, T)$. The product $\prod_{i=1}^{5} U_{\beta_{i}}$ is a T-stable subgroup. In fact it is the smallest T-stable subgroup of $G E_{7}$ which contains U_{δ}. We denote it V_{δ}. It is two-step nilpotent with center $U_{\beta_{5}}$. In these cases the group X is a product $\prod_{i=1}^{3} U_{\gamma_{i}}$ which has a pairing with V_{δ} as in Lemma 7.1.1, and $U_{\delta} U_{\beta_{5}}$, is the right kernel of this pairing. For Y, we may select any subgroup of V_{δ} which contains $U_{\beta_{5}}$, such that the image in the abelian quotient $V_{\delta} / U_{\beta_{5}}$ is complementary to the image of U_{δ}. In the table below we give $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and $\beta_{1}, \ldots, \beta_{5}$ with β_{5} in parentheses.

X	Y	δ
0100000	1011111	
0101000	0011111,1011110	$3 \alpha+2 \beta$
0111000	0001111,1011100	$3 \alpha+\beta$
0101100	0011110	
$1111000,0111100,0101110$	$0000111,0001110,0011100,1011000,(1011111)$	$2 \alpha+\beta$
$1111100,0112100,0101111$	$0000011,0011000,0000110,1010000,(0011110)$	$\alpha+\beta$
0111110	0001100	
1112100	0000010,0010000	β
$1111110,0112110,0111111$	$0000001,0001000,0000100,1000000,(0001100)$	α

At the first stage, the group B is just V_{1}. In each stage later it is the group D obtained from the previous stage. At each stage the group C may be thought of as the subgroup of B obtained by deleting the roots listed below " X " in the table. More precisely, the Lie algebra, \mathfrak{c}, of C is the largest subalgebra of the Lie algebra, \mathfrak{b}, of B, whose projection onto $\mathfrak{u}_{\gamma_{i}}$ is trivial for each i. The group D is the product of C and the root subgroups attached to the roots listed under " Y " in the table.

Checking conditions (1) to (6) for Lemma 7.1.1 is fairly routine. The order in which the nine applications of Lemma 7.1.1 are carried out is important. It is useful to consider the bigrading in which the root subgroup U_{γ}, where $\gamma=\sum_{i=1}^{7} c_{i} \alpha_{i}$ gets grading $\left(c_{2},\left(\sum_{i=1}^{7} c_{i}\right)-c_{2}\right)$. Notice that as the table is read top-to-bottom the second component of this grading is nondecreasing in the column labelled " X " and nonincreasing in the column labelled " Y ". This determines a partial ordering on the nine rows. It's fairly easy to check most of the conditions of Lemma 7.1.1 provided this partial ordering is respected, but (3) and (6) take some care, particularly for applications of the third type. We discuss the first application of the third type in some detail and leave all the remaining details to the reader.

For the first application of the third type, $X=U_{1111000} U_{0111100} U_{0101110} \cong \mathfrak{u}_{1111000} \oplus \mathfrak{u}_{0111100} \oplus$ $\mathfrak{u}_{0101110}$, while $V_{\delta}=U_{0000111} U_{0001110} U_{0011100} U_{1011000} U_{1011111}$. The center of V_{δ} is $U_{\beta_{5}}=U_{1011111}$. The quotient $V_{\delta}(\mathbb{A}) / U_{1011111}(\mathbb{A})$ may be identified with $\mathfrak{u}_{0000111} \oplus \mathfrak{u}_{0001110} \oplus \mathfrak{u}_{0011100} \oplus \mathfrak{u}_{1011000}$. The character of $C(\mathbb{A})$ which we consider is given by

$$
\psi_{C}^{e_{0}}(\exp c)=\psi\left(\kappa\left(e_{0}, c\right)\right), \quad(c \in \mathfrak{c}(\mathbb{A}))
$$

In order to check conditions (3) and (6) we must consider the pairing

$$
\Upsilon(x, y):=\psi_{C}^{e_{0}}([x, y]),
$$

where

$$
[x, y]=x y x^{-1} y^{-1}, x \in X(\mathbb{A}), y \in V_{\delta}(\mathbb{A}) .
$$

(It is trivial on $X(\mathbb{A}) \times U_{\beta_{5}}(\mathbb{A})$ and hence may be regarded as a pairing on $X(\mathbb{A}) \times V_{\delta} / U_{\beta_{5}}(\mathbb{A})$.) The pairing Υ satisfies

$$
\begin{equation*}
\Upsilon(\exp a, \exp b)=\psi\left(\kappa\left(e_{0},[a, b]\right)\right)=\psi\left(\omega_{e_{0}}(a, b)\right), \tag{8.1.4}
\end{equation*}
$$

where

$$
[a, b]=a b-b a, a \in \mathfrak{u}_{1111000} \oplus \mathfrak{u}_{0111100} \oplus \mathfrak{u}_{0101110}, b \in \mathfrak{u}_{0000111} \oplus \mathfrak{u}_{0001110} \oplus \mathfrak{u}_{0011100} \oplus \mathfrak{u}_{1011000} .
$$

To check condition (3), we have to check that $X(\mathbb{A})$ and $Y(\mathbb{A})$ preserve ψ_{C}. This amounts to checking that Υ is trivial on $X(\mathbb{A}) \times U_{\delta} / U_{\beta_{5}}(\mathbb{A})$ and on $Y(\mathbb{A}) \times U_{\delta} / U_{\beta_{5}}(\mathbb{A})$. The former is obvious, since $\mathfrak{u}_{\delta}=\mathfrak{g}_{2} \cap \oplus_{i=1}^{4} \mathfrak{u}_{\beta_{i}}$. The latter is also obvious, since $Y \subset V_{\delta}$ and $V_{\delta} / U_{\beta_{5}}$ is abelian. To check condition (6), we have to check that Υ is nondegenerate on $X(\mathbb{A}) \times Y(\mathbb{A}) / U_{\beta_{5}}(\mathbb{A})$ for any Y such that $Y / U_{\beta_{5}}$ is complementary to $U_{\delta} / U_{\beta_{5}}$. In other words, we have to show that

$$
\left\{y \in V_{\delta}(\mathbb{A}): \Upsilon(x, y)=1 \forall x \in X(\mathbb{A})\right\}=U_{\delta}(\mathbb{A}) .
$$

By equation (8.1.4), this reduces to showing that
$\left\{b \in \mathfrak{u}_{0000111} \oplus \mathfrak{u}_{0001110} \oplus \mathfrak{u}_{0011100} \oplus \mathfrak{u}_{1011000}: \kappa\left(e_{0},[a, b]\right)=0 \quad \forall a \in \mathfrak{u}_{1111000} \oplus \mathfrak{u}_{0111100} \oplus \mathfrak{u}_{0101110}\right\}=\mathfrak{u}_{\delta}$.
Now $\kappa\left(e_{0},[a, b]\right)=-\kappa\left(\left[b, e_{0}\right], a\right)$, which is certainly trivial if $b \in \mathfrak{u}_{\delta}$, since $\left[b, e_{0}\right]=0$ for all $b \in \mathfrak{g}_{2}$. On the other hand, if $b \notin \mathfrak{u}_{\delta}=\mathfrak{g}_{2} \cap \oplus_{i=1}^{4} \mathfrak{u}_{\beta_{i}}$, then $\left[b, e_{0}\right]$ is nonzero, hence $\kappa\left(\left[b, e_{0}\right], a\right) \neq 0$ for some $a \in \mathfrak{e}_{7}$ because κ is nondegenerate, and hence $\kappa\left(\left[b, e_{0}\right], a\right) \neq 0$ for some $a \in \mathfrak{u}_{1111000} \oplus \mathfrak{u}_{0111100} \oplus \mathfrak{u}_{0101110}$ because κ respects the bigrading.

Remark 8.1.5. As noted, for applications of Lemma 7.1.1 of the second and third types, the group Y is not uniquely determined, but can be taken as any complement to a given subgroup. This is the reason that $\psi_{V_{2}}$ may be chosen with some degree of freedom. In addition we have a degree of freedom in the choice of $\psi^{G_{2}}$.

In order to proceed further, it will be convenient to write $\psi_{V_{2}}$ and $\psi^{G_{2}}$ explicitly in coordinates. There exist $a_{1}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7} \in F$ such that
$\psi_{V_{2}}(v)=\psi\left(v_{1122100}+v_{1112110}+v_{1111111}+v_{0112210}+v_{0112111}+a_{1} v_{\alpha_{1}}+a_{3} v_{\alpha_{3}}+a_{4} v_{\alpha_{4}}+a_{5} v_{\alpha_{5}}+a_{6} v_{\alpha_{6}}+a_{7} v_{\alpha_{7}}\right)$ for all $v \in V_{2}$. Then $\psi^{G_{2}}(u)=\psi\left(\left(a_{1}+a_{4}+a_{5}+a_{6}\right) u_{\alpha}+\left(a_{3}+a_{6}\right) u_{\beta}\right)$ for all $u \in U_{\text {max }}^{G_{2}}$. Rewrite $\psi_{V_{2}}$ as $\psi \frac{a}{V_{2}}$ with $\underline{a}=\left\{a_{1}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$.
Lemma 8.1.6. Let
$S_{3}=\Phi^{+} \cup\left\{-\alpha_{4}\right\} \backslash\{0000001,0001000,0001100,0001111,0011000,0101000,0112100,0112111,1011000$,

$$
1112100,1112111,1123211,0100000,0010000,0000100,0000010\},
$$

and let V_{3} be the corresponding T-stable unipotent subgroup. Let $\psi \psi_{V_{3}}^{a^{\prime}}: V_{3}(\mathbb{A}) \rightarrow \mathbb{C}^{\times}$be given by $\psi\left(v_{0000111}+v_{0111100}+v_{0101110}+v_{1010000}+v_{0011110}+a_{1}^{\prime} v_{0101100}+a_{3}^{\prime} v_{0000011}+a_{4}^{\prime} v_{0011100}+a_{5}^{\prime} v_{\alpha_{1}}+a_{6}^{\prime} v_{0111000}+a_{7}^{\prime} v_{0001110}\right)$. Let $w_{4}=w[745632451342]$. Then there is a representative \dot{w}_{4} for w_{4} such that for each \underline{a} there exists \underline{a}^{\prime} with a_{i}^{\prime} being nonzero scalar multiple of a_{i} and $f^{\left(V_{3}, \psi_{V_{3}}^{a^{\prime}}\right)}(g)=f^{\left(V_{2}, \psi_{V_{2}}^{a}\right)}\left(\dot{w}_{4} g\right)$ for all $f \in$ $C^{\infty}\left(G E_{7}(F) \backslash G E_{7}(\mathbb{A})\right)$ and $g \in G E_{7}(\mathbb{A})$, whence $\left(V_{2}, \psi \psi_{V_{2}}^{a}\right) \sim\left(V_{3}, \psi \bar{V}_{3}\right.$,

Proof. Let

$$
\begin{gathered}
R_{1}=\{1122100,1112110,1111111,0112210,0112111\}, R_{2}=\left\{\alpha_{i}: 1 \leq i \leq 7, i \neq 2\right\}, \\
R_{1}^{\prime}=\{0000111,0111100,0101110,1010000,0011110\} \\
R_{2}^{\prime}=\{0101100,0000011,0011100,1000000,0111000,0001110\}
\end{gathered}
$$

Then $w_{4} R_{1}=R_{1}^{\prime}$, and $w_{4} R_{2}=R_{2}^{\prime}$.
For any representative \dot{w}_{4} for $w_{4}, V_{3}=\dot{w}_{4} V_{2} \dot{w}_{4}^{-1}$, and

$$
\psi_{V_{2}}^{\frac{a}{V_{2}}}\left(\dot{w}_{4}^{-1} v \dot{w}_{4}\right)=\psi\left(\sum_{\alpha \in R_{1}} c_{\dot{w}_{4}, \alpha} v_{w_{4} \alpha}+\sum_{\substack{i=1 \\ i \neq 2}}^{7} a_{i} c_{\dot{w}_{4}, \alpha_{i}} v_{w_{4} \alpha_{i}}\right)
$$

for some nonzero constants $c_{\dot{w}_{4}, \alpha}$ depending on the choice of the representative \dot{w}_{4}. The point is to show that \dot{w}_{4} may be chosen so that $c_{\dot{w}_{4}, \alpha}=1$ for all $\alpha \in R_{1}$. Now, \dot{w}_{4} is unique up to an element of the maximal torus T of $G E_{7}$, so it suffices to check that the mapping $T \rightarrow G L_{1}^{5}$ induced by the five elements of R_{1} is surjective. This follows from the fact that these five elements can be simultaneously conjugated to simple roots, as seen in Section 6.2.

Remark 8.1.7. Recall that the descent Fourier coefficient is attached to the standard semisimple element $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 \\ & & 2 & & & \end{array}$. The regular nilpotent orbit of \mathfrak{g}_{2} is attached to a standard semisimple element of \mathfrak{g}_{2}, which may then mapped to a semisimple element of $\mathfrak{g e}_{7}$, namely $\begin{array}{ccccc}2 & 2 & 2 & 2 & 2\end{array}$. The sum is $\begin{array}{cccccc}2 & 2 & 2 & 2 & 2 & 2\end{array}$. If we regard it as a coweight, it is not dominant. The dominant element of its Weyl orbit is $\begin{array}{ccccccc}2 & 0 & 2 & 0 & 0 & 2\end{array}$, which is the standard semisimple element attached to a nilpotent orbit of E_{7} whose Bala-Carter label is $E_{7}\left(a_{4}\right)$. The element w_{4} maps $\begin{array}{ccccc}2 & 2 & 2 & 2 & 2\end{array}$ to $\begin{array}{llllll}2 & 0 & 2 & 0 & 0 & 2 \\ & & 0 & & & \end{array}$. This was the original motivation for considering w_{4}, V_{3}, and $\psi \frac{a^{\prime}}{V_{3}}$.

Lemma 8.1.8. Let

$$
\begin{gathered}
S_{4}=\Phi^{+} \cup\left\{-\alpha_{4}\right\} \backslash\{0000001,0001000,0001100,0001111,0011000,0101000,0112100,1011000 \\
0100000,0010000,0000100,0000010\}
\end{gathered}
$$

and let V_{4} be the corresponding unipotent subgroup. Let $\psi \frac{V_{4}^{\prime}}{a_{4}}$ be the character such that $\psi_{V_{4}}^{\left.\frac{a^{\prime}}{V^{\prime}}\right|_{V_{3}(\mathbb{A})}=}$ $\psi \frac{a^{\prime}}{V_{3}}$ and $\left.\psi \frac{a_{V_{4}}^{\prime}}{\frac{a^{\prime}}{}}\right|_{U_{\gamma}} \equiv 1$ for $\gamma \in \Phi\left(V_{4}, T\right) \backslash \Phi\left(V_{3}, T\right)$. Then $\left.\left(V_{3}, \psi \frac{\underline{V}_{3}^{\prime}}{V_{3}}\right) \right\rvert\,\left(V_{4}, \psi \frac{a_{V_{4}}^{\prime}}{}\right)$.

Proof. One may write $\left(V_{4}, \psi \frac{a_{V}^{\prime}}{\prime}\right)$ as a double integral with $\left(V_{3}, \psi \frac{a^{\prime}}{V_{3}}\right.$) as inner integral.
Lemma 8.1.9. Let $S_{5}=S_{4} \cup\{0001111,0000001\} \backslash\left\{-\alpha_{4}, 0000110\right\}$. Let V_{5} be the corresponding T stable unipotent group. Let $\psi \frac{a_{V}^{\prime}}{V_{5}}: V_{5}(\mathbb{A}) \rightarrow \mathbb{C} \times$ be the character such that $\left.\psi \frac{a^{\prime}}{V_{5}}\right|_{V_{4} \cap V_{5}(\mathbb{A})}=\psi \frac{a_{V_{4}}^{\prime}}{a_{V_{4} \cap V_{5}(\mathbb{A})}}$ and $\left.\psi \frac{a_{5}^{\prime}}{V_{5}}\right|_{U_{\alpha_{7}} U_{0001111}(\mathbb{A})} \equiv 1$. Then

$$
f^{\left(V_{4}, \psi_{V_{4}}^{\frac{a}{\prime}^{\prime}}\right)}(g)=\int_{\mathbb{A}} \int_{\mathbb{A}} f^{\left(V_{5}, \psi_{V_{5}}^{\frac{a}{\prime}^{\prime}}\right)}\left(x_{-\alpha_{4}}\left(r_{1}\right) x_{0000110}\left(r_{2}\right) g\right) d r_{1} d r_{2}
$$

Moreover, $\left(V_{5}, \psi \frac{a_{V}^{\prime}}{\underline{V}_{5}}\right) \sim\left(V_{4}, \psi \psi_{V_{4}}^{\frac{a}{\prime}^{\prime}}\right)$.
Proof. This is another application of Lemma 7.1.1.

The key feature of V_{5} is that it is contained in the unipotent subgroup attached to the weighted Dynkin diagram $\begin{array}{lllllll}2 & 0 & 2 & 0 & 0 & 2 \\ & & 0 & & & \\ \text { for the orbit } E_{7}\left(a_{4}\right) \text { ．Further } \operatorname{supp} \psi \psi_{V_{5}}^{a^{\prime}} \text { is contained in }\end{array}$

$$
\left\{\alpha_{7}, 0001110,0011100,0101100,0111000,0000011,0011110,1010000,0101110,0111100,0000111\right\}
$$

which is contained in the two－graded piece for this weighting．
Let V_{6} be the full unipotent group for $\begin{array}{rrrrrr}2 & 0 & 2 & 0 & 0 & 2 \\ & & 0 & & & \text {（that is，all root subgroups with weights }\end{array}$ bigger than or equal to 2）and $\psi \psi_{V_{6}}^{a^{\prime}}$ be the character of it with $\left.\psi \psi_{V_{6}}^{a^{\prime}}\right|_{V_{5}}=\psi_{V_{5}}^{a^{\prime}}$ and $\operatorname{supp} \psi \psi_{V_{6}}^{a^{\prime}}=\operatorname{supp} \psi \psi_{V_{5}}^{a^{\prime}}$ ． Then for any automorphic function f of uniformly moderate growth，$f^{\left(V_{6}, \psi \psi_{V_{6}}\right.}$ ，can be written as a double integral with inner integral $f^{\left(V_{5}, \psi_{V_{5}}^{\frac{⿳ 亠 二 口}{\prime}^{\prime}}\right)}$ ．Hence $\left(V_{5}, \psi_{V_{5}}^{a^{\prime}}\right) \mid\left(V_{6}, \psi_{V_{6}}^{a^{\prime}}\right)$ ．Notice that $\left(V_{6}, \psi_{V_{6}}^{a^{\prime}}\right)$ is a unipotent period of the type considered in Section 3．1．

Lemma 8．1．10．Let

$$
\begin{aligned}
X_{\underline{a}^{\prime}} & =X_{-1010000}+X_{-0000111}+X_{-0011110}+X_{-0101110}+X_{-0111100} \\
& +a_{7}^{\prime} X_{-0001110}+a_{4}^{\prime} X_{-0011100}+a_{1}^{\prime} X_{-0101100}+a_{6}^{\prime} X_{-0111000}+a_{3}^{\prime} X_{-0000011}+a_{5}^{\prime} X_{-1000000},
\end{aligned}
$$

and

$$
e_{0}^{\prime}=X_{-1010000}+X_{-0000011}+X_{-0111000}+X_{-0101100}+X_{-0011100}+X_{-0001110}
$$

Then
（1）$X_{\underline{a}^{\prime}}$ is an element of the closure of the orbit A_{6} if and only if

$$
\begin{equation*}
1716\left(a_{1}^{\prime} a_{3}^{\prime} a_{5}^{\prime}+a_{3}^{\prime} a_{4}^{\prime} a_{5}^{\prime}-2 a_{1}^{\prime} a_{3}^{\prime} a_{7}^{\prime}-a_{3}^{\prime} a_{5}^{\prime} a_{7}^{\prime}-a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime}\right)^{2} a_{4}^{\prime 2} a_{5}^{\prime 2} a_{6}^{\prime 2}=0 . \tag{8.1.11}
\end{equation*}
$$

（2）When $a_{5}^{\prime}=0$ ，the element $X_{a^{\prime}}$ lies in A_{6} if and only if $a_{1}^{\prime} a_{3}^{\prime} a_{4}^{\prime} a_{6}^{\prime} a_{7}^{\prime} \neq 0$ ．
（3）If $X_{\underline{a}^{\prime}}$ is in A_{6} then it is conjugate to e_{0}^{\prime} ．
Proof．To any nilpotent element $X \in \mathfrak{e}_{7}$ we may associate the rank sequence $\left(\operatorname{rank} \operatorname{ad}(X)^{k}\right)_{k=0}^{\infty}$ ． （All but finitely many entries are zero．）It is clear that the rank sequence is an invariant of the stable orbit of X ．In general the map from stable orbits to rank sequences is not injective，but one can check（using GAP，for example）that for \mathfrak{c}_{7} it is．We may regard $X_{\underline{a}^{\prime}}$ first as an element of the Lie algebra \mathfrak{e}_{7} over a polynomial ring in six indeterminates and compute its rank sequence as such． This can be done，for example，by obtaining 133×133 matrices for $\operatorname{ad}\left(X_{\underline{a}^{\prime}}\right)$ from GAP and then loading them into SageMath．This tells us what orbit $X_{\underline{a}^{\prime}}$ lies in for \underline{a}^{\prime} in general position，and allows us to obtain polynomial conditions for $X_{\underline{a}^{\prime}}$ to lie in a smaller orbit．

It turns out that for \underline{a}^{\prime} in general position， $\bar{X}_{\underline{a}^{\prime}}$ lies in the orbit $E_{7}\left(a_{4}\right)$ ．The largest value of k such that $X_{a^{\prime}}^{k} \neq 0$ is 14 ，and $X_{a^{\prime}}^{14}$ is rank one，with only one nonzero entry．This nonzero entry is （8．1．11）．

There are three stable orbits which are less than $E_{7}\left(a_{4}\right)$ but not less than A_{6} ．Their Bala－Carter labels are $D_{5}+A_{1}, D_{6}\left(a_{1}\right)$ ，and D_{5} ．For X in any of these orbits we have $\operatorname{rank} \operatorname{ad}(X)^{14}=1$ ．This proves the first part．

It is then clear that $a_{5}^{\prime}=0$ implies $X_{\underline{a}^{\prime}}$ is in the closure of A_{6} ．It turns out that $\mathcal{O}<A_{6} \Longleftrightarrow$ $\mathcal{O} \leq E_{7}\left(a_{5}\right)$ ．By inspecting the rank sequences of these two orbits，we can see that if $X \in A_{6}$ ， then $\operatorname{rank} \operatorname{ad}(X)^{12}=3$ ，while if $X \in E_{7}\left(a_{5}\right)$ ，then $\operatorname{rank} \operatorname{ad}(X)^{12}=0$ ．When $a_{5}^{\prime}=0$ ，if we calculate the matrix $\operatorname{ad}\left(X_{a^{\prime}}\right)^{12}$（as an element of \mathfrak{e}_{7} over a polynomial ring）and then discard all rows and columns which consist entirely of zeros，we obtain the following three by three matrix

$$
\left(\begin{array}{ccc}
0 & 0 & -462 a_{1}^{\prime 3} a_{2}^{\prime 2} a_{4}^{\prime} a_{6}^{\prime} a_{7}^{\prime 2} \\
0 & 924 a_{1}^{\prime 2} a_{2}^{\prime 2} a_{4}^{\prime 2} a_{6}^{\prime 2} a_{7}^{\prime 2} & 0 \\
-462 a_{1}^{\prime 3} a_{2}^{\prime 2} a_{4}^{\prime} a_{6}^{\prime} a_{7}^{\prime 2} & 0 & 0
\end{array}\right) .
$$

This completes the proof of the second part.
To prove the third part we consider

$$
X_{\underline{a}^{\prime}}^{\prime}=X_{-1010000}+a_{3}^{\prime} X_{-0000011}+a_{6}^{\prime} X_{-0111000}+a_{1}^{\prime} X_{-0101100}+a_{4}^{\prime} X_{-0011100}+a_{7}^{\prime} X_{-0001110}
$$

and

$$
u\left(b_{1}, \ldots, b_{5}\right):=x_{-\alpha_{2}}\left(b_{1}\right) x_{-\alpha_{3}}\left(b_{2}\right) x_{-\alpha_{5}}\left(b_{3}\right) x_{-\alpha_{5}-\alpha_{6}}\left(b_{4}\right) x_{-\alpha_{6}}\left(b_{5}\right)
$$

Using SageMath, one can check that for each $a_{1}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}, a_{6}^{\prime}, a_{7}^{\prime}$ (all nonzero) there exists unique b_{1}, \ldots, b_{5} such that

$$
\operatorname{Ad}\left(u\left(b_{1}, \ldots, b_{5}\right)\right) \cdot X_{\underline{a}^{\prime}}=X_{\underline{a}^{\prime}}^{\prime} .
$$

These six roots which appear in $X_{\underline{a}^{\prime}}^{\prime}$ may be simultaneously conjugated to simple roots (cf. Lemma 7.1.12. Hence we can conjugate $X_{\underline{a}^{\prime}}^{\prime}$ to e_{0}^{\prime} using a suitable element of the torus.

Corollary 8.1.12. Let $\psi_{V_{6}}^{\prime}: V_{6} \rightarrow \mathbb{C}^{\times}$be given by

$$
\psi_{V_{6}}^{\prime}(v)=\psi\left(v_{0001110}+v_{0011100}+v_{0101100}+v_{0111000}+v_{0000011}+v_{1010000}\right)
$$

Then for each $\underline{a}^{\prime}=\left(a_{1}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}, 0, a_{6}^{\prime}, a_{7}^{\prime}\right)$ with $a_{i}^{\prime} \neq 0$ for $i=1,3,4,6,7$, there exists $\nu_{\underline{a}^{\prime}} \in G E_{6}(F)$ such that $\nu_{\underline{a}^{\prime}} V_{6} \nu_{\underline{a}^{\prime}}^{-1}=V_{6}$ and $\psi_{V_{6}}^{\prime}\left(\nu_{\underline{a}^{\prime}} v \nu_{\underline{a}^{\prime}}^{-1}\right)=\psi_{V_{6}}(v)$, for all $v \in V_{6}(\mathbb{A})$. Hence $f^{\left(V_{6}, \psi_{V_{6}}\right)}(g)=f^{\left(V_{6}, \psi_{V_{6}}^{\prime}\right)}\left(\nu_{\underline{a}^{\prime}} g\right)$ for all smooth automorphic functions $f: G E_{7}(F) \backslash G E_{7}(\mathbb{A}) \rightarrow \mathbb{C}$ and all $g \in G E_{7}(\mathbb{A})$, and in partic$\operatorname{ular}\left(V_{6}, \psi_{V_{6}}^{\underline{a}^{\prime}}\right) \sim\left(V_{6}, \psi_{V_{6}}^{\prime}\right)$.

This completes the proof of Theorem 8.1.1. since $\left(V_{6}, \psi_{V_{6}}^{\prime}\right)$ has appeared previously as $\left(U_{5}, \psi_{U_{5}}^{e_{0}^{\prime}}\right)$, and it was already shown in Lemma 7.1.15 that \mathcal{E}_{π} supports this period.
8.1.1. Remarks. The proof of Theorem 8.1.1 can be summarized as follows. For $\underline{c}=\left(c_{1}, c_{2}\right)$, let $\psi_{\underline{c}}^{G_{2}}(u)=\psi\left(c_{1} u_{\alpha}+c_{2} u_{\beta}\right)$ for $u \in U_{\max }^{G_{2}}$. Then $\left(U_{\max }^{G_{2}}, \psi_{\underline{c}}^{G_{2}}\right) \circ\left(U, \psi_{U}^{e_{0}}\right)$ divides $\left(V_{6}, \psi_{V_{6}}^{a^{\prime}}\right)$ whenever \underline{c} is the image of \underline{a}^{\prime} under a certain linear map. In this situation, every representation which supports $\left(V_{6}, \psi_{V_{6}}^{a^{\prime}}\right)$ must also support $\left(U_{\text {max }}^{G_{2}}, \psi_{\underline{c}}^{G_{2}}\right) \circ\left(U, \psi_{U}^{e_{0}}\right)$. For any \underline{c}, we can choose \underline{a}^{\prime} which maps to \underline{c} and corresponds to an element of the orbit A_{6}. The residual representation \mathcal{E}_{π} supports the Fourier coefficient $\left(V_{6}, \psi \psi_{V_{6}}^{a^{\prime}}\right)$ whenever \underline{a}^{\prime} corresponds to an element of A_{6}. Therefore it supports $\left(U_{\max }^{G_{2}}, \psi_{\underline{c}}^{G_{2}}\right) \circ\left(U, \psi_{U}^{e_{0}}\right)$ for all \underline{c}.

In particular, the conclusion applies not only to \mathcal{E}_{π}, but to any automorphic representation Π which supports the Fourier coefficient $\left(V_{6}, \psi \psi_{V_{6}}^{a^{\prime}}\right)$ whenever \underline{a}^{\prime} corresponds to an element of A_{6}. Moreover, it is reasonable to ask whether A_{6} can be replaced by a smaller orbit. In this connection we note that taking $a_{3}^{\prime}=a_{5}^{\prime}=1$ and the rest zero, or, $a_{5}^{\prime}=a_{6}^{\prime}=1$ and the rest zero, gives an element $X_{\underline{a}^{\prime}}$ in the orbit $2 A_{2}+A_{1}$, which lies immediately above the orbit $A_{2}+3 A_{1}$ attached to $\psi_{U}^{e_{0}}$.

If π is not of G_{2} type but $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$, then Theorem 8.1.1 is still valid for the residual representation \mathcal{E}_{π} with exactly the same proof.
8.2. Local descent. Since the results of GGS17 hold in both the local and global settings, the same set of arguments given in the global setting above also provides a local analogue.
Theorem 8.2.1. Let F_{v} be a nonarchimedean local field. Suppose that an irreducible admissible representation Π_{v} of $G E_{7}\left(F_{v}\right)$ supports the twisted Jacquet module attached to ($V_{6}, \psi \psi_{V_{6}}^{a^{\prime}}$) with \underline{a}^{\prime} now in F_{v}^{6} corresponding to an element of A_{6}. Then the $\left(U, \psi_{U}^{e_{0}}\right)$-twisted Jacquet module of Π_{v} supports (twisted and untwisted) Jacquet modules attached to $U_{\max }^{G_{2}}$ and all characters of $U_{\text {max }}^{G_{2}}$. In particular, this holds when Π_{v} is the local component of any irreducible subquotient Π of \mathcal{E}_{π} where π has the property that $L^{S}\left(s, \pi, \wedge^{3}\right)$ has a pole at $s=1$.
8.3. Unramified local descent. One may now consider the twisted Jacquet module

$$
\mathcal{J}_{U, \psi_{U}^{e_{0}}}\left(\operatorname{Ind}_{Q\left(F_{v}\right)}^{G E_{7}\left(F_{v}\right)}\left(\chi_{1} \circ \nu_{1}\right)\left(\chi_{2} \circ \nu_{2}\right) \widetilde{\varpi}_{8}^{16}\right) .
$$

If π is an irreducible cuspidal automorphic representation of $G L_{7}$ with π_{v} being induced from a character of the form (7.3.1) and σ is an irreducible quotient of \mathcal{E}_{π}, then σ_{v} will be a quotient of this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of the double coset space $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / G_{2}\left(F_{v}\right) U\left(F_{v}\right)$. Notice that this space is infinite, since

$$
\operatorname{dim} G E_{7}=134, \quad \operatorname{dim} Q+\operatorname{dim} G_{2}+\operatorname{dim} U=133
$$

This stands in contrast to the situation encountered in [GRS11, HS16, where BZ77, Theorem 5.2] could be applied.

Moreover, suppose we say that a double coset is admissible if its elements γ satisfy $\left.\psi_{U}^{e_{0}}\right|_{U \cap\left(\gamma^{-1} Q \gamma\right)} \equiv$ 1. Then we have

Lemma 8.3.1. The set of admissible double cosets in $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / G_{2}\left(F_{v}\right) U\left(F_{v}\right)$ is infinite.
Proof. We can sort the elements of $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / G_{2}\left(F_{v}\right) U\left(F_{v}\right)$ according to which element of $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / P\left(F_{v}\right)$. Of course this latter double coset space is finite and represented by elements of the Weyl group. We use elements w of the Weyl group that are of minimal length in their double coset. For each such w

$$
\delta \mapsto Q\left(F_{v}\right) w \delta G_{2}\left(F_{v}\right) U\left(F_{v}\right)
$$

is induces a bijection between the set of $Q\left(F_{v}\right), G_{2}\left(F_{v}\right) U\left(F_{v}\right)$-double cosets in $Q\left(F_{v}\right) w P\left(F_{v}\right)$ and $\left(M\left(F_{v}\right) \cap w^{-1} Q\left(F_{v}\right) w\right) \backslash M\left(F_{v}\right) / G_{2}\left(F_{v}\right)$. Moreover for $\delta \in M\left(F_{v}\right)$,

$$
\left.\left.\psi_{U}^{e_{0}}\right|_{U \cap \delta^{-1} w^{-1} Q w \delta} \equiv 1 \Longleftrightarrow\left[\delta \cdot \psi_{U}^{e_{0}}\right]\right|_{U \cap w^{-1} Q w} \equiv 1 .
$$

We consider the longest element w_{0} of $Q\left(F_{v}\right) \backslash G E_{7}\left(F_{v}\right) / P\left(F_{v}\right)$, and show that

$$
\left\{\delta \in\left(M\left(F_{v}\right) \cap w_{0}^{-1} Q\left(F_{v}\right) w_{0}\right) \backslash M\left(F_{v}\right) / G_{2}\left(F_{v}\right):\left.\delta \cdot \psi_{U}^{e_{0}}\right|_{U \cap w_{0}^{-1} Q w_{0}} \equiv 1\right\}
$$

is infinite.
To do this we first compute $M \cap w_{0}^{-1} Q w_{0}$ and find that it is the product of the $G L_{1}$ factor of M and the parabolic of type $(2,2,3)$ in the Levi factor. Note that the dimension of this parabolic is 33.

If we let $G L_{7}\left(F_{v}\right)$ act on $\psi_{U}^{e_{0}}$, then the stabilizer is $G_{2}\left(F_{v}\right)$, and so the orbit is a variety of dimension 35. Recall that $\psi_{U}^{e_{0}}$ is identified with a nilpotent element X of $\mathfrak{g e}_{7}$, lying in \mathfrak{g}_{-2}^{s} for the semisimple element $\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$, our variety is then identified with the $G L_{7}$-orbit of X in \mathfrak{g}_{-2}^{s}.

Finally, we compute that $\left\{\alpha \in \Phi(U, T): w_{0} \alpha>0\right\}=\{1123321\}$. Because w_{0} is of shortest length in $Q w_{0} P$, this implies that $U \cap w_{0}^{-1} Q w_{0}=U_{1123321}$. This means that the condition $\left.\delta \cdot \psi_{U}^{e_{0}}\right|_{U \cap w_{0}^{-1} Q w_{0}} \equiv 1$ amounts to a single polynomial equation on the entries of δ, so we get a 34 -dimensional subvariety. Clearly, our 33-dimensional parabolic can not act transitively on this subvariety.

Lemma 8.3.2. At least eight different $Q\left(F_{v}\right), P\left(F_{v}\right)$-double cosets contain admissible $Q\left(F_{v}\right)$, $G_{2}\left(F_{v}\right) U\left(F_{v}\right)$-double cosets.
Proof. Indeed, there are eight elements of $w \in Q \backslash G E_{7} / P$ such that $\left.\psi_{U}^{e_{0}}\right|_{U n w^{-1} Q w} \equiv 1$.
Remark 8.3.3. We expect that if π is of G_{2} type then the local components of π at unramified places will be induced from characters of the form (7.3.1), with χ_{1}, χ_{2} being unitary characters. However, we would expect that in general χ_{1}, χ_{2} would not satisfy any special condition that would permit (7.3.4) to be reducible. The representation (7.3.4) has a P-module filtration parametrized
by the elements of $Q \backslash G E_{7} / P$, and Lemma 8.3 .2 suggests that at least eight of the P-modules in this filtration will have nontrivial twisted Jacquet modules. Thus the local unramified descent appears to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspidal automorphic representation π of G_{2} type to be a weak functorial lift attached to the embedding $G_{2}(\mathbb{C}) \leftrightarrow G L_{7}(\mathbb{C})$ of some generic cuspidal automorphic representation of $G_{2}(\mathbb{A})$. In the classical cases considered in [GRS11 and HS16], the descent recovers the original cuspidal representation that was lifted (up to near equivalence). In our case, our global results let us know that the descent module also contains noncuspidal functions. In general, we would not expect any noncuspidal automorphic forms to lift weakly to π. Hence our noncuspidality result predicts that the descent module will not consist solely of automorphic forms which lift weakly to π.

References

[A13] J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, American Mathematical Society Colloquium Publications, 2013.
[BZ77] I. N. Bernšteĭn and A. V. Zelevinskiĭ, Induced representations of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441-472.
[BHKT19] G. Böckle, M. Harris, C. Khare, and J. A. Thorne, \widehat{G}-local systems on smooth projective curves are potentially automorphic. Acta Mathematica. Vol 223 (2019), no. 1, 1-111. DOI: https://dx.doi.org/10.4310/ACTA.2019.v223.n1.a1
[CFK18] Y. Cai, S. Friedberg and E. Kaplan, Doubling constructions: local and global theory, with an application to global functoriality for non-generic cuspidal representations. Preprint. 2018. arXiv:1802.02637.
[C93] R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters. Reprint of the 1985 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley \& Sons, Ltd., Chichester, 1993.
[CKPSS04] J. Cogdell, H. Kim, I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups. Publ. Math. Inst. Hautes tudes Sci. No. 99 (2004), 163-233.
[CM93] D. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York, 1993. xiv+186 pp.
[FH91] W. Fulton, J. Harris, Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991
[G18] D. Ginzburg, On certain global constructions of automorphic forms related to small representations of F_{4}, preprint, https://arxiv.org/abs/1503.06409.
[GJ01] D. Ginzburg, D. Jiang, Periods and liftings: from G_{2} to C_{3}. Israel J. Math. 123 (2001), 29-59.
[GRS97] D. Ginzburg, S. Rallis and D. Soudry, A tower of theta correspondences for G_{2}, Duke Mathematical Journal 88 (3), 1997.
[GRS11] D. Ginzburg, S. Rallis and D. Soudry, The descent map from automorphic representations of GL(n) to classical groups, World Scientific Press (2011).
[GGS17] R. Gomez, D. Gourevitch and S. Sahi, Generalized and degenerate Whittaker models. Compos. Math. 153 (2017), no. 2, 223-256.
[HKT19] M. Harris, C. Khare, and J. A. Thorne, A local Langlands parametrization for generic supercuspidal representations of p-adic G_{2}. Preprint, 2019. arXiv:1909.05933.
[HS16] J.Hundley and E. Sayag, Descent construction for GSpin groups. Mem. Amer. Math. Soc. 243 (2016), no. 1148.
[I70] J. Igusa, Classification of spinors up to dimension twelve, Am. J. Math, Vol 92, No 4 (1970), pp. 997-1028.
[JN05] S. G. Jackson and A. G. Noël, Prehomogeneous spaces associated with complex nilpotent orbits, J. Algebra 289 (2005), no. 2, 515-557, DOI 10.1016/j.jalgebra.2005.02.017. MR2142384.
[JS81] H. Jacquet and J. Shalika, On Euler Products and the Classification of Automorphic Representations I. American Journal of Mathematics, Vol. 103, No. 3, 1981, 499-558.
[JS90] H. Jacquet and J. Shalika, Exterior square L-functions. Automorphic forms, Shimura varieties, and Lfunctions, Vol. II (Ann Arbor, MI, 1988), 143226, Perspect. Math., 11, Academic Press, Boston, MA, 1990.
[K99] H. Kim, Langlands-Shahidi method and poles of automorphic L-functions: application to exterior square L-functions. Canad. J. Math. 51 (1999), no. 4, 835-849.
[KS04] H. Kim and F. Shahidi, On the holomorphy of certain L-functions. Contributions to automorphic forms, geometry, and number theory, 561-572, Johns Hopkins Univ. Press, Baltimore, MD, 2004.
[L76] R. Langlands, On the functional equations satisfied by Eisenstein series. Lecture Notes in Mathematics, Vol. 544. Springer-Verlag, Berlin-New York, 1976.
[L04] R.P. Langlands, Beyond endoscopy. Contributions to automorphic forms, geometry, and number theory, 611-697, Johns Hopkins Univ. Press, Baltimore, MD, 2004.
[MW95] C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series. Cambridge Tracts in Mathematics, 113. Cambridge University Press, Cambridge, 1995.
[S81] F. Shahidi, On certain L-functions. Amer. J. Math. 103 (1981), 297-355.
[Sp] T.A. Springer, Linear Algebraic Groups , 2nd Ed Birkhäuser, 1998.
E-mail address: jahundle@buffalo.edu
244 Mathematics Building, University at Buffalo, Buffalo, NY 14260-2900
E-mail address: liu2053@purdue.edu
Department of Mathematics, Purdue University, 150 N. University St, West Lafayette, IN, 47907

[^0]: Date: May 21, 2020.
 2010 Mathematics Subject Classification. Primary 11F70, 22E55; Secondary 11F30.
 Key words and phrases. Fourier coefficients of automorphic forms, functorial descent, exterior cube L-function, split exceptional group G_{2}.

 The first named author is partially supported by NSA grants H98230-15-1-0234 and H98230-16-1-0125. The second named author is partially supported by NSF grants DMS-1702218, DMS-1848058, and start-up funds from the Department of Mathematics at Purdue University.

[^1]: ${ }^{1}$ We remark that the scalars are not important for the present argument - only the correspondence between roots and entries is really needed.

