ON AUTOMORPHIC DESCENT FROM GL; TO G

JOSEPH HUNDLEY AND BAIYING LIU

ABSTRACT. In this paper, we study the functorial descent from self-contragredient cuspidal auto-
morphic representations m of GL7(A) with L3(s,m, A%) having a pole at s = 1 to the split exceptional
group G2(A), using Fourier coefficients associated to two nilpotent orbits of E7. We show that one
descent module is generic, and under suitable local conditions, it is cuspidal and 7 is a weak func-
torial lift of each of its irreducible summands. This establishes the first functorial descent involving
the exotic exterior cube L-function. However, we show that the other descent module supports not
only the non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-
Fourier integral. Thus it is generic, but not cuspidal. This is a new phenomenon, compared to the
theory of functorial descent for classical and G'Spin groups.

1. INTRODUCTION

In the theory of automorphic forms one of the major open problems is to construct functorial
correspondences between automorphic forms on different groups. This has been accomplished in
particular cases by various methods, including the converse theorem, the theta correspondence, the
trace formula, and the theory of functorial descent.

The theory of functorial descent was pioneered by Ginzburg, Rallis, and Soudry. It serves as a
complement to the constructions of functorial liftings, and can be used to characterize the image
of a functorial lifting.

We briefly recall these notions. Let F be a number field, A its adele ring, and H a connected
reductive F-group. Given an irreducible automorphic representation = = ®,7, of H(A) we obtain a
finite set .S of places of F' and a semisimple conjugacy class {t,,} in “H for each v ¢ S. We say that
two automorphic representations 7 and 7’ are nearly equivalent if {tr,} = {tx/} for all v outside
a finite set. Given an L-homomorphism ¢ : “H — G we say that an irreducible automorphic
representation IT of G(A) is a weak functorial lift, relative to ¢ of an irreducible automorphic
representation 7 of H(A) if {tr,} = {¢(tx,)} for all v outside a finite set. Clearly, in this situation,
every element of the near equivalence class of 11 is also a weak functorial lift of every element of the
near equivalence class of m. We also say that 7 is a weak functorial descent of II. The Langlands
functoriality conjecture then predicts that the set of weak functorial lifts is nonempty for all 7 and
all . This has been proved in a number of cases, though the general case is still very much open.

Supposing that a lifting exists, one may ask what its image is. Here again, the general case is
open but the problem has been solved in some cases. For example, Ginzburg, Rallis and Soudry
showed, using descent together with the lifting results of Cogdell, Kim, Piatetski-Shapiro, and
Shahidi, that an automorphic representation of GLs,(A) is a weak functorial lift from a generic
cuspidal representation of SOg,.1(A) (for the inclusion Sp2,(C) < GLay,(C)) if and only if it is
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an isobaric sum 71 ®--- 8 7, of distinct cuspidal representations 7; of GLa,, (A) for 1 <4 < r, such
that L°(s,7;,A%) has a pole at s = 1 for each i. In particular, a cuspidal representation of G Ly, (A)
has a weak functorial descent to SOgy,+1(A) if and only if its exterior square L-function has a pole.
Notice that Spa,(C) is embedded into G Lo, (C) as the stabilizer of a point in general position in
the exterior square representation. Ginzburg, Rallis and Soudry also obtained similar results for
other classical groups, as well as metaplectic groups.

The connection between the exterior square L-function and the lifting is clear. It was an earlier
result of Ginzburg, Rallis, and Soudry, that L°(s,7,A?) has a pole at s = 1 whenever T is a weak
functorial lift relative to the above inclusion. Moreover, this result was predicted by the functori-
ality and generalized Ramanujan conjectures, before it was proved. If a cuspidal representation 7
of GLy,(A) is the weak functorial lift of a cuspidal representation o of SOsy.1(A) relative to the
inclusion Spa,(C) = GLay(C), then L3 (s, 7,A2) = L3(s,0,n2)((s), where A2 is the second funda-
mental representation of Spa,(C), which satisfies A2 = /\(2) ® 1, where 1 is the trivial representation.
Clearly ¢°(s) has a pole at s = 1 for all finite sets S. Further, the functoriality conjecture predicts
that L°(s,a,A3) should be the standard L-function of the weak functorial lift of & to G Lgim a2

relative to /\%. This lift may not be cuspidal, but the generalized Ramanujan conjecture predicts
that o will be tempered at all places, in which case its lift will be as well. This forces the cuspidal
support of any weak functorial lift to be unitary, which is sufficient to ensure nonvanishing of its
L-function on the line Re(s) = 1.

In general, by the same reasoning, if 7 is a finite dimensional representation of “G and the image
of ¢ : "H - L@ is contained in the stabilizer of some nonzero point in the space of r, and if 7 is an
irreducible globally generic cuspidal representation of H(A) then L(s,II,7) is expected to have a
pole at s =1 for any weak functorial lift IT of 7 to G relative to .

The descent results of Ginzburg, Rallis, and Soudry point to a converse result: if L° (s,II,7) has
a pole at s =1, then II should be a weak functorial lift relative to the inclusion of a reductive group
which stabilizes a nonzero point in the space of r. (A more refined conjecture is given in [L04].)

The descent method of Ginzburg, Rallis, and Soudry has been extended to GSpin groups (which
are not classical, but have classical L-groups) in [HS16]. The preprint [G18] investigates the ex-
tension of the method of descent into exceptional groups. Ginzburg has also investigated descent
from Eg to Fy, together with the first named author, in an unpublished preprint. In this paper, we
investigate an interesting case in the exceptional group GE7.

The method may be described as follows. Suppose that there is a reductive group A such that

(1) G is a Levi subgroup of A
(2) r appears in the restriction to “G of the adjoint representation of ©A
(3) H is the stabilizer in A of some sly-triple in the Lie algebra a of A.

Then the descent method proceeds by the following steps:

(1) Take an irreducible cuspidal automorphic representation 7 of G(A).

(2) Consider Eisenstein series on A(A) induced from 7. The L-function L°(s,,r) appears in
the constant term of these Eisenstein series. Consider the corresponding residual represen-
tation.

(3) Consider a Fourier coefficient attached to the slp-triple with stabilizer H. This Fourier coef-
ficient will map automorphic forms on A(A) to smooth automorphic functions of uniformly
moderate growth on H(A) (or in some cases the metaplectic double cover of H(A)). Ap-
plying this Fourier coefficient to our residual representation, we obtain a space of functions
on H(A) (or its double cover) which we call the descent module.

For example, in the classical work of Ginzburg, Rallis and Soudry, the group GLs, appears as a

Levi of SOy, and for suitable slo-triples in s04,, the stabilizer in SOy, is isomorphic to SOq,,1. We

remark that in some cases L° (s,7,r) will appear in the constant term along with other L-functions,
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and it will be necessary to add some assumption above and beyond L (s,7,7) having a pole. For
example, in the descent from GLa, to :S?)zn one must assume that the exterior square L-function
has a pole at 1, and that the standard L-function is nonvanishing at %

As mentioned, in some cases the descent module consists of genuine functions on a metaplectic
double cover. Since this does not apply to the case we consider in this paper, we will not go further
into this. We remark that while the functions in the descent module are easily seen to be smooth,
invariant by H(F') on the left, of uniformly moderate growth, and finite under translations of a
maximal compact subgroup of H(A), it is not easy to see whether or not they are finite under the
action of the center of the universal enveloping algebra. So, they are not necessarily automorphic
forms.

In the classical work of Ginzburg, Rallis, and Soudry, it is possible to show that descent module is
cuspidal (hence L2, so that its closure is a Hilbert space direct sum of irreducibles), and that every
summand is a weak descent of the original representation on G La,(A). Moreover, it is orthogonal
to the kernel of the non-degenerate Whittaker-Fourier integral on H(A), which implies that it is
multiplicity free and that every summand is globally generic. In some cases, it can even be shown
that the descent module is irreducible. In [HS16], it is shown that the descent module is cuspidal,
that every summand is a weak descent, and that the non-degenerate Whittaker-Fourier integral
does not vanish on the descent module (so at least one summand is globally generic). The stronger
result — that the descent module is orthogonal to the kernel of the non-degenerate Whittaker-Fourier
integral — should follow from work in progress of Asgari, Cogdell, and Shahidi.

There are a number of cases where the conditions above are satisfied with A being one of the
exceptional groups. In this paper we consider the case when A = GE7, and G = GL7 x GLy. The
embedding of GL7; xGL; into GE; can be chosen so that 7 is the product of the A? representation of
G L7 and the standard representation of GL1. We show that it suffices to consider the case when the
automorphic representation of G L7 is self-contragredient and the character of GL; is trivial. The
group GGL7 x GL7 acts on our space with a Zariski-open orbit and the stabilizer of any point in this
orbit is the product of the center of GFE7; and a subgroup of GL7 of type G». The stabilizer of any
nonzero point which is not in the Zariski open orbit is not reductive. Thus we consider irreducible
self-contragredient cuspidal automorphic representations 7 of GL7(A) such that the A® L-function
has a pole at s =1, i.e., of G2 type by Definition The philosophy discussed above predicts
that such cuspidal representations should be weak functorial lifts from G5. We first construct square
integrable residual representations of GE7(A). At this point, an interesting feature emerges, which
was not present in the classical setting: it turns out that there are two orbits of sly triples in e
with stabilizers of type Go. Thus, we have two different Fourier coefficients which we can apply to
obtain two descent modules on the exceptional group Ga(A). In this paper we study both descent
modules.

The functorial lifting corresponding to this case is known, at least for generic cuspidal represen-
tations. By [GRS97] generic cuspidal representations of G2(A) can be lifted to Spg(A) using the
minimal representation of Fr. It can then be lifted to G L7 using the work of Cogdell-Kim-Piatetski-
Shapiro-Shahidi [CKPSS04], Arthur [A13], and Cai-Friedberg-Kaplan [CEKIS§|. It is very natural
to ask whether the descent from GL7 to Gy could be constructed by combining the descent from
GL7 to Spg from [GRS11] with the theta-type correspondence from Spg to Go in [GRS97]. To
the best of our understanding, this should be possible, but would require proving the following
conjecture.

Conjecture 1.0.1. Let 7w be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that L%(s,m,A%) has a pole at s = 1, and let o denote the irreducible descent of
7w to Spg(A). Then o has trivial central character and satisfies the three equivalent conditions of
Theorem 1.1 of [GJOI].
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An analogy with the earlier work of Ginzburg-Rallis-Soudry, as well as [HS16], would predict that
the descent module should be cuspidal, support the non-degenerate Whittaker-Fourier integral, and
be a direct sum of weak descents of our original cuspidal representation of GL7. In this respect,
the two descent modules behave totally differently.

In one case we prove that the descent module is generic, and under suitable local conditions, it
is cuspidal and 7 is a weak functorial lift of each irreducible summand. One piece that is missing,
in comparison to |[GRSII], [HS16], is a means of showing that when 7 is self-contragredient and
LS (s,m,A%) has a pole at s = 1, the Satake parameters of the components of 7 at unramified places
must contain conjugacy classes of G2(C). We show cuspidality under the assumption that at least
one of them does, and weak functorial lifting under the assumption that all but finitely many of
them do. In particular, we prove the following theorem (cf. Theorem .

Theorem 1.0.2. Let F' be a number field and let 7w be an irreducible cuspidal automorphic repre-
sentation of GL7(Af). Suppose that the following conditions hold.

(1) The partial L-function L3(s,m,A%) has a pole at s = 1, for some finite set S.

(2) For almost all places v of F' at which 7, is unramified, the Satake parameter of the local
component 7, is conjugate, in GL7(C), to an element of r7(G2(C), where r7 is standard
representation of Gs.

Then there exists a globally generic cuspidal automorphic representation o of Gy(Ap) such that
for almost all places v of F' at which o, is unramified, the Satake parameter of m, is conjugate, in
GL~(C), to the Satake parameter of o,.

We believe that it should be possible to replace the second condition with the weaker condi-
tion that 7 is self-contragredient or has trivial central character. That is, we have the following
conjecture.

Conjecture 1.0.3. Let 7 be an irreducible self-contragredient cuspidal automorphic representation
of GL7(A) such that L%(s,m, A%) has a pole at s = 1. Then for almost all places v of F at which
7, is unramified, the Satake parameter of the local component , is conjugate, in GL7(C), to an
element of 77(G2(C), where 77 is standard representation of Ga.

This conjecture turns out to be equivalent to Conjecture More generally, if 7 satisfies
conditions (1) and (2) of Theorem then its descent to G2 contains an irreducible generic
cuspidal automorphic representation of Gy(A), which we may theta-lift to Sps(A) using the lifting
from |[GRS97]. By a result of Savin, [HKT19, Appendix A], the lifting is generic, and lifts weakly
to 7 (which forces it to be cuspidal due to the Strong Multiplicity One Theorem for GL7), and so,
by Strong Multiplicity One Theorem for Spg, it contains the descent of 7, which therefore satisfies
the equivalent conditions of [GJO0I]. Conversely, if the descent of 7 to Spg satisfies the equivalent
conditions of [GJ01], then it is the theta lift of a generic cuspidal representation of G3(A), and this
lifting is functorial. It follows that 7 itself is a functorial lift from G2 and condition (2) of Theorem
[L.0.2]is satisfied.

The result above establishes the first functorial descent which involves the exotic exterior cube
L-function. This is an important step towards fully understanding the Langlands functoriality from
G2 to GL7 which is not an endoscopic type. As pointed out to us by Michael Harris, Theorem [1.0.2
has interesting applications already, for example, to [BHKT19, Conjecture 11.6] and the surjectivity
of local Langlands correspondence ([HKTT19)]).

The other descent module behaves totally differently. It supports not only the non-degenerate
Whittaker-Fourier integral on G2(A), but also every degenerate Whittaker-Fourier integral. Thus
it is generic, but not cuspidal. It has a nontrivial constant term for each proper parabolic of Go,
and its constant terms for the two maximal parabolics are generic representations of GLa(A). And
this holds for every cuspidal representation of GL7(A) such that the A3 L-function has a pole! This
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is a new phenomenon, compared to the theory of functorial descent for classical and G Spin groups.
See Theorem [8.0.11

This outcome is not entirely without precedent. Descent constructions in the exceptional group
F, were previously studied in |G18] from a different point of view. In [G18|, Ginzburg introduces
a general family of lifting integrals which interpolates between theta type liftings at one end of the
spectrum and descent constructions at the other end. He also introduces a “dimension equation”
which is said to hold in every known case where an integral of his type gives a functorial corre-
spondence. He then uses the dimension equation to decide which automorphic representations to
apply a Fourier coefficient to (instead of using a residual representation obtained from a pole of
L3(s,m,T)).

This approach makes sense from the perspective of the techniques which are used to prove
genericity and cuspidality, namely identities of unipotent periods. The approach taken in [G18] is
to take the unipotent period obtained by composing the descent Fourier coefficient with either a
Whittaker integral or a constant term on the stabilizer H, and relate this period to some combination
of coefficients attached to slo-triples and constant terms.

One case of particular interest is when A = Fy, G = GSpg, r is the spin representation of
L@ = GSpinz(C), and H = Gs. In this case, it is shown in [GI8] that

(1) The non-degenerate Whittaker-Fourier integral of the descent module of any representation
& can be expressed in terms of coefficients attached to the orbits Fy, Fy(ay), and Fy(as), as
well as the constant term along the C3 parabolic, and

(2) The constant terms of the descent module can be expressed in terms of exactly the same
four unipotent periods!

This is very similar to our result, which relates both the non-degenerate Whittaker-Fourier integral
and all degenerate Whittaker-Fourier integrals of the descent to the same unipotent period on
G Er. This period is not one of the types considered by Ginzburg, but it is in a more general family,
introduced by Gomez, Gourevich and Sahi in [GGS17].

Another case which has been studied somewhat is when A = Eg, G = GEg x GLq1, r is 27-
dimensional, and H = Fj. This case is considered in work in progress of Ginzburg and the first
named author. In that case, also, it appears that the descent module is generic, but not cuspidal.

Having established that the descent is not cuspidal, it is no longer clear that it has a decomposi-
tion into irreducibles, or even a spectral decomposition in terms of cuspidal data. Moreover, there
would seem to be little reason to think that its irreducible subquotients — should they exist — will
be weak descents of the original cuspidal representation of GL7(A). Indeed, if our representation
of GL7(A) was a weak functorial lift of a cuspidal representation of Go(A) which is not CAP, then
no weak descent of it has a constant term — and the descent module does. If one is still optimistic
enough to believe that the descent module contains a generic weak descent of our cuspidal repre-
sentation of GL7(A), then one is led to the questions of what else it contains, and whether this
“extra” depends on the choice of the representation.

Another natural question is the following: what other automorphic representations of GL7(A)
should descend to Go(A)? And can our construction genmeralize to construct their descents? For
example, there is a lifting, constructed in [GRS97] and shown to be functorial in [GJO0I], attached
to the embedding SL3(C) = G2(C). If we compose this with an embedding G2(C) - GL7(C) the
result is conjugate to the map

gr 1
tg1
Thus, if an irreducible cuspidal automorphic representation m of Go(A) is the lift of a cuspidal
representation 7 of PGL3(A) then the lift of 7 to GL7(A) is the isobaric sum 781 87, where 1
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is the one-dimensional trivial representation of GL;i(A). Thus, it is very natural to ask whether =
can be recovered from 78187, by some generalization of our construction. (Note that this would
then give an alternate construction of the lifting from [GRS97].) We hope to return to this and
related questions in the future.

The organization of the paper is as follows: we introduce some notation in Section 2] preliminaries
and some general results in Section [3] the Ag Levi and the residual representation of the similitude
exceptional group GE7(A) in Section 4. and the nilpotent orbit Ag of E7 in Section |5} Then we
introduce in Section [6]the two descent Fourier coefficients attached to the two nilpotent orbits, from
which we obtain two descent modules. In Section 7] we show that one descent module is generic,
and under suitable local conditions, it is cuspidal and having 7 as a weak functorial lift of each
irreducible summand. In Section |8 we show that the other descent module supports not only the
non-degenerate Whittaker-Fourier integral on G2(A) but also every degenerate Whittaker-Fourier
integral. Thus it is generic, but not cuspidal.
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2. NOTATION

Let F' be a number field, A its adele ring, and Ag, its ring of finite adeles. (Our results are
restricted to number fields because we make use of [GGS17]. We expect that both the results of
[GGS17] and our results should extend to function fields, except possibly for a few small primes.
For a discussion of the relevant issues, see [GGS17, Remark 5.1.4].)

We shall consider automorphic representations of the similitude exceptional group G FE-. This
group can be realized as the maximal Levi subgroup of split Eg whose derived group is of type
E;. For us, this will be the definition. The derived group is in fact the unique split connected
simply connected quasi-simple group of type Er. For the split group Fg, we label the simple roots
as following

aq a3 (671 Qs (€73 arq ag
0O --0 --0--0--0--0--20
|
0
o

We assume that GFE~ is equipped with a choice of split maximal torus 7' and Borel subgroup
B. We write ® for the set of roots of T in GE;, ®* for the set of positive roots determined by
the choice of B and A for the set of simple roots. If H is T-stable subgroup of GE7, we denote
the set of roots of T in H by ®(H,T) For o € ® we denote the corresponding root subgroup by
U, and the corresponding coroot G,, - T by a". Let t and u, be the Lie algebras of T and U,
respectively. We use an exponential notation for rational characters and cocharacters: t —» t%, t €T
and a — a®’, a € G,,. We also equip GE; with a realization in the sense of [Sp], i.e. a family
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{za : G4 - Uy} of parametrizations of the root subgroups (subject to some compatibility relations).
This determines a basis of the Lie algebra ge;. Indeed, for each root « the differential Dx,, of x,, is an
isomorphism G, - u, and we denote Dz, (1) by X,. The differential of «" : G,,, = T is an injective
map Da" : G, — t, and we denote Da¥ (1) by H,. Then {X, :ae ®(GE;,T)} U{H,, :1<i<8}is
a basis for ge;, and by taking a suitable realization, we can arrange for it to be a Chevalley basis.
We also fix a GE7-invariant bilinear form x on ge; such that x(X,, X_4) =1 for each root a.

We denote the Weyl group of GE; relative to T' by W. We denote the simple reflection attached
to the simple root «; by wl[i], and the product w[i1]...w[i;] by w[iy...7]. There is a standard
representative for w[i], namely w[i] := x4, (1)z_q,(~1)zq,(1). This then gives rise to a standard
representative wiy ...4;] == w[iy]...w[4;] for w[iy...7]. But note that w[i...7;] depends on the
expression for w([i; ...4;] as a word in the simple reflections and not only on the Weyl group element.

Let P = MU be the standard parabolic subgroup of GE; whose unipotent radical contains U,
if and only if ¢ = 2, with Levi subgroup M and unipotent radical U. Then M is isomorphic to
GL7xGL; (see Lemma for details). Let @ be the standard parabolic subgroup of GE7 whose
unipotent radical contains U,, if and only if i = 4 or 6. More generally, for S c {1,2,3,4,5,6,7}, let
Ps = MgUg denote the standard parabolic subgroup whose Levi subgroup Mg contains the root
subgroups attached to the simple roots {c; : i € S} and unipotent radical Ug contains the root
subgroups attached to the simple roots {«; :i ¢ S}. Hence, P = P(y 34567 and Q = Py 9357, We
also fix once and for all a maximal compact subgroup K of GE;(A).

We shall also consider automorphic representations of the split exceptional group G2. We denote
the long simple root of G by 3 and the short one by a. For v € {3, a} we let P, denote the maximal
parabolic subgroup of G2 whose Levi, M., contains the root subgroup U, attached to . We let IV,
denote the unipotent radical of P,.

Let g2 and gl; be the Lie algebras of Gy and GL7, respectively. Following [FH91] we embed go
into gl; by letting it act on a seven-dimensional vector space. We order the basis vectors as follows:
V4,03, 01, U, w1, w3, ws. Then it follows from the formulae on p. 354 of [FHI91] that the matrices of
Y) and Y3 (using notation on p. 340 of [FH91|) are

0
1

0
0

0
1

0
2

0
0

0
-1

0

and

o O

o o

o O

i)

o O

, respectively.

The matrices attached to H; and Hy are easily computed by looking at the images of H; and Hs
under the weights.

Weight H1 H2
a 2 | -1

15} -3 2

w1 =2a+p | 1 0
w1 —Q -1 1

wi—a-p 2 | -1

wi—2a-6 | 0] 0

wi—-3a-0 | -2 | 1

wi—3a-28| 1 | -1

wi—4a-26|-110
7




The matrices are

0 , and 0 , respectively.

Finding the action of X and X5 takes a little work. In some cases, we use our knowledge about the
set of weights. For example X w3 must be zero because ws is weight w1 —-3a—28 and w1 —2a—2 is not
a weight of this representation. For the others we use our knowledge of the action of Y7, Y5, Hy, Ho,
and bracket relations. For example, since X;v4 = 0, it follows that

leg = X1HU4 = (H1 + Y1X1)v4 = H1U4 = 4.
After similar computations we get that the matrices of X1 and Xo are

0 1 00
0 0 0 -1
0 2 0 0
0 , and 0 , respectively.

0
0 1

-1 0 0
0 0

1
0 0
0

Finally, for a matrix g we denote the transpose by g. When g is a square matrix, we also denote
by +g the transpose about the second diagonal, which may be obtained by conjugating ‘g by the
1

matrix , 1.e., with ones from lower left corner to upper right corner and zeros elsewhere.

3. PRELIMINARIES AND SOME GENERAL RESULTS

3.1. Fourier coefficients attached to nilpotent orbits. In this section, we recall Fourier co-
efficients of automorphic forms attached to nilpotent orbits, following the formulation in [GGS17].
Let GG be a reductive group defined over F', or a central extension of finite degree. Fix a nontrivial
additive character ¢ of F\A. Let g be the Lie algebra of G(F') and u be a nilpotent element in g.
The element u defines a function on g(A):
Yu: g(A) - C”

by ¥, (x) = ¥ (k(u,x)), where k is a G-invariant symmetric bilinear form on g(A) which is nonde-
generate on every simple summand of g (such as the Killing form, or a convenient scalar multiple).

Given any semi-simple element s € g, under the adjoint action, g is decomposed to a direct sum of
eigenspaces g5 of h corresponding to eigenvalues i. For any rational number r € Q, let g5, = ®,75,g7,.
The element s is called rational semi-simple if all its eigenvalues are in Q. Given a nilpotent element
u, a Whittaker pair is a pair (s,u) with s € g being a rational semi-simple element, and u € g°,.
The element s in a Whittaker pair (s,u) is called a neutral element for u if there is a nilpotent
element v € g such that (v, s,u) is an sla-triple. For any X € g, let gx be the centralizer of X in g.

Given any Whittaker pair (s, u), define an anti-symmetric form w,, on g by w,(X,Y) := k(u, [ X, Y]).
Let ug = g3; and let ng,, = ker(w,) be the radical of wy|y,. Then [u,,u] c g5y c ng,. By [GGSIT,
Lemma 3.2.6], ng,, = 935 + g N gu. Note that if the Whittaker pair (s,u) comes from an sly-triple
(v,s,u), then ng, = g35. Let Us = exp(u,) and Ny, = exp(ns,) be the corresponding unipotent
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subgroups of G. Abusing of notation, we define a character of Ny, by ¥, (n) = ¥ (k(u,log(n))).
Let Ny, = Nsunker(¢y,). Then Us/N; , is a Heisenberg group with center Ny/Ny . It follows that
for each Whittaker pair (s,u), 1, defines a character of N, (A) which is trivial on Ny, (F'). Let
m, = g%, and M, = exp(my). Then Py = M Uj is a parabolic subgroup of G with Levi subgroup Mj
and unipotent radical Us.

Assume that 7 is an automorphic representation of G(A). Define a degenerate Whittaker-Fourier
coefficient of ¢ € ™ by

(3.1.1) Fsulp)(g) = N (PN () e(ng)y(n)dn, g e G(A).

Let Fs o (m) = {Fsu(p)|p € w}. If s is a neutral element for u, then F; ,, () is also called a generalized
Whittaker-Fourier coefficient of ¢. The (global) wave-front set n(w) of 7 is defined to the set of
nilpotent orbits O such that Fg,(7) is nonzero, for some Whittaker pair (s,u) with u € O and
s being a neutral element for u. Note that if Fs,(7) is nonzero for some Whittaker pair (s,u)
with f € O and s being a neutral element for u, then it is nonzero for any such Whittaker pair
(s,u), since the non-vanishing property of such Fourier coefficients does not depend on the choice
of representatives of O. Let n™(7) be the set of maximal elements in n(7) under the natural order
of nilpotent orbits.

Assume that 7 is an admissible representation of G(F,), where v is a finite place of F. Then
similarly we can define a twisted Jacquet module of 7 by Jn, , 4, (7) and consider the (local)
wave-front set n(m) and the subset n™ ().

The following theorem is one of the main results in [GGS17].

Theorem 3.1.2 (Theorem C, [GGS17]). Let m be an automorphic representation of G(A). Given
two Whittaker pairs (s,u) and (s’,u), with s being a neutral element for u, if Fy , () is nonzero,
then Fy,(7) is also nonzero.

In the following, we prove a slightly generalized version of Theorem|3.1.2] using similar arguments.

Assume that (s,u) and (s’,u) are two Whittaker pairs with the same u, such that g, ng$; c g3;.
Let z = s’ — s € gy. And for any rational number 0 <t <1, let s; = s +tz, w = g3, v; = g4, and
o, = gi*. tis called regular if u; = uz, for any small enough e € Q. t is called critical if it is not
regular. For convenience, we say that 0 is critical and 1 is regular. Fix a Lagrangian m c gjn g}
and let

[p=m+ (10N gZy) + 0 + (0N guy),
Tr=m+ (mtﬂgio) + 0 + (mtﬁgu).

Note that [; and t; defined here agree with those in [GGS17] by applying [GGS17, Lemma 3.2.6].
For i,7 € Q, let

Yi,j ={X6g | [SaX] =1X, [Z,X] =.7X}

Then one can see that to; = @;44j-10i,, 9t = @ir1j>10:,, ¢ is a critical number if and only if there
exists (4,7) such that i+¢j =1 and j # 0, and ¢ is a regular number if and only if to; = g1 9 = g5 N g;.
And we can rewrite [; and t; as follows:

(3.1.3) i =m+ ®jy1j=1,j<00i,j + 0t + (€Bz‘+tj:1,j>09i,j) NGy + 91,0 N Gu,

(3.1.4) =M+ @irjo1,j500i,; + 0 + (Birtj=1,<08i,7) O Gu + §1,0 O Gu-
We summarize the results in [GGS17, Lemma 3.2.7] in the following lemma.

Lemma 3.1.5 (Lemma 3.2.7, [GGSI7]). Assume that (s,u) and (s’,u) are two Whittaker pairs

with the same u, such that g, ng3, c ggll. Then the following properties hold.
9



(1) For any ¢ >0, I; and v; are maximal isotropic subspaces of u; and [l;,t;] c [, nt;. And

ut/ ker(wu|ut) = mt/(mt N gé + 10 N gu)

defines a symplectic structure, with the image of [; and t; being two complementary La-
grangians.

(2) Suppose that 0 <t < t', and that all the elements in the open interval (¢,t") are regular.
Then t; c [y,

In the following lemma, we analyze the precise structure of [y/v;, in the situation of Lemma

Part (2).

Lemma 3.1.6. Assume that (s,u) and (s’,u) are two Whittaker pairs with the same u, such that
gungd C gill. Suppose that 0 <t < ¢/, and that all the elements in the open interval (¢,t") are
regular. Then, ly//t; = (®i41/j-1,j508:,5) N Gu, Preserving i,,.

Proof. By (B13) and (319),

(3.1.7) [y =M+ @147j=1,j<08i,j + O + (®istrj=1,7508i5) N Gu + 91,0 N Gu-

(3.1.8) T = M+ @igj=1,j500i,j + 0t + (Divtj=1,j<08i7) N Gu + §1,0 N Fu-

Since 0 <t < ', and all the elements in the open interval (¢,t") are regular, one can see that

Di+tj=1,5500i,5 T V¢t = Distrj=1,5<00i,j + O¢/.
Therefore,
e + (®istj=1,j<08i,j) N Gu =t + (Sis17j=1,j508i,5) N Gu-

Note that if i +¢j =1 and j <0, then i+ j < 1. Hence, ®;14j-1,j<08i; C gill, Since g, N g3; © ggll,
(®i+tj=1,j<08i,5) N 9u = {0}. Therefore, ly/t; = (®i11j=1,j508i,5) N Gu, Preserving v,

This completes the proof of the lemma. ]

For a Whittaker pair (s,u), let [s c us be any maximal isotropic subalgebra with respect to the
form w,. And let Ly = exp(ls). Then 1, can be extended trivially to a character of Ls(k)\Ls(A).
Let m be an automorphic representation of G(A). Define the following Fourier coefficient of f € 7:

(3.1.9) Fr(£)(9) = F(ng),(n)dn, g e G(A).

Lo(W\Ls(4)
Let Fi3(m) = {F(NIf e}

Next, we recall a lemma as follows.

Lemma 3.1.10 (Lemma 6.0.2, [GGS17]). Let m be an automorphic representation of G(A). Then,
Fsu(m) #0 if and only if .7-"5%5(71') #0.

The next theorem is the global analogue of [GGS17, Corollary 3.0.3] with essentially the same
proof. To be complete, we sketch it in the following.

Theorem 3.1.11. Let 7 be an automorphic representation of G(A). Assume that (s,u) and (s',u)
are two Whittaker pairs with the same u, such that g, ng3; c ggll If Fy ,(m) is nonzero, then
Fsu(m) is also nonzero.

Proof. Let (s,u) and (s’,u) be two Whittaker pairs with the same w, such that g, ng$; c ggl. Then
it is clear that s’ — s € g,.

Let tg =0 < t1 <to <--- <1 be the all the critical numbers. Let ¢;,1 = 1. Then, for 0 < < k, all the
rational numbers in the open interval (t;,t;11) are regular. Let Ry, = exp(t, ), and Ly, = exp(ly,,,).
Assume that fgﬁlu(ﬂ) # 0, then fi::;lu(w) # 0 by Lemma|3.1.10, By Lemma|3.1.5) v,

10

cl,,, and




by Lemma (i /8t = (®tatysr=1,j5080,) N Gu € Wy, N gy, which is abelian and normalizes 1.
Then it is clear that fﬁ:bu(ﬁ) #0.

Note that fﬁ;ﬁ;lu(w) = Fsu(m) # 0. Therefore, by the above discussion, F () = Fi, u(7) =

fﬁ;(’]u(ﬁ) # 0. This completes the proof of the theorem. O

3.2. A few general results. Before we turn to matters that are specific to the problem of descent
from G L7 to G2 by way of GEr, we would like to present some results in a general setting. These
are related to the general problem of computing the twisted Jacquet module

jU,wU (Indg X)7

where G is a reductive p-adic group, ) is a parabolic subgroup of G, U is a subgroup of the
unipotent radical of a second parabolic subgroup, P of GG, U is normalized by P, x is a character
of @ and vy is a character of U. In this direction, the most general result of which we are aware is
theorem 5.2 of [BZ77]. This result considers a set-up which is more general than the one we shall
consider here, but it has the defect that one must check a certain finiteness condition which, for
many applications is unnecessary.

The group P acts on the space of characters of U by p- ¢y (u) = ¥y (p~tup). In fact, this action
may be realized as the rational representation of P dual to its action on U/(U,U). Let Ry, denote
the stabilizer of ¢;; in P. Then for any admissible representation m of G, the twisted Jacquet module
Ju .y () has the structure of an Ry, -module.

We assume that G is equipped with a choice of minimal parabolic subgroup Fy and that P and
@ are both standard, i.e., both contain Py. We also choose a maximal split torus 7y contained
in Py. The space Indg X has a filtration by P-modules I, indexed by the elements of Q\G/P. As
representatives, we choose minimal-length elements of the relative Weyl group. The P-module I,

1
corresponding to w may be realized as ¢ - mdﬁ - waéé o Ad(w), where w is any representative
for w in G.

We say that p € P is w-admissible if p -y is trivial on U nw 'Qw. (Clearly this is relative to
Yu, and Q.)

Lemma 3.2.1. For each w, the set of w-admissible elements is a subvariety of P.

Proof. Write [U/(U,U)]* for the rational representation of P that is dual to U/(U,U). Then vy
corresponds to an element X of [U/(U,U)]*(F). Let V denote the image of Unw™'Qw in U/(U,U).
Then p is w-admissible if and only if (Ad(p).X,v) =0 for all v € V. Here (, ) is the canonical pairing
between U/(U,U) and [U/(U,U)]*. Taking a basis of V we obtain a finite number of polynomial
conditions in p which define the w-admissible subvariety. O

Now fix w and let Xy, denote the open subset of w-inadmissible elements in P. Let I} denote
{f € I, : supp(f) ¢ X}. Then I is a sub Ry,,-module of I,,. Let I,, denote the quotient, so we
have a short exact sequence of Ry, —modules

0—)[3)—>Iw—>7w—>0.
Lemma 3.2.2.
jUﬂZ)U(Ig)) = 0, hence jU,’L/)U ([w) I~ jU,wU(Iw)‘

Proof. In general, for an admissible representation (m, V') of P the kernel of the map V' — Ji4, (V')
is the subspace of elements v such that

/Ni/JU(n)W(n).v dn =0

11



for some compact subgroup NN of U. In the case of an induced representation, this is equivalent to

/N f(pn)yYy(n)dn =0 Vpe P.
For each fixed p,
[, #emvu(ydn = [ pp-du(n)dn.

where p -y (u) = Yy (p~tup). It’s clear that if p-1y is nontrivial on U nw™'Quw, then this integral
will be zero for all sufficiently large N, and if f € I, then this holds for all p in the support of f.
We need to show that N can be chosen independently of p. This follows because p -1y depends
continuously on p and the support of f is compact modulo P nw 'Quw. O

For each w in our set of representatives for Q\G/P let P, = P nw 'Qw. Note that the w-
admissible subvariety of P is a union of P, Ry,,-double cosets.

Lemma 3.2.3. Assume that w-admissible subvariety of P is a single P,,, Ry,,-double coset P,z Ry, .

Then, as an Ry,,-module, I,, = c - indﬁi’] 32 o Ad(wz).

Uﬁm‘lw‘lexX(S
Proof. Recall that I, is the subset of elements of I,, whose support is in the open set X,, of inad-
missible elements. So, the canonical quotient map I, - I,,/I = I, may be realized as restriction

to the admissible subvariety. Write 78 ) for this realization of I, as a subspace of C®(Py,z Ry, ).
Clearly, each element f € 71(01 ) is determined by the function h¢(r) = f(xr) e C*°(Ry,, ). Thus we
obtain a second realization of I,, as a subspace of C*°(Ry,, ) which we denote TwQ . We claim that

7#(2) . . . LR 1/2 .
Ifu ) is precisely ¢ — deZZ ﬂx‘lw—lexX(SQ/ o Ad(wx).

It’s clear that hy(pr) = X(Séf(wajpm’lw’l)hf(r) for each p € Ry, N 'w 'Quwz, and r € Ry,,.
Moreover, since Ry, ﬂ$‘1w_1Qw$\R¢U maps injectively into P nw™'Quw, the support of h ¢ will be

— R
compact modulo z~'w 'Quwz. Thus IS) is contained in c—indRZU X5612/2 o Ad(wz). What

Nz lwlQuz
(2)

.o . —=(2 . R . . ..
remains is to show that this map from I,,” to ¢ —ind RZU X(%/ % Ad(wz) is surjective.

—1,,-1
yne~tw Quz

1/2

. R .
Given h e c— dejU 0 ° Ad(wz), we can choose Q a compact open set such that

bt ﬂx’lw’lexX(s
h is supported on (R, N zlw  Qwz)$, a compact open subgroup K of Ry, such that that h is

right- Ky-invariant, and a compact open subgroup K3 of P such that Ko n Ry, = K1. Then we can
define

X(%ﬂ(wqw_l)h(r), g=qxrk,q € Py, € Ry, k€ Ko,

fa) = {0, g ¢ PutRy, Ko.

0

Using the form &, the space [U/(U,U)]* may be identified with a subspace [U/(U,U)]” of the
Lie algebra up of the unipotent radical Up of the parabolic that is opposed to P. It is important
to keep in mind that this identification is an isomorphism of M p-modules, where Mp is the Levi
of P, but that it is not an isomorphism of P-modules. More precisely, the form & gives us a linear
isomorphism gger = 9, that sends X € gger to the linear form Y — x(X,Y’). Here, gger is the
derived subalgebra of g. We can decompose g into irreducible Mp-submodules and those that are
not contained in mp come in dual pairs. More precisely, each irreducible in up is paired with
an irreducible in up. The Lie algebra of U is a direct sum of irreducible components in up so its
dual is identified with a subspace of up. Then the dual of the quotient U/(U,U) is a subspace
of the dual of U. Since (U,U) is Mp-invariant [U/(U,U)]* is again a direct sum of irreducible
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Mp-submodules of uj,. Notice that X e [U/(U,U)]™ implies Ad(m)X € [U/(U,U)]” for all m in M
but not Ad(p)X € [U/(U,U)]” for p in P but not in M.

The Lie algebra g decomposes as q~ @ ug where q~ is the Lie algebra of the parabolic q~ opposed
to @ and ug is the Lie algebra of the unipotent radical of @. Conjugating by w we have also
g=Ad(w™)q” @ Ad(w Hug.

Lemma 3.2.4. [U/(U,U)]" = ([U/(U,U)]" n Ad(wY)g") & ([U/(U,U)]" n Ad(w o).

Proof. Let Mg be the standard Levi factor of @ (containing 7). Let Z M, denote its center, and
Ani, = Zyg, 0 To. Because the space [U/(U,U)]™ is preserved by w™ Ay, w, we can decompose
[U/(U,U)]” into eigenspaces of w’lAMQw. If X is one of the eigencharacters, then A o Ad(w) is
either trivial or a relative root for the torus Ay, . If it is trivial or negative then the A-eigenspace
lies in Ad(w™')q™ and if it is positive then the A-eigenspace lies in Ad(w™!)ug.

Take X € [U/(U,U)]". Then using this eigenspace decomposition we can write X = X; + X»
where X € [U/(U,U)]" nAd(w™)q™) and X5 € ([U/(U,U)]” n Ad(w ™ )ug). O

Notice that p is w-admissible if and only if the projection of Ad(p)X onto [U/(U,U)] is in
[U/(U,U)]" n Ad(w Hup.

Now write Up for the unipotent radical of the parabolic P. Inside [U/(U,U)]* we have the
subspace of [U/(U,Up)]* of linear forms which corresponds to the space of characters of U that
are trivial on (U,Up). This is an Mp-invariant subspace which we can identify with a subspace
[U/(U,Up)]" of [U/(U,U)]".

If X e [U/(U,Up)]” and p = mu with m € Mp and u € Up then the projection of Ad(p).X onto
[U/(U,U)] is Ad(m).X. Put differently, if ¢ is trivial on (U,Up) then Up fixes 1y7, and hence
Pty =m- .

Assume now that vy is trivial on (U,Up). Then p = mu is w-admissible if and only if Ad(m).X is
in [U/(U,U)]"nAd(w ™ )ug, or, equivalently, if Ad(wm)X € ug. In particular, X must be conjugate
to an element of the subspace [U/(U,U)]” n Ad(w™Hug.

Corollary 3.2.5. If ¢y is trivial on (U,Up) and the space [U/(U,U)]” n Ad(w™)ug does not
contain any elements of the orbit of X, then the w-admissible subvariety of P is empty.

Corollary 3.2.6. Suppose that ¢y is trivial on (U,Up) and the w-admissible subvariety of P is
nonzero. Then the nilpotent element X attached to 1y is conjugate to an element of ug.

Corollary 3.2.7. If vy is trivial on (U,Up) and the space ug does not contain any elements of
the orbit of X, then the w-admissible subvariety of P is empty for all w, and

Ty (IdG(x)) = 0.

Corollary 3.2.8. Let O be the Richardson orbit of @ (the largest stable orbit that intersects ug).
Let O’ be an orbit that is greater than or not related to O. Let (s,u) be any Whittaker pair with
ue @' Let U = exp(g3,). Then

T (W) (IdG (X)) = 0.

Proof. Let P = exp(g3y), then Up = exp(gs;). The previous corollary applies to this situation, since
(U,Up) = exp(gl3) and v, is trivial on it. O

Corollary 3.2.9. Let O be the Richardson orbit of ). Let O’ be an orbit that is greater than or
not related to O. Let (s,u) be any Whittaker pair with u e O" then Jn, , 4, (Indgx) =0.

Proof. Define U as in the previous corollary. Then it follows from the definition of Jy, , 4, , because

INan () 18 @ quotient of J(yy,)(m) for any . O
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Remark 3.2.10. Suppose that the weighted Dynkin diagram of O consists of 0’s and 2’s (namely
O is even) and let @ be the parabolic whose Levi contains the simple roots labeled 0 and whose
unipotent radical contains the simple roots labeled 2. Then O is the Richardson orbit of ). Cf.
[CM93], Theorem 7.1.1, Theorem 7.1.6, Corollary 7.1.7].

4. THE Ag¢ LEVI OF GE; AND EISENSTEIN SERIES

Recall that P = MU is the standard parabolic subgroup of GE7 whose unipotent radical contains
U,, if and only if ¢ = 2, with Levi subgroup M and unipotent radical U. In this section, we show
that this Levi subgroup M which is of type Ag is isomorphic to GL7 x GL1. Then we introduce the
Eisentein series associated to P whose residues at s = 1 generate a residual representation. This
residual representation serves as automorphic kernel of our descent construction.

4.1. The Ag Levi.
Lemma 4.1.1. The group M is isomorphic to GL7 x GLj1.

Proof. Recall that the derived group of a Levi subgroup of a simply connected group is simply
connected. In particular the derived group Mgye: of M is simply connected, semisimple, of type Ag.
This means that it is isomorphic to SL7. To pin down a particular isomorphism we first require
that T'n Mge, is mapped to the standard torus of SL7 (the diagonal elements), and B N My, is
mapped to the standard Borel of SL7 (the upper triangular elements. Any isomorphism satisfying
these requirements induces a bijection on the set of simple roots which respects the structure of
the root system. There are only two such bijections. For reasons which will become apparent, we
choose to map a7 to the first simple root of SL7; and aq to the last. These conditions determine
the isomorphism up to conjugation by an element of T'n Mye,. To make it unique, we can use the

parametrizations x,: there is a unique isomorphism ¢ : My, = SL7 such that

1 1 1r
Y Y Y
Toy (1) = 1 , Tag(r) — 1 y e Zao(r) 1
1 ° 1r 1
1r 1 1

1 1 1

Now M is the product of its derived group and the maximal torus 7. A general element of T is of
2 \%
the form [T5; ¢;*. Of course [T;.05t; " lies in M which is mapped to (under ¢)

t7
t-1tg
ts'ts
t=1ty
tylts
t3't
t7!
Since

tyl, j=4

(ty2tg®)™ = tgh, j=17
1, otherwise,
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we can extend g to a homomorphism ¢q : M - G L7 such that

1 tgh
1 1

n(t?) = 1 L n(te) = 1
to 1
to 1
to 1

For any m € M, assume that m = motQ(m)o‘gtS(m)o‘g, where mg € Mg,,. Define the map
t: M — GL7 X GL1
m > (11(m),t2(m)),
which is a group homomorphism. We claim that ¢ is an isomorphism between M and GL7 x GL.
Indeed, assume that ¢(m) = (I7,1), then t2(m) = 1. And then det(t1(m)) = tg1(m), which is equal
to det(I7) = 1. Hence, t1(m) = t9(mg) = I7. Since 1o is an isomorphism, we get that mg is the
identity of M. Hence m = mgta(m)®2ts(m)® is the identify of M. Therefore, ¢ is an isomorphism.

This completes the proof of the lemma. ([l

Remark 4.1.2. The inverse of ¢ can be described explicitly as follows: for g € GL7 write g =
g1 (‘171 Te ), with g1 € SL7, then

" H(g,b) = 151 (gr) a5 poz s~ 2g—3ag g,
Remark 4.1.3. The center of GE7 is the image of 2] + 3ay + 4oy + 6cr) + 5oy + oy + 3o + 20

Remark 4.1.4. Recall that there is a notion of duality on split algebraic groups (by means of
their root data) which underlies the definition of the L-group. By this duality, the isomorphism
t: M — GL7 x GL; induces a dual isomorphism ¢ : GL7 x GL1 — M.

Remark 4.1.5. For 1 <i <7 let e; denote the rational character of the standard maximal torus
of GL7 which maps a matrix to its i*® diagonal entry. Treat e; also as a rational character of
G L7 x G L1 which is trivial on the second factor and let eg denote projection onto the second factor,

so that eq,...,eg is a Z-basis for the lattice of rational characters of the standard maximal torus
of GL7 x GLy. Let €], ..., e be the dual basis for the lattice of cocharacters. Then we see at once
that
Vv * * Vv * * \2 * * Vv * * \2 * * \ * *
Q7 = €1~ €9, Qg = €2~ €3, Q5 = €3~ €y, Qg =€y ~E€s; Qg = €5~ €g; Q=66 ~€7,
Vo % * * * vV o_ *
gy =es +eg +er +eg, ag = —e]

4.2. Eisenstein series. Take 7 an irreducible cuspidal automorphic representation of GL7(A) and
x : A* - C* a Hecke character. Having fixed above an isomorpism ¢ : M — G L7 x GL1, we may
regard ™ ® x as an irreducible cuspidal automorphic representation of M (A). Restriction maps the
lattice X (M) of rational characters of M isomorphically onto a subgroup of the lattice X (7') of
rational characters of T. This sublattice is generated by the second and eighth fundamental weights
wo and wg. We denote their preimages in X (M) by @2 and @g. Then @3 extends to a generator
for the lattice of rational characters of G E7 itself. Abusing notation, we still denote this extension

by @s. Let P be the standard parabolic whose Levi is M. We consider the family of induced
GEr(A)
P(ﬁ;)
of Eisenstein series.

representations Ind (m®x)-|@2|®, s€C (normalized induction), and the corresponding space
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Lemma 4.2.1. The ratio of products of partial L-functions appearing in the constant term of these
Eisenstein series is

L3(s,m® x, A% x St) L% (25,7 ® x%wi, St x St)
LS(s+1,m® x,A% x St)L5(2s + 1,7 ® x2wir, St x St)

(4.2.2)

Proof. This is standard from the Gindikin-Karpalevic formula and the L-group formalism. The
Lie algebra of the unipotent radical of the parabolic PV is a direct sum of two irreducible M-
submodules. The highest weights correspond to the coroots a + oy + 2ay + 3ay) + 3a) +2a + oo,
and 2ay + 2y + 3oy + day + 3a) + 2] + o). We must view the corresponding coroots as weights
on the maximal torus of GL7(C) x GL1(C). In terms of the basis ej, ..., e§ these two cocharacters
are ef +ej +ei +el and ef +e} +ei +ef +el +ef +2e}, respectively. The highest weight of A3 is
e] +e5 +e3, and projection to the GL; factor is eg and determinant of the G L7 factor. The weight
e} +ey+el +ef +ek+ep is the highest weight of the A® representation, which can also be regarded
as the dual to the standard representation twisted by the determinant. O

Let wo = w[243154234565423143542765423143542654376542], which is the unique nontrivial
Weyl word which is reduced by the Weyl group of GL7 on both the left and the right. By [MW95]
I1.1.7] the constant term of the Eisenstein series applied to a section f of the induced space is
given by f+ M(wo).f, where M (wp) is the standard intertwining operator as in [MW95| I1.1.6].
By [MW95, IV.1.11], M (wo).f can have at most a simple pole at s = 1. By (3.1) and (3.5, ¢) of
[KS04], it follows that can have at most a simple pole at s = 1.

Since the standard L-functions of cuspidal representations of GL(n) are nonzero on the half plane
L5 (25, 7®xwx,St x St)

Re(s) > 1 (see [JS81) Theorem 5.3]) and are entire on the whole complex plane, T s Foxtu. Six80)

L3 (5,m®x,A%xSt)
» LS (s+1,m®x,A3xSt)
from (3.5, b) of [KS04] a pole of the intertwining operator in the half plane Re(s) > 1 must come
L3 (s,m®x,A3xSt)
LS (s+1,m®x,A3xSt) "

has no pole and no zero at s =1. So has at most a simple pole at s = 1. Moreover,

from

Proposition 4.2.3. If the Eisenstein series has a pole in the half plane Re(s) > 0, then the residual
representation is square integrable.

Proof. This is an easy application of the square integrability in [MW95] 1.4.11. O

According to Lemma 7.5 of [L76], the Eisenstein series can have a square integrable residue only
if T® xoAd(wy) 2 7® x. We investigate what this condition says explicitly about 7 and .

Lemma 4.2.4. There is a representative wg for wg such that the automorphism of GL7 x GLq
induced by Ad(wg) and our choice of isomorphism M — GL7 x GL; is

3 8
(g,a) = (tg_la_7 a—3)
det g (detg)

Proof. For any choice of representative, the Ad(wg) induces an automorphism of GL7 x GL; which
preserves the chosen torus and Borel. When such an automorphism is restricted to SL7 there are
two possibilities: either it is given by conjugation by an element of the torus of GL7 (in which case
we can adjust the representative 1 to make it trivial), or else it is given by g +; g~! composed
with conjugation by an element of the torus of GL7 (in which case we can adjust the representative
o to make it g ¢ g71).

By inspecting the action of wy on the fundamental weights, one can see that Ad(wg) maps
h(ty,...,tg) to

(mg 13 tetd tstd taty tatd tit? )
hl—, =, ==, —==, —, ——, — s ).
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If we push this through the isomorphism with GL7 x GL1 it becomes

t 2
s te l3ts
. ti1to
"o tats
e tato
te ta tsts tg
= 7t2 = t s
b Y gt t
tats % 2
ta 5
t1ta tzt8
t3 6 5
to t_8
t1 ty

We see that on the torus of SL7 (obtained by settlng ty = tg = 1) this agrees with g ~; g% In

general, it can be expressed as (t,t2) — (¢t~ ltg, = ) and tg can be expressed as O

3
detg
Corollary 4.2.5. If n is a character, we write n-m for the twist of © by nodet. Then for any 7, x
we have

7 ® x o Ad(tip) 2 (wr' X - 7) ® (wix®).
Corollary 4.2.6. If

T ® x o Ad(uwp) 27 ® X,

then there is a self—contragredlent cuspldal representation my with trivial central character, and a
character 7 such that 7 = n~'my and x = .

Proof. If x = w3 X then w3 = x™7, so x = (wxx?)73. Setting n = w-1x72, we have x = n* and
r =X 27l = . Then w;lx™ % = n~2%. If this is isomorphic to 7 then my = 7 ® n is self-
contragredient with trivial central character. O

Remark 4.2.7. L°(s,n'my ® %, A3 ® St) = L (s, w9, A3).

Remark 4.2.8. If a representation 7 of G L7 is self-contragredient, then LS (s,7,sym?) has a simple
pole at s = 1. Indeed, each self-contragredient representation of GL,, is of either orthogonal type
(L3 (s, m,sym?) has a pole) or symplectic type (L°(s,m, %) has a pole). When n is odd 7y must
be of orthogonal type, because L°(s,m,A2) has no poles in the odd case (see [JS90), [S8T, [K99)).

Corollary implies that a cuspidal representation whose twisted A% L-function has a pole
is simply a twist of a representation whose untwisted A3 L-function has a pole. Since there is no
essential loss of generality, we shall henceforth restrict our attention to untwisted A% L-function,
i.e., we shall assume that x is trivial. In this case we get the following simplification of Corollary
4.2.6]

Lemma 4.2.9. If L%(s,m, A%) has a pole, then 7 = - my where 7 is cubic, 7 is self-contragredient

with trivial central character and L° (s,m9,sym?) has a pole at s = 1.

Definition 4.2.10. Given an irreducible cuspidal automorphic representation m of GL7(A), we
say that 7 is of G9 type if it is self-contragredient, and LS(S,ﬂ', A3) has a pole at s = 1.

Remark 4.2.11. By [KS04, Theorem 1], if L9(s, 7, A%) has a pole at s = 1, then it is simple. By
Lemma, given an irreducible cuspidal automorphic representation m of GL7(A), if it is of Go
type, then the central character of 7 is trivial and Ls(s, 7,sym?) has a pole at s = 1.
Proposition 4.2.12. If 7 is of G2 type then the Eisenstein series has a simple pole at s = 1.

Proof. We've already explained that the Eisenstein series has the same poles as TS (5T in
Re(s) > 1.

The exterior cube L-function is holomorphic at 2 by [KS04, Lemma 5.1], so a pole at 1 will be
inherited by the ratio and hence the Eisenstein series. (|
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Definition 4.2.13. When 7 is of G5 type, we can see that the Eisenstein series above has a simple
pole at s = 1. Denote the residual representation by &;.

Remark 4.2.14. (1) It is possible for the Eisenstein series to have a pole at one even if
L%(s,m,A%) has no pole, namely, if L(s,m,A%) vanishes at s = 2. One expects that this
does not occur. For example, if Langlands functoriality holds, then L°(s, 7, A?) is simply
the standard L function of the A? lift of . This lift doesn’t need to be cuspidal, but if the
Ramanujan conjecture also holds, then both 7 and its lift will be tempered at every place,
so that the lift will be an isobaric sum of unitary cuspidal representations. In this case its
standard L function is holomorphic and nonvanishing in Re(s) > 1.

(2) For similar reasons, one expects that L°(s,, A3) will have no poles other than possibly at
0 and 1 with poles at 0 and 1 arising when the trivial character is an isobaric summand of
the A? lift.

(3) If 7 is of G type, then L¥(s,m,A%) must be nonvanishing at s = 2, since the intertwining
operator can have at most a simple pole.

(4) If 7 is not of G type but L(s, 7, A%) has a pole at s = 1, then we can still obtain a residual
representation & .

Lemma 4.2.15. If an irreducible automorphic representation = of GL7(A) is the weak functorial
lift of an irreducible automorphic representation o of Ga(A), then

(1) 7 is nearly equivalent to it’s contragredient 7,

(2) L3(s,m,A3) = L¥(s,m,sym?) L (s, ).

Proof. The embedding of G5 into GL7 factors through an embedding of the special orthogonal
group SO7 - G L7. It follows that if 7 is a weak functorial lift associated with this embedding, then
Ty 2 T, at every unramified place v.

Write I'y , for the irreducible representation of Go(C) with highest weight aw?z + bwg 2. (Here
wf2 , wg; 2 are the fundamental weights of G2(C).) The seven-dimensional “standard” representation
of GQ(C) is Fl,O- Then /\3F170 = F070®F170@F270, while sym2 Fl,() = 1—‘0’0@1—\2,0, SO /\2F170 = sym2 FLoEB
I'1 0. It follows that for 7 the weak functorial lift of o we have

L% (s,m,A%) = L%(s,0,A%T1 ) = L®(s,0,s5ym*T'1 o) L° (s,0,T10) = L (s, 7, sym?) L (s, 7).
O

Lemma 4.2.16. If an irreducible cuspidal representation m of GL7(A) is the weak functorial lift
of an irreducible cuspidal representation o of G2(A), then 7 is self-contragredient and L (s, 7, A%)
has a simple pole at s =1.

Proof. From part (1) of lemma [4.2.15] and strong multiplicity one for GLy, it follows that 7 = 7.
From part (2) of lemma [4.2.15 we have
L5 (s,m,A%) = LS (s, 7, sym?) L5 (s, 7).
Now, L®(s, ) is holomorphic and nonvanishing in Re(s) > 1, while L (s, w,sym?) has a simple pole
at s = 1, because 7 is self-contragredient. It follows that L° (s,m,A%) has a simple pole at s =1. [

5. THE NILPOTENT ORBIT Ag OF Exr

In this section we consider the rational orbit structure for the nilpotent orbit of E7 whose Bala-
Carter label is Ag and whose weighted Dynkin diagram is

0 — 0 — 2 — 0 — 2 — 0
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We will show that this nilpotent orbit consists of a single rational orbit and the residual represen-
tation &£, has a nonzero generalized Whittaker-Fourier coefficient attached to it.

First, we introduce some notation related to nilpotent orbits. One of the most convenient ways
to specify a nilpotent orbit O in a reductive Lie algebra is by a weighted Dynkin diagram. This
method of specifying nilpotent elements relies on two facts:

(1) Orbits of nilpotent elements are in bijection with orbits of sla-triples [C93, Theorem 5.5.11].

(2) Once a split maximal torus 7" and a base A of simple roots (relative to 7') have been fixed,
each sly-triple is conjugate to a triple (v,s,u) such that s € t, and a(s) > 0 for all o € A.
(Since each torus is contained in a maximal one, all maximal tori are conjugate, and every
weight is in the Weyl orbit of a dominant one.)

Definition 5.0.1. The semisimple element s = sp as above is called the standard semisimple
element attached to the orbit O in question. Let Pp = MoUp be the parabolic subgroup Ps = M Us
defined in Section with Levi subgroup Mo = M and unipotent radical Up = Us.

Each element s of t determines a weighted Dynkin diagram

a1(s) as(s) aa(s) as(s) ag(s) ar(s)
as(s)

The weighted Dynkin diagram of a nilpotent orbit is then the weighted Dynkin diagram of its
standard semisimple element.

The map from t to weighted Dynkin diagrams is not injective, but each fiber has a unique element
which is contained in the span of the coroots of G. For any nilpotent orbit, the standard semisimple
element is contained in this subspace of t. In addition, if the weights of the Dynkin diagram are
integral, then the diagram canonically determines a homomorphism from the root lattice into Z,
i.e., a coweight. Whenever convenient, we will use integrally weighted Dynkin diagrams to specify
coweights, nilpotent orbits, and elements of t.

To study the nilpotent orbit Ag, we consider the parabolic subgroup @ = LV whose Levi, L
contains the root subgroups attached to a4 and ag and whose unipotent radical, V' contains the
root subgroups attached to the other simple roots. The derived group of L is isomorphic to
SLgxSLoxSLyx SLo, and we can map L into GL3g x GLoy x GLo x GLy so that the induced map
on Lie algebras maps Y5 tiHo, + ¥iz12357TiXa; T YiX-a, tO

tg ~la " 1;3t z to—ty a9 t5 - tG x5 t7 - tg xT7

vs P tl "\ oy )\ w5 ta-ts5)7\ yr te—t7
Y1 -1

The image is

(5.0.2) {(g91,92,93,91) € GL3 x GLy x GLy x GLy : det g1 = det g2 }.

Denote the isomorphism from L to by ¢1,. Denote the projection of GL3 x GLy x GLy x G Lo
onto the i factor by p; for i = 1,2,3,4. We write D for the differential, i.e., the induced map on
Lie algebras. Thus, for example Dpy o Dty maps [ — gl,.

The space of characters of V is identified with the sum of the root spaces g_, attached to roots
« such that o = ZZ:1 c;a; and 2¢q + 2¢g = 2. Clearly, this is the direct sum of two subspaces

vi= D a and b= D g
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Lemma 5.0.3. Write GSO, for the usual split similitude orthogonal group in four variables. In
other words, let

Jy = GSO4:={geGLy:gJi'g=Xg)Js, \(g) e GL1}.

1
There is an surjective homomorphism of algebraic groups pr: GLs x GLy - GSOy4

al b an _b2

1
r aq b1 a9 b2 l1a dl a9 bQ
b C1 d1 ’ (&) d2 - al —bl —C2 dQ ’

—C1 d1 C2 d2
which satisfies A\(pr(g1,92)) = det g1 det go.

Proof. Write Ej;; for the 2 x 2 matrix with a 1 at the 4,j entry and zeros elsewhere. Then pr
sends (g1,92) to the matrix of the linear operator X + g1 X’go relative to the ordered basis

(Ev1,E21,-FE12,E22) of Matayse. Notice that the coordinate vector for the matrix (CCL Z) rel-

ative to this ordered basis is ! [a b ¢ d] . Thus the quadratic form determined by the matrix Jy
corresponds to twice the determinant form on Matoys, from which it easily follows that GLo x G Lo
maps into GSOy (which can also be checked by hand on the matrices above). The formula for Aopr
also follows easily.

It remains to show that the map is surjective. It suffices to show that the image contains all four
root subgroups and the full torus, and this is straightforward. O

Lemma 5.0.4. There is an isomorphism of vector groups Ly P 0y = Matoxo which is compatible
with ¢, in the sense that

to; (AA(e7' (91,92, 93,94))-X) = g3tz (X )gy -

Proof. We consider the action of SL3 x SLy x SLy x SLy on v;, and easily see that the copies of
S Lo attached to the roots as and a7 act nontrivially, while the copy of S Lo attached to ao and the
S L3 factor act trivially. There is a unique four-dimensional representation of SLo x SLs on which
both factors act trivially. Hence, the given action on Matays is one realization of it, while inclusion
into SL3y x SLy x SLy x SLoy at the third and fourth positions composed with Ad OLzl is another.

To construct a specific isomorphism we start by matching our preferred highest weight vectors and
generating the correspondence on the complete bases of weight vectors. Thus, we map X_ggo0010 (a
highest weight vector in v3) to Ej2 (a highest weight vector in Matays). Then, since the differential
of ¢z, maps X_gooo100 to (Eo1,0) It follows that ad(X_0000100)X-0000010- must be mapped to Eo; -
Ey9 = Ey 5. Of course ad(X_g000100)X-0000010 is a scalar multiple of X _popo110. The scalar depends
on the structure constants for our realization (or equivalently of the corresponding Chevalley basis).
We fix structure constants as in Gilkey and Seitz, so structure constant is —1. Continuing in this
fashion, we computeﬂ

—Z0000011 0000010
Z0000111 —Z0000110

Lo (20000010 X -0000010+ 20000011 X -0000011 +Z0000110X ~0000011 +Z0000111 X ~0000111) = (

1We remark that the scalars are not important for the present argument — only the correspondence between roots
and entries is really needed.
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Vv Vv Vv
What remains is to check that the action of tj“ tgG tgs is the same on both sides. And this is
easy, since

-1 t 1

~1 -1 8 =

tg —T0000011 0000010 | [tg _ [ ~ 270000011 t% ‘0000010
ty 20000111  —Z0000110 te t4t3T0000111 —t—gxoooono

oV oY oV —-0000011 ¥ oY aV —-0000010
- (t44t6°t88 20000011 (t44t66t88) 20000010
T A 0000110 ( ;0 joeg o
4 lg lg Z0000111 4 lg lg ) 20000110

O

Lemma 5.0.5. There is an isomorphism of vector groups Ly * 07 > Matzua which is compatible
with ¢, in the sense that

b (Ad(e7 (91,92, 93, 94))-X) = g105-(X) pr(g2, 93) "

Proof. This is proved by the same method. We record only the essential information. The corre-
spondence between roots a such that X, lies in v] and entries in an element of Mats.4 is succinctly
expressed by the following matrix:

-0101100 -0001100 -0101000 -0001000
-0111100 -0011100 -0111000 -0011000
-1111100 -1011100 -1111000 -1011000

\% 2 \
In the next matrix we record the image of t?f tgG tgg under these twelve roots:
te 11
e % ou o=
teta tg 1 %
teta te 1 %

Each entry matches exactly the effect of multiplying by diag(¢;', 1, 1) on the left and diag(tst4, tg, 1, t;*)
on the right. Finally, one has to check that diag(tgts, te, 1, t;7)™' =pr ((tll . ) ,(tgl b )) O

Next we compute the rational orbit structure for the action of GL3 x GSO4 on Matsxg by
(g1,92).Y = 1Y g3". Write Mat33 for the space of 3x 3 symmetric matrices. The group GL3x GLy
acts by (g,a).Z = agZ'g. We have a map Matgxs -~ Maty.y given by Y ~ Y JiY. Clearly

(1Y g,") it (1Y 95") = Mgz DY Ju'Y.

Thus Y; and Y3 lie in the same G L3 x GSOy-orbit if and only if Y;'Y; lies in the same G L3 x GL1-
orbit as Y5'Y5. It is clear that Rank Y and Rank Y'Y are both invariants of a GL3xGSO4-orbit, and
that the latter is bounded by the former. It is relatively easy to show that {Y € Matsyx4 : RankY =
i,Rank Y'Y = j} is nonempty and a single GL3 x GSOy-orbit for (i,5) = (0,0),(1,0),(1,1),(2,0),
and (2,1). Also, one can easily find a matrix Y of rank 2 such that Y'Y = diag(a, b,0) for any a, b.

Lemma 5.0.6. Take F' a field and Y € Mats.4(F') rank three. Then there exists g € GL3 such that
(gY'Yg) is of the form
1

1

Proof. Write V for the span of the rows of Y. We choose a suitable basis for V such that the
quadratic form attached to Jy, when written in terms of the new basis, has a matrix of the specified
form.
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We may write Matixq = W1 & Wy where Wy, W are two-dimensional isotropic subspaces. Since
dim V' > dim W there exist nontrivial elements of v which project to 0 inWj. That is V n Wy £ 0.
Likewise V. n Wy # 0. Select v1 e VnW; and vg € V n Wh.

First suppose that v; is orthogonal to vs. Then the span of v; and vy is a maximal isotropic
subspace Wj. Select v3 in the orthogonal complement of W7 and then replace v, v by a new basis
v, v for W such that v5Jyv3 =0 and v]Jyvs = 1. Then the basis v, v}, v3 fits the bill.

Now suppose that v is not orthogonal to vs, and let v be any element of V' which is linearly
independent of v; and ve. Then there exist a, b such that v3 —bvy — cvs is orthogonal to both v; and
v, and the basis v, v, vs fits the bill. O

Corollary 5.0.7.
{Y € Mat3x4(F) : Rank Y'Y = 3}
is a Zariski open GL3(F') x GSO4(F') orbit over any field F.

Proof. The set is clearly Zariski open. We have shown that each orbit with Rank Y'Y = 3 contains

an element with
1

Y'v=| a
1
If the rank is 3 then a is nonzero and we can scale by a™! in GL; and then act by diag(a,1,1) in
GL3 to get (1 ! ) , which completes the proof that our set is a single orbit. U

Corollary 5.0.8. The nilpotent orbit Ag consists of a single rational orbit.

Proof. We know that each rational orbit in Ag has a representative that lies in v (F) @ v5 (F'), and
that two elements of this space Lie in the same G(F’) orbit if and only if they lie in the same L(F)-
orbit. We can identify v} (F') @ v5 (F') with Mats.a(F') & Matoxa(F'). It is clear that the action of
L(F) preserves the Zariski open subset {(Y, X) € Matg4(F)xMatoyo(F) : Rank Y'Y = 3, Rank X =
2}. We show that this set is a single L(F") orbit. Take (Y7, X7) and (Y3, X5) two elements. Recall
that L is identified with {(g1,92,93,94) € GL3 x GLy x GLgy x GLy : det g1 = det g2}, and note that
(91,92,93,94) ~ (g1,pr(g2,93)) gives a surjective mapping onto GL3 x GSOy4. Thus, there exists
ggl, 92,§3) such that Ad(gl, g2, 393, IQ).(Yl, Xl) = (}/2, Xé) Then Ad(]g, IQ, IQ, Xil(Xé))(Yg, Xé) =

Ya, Xs). 0

It will be convenient to select a representative for our open orbit. A representative in Matgyxs x Matoxo

would be
1
1

A convenient representative in v by would be X_p101100 + X-0111000 + X-0011100 + X-1011000 +
X _0000110 + X-0000011- This will correspond to the above pair of matrices up to some signs. In par-
ticular it will be an element of the correct orbit. Let wg = w[2,4,3,1,5,4,2,3,4,6,5,4,2,3,7,6,5,4].
Then there is a representative g for wg such that

Ad(wo).X 0101100 + X-0111000 + X-0011100 + X-1011000 + X—0000110 + X—-0000011

=X oyt Xoar + Xoag + Xy + Xogg + Xoag-
This nilpotent element corresponds to the regular orbit of the Ag Levi. (We remark that if a
standard representative g is used then
Ad(4io)-X 0101100 + X-0111000 + X 0011100 + X 1011000 + X-0000110 + X -0000011

=X g, +Xo, —Xog, + Xogy + X — Xy
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For the sake of completeness, we record our findings regarding the rational orbit decomposition
of Matsyg.

Proposition 5.0.9. The set
{Y € Mat3yxy : RankY =i, Rank Y J;'Y = 5}

is nonempty if and only if 0 < j <i<2or¢=3and 2 <j < 3. It is a single GL3 x GSO,4 orbit
unless ¢ = j = 2, in which case it is a union of orbits which are in one-to-one correspondence with
the action of GLy x GL; on Mats)y .

Theorem 5.0.10. &, has a nonzero generalized Fourier coefficient attached to the rational nilpotent
orbit labeled by Ag.

Proof. Take u = X_, + X_o, + X_0; + X_a; + X_as + X_ay and s’ a rational semisimple element
which acts by 2 on each simple root space. Then Fy , maps an automorphic form to the G'L7 non-
degenerate Whittaker-Fourier integral of its constant term along the Ag parabolic. It is clear that
the residual representation supports this coefficient. Therefore, by Theorem [3.1.2] it also supports
Fsu, where s is a neutral element for w. ]

Remark 5.0.11. We expect that in fact n*(&;) = {Ag}. Indeed, we expect that if 7 is of G type
then at each unramified place v, m, is attached to a semisimple conjugacy class of GL7(C) which
intersects the subgroup G2(C). By Corollary Remark it follows from the discussion
in below that if there is even one unramified finite place where this condition holds, then
n"(Ex) = {As}-

6. DESCENT FOURIER COEFFICIENTS AND DESCENT MODULES

From the table on pp. 403-04 of [C93], we learn that there are two conjugacy classes of sly-tiples
in GE7 such that the stabilizer is of type G2. They are known as A{ and Aj +3A;. For the sake of
completeness, we consider Fourier coefficients and associated descent modules attached to both of
them.

6.1. A. The weighted Dykin diagram of this orbit is 20 8 02 2. Let s be the standard
semisimple element attached to the orbit. Then the Levi subgroup whose Lie algebra is g is the
semidirect product of a derived group isomorphic to Sping and a four-dimensional torus, while the
space g_o is the direct sum of two nonisomorphic irreducible eight-dimensional representations of
this Levi and one one-dimensional representation. On each eight-dimensional representation we
have a Sping-invariant quadratic form, which is unique up to scalar (cf. [FH91], exercise 20.38).
The Levi acts on gigg with an open orbit. It is not hard to check that in this case the open
orbit consists of triples such that each eight-dimensional component is anisotropic relative to the
Sping-invariant form and the one-dimensional component is nonzero (cf. [JN05]). The stabilizer of
any point in this open orbit is the product of the center of GFE; and a group isomorphic to Gs. It’s

not hard to check that

fo == X_0000001 + X-1111000 + X-1011100 + X-0101110 + X—-0011110
is in this open orbit. The corresponding copy of g is generated by

X 100010005 X 0100000 = X 20010000 + X+0000100-

Recall that PA’5’ =M AgU Ar = P = M U, is the parabolic subgroup defined as in Section where
s is the standard semisimple element (cf. Definition [5.0.1) attached to AZ, M Ay = M; is the Levi
subgroup, and U v=Usis the unipotent radical. Then Uay contains Uy, if and only if ¢ = 2,3,4, 5.

Let ¢(]}’Ag be the character of UAg(F)\UAg(A) attached to fo.
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Definition 6.1.1. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G4 type (as in Definition [4.2.10]). Let &; be the residual representation as in Definition [4.2.13

We define the corresponding descent module D, = Df 5 to be

(UA,,,¢50 ,,)
. 57U .
Dr:=3¢p 5 GQ(A).QOEEW ,
Qe
AU A . Jo
where g\ C ) (g e [ p(ug)ell (u)du,g e GER(A).
Uy (F)\U 4z (A) 5
: - . .. 00 00O00O0 .
6.2. Aa +3A;. The weighted Dykin diagram of this orbit is 9 . Recall that M is

the standard Levi subgroup isomorphic to GL7 x GL1, P is the standard parabolic which contains
it, and U is the unipotent radical of P. Then P = MU = Pa,+34, = M a,+34,UA,+34, as in Definition

M = MA2+3A17 U = UA2+3A1'
Let e = X_1122100 + X_1112110 + X_1111111 + X_0112210 + X_-0112111 and

UrP (u) = ¥ (u1122100 + U1112110 + 1111111 + U0112210 + U0112111)

be the corresponding character of U(F)\U(A). We write u € U as [], a(uq) with the roots taken
in some fixed order. The coordinate u, is independent of the choice of order provided the second
coordinate of « is 1.

Lemma 6.2.1. The stabilizer of wf}) in M is the product of the center and a group isomorphic to

Gs.
Proof. We can identify the space of characters of U(F)\U(A) with the space

ug_l) = P u.
(,mmy)=-1
As representation of gl;, this representation is isomorphic to the exterior cube representation of
GL7. It is well known (cf. pp. 356-57 of [FH91]) that GL7 acts on this representation with an open
orbit, and that the stabilizer of any point in this open orbit is of type Ga. Using SageMath, with
adjoint matrices from GAP, we verified that 17} is fixed by

21000000 (@) 0001100 (@) 20000100 (24) T0001000 (@) Z0000001 (~ ),
20010000 (b) Zooo0010(b), 70010000 () _0000010(D),

2-1000000(@) 0001100 (@”) 0000100 (@) 20001000 (20) 0000001 (~a).-
These subgroups generate a split subgroup of GL7 of type Ga. The stabilizer also contains the
center of GE7. It remains to prove that the stabilizer is no larger. For this purpose it suffices to
prove that our character corresponds to a point in the open orbit. On p. 357 of [FH91| a specific
point in the open orbit is written down; it is a sum of five weight vectors. We easily check that
these five weights correspond to the five roots which appear in ¢;7. Over an algebraically closed
field, the torus acts transitively on the set of linear combinations of these five weight vectors such
that all five coefficients are nonzero. Therefore the point corresponding to wg’ is also in the open
orbit. ([l

We remark that the embedding of G2 into GL7 obtained in this way agrees with the one from
[FHO1].

It is convenient to know that the roots in supp(¢;7) can be simultaneously conjugated to simple
roots. Let Ry = {1122100,1112110,1111111,0112210,0112111}, and wg = w[423546542314376542].
Then we - Ry = {1, a2, a3, a5, a7}
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Definition 6.2.2. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G4 type (as in Definition [4.2.10]). Let &; be the residual representation as in Definition [4.2.13
We define the corresponding descent module D, = Dﬁ2+3A1 to be

Dy (U], o),

where UV (g) = [ o(ug)d (u) du, g € GEr(A).
UENU(A)

Remark 6.2.3. The embedding of G2 which comes from the orbit A + 3A; is closely related to
the appearance of A% in the constant term. Indeed, L (s,m,7) appears in the constant term of an
Eisenstein series of a group G if and only if  appears in the action of the relevant Levi of G on
the nilpotent radical of the Lie algebra of the corresponding parabolic. That is, r appears equipped
with a realization as a space of nilpotent elements. In fact, the realization of A2 is precisely as the
space g5 where s is the standard semisimple element attached to As +3A;. That is, the embedding
of G2(C) into GE7(C) on the L-group side as the stabilizer of a point in the representation obtained
from an L-function, and the embedding of G2 into GE; as the stabilizer of a Fourier coefficient
are essentially the same embedding. This phenomenon does not occur in the classical situation of
[GRS11], as it requires self-contragredientity of both the group denoted by H and the one denoted
by A in our discussion of the general set-up in the introduction.

In the introduction we remarked on prior work of Ginzburg where H = G2 and A = F}, as well
as prior work of Ginzburg-Hundley where H = Fy and A = Eg, where the descent modules fail to
be cuspidal. It is noteworthy that in both of those cases, H and A are self-contragredient and the
embedding of H into A obtained from the L-function is the only embedding of H into A.

7. THE Al CASE
Recall from Definition that in the AY case the descent module D is defined by applying
the Fourier coefficient (U A 11}5(;") from Section [6.1| to the residual representation &, where 7 is
5

an irreducible cuspidal automorphic representation of GL7(A) which is of G2 type. In this section,
we prove the following theorem.

Theorem 7.0.1. Assume that 7 is an irreducible cuspidal automorphic representation of GL7(A)
which is of Gy type, and Dy is defined as in Definition Then

(1) Dy is generic.

(2) Suppose that there exists a finite place vy such that m,, is a principal series representation
of GL7(F,,) which is attached to a semisimple conjugacy class of GL7(C), and intersects
the subgroup G2(C). Then D; is cuspidal.

(3) Suppose that for almost all finite places v, , is a principal series representation of GL7(F,)
which is attached to a semisimple conjugacy class of GL7(C), and intersects the subgroup
G2(C). Then 7 is a weak functorial lift of each irreducible summand of D;.

7.1. Genericity of the A’5' descent module. The purpose of this section is to prove that the
descent module D, is generic. The proof can be explained using the language of “unipotent periods”
introduced in [HS16]. Let U, G2 he the standard maximal unipotent subgroup of Gs. Let /&2 be

max

max* max?

period on C®(GE-(F)\GEr(A)). Explicitly, it maps o € C(GE-(F)\GE7(A)) to

90(U1u29)¢5(;,, (u1)p%2 (ug) duy dus.
5
Us (F)\Umx (4) UUD\U(A)

any character of UG2 . Then the composite (U G2 ¢G2) o (U Ag,¢5‘1‘”) makes sense as a unipotent
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In our discussion of unipotent periods it is helpful to note that

S<—>HUa

is a bijection
{Scd:a,feS,a+Becdu{0} = a+peS} <« {T -stable unipotent subgroups of GEr}.

Thus, it is often convenient to specify a unipotent subgroup V' of GE; by identifying ®(V,T). We
adopt a convenient abuse of notation. Let V be a T-stable unipotent subgroup of GE; and let ¢y
be a character of it. We shall call {av € ®(V,T) : ¢y, (a) # 1} the “support” of 1y and denote it

supp ¢y . We denote by (V1) or ga(v”‘/"/) the following attached unipotent period
Yy (v)dv, g € GE7(A).
oo 00V (@), g < GEr(A)

Given two unipotent periods (V, 4y ) and (U,vy), if ¢(V:¥v) is left-invariant by U(F), then we
denote the composed period by (U, ¢y ) o (V, 4y ).

We recall the concept of equivalence of unipotent periods. Denote by P;|Py if P2 vanishes
identically on any automorphic representation on which P; vanishes identically. Two periods P
and Py are said to be equivalent (denoted Py ~ Py) if P1[P2 and Pa|P;.

In the study of Fourier coefficients of automorphic forms, in particular concerning the global
nonvanishing property, a technical lemma from [GRS11] has been very useful in the theory. We
recall it as follows. Let G be any connected reductive group defined over F'. Let C' be an F-subgroup
of a maximal unipotent subgroup of G, and let ¥¢ be a non-trivial character of [C'] = C(F)\C(A).
X,Y are two unipotent F-subgroups, satisfying the following conditions:

(1) X and Y normalize C;

(2) X nC and Y nC are normal in X and Y, respectively, (X n C)\X and (Y nC)\Y are
abelian;

) X(A) and Y (A) preserve 9¢;

) ¢ is trivial on (X nC)(A) and (Y nC)(A);

) [X,¥]cC;

) there is a non-degenerate pairing (X n C)(A)\X(A) x (Y nC)(A)\Y(A) — C*, given
by (z,y) = Yo([z,y]), which is multiplicative in each coordinate, and identifies (Y n
C)(F)\Y (F) with the dual of X(F)(X nC)(A)\X(A), and (X nC)(F)\X(F) with the
dual of Y(F)(Y nC)(A)\Y (A).

Let B = CX and D = CY, and extend ¢ trivially to characters of [B] = B(F)\B(A) and

[D] = D(F)\D(A), which will be denoted by 15 and ¥ p respectively. When there is no confusion,

we will denote both ¥p and ¥p by ¥¢.

Lemma 7.1.1 (Lemma 7.1, and Corollary 7.1 [GRSII]). Assume that (C,v¢¢, X,Y") satisfies all
the above conditions. Let f be an automorphic function of uniformly moderate growth on G(A).
Then

f[B] flvg)vp(v)dv = [(XmC)(A)\X(A) [[D] fluzg)¥p(u)dude,¥Yge G(A).

The right hand side of the the above equality is convergent in the sense

uzg)p(u)du|dr < oo,
[<Xm0)<A>\X<A)|f[D]f (uzg)yp(u)de

and this convergence is uniform as g varies in compact subsets of G(A). Moreover (B,vp) ~

(Da@/)D)'
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We consider the unipotent period (U 1, 1/1(%1) where U is the T-stable unipotent group attached to
the set of positive roots whose complement is {1011000, 0001110, 1010000, 0000110, 1000000, 0000010} .
Also 95 (1) = (10000001 + 1111000 +U1011100 + U0101110 +U0011110 + A1 Uary + AUy + A3l +A4TUa, ). For
a=(ay,as,a3,a4) € F*, we define a character w?]% of US2 by wiaz (u) = Y(asug+(a1—az+as)uq).

max
max max

Lemma 7.1.2. The period (Ul, w%l) is equivalent to the composed period (Uggx, zpi% )O(UAg, @b{}’A”) .
max 5

Proof. The proof consists of three applications of the “exchange lemma”, Lemma[7.1.1] Each time,
the group X is a product of two commuting root subgroups U,,,U,, of GE7, and there are three
roots [, B2, 83 of GE7 and a root § of Go such that go n @?:1 ug, = us. For the group ¥ we may
use any complement to Us in Ug, Ug,Ug,. The roots which determine the groups X and Y in the
successive applications of Lemma [7.1.1] are given in the table below.

X Y 0
1000000, 0000010 | 0111000,0101100,0011100 | 2c + 3
1010000, 0000110 | 0101000,0011000,0001100 | o+ 3
1011000, 0001110 | 0100000, 0010000, 0000100 o

Checking conditions (1) to (6) for Lemma is similar to the proof of Lemma

Note that the character ¢%1 is attached to
fg = fO + alX—ag + (ZQX_a3 + CL3X_O[5 + a4X_a4.

Lemma 7.1.3. (1) Let X be a nilpotent element of e7. Then X is in the closure of Ag if and
only if ad(X) = 0. In this case ad(X)' is also 0.
(2) Let X be in the closure of Ag. Then X is in Ag itself if and only if ad(X)'? # 0.

Proof. We inspect the rank sequences for all nilpotent orbits in F7, obtained from GAP. (|

Lemma 7.1.4. (1) For a in general position f, is in the orbit E7(as4).

(2) The orbit of f, is in the closure of Ag if and only if at least one of the following conditions
holds:
(a) a4 =0;
(b) a3 =0 and ay = ay;
(¢) a1 =agci(c1 +2) and ag = azci (e + 1) for some ¢.

(3) If ag =0, or, a3 =0 and a; = ag, then the orbit of f, is strictly less than Ag.

(4) If a1 = agcr(e1 +2) and ag = azci(c; + 1), then f, is in Ag if and only if a4 and a; — az + a3
are both nonzero, i.e., the character wQGQ is generic.

max

)14 —

Proof. Using GAP and SageMath, we compute that for a in general position, Rankad(f,
1,Rankad(f,)'® = 2, Rankad(f,)'? = 4. It follows that for a in general position, f, is an element of
the orbit F7(as). An element f of e7 lies in the closure of Ag if and only if ad(f)'3 = 0. It lies in
Ag itself, if and only if Rankad(f)'? = 3. Further, Rank ad(f,)'* = 0 if and only if a4 = 0 or

(715) (al—a2)2+a3(a1—2a2) =0.

If a4 =0, then Rank aud(fg)11 =0, and f, is in an orbit which is less than Ag. If a3 = 0 and a3 = a1,
the same is true. ,
If az # 0 then we may let by = a3 —ag, and (7.1.5)) becomes by —ag = —%. Then letting ¢; = &, this

as’
becomes as = ciag + C%a3. Also a1 = cias + as = 2c1a3 + C%agg. We may compute ad(f,), with a1, as
defined by these formulas, using SageMath. We find that if as # 0 then Rankad(f,)'? is either 3
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or zero, and it is 3 if and only if a3, a4 and ¢; + 1 are all nonzero. Further, when a1, as are defined
by these formulas, we have a1 —as + a3 = (¢1 + 1)as. From this we conclude that for any a such that
fa € Ag, the character wic"? is generic. g

max

Remark 7.1.6. Note that the character wQGQ is trivial if and only if a4 = a1 — a2 + ag = 0. We
found that in this case f, is always in the orbnizxAg’ .
Lemma 7.1.7. Let Uy be the T-stable unipotent subgroup such that
®(T,Uy) =® \ {0000100,0000110,0001100,0010000,0011000, 1010000},
and Ll)%z :Us(A) - C* the character of Us(F')\U2(A) given by

a
Yy, (u) = 9 (0000111 +0101100+%0001110+U0111000 +11011000+A3U0000010 +@A4U0011100+@1U0100000+A2U1000000) -

Let * denote entrywise multiplication in F*: (c1, 2, c3,c4)*(a1, a2, a3, a4) = (cra1, caas, c3a3, c4a4).
Then there exists ¢ = (cy, ¢, ¢3,¢4) € {£1}* such that (U1,¢%1) ~ (Ug,@b[gj;g) for all a € F*.

Proof. Conjugate by a suitable representative of w[5631]. For any representative, w[5631], we have
W[5631]z4 (r)w[5631]7! = Ty[5631]a (Ci5631],a7), fOr some constants c[5631], Which depends on a,
the choice of representative, w[5631], and the structure constants of the Chevalley basis. Moreover,
there exist representatives such that c;[5631],a € {£1} for all a. Since the five roots from the original
A{ character can be simultaneously conjugated to simple roots, it follows that we can adjust our
representative by an element of the torus to make these five coefficients one. O

The character wi is attached to Ad(w[5631]) feua, which is, of course, in the same orbit as fe«q.
We have seen in Lemma [7.1.4] that if this orbit is greater than or equal to Ag, then 2/)(9;52 will be

max

a generic character of Uggx. But the set of such characters is permuted transitively by the torus of

G9. Hence, all such characters are equivalent. That is (Ug, 1/1%2) ~ (Ug, w%z) whenever the nilpotent
elements attached to 1/)%2 and wQUQ are both attached to orbits that are greater than or equal to Ag.

Lemma 7.1.8. Let U3 be the unipotent group such that T-stable unipotent subgroup such that
O(T,Uz) = * ~ {0000001,0000100,0001000,0001100,0010000,0011000}, and let 1/;%3 :Us(A) - C*

. a
be the character given by 1%3 (u) =% (uoo01110 + 0101100 + L0000111 + U0111000 + %1010000 + A3U0000011 +
. d
a4sup011100 + A1U0101000 + aguloooooo). Then there exists C_l € {:I:l}4 such that (Ug,w%z) ~ (U3,1/Jﬁzg)
for all a € F4.

Proof. Exchange a7 for 0000110 and «y4 for 1010000, applying Lemma [7.1.1] and then conjugate
by a suitable representative for w[47]. 0

Lemma 7.1.9. Let Us be the unipotent subgroup attached to Ev(a4). Thus Uy, is in Us for i = 1,4
and 7. Let Uy be the subgroup of Us defined by the condition u,, = 0. And ¢%4 be the character of
this group defined by the same formula as w%g. Then (Ug, w%g) ~ (U4,w%4) .

Proof. We exchange 0100000 for 0011000, 0000010 for 0001100, and then 0000110 for 0000001,
applying Lemma |7.1.1 ]
Proposition 7.1.10. For ¢ € F* and b € F, let 1/)%’: be the character given by w%’f(umm (r)) =
w%4 (uw)1p(br), for u € Uy(A) and r € A. Then an automorphic representation supports the period

(U4,¢%4) if and only if it supports (U5,¢%’:) for some b.

Proof. Given an automorphic form ¢ we perform Fourier expansion of (p(U4’¢54) along the one-

dimensional unipotent group Uy, (F)\Uq, (A). O
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Let M{s 356 be the standard Levi subgroup of GE7 which contains Uy, if and only if i = 2,3, 5,
or 6. (Thus, My 356y is the standard Levi factor of a standard parabolic whose unipotent radical
is the group Us.)

Proposition 7.1.11. Let y, = X _oo01110+X 0101100 +X 0000111 +X 0111000 +X -1010000 +@3X 0000011 *+

L. . . 0

a4 X _0011100 + @1 X 0101000 + @2X _1000000, Which is the nilpotent element associated to w%4 and wa .
, . . .

Let e = X_1010000 + X-0000011 + X-0111000 + X-0101100 + X 0011100 + X—0001110- If ¥4 is in the orbit Ag

then there exists m in My, 356 such that Ad(m).y, = ej. In particular, if w[ej‘; is the character of
Us(A) attached to e, then the periods (U5,¢%’50) and (U5,1/Jf]°5) are equivalent.

Proof. Computations that are very similar to those done in the proof of Lemma show that y,
is in Ag if and only if a4,a3 # 0, a1 = 2c1a3 + c%ag,ag = —(c%ag +crag), with ¢ # —1. Let

u1 (b1, b2, b3, b4, b5) = 20100000(b1) 20010000 (b2) 0000100 (b3) 0000010 (b4) Z0000110 (b5 ),

11 (b1, b2, b3,b4,b5) = 20100000 (b1)Z-0010000(b2) Z-0000100 (b3 ) Z—-0000010 (b4 ) Z—-0000110(b5)-
2 2 2 9
Then g (asascy, —(age] + ager), cras, —azascy, a5a4cy) maps y, to
X_0001110 + X-0101100 + X-0000111 + X-0111000 + X-1010000 + (@3 + @3¢1) X _0000011 + G4X_0011100-

Then acting on this by

1 1 1 1 1
! T T sy T T
! (2(13(14(01 + 1) 2a3((:1 + 1) a3(01 + 1) 2a3a4(01 + 1) 40,%(14(61 + 1)2)
produces

X 0001110 + X-0101100 + X-0111000 + X-1010000 + (@3 + @3¢1) X _0000011 + @4X_0011100-

Then acting by a suitable torus element produces ef. O

Lemma 7.1.12. Let w3 = w[24315423465423765]. Then there is a representative ws for ws in
GE7(F) such that wsel; = X_q, + X_gq + X_a, + X_ay + X + Xoar-

Proof. One may check (using LiE, for example) that w3 maps the six roots which appear in the
expression for ef, to the six negative simple roots in the GL7 subgroup. It follows that the identity
holds up to nonzero scalars for any representative w[24315423465423765]. We may then adjust by

an element of T'(F) to make all the scalars one. O
20 2 0 0 2 ..
Remark 7.1.13. Let s = 0 be the standard semisimple element attached to the

orbit Br(as). Then (Us, ¢ ) = Fi .

4222222

Lemma 7.1.14. Let s’ = w3". 9 . Then Fy o (€x) # 0.

Proof. Let eg = wze) = X_q, + Xoqs + Xoay + Xoas + Xoqg + Xoq, and s” = 2 2 3 2 2 2. Then
as in the proof of Theorem Fsr e, maps an automorphic form to the GL7 non-degenerate
Whittaker-Fourier integral of its constant term along the Ag parabolic. Therefore, Fyr ¢, (Ex) # 0.

Since for ¢ € &, ‘7:8’786(90)(9) = For e, () (w3g), “7:5'766 (&x) #0. O

Lemma 7.1.15. F s | Fg o . Hence, F or (Er) # 0.
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Proof. By Theorem [3.1.11] we only need to check that

gu N @31 € 031
20200
0
into a neutral pair. The element u is in the orbit Ag and it is not hard to check that w[4].u lies in
002020
0

2 . _ o .
Here u = ¢, s = . In order to check this condition, it is convenient to embed u

the unipotent radical determined by . Tt follows that w[4].u forms a neutral pair

with 00 g 0 2 O, and thence that u forms a neutral pair with

[4]002020_02—2220_.
w . 0 = 9 =:50.

Now, we know that g, c g2{. Hence g, ng$; c g2 ng$;. It’s not hard to check that g2 ngs; is
the sum of the root subgroups attached to the following roots:

{1011000, 0001000, 0101000,0011000,0001100, 1000000, 0000001 }

and from there its not hard to check that g2 ng$, c ggll.

In fact, it turns out that s’ = 7s — 6sg. It immediately follows that if s acts on X with a positive
eigenvalue, and sg acts on X with a nonpositive eigenvalue, then s’ acts on X with a positive
eigenvalue, which is what we wanted. O

Corollary 7.1.16. If wi% is generic, then &, supports (Uggx,@bi% ) ° (UAg,@b{;OAg).

max max

a . . . a
Proof. 1f w&ﬁ; is generic, then — since ¢ "~ depends only on a1 —ag + ag — we may assume that

a1 = ay = 0. In this case, by Lemma @miche element f, is in Ag. Hence, if ¢ and d are as in
Lemmas [7.1.7) and [7.1.8] respectively, then yc.4«q, Which is conjugate to f,, is also in Ag. From

Proposition [7.1.11] Lemmas [7.1.12| and [7.1.15, and Remark [7.1.13] it follows that & supports
(U5,’¢J%’5O). Then, by Proposition [7.1.10| and Lemmas |7.1.9L |7.1.8|, 7.1.7|, and |7.1.2|, it supports

(Uﬁéx,wi% ) o (UAg,w[J}’Ag) as well. 0

Reformulating Corollary [7.1.16| gives the main theorem of this section.

Theorem 7.1.17. D, is generic.
Remark 7.1.18. It can be shown that for each a € F* there is a unique b € F such that the

nilpotent element attached to the character ng,; 4*a.b 45 in the closure of Ag, and that this element

is in Ag if and only if ¢IQJG2 is a generic character.
max

If 7 is not of Gy type but L°(s,m, A3) has a pole at s = 1, then Theorem |7.1.17] is still valid for
the residual representation &£, with exactly the same proof.

7.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 7.2.1. Let F), be a nonarchimedean local field. Suppose that an irreducible admissible
representation II, of GE;(F,) supports the twisted Jacquet module attached to (U5,1,/)?]’£) with
Yo (see Proposition [7.1.11)) in the orbit Ag. Then the (U g,l/)U A,,)—twisted Jacquet module of II,

supports twisted Jacquet modules attached to US2, and all generic characters of US2, . In particular,
this holds when II, is the local component of any irreducible summand of &; where 7 has the
property that L%(s,m, A%) has a pole at s = 1.

30



7.3. Unramified constituents of &;.

7.3.1. Unramified lifting. Let x be an unramified character of GL7(F,) where F,, is nonarchimedean.
Recall that our isomorphism of the Levi M of GE7 with GL7 x GLy maps h(ty,...,ts) to
t3lts

t-1tg

Thus, it identifies y with a matrix # = diag(%1,...,%7) in GL7(C) such that

X(h(tla o ,ts)) — ?117—%?216—”7?;5—”6%’24—”5??2+n3—n4%‘21+n2—n3%’?2—n17

where n; = ord(t;).

If e Go(C) then %3 = %, ta=1,15= %, tg =1ty1, and t7 = £, hence

X(h(tl t8)) _ (’7'5"1)n1—2n2—n3+n4+n5—n6+n7—n8 (’E’Q)—n1+2n3—n4—n5+2n6—n7
yeee .

We can rephrase this as follows. Let A\; = wy — 2w — w3 + Wy + w5 — wg + Wy — s, and g =
—w + 23 — w4 — w5 + 2006 — wr, and let x; be the unramified character of GL;(F,) attached to %;
for ¢ =1,2. Then

(7.3.1) x(t) = x1 (") x2(£*?), for t = h(ty,...,t3) € M.

This element # € Go(C) c¢ GL7(C) also determines a character i of the standard torus of Gs. If
« is the short simple root of G5 and 3 is the long simple root, then «" is the long simple coroot
and is identified with the long simple root of the dual group, while 3 is identified with the short
simple root of the dual. Then

oy (B)" (B)"
tOtVt =| = ATQ — ? -ni+ng :E’ 2711—712’
M(l 2) (t2) (tl) (t1) (t2)
where n; = ord(t;) for i =1,2.

7.3.2. Degeneration. Recall that P is the standard parabolic subgroup of GE7 whose unipotent
radical contains U,, if and only if ¢ = 2, and @ is the standard parabolic subgroup of GE; whose
unipotent radical contains U, if and only if i =4 or 6.

Suppose now that 7, is a principal series representation of GL7(F,) which is attached to a

character of the form ([7.3.1). We consider the representation Ind P (F) Ty - |202|. If 7, is the local

P(Fy)
component of a cuspidal representation m of Go type, then the residual representation &£; is a
quotient of IndIGD(Eg)(A) 7+|22|. It may be reducible, but it is in the discrete spectrum, and if II is any

GEr7(Fy)
P(Fy)

then it is the unique unramified constituent of Indgfg(f o, - |Z52].

irreducible summand, then II, is a quotient of Ind Ty + |@2]. Moreover, if II,, is unramified,

Lemma 7.3.2. Let wg be w[423546542314376542] as in Section so we maps the five roots in
the character ¥ to {c; :i=1,2,3,5,7}. Let wo denote the longest element of the Weyl group of
GFE7 which is reduced by P on the left and right. Then wgwy maps A1 to w4 — wg — ws, A2 to
-y + 2@6 — w8, and w9 to PQ —PB T+ 16’@'8.

Proof. Inspection (one can check it using LiE, for example). ([l
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Since wgwoA1 pairs trivially with all coroots in the Levi of ), it induces a rational character v
of this Levi. Similarly, wgwgAe induces a rational character vs.

Corollary 7.3.3. The unramified constituent of Indgf;:)F v) 7y|Z2| is equal to that of
GE7(F, ~
(7.3.4) hﬁmg)kmomxmowyﬁ@

Proposition 7.3.5. Let (s,u) be a Whittaker pair such that u is contained in an orbit which
is greater than or not related to Ag. Let U = exp(g3,). Then both J(y ) and Ty, ,, ¢, kill the
representation ([7.3.4]).

Proof. This follows from Corollary (cf. Remark [3.2.10) O

7.4. Cuspidality of the A’5’ descent module. The purpose of this section is to show that D is
cuspidal, provided that there exists a finite place vg such that m,, is a principal series representation
of GL7(F,,) which is attached to a character of the form . There are two maximal parabolic
subgroups of Gy. Recall that 8 denotes the long simple root of G2 and a denotes the short one,
and for v € {,a}, P, denotes the maximal parabolic subgroup of G2 whose Levi, M, contains the
root subgroup U, attached to . N, denotes the unipotent radical of P,.

7.4.1. Constant term along Ng. Let hp, = 2a” + 44Y. This is the standard semisimple element
of G2 which is attached to the parabolic F,. The embedding of G into GE7 identifies hp, with

2ay +2ay +4ay +2ay . The weight attached to this semisimple element is 0 (2) 0 -2 O. The

2 00000

Weyl element wp, = w[134567245631] maps this weight to the dominant weight 0

Lemma 7.4.1. Let U; be the unipotent subgroup of GE7 such that ®(U;,T) = ®*(GE7,T) ~
{aq, a9, as, as, ag, 1010000,0000110}. Let w(];ol be the character of U; determined by fo, and let tri

denote the trivial character of N,. Then the composed period (N, tri) o (U AL w(J}’A”) is equivalent
5

to (Ul,wlj}"l ) .
Proof. This follows from the exchange lemma (Lemma [7.1.1]). (Cf. Lemma[7.1.2}) O
Now let Us = wanlwl‘;i and
J1 =X 0100000 + X-0011000 + X-0001100 + X-0000110 + X-0000011-
Then there exists a representative wp, for wp, which maps fy to fi, so (Ul,wéol ) is equivalent to
(0.0
Lemma 7.4.2. Let S3 be the set which contains all positive roots of F7 except

0000001, 0000100, 0010000, 1000000, 1010000, 1011000, 1011100,1011110,1011111,

in addition to —1000000,-1010000. This set is closed under addition, and hence determines a
unipotent subgroup Us. The nilpotent element f; determines a character of Us(A) which we denote

by 10513. Then (U27¢[J;12) is equivalent to (U37¢[J;13)_

Proof. We apply the exchange lemma (Lemma [7.1.1)) six times, exchanging —1111100 for 1122100,

—1111000 for 1112100, —-1011111 for 1111111, —1011110 for 1111110, —1011100 for 1111100, and

—1011000 for 1111000. U
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Lemma 7.4.3. For a,be F, let fo(a,b) = f1 +aX_1011110 + bX_1011111- Let Uy be the product of Us
and the two-dimensional unipotent group corresponding to 1011110 and 1011111. Then

(Ut) = T (Uavi®?).

be

)

Proof. This follows from taking the Fourier expansion on the two-dimensional unipotent group
corresponding to 1011110 and 1011111. ]

Lemma 7.4.4. The element f5(a,b) lies in the orbit Dg(ay) unless a =b=0.

Proof. This was checked using GAP and SageMath. An element X of e7 is in Dg(aq) if and only
if Rank Ad(X)* is given as in the table for the listed values of k. In particular,

k 10 11 12 13 14
RankAd(X)* 11 6 3 2 1

GAP was used to obtain adjoint matrices for a Chevalley basis of e7. These were then loaded into
SageMath, in order to work in the polynomial ring Z[a,b]. The matrices Ad(f(a,b))* were then
computed as matrices over this polynomial ring. Next, we deleted any rows and columns consisting
entirely of zeros to obtain a smaller matrix. Each of these smaller matrices had a block structure
made up of smaller blocks whose rank could be easily determined by visual inspection. For example,
the nonzero part of Ad(f(a,b))'? is

0 0 0 0 0 0 0 -594a -H94b
0 0 0 0 0 0 0 -528a® -528ab
0 0 0 0 0 0 0 -528ab —528b2
0 0 0 0 0 0 0 1188a® 1188ab
0 0 0 0 1716a> 0 1716ab 0 0 1,
0 0 0 0 0 0 0 1188ab 118817
0 0 0 0 1716ab 0 171602 0 0
-594a -528a®> -528ab 1188a? 0 1188ab 0 0 0
-594b -528ab -528b° 1188ab 0 1188p° 0 0 0
and is made up of a 2 x 5 block, a 2 x 2 block and a 5 x 2 block, each of which is rank one unless a
and b are both zero. The other cases were similar. O

Lemma 7.4.5. Let U = w[31|Usw[13], which is the unipotent radical of a parabolic subgroup
and contains the root subgroup U,, attached to the simple root «; if i = 2,3, or 6. Let w[31]
be a representative for w[31] and f5(a,b) = Ad(w[31])f2(a,b) then for any smooth automorphic

function ¢
fg(a b)

o (9) =" Y )(w[31]g)-
In particular the periods (U4,¢f2(a b)) and (U4,wf2(a )) are equivalent.

U4,wf2(a ") ( U2

Proposition 7.4.6. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section [7.3.2l Then £ does not support the coefficient (U4,wf2(a b)) for (a,b) # (0,0).

Proof. This follows from Corollary (3. since the Richardson orbit of @ is Ag (cf. Remark [3.2.10] m
and fi(a,b) is in Dg(a;) by Lemma -
Proposition 7.4.7. Let S5 be the set which contains all positive roots of E7 except

0000001, 0000100, 0010000, 1000000, 1010000.
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Then for any smooth automorphic function ¢,

Uy, 1 Us, f1
U0 (g) = /j;/Asé’( *%05) (21000000 (1) 71010000 (r2)g) dry dry.
In particular, (U47¢[JZ(O’O)) is equivalent to (U5,w(]j?5(0’0)).

Proof. This is another application of the exchange lemma (Lemma |7.1.1). O

Lemma 7.4.8. Let Ug be the product of Us and the two-dimensional unipotent group Uq, Uq; +as-

For a,be F, let f3(a,b) = fi1 +aX_q, + bX _1010000- Then (U571/152;(0’0)) = YabeF (Ue,lﬂé‘z(a’b))-

Proof. This is again just a Fourier expansion. ([l

fs(O:O))'

Lemma 7.4.9. The residual representation &£, does not support the period (U6,¢U6

Proof. This holds because Ug contains the full unipotent radical of the standard maximal parabolic

subgroup of E7 whose Levi is of type Dg, and the character wlj}z(o,o) is trivial on this subgroup.

Thus (UG, f 36(0’0)) factors through the constant term attached to this maximal parabolic. But
that parabolic is not associate to the one used in constructing our Eisenstein series, so neither the

Fisenstein series nor its residue will support this constant term. U
Proposition 7.4.10. If (a,b) # (0,0) then f3(a,b) lies in the orbit Ds.
Proof. We use the same method which we used above to find the orbit of fa(a,b). O

Proposition 7.4.11. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &, is induced from a character of the group @ from

Section [7.3.2l Then £ does not support the coefficient (Uﬁ,wlfi(a7b)) for (a,b) # (0,0).

Proof. This follows from Corollary and Lemma because the Richardson orbit of @ is
Ag (cf. Remark [3.2.10)). O

Hence, we have the following theorem.

Theorem 7.4.12. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G type, such that m,, is induced from a character of the form at some finite place vg.

(UAgvd}[jj'(;")
Then the constant term of &; 5" along N, is zero.

7.4.2. Constant term along Ng. Let hp, = 4aY + 68Y. This is the standard semisimple element
of G which is attached to the parabolic Pg. The embedding of G2 into GE7 identifies hp, with

2 (2) 2 O.The

Weyl element wp, = w([3,4,1,3,2,4,5,6,7,4,3,2,4,5,6,4,3,1] maps this to the dominant weight
020000
0 :

Lemma 7.4.13. Let U; be the unipotent subgroup of GE7 such that ®(U;,T) = ®*(GE;,T) ~
{0001000,1011000,0001110, 1010000,0000110, 1000000,0000010}. Let w{jol be the character of Uy
determined by fo, and let tri denote the trivial character of N,(A) Then the composed period

. f . . f
(Ng, tri) o (UAg,@ZJUOAg) is equivalent to (Ul,ﬂ)UOl).

day +4ay + 60 +4ay. The weight attached to this semisimple element is

Proof. This follows from the exchange lemma (Lemma [7.1.1). (Cf. Lemma[7.1.2}) O
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Now let Us = w Ps Ulw}; and
J1= X 0100000 + X-0001000 + X-0000100 + X-0000010 + X-0000001-
Then there exists a representative wp, for wp, which maps fo to f1, so (Ul,w{;i ) is equivalent to
(0.0
Lemma 7.4.14. Let S5 be the set which contains all positive roots of E7 except
0010000,0011000,0011100,0111000, 1000000, 1010000, 1011000,
1011100,1011110,1111000,1111100,1122100,1122110, 1122210,
in addition to
-1111000,-1011100,-1011000, -0011000, -1122100, -1010000, -0010000,

This set is closed under addition, and hence determines a unipotent subgroup Us. The nilpotent
element f; determines a character of Us(A) which we denote w{jld Then (Ug,d}{}lz) is equivalent to

(Us,01).

Proof. We apply the exchange lemma (Lemma|7.1.1]) five times, exchanging —1122210 for 1123210,
—1122111 for 1122211, -0011100 for 0011110, —0111000 for 0111100, —1122110 for 1122111. ]

Lemma 7.4.15. For a € F, let fa(a) = f1 + aX_1129210- Let Uy be the product of Us and the
one-dimensional unipotent group corresponding to 1122210. Then

(vs) - 5 (00

Proof. This follows from taking the Fourier expansion on the one-dimensional unipotent group
corresponding to 1122210. (]
Lemma 7.4.16. The element f(a) lies in the orbit Dg(a;) unless a = 0.

Proof. The method is similar to that of Lemma O

Proposition 7.4.17. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &, is induced from a character of the group ) from

Section [7.3.2] Then & does not support the coefficient (U4,w524(a)) for a 0.

Proof. Recall that for S c {1,2,3,4,5,6,7}, Ps denotes the standard parabolic subgroup whose
Levi contains the root subgroups attached to the simple roots {«; : i € S} and unipotent radical
contains the root subgroups attached to the simple roots {«; : i ¢ S}. Let w = w[425423413]. Let
U; = wUqw™, which is contained in the unipotent radical of Py2 3561 Let w be a representative for
w and fi(a) = Ad(w) f2(a) then for any smooth automorphic function ¢

f5(a)

U4,¢524(a))( (UU/’UQ

)(wg)-

In particular the periods (U4,¢{Z(a)) and (Ui,¢{]2,,(a)) are equivalent.
4

90( g)=¢

Hence, it suffices to show that £ does not support the coefficient (Ui,l/}lfé,(a)) for @ # 0. This

4
follows from Corollary and Lemma [7.4.16, because the Richardson orbit of @ is Ag (cf.
Remark [3.2.10)). O
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Proposition 7.4.18. Let S5 be the set which contains all positive roots of F; except
0010000, 0011000,0111000, 1000000, 1010000,1011000, 1111000, 1122100,

in addition to —1010000, —0010000. Then (U4,¢f2( >) is equivalent to (U wa(O)).

Proof. This is another application of the exchange lemma (Lemma [7.1.1)) five times: exchang-
ing —1011100 for 1011110, —1111000 for 1111100, —1122100 for 1122110, —0011000 for 0011100,
—1011000 for 1011100. O

Lemma 7.4.19. Let Ug be the product of Us and the one-dimensional unipotent group

U1122100-
For a € F) let f3(a) = f1 + aX_1122100- Then
7wf2(0) U ¢f3(a) )
(0 8) - 3 ()

Proof. This is again just a Fourier expansion. O
Proposition 7.4.20. If a # 0 then f3(a) lies in the orbit Ds.
Proof. The method is similar to that of Lemma [7.4.4] O

Proposition 7.4.21. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &, is induced from a character of the group ) from

Section [7.3.2 Then & does not support the coefficient (U6,1/;536(a)) for a # 0.

Proof. Let U = w[3,4,1,3]Usw[3,4,1,3]. Let w[3,4,1,3] be a representative for w[3,4,1,3] and
f3(a) = Ad(w[3,4,1,3]) f3(a) then for any ¢

W(Uﬁ,wf““))(g) _ (U6,¢f3(a))(w[374, 1,3]9).

In particular the periods (U6,1/1f3(a)) and (U6,¢f3( )) are equivalent.

f3(a ))

Hence, it suffices to show that £ does not support the coefficient (Uﬁ,w for a # 0.

Now, write sp, for the standard semisimple element attached to the OI‘bIt Dg. Let Vp, be the
(a) .

unipotent group whose Lie algebra is g>26 Then U = Vp,Uoooo100Uooo1100, and ¢f3 is trivial on

(Ué,’lf)f?’(a)

U0000100U0001100 So ¢ Ys ) may be written as a double integral with the inner integral being

f3(a)
Vbg s 3
<p( Pas¥, . So, it suffices to show that the coefficient (VDG,w st )) vanishes on £. This follows

from Corollary - 3.2.7 and Lemma [7.4.20] because the Rlchardson orblt of Q is Ag (cf. Remark
3.2.10), and Dg is greater than Ag. The role of “P” in Corollary |3 is played by Py, O

Lemma 7.4.22. Let U; be the product of Ug and the two-dimensional unipotent group

Uo111000U1111000-
For a, be F, let f4(a, b) = f1 + CLX_0111000 + bX—llllOOO- Then

(Uﬁ,wfd(O)) Z ( ’wfzx(ab))

a,beF
Proof. This is again just a Fourier expansion. O
Proposition 7.4.23. If (a,b) # (0,0) then f4(a,b) lies in the orbit Dg(aq).
Proof. The method is similar to that of Lemma O
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Proposition 7.4.24. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &, is induced from a character of the group @ from

Section [7.3.2l Then £ does not support the coefficient (U7,w£47(a’b)) for (a,b) #(0,0).

Proof. Let Uy = w[13]Urw([31], and f;(a,b) = Ad(w[13]).fs(a,b). Then U; = Uyrs4y. We apply
Corollary with P = P(34,. Since the Richardson orbit of @ is Ag (cf. Remark [3.2.10)), it
follows from Lemma|7.4.23|that £,, does not support the coefficient (Ué, 1[15‘1,(0’1))
7
equivalent to (U7,1/1{;‘7(a’b)) . ]

) , which is clearly

Proposition 7.4.25. Let Sg be the set which contains all positive roots of F; except
0010000, 1010000.

Then (U7,1/J547(0,0)) is equivalent to (Us,w{;‘;(o’o))_

Proof. This is another application of the exchange lemma (Lemmal(7.1.1]) twice: exchanging —1010000
for 1011000, —0010000 for 0011000. (|

Lemma 7.4.26. Let Ug be the product of Us and the two-dimensional unipotent group Upo10000U1010000-
For a,be F, let f5(a,b) = f1 + aX_o010000 + bX_1010000- Then

(Usvg ") = 32 (Vo).

a,be F’
Proof. This is again just a Fourier expansion. O
Proposition 7.4.27. If (a,b) # (0,0) then f5(a,b) lies in the orbit Ds.
Proof. The method is similar to that of Lemma [7.4.4] O

Proposition 7.4.28. Let £ = ®,&, be an irreducible automorphic representation of GE7(A) and
assume that there is a finite place vg such that &,, is induced from a character of the group ) from

Section [7.3.2l Then £ does not support the coefficient (U97wlf]59(a,b)) for (a,b) # (0,0).

Proof. Note that Uy is the full unipotent radical of the parabolic Pfyy. We apply Corollary [3.2.7
with P = Pgyy. The result follows from Lemma because the Richardson orbit of @ is Ag (cf.
Remark |3.2.10)) ]

500),

Lemma 7.4.29. The residual representation &, does not support the period (Ug,¢
Proof. This holds because Ug contains the full unipotent radical of the standard maximal parabolic
subgroup P{172,475’6,7}, and the character 1/1{]59(0’0) is trivial on this subgroup. Thus (Ug?wéz(o,o))
factors through the constant term attached to this maximal parabolic. But that parabolic is not
associate to the one used in constructing our Eisenstein series, so neither the Eisenstein series nor
its residue will support this constant term. O

Hence, we have the following theorem.

Theorem 7.4.30. Let 7 be an irreducible cuspidal automorphic representation of GL7(A) which
is of G2 type, such that m,, is induced from a character of the form m at some finite place vyg.

f
(UAg’wU(;,, )

Then the constant term of & " along Np is zero.
Therefore, Theorems [7.4.12| and [7.4.30| together imply the following theorem on the cuspidality
(U Agﬂﬁ(fg‘ ” )

of our descent module &, 57,
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Theorem 7.4.31. Let m be an irreducible cuspidal automorphic representation of GL7(A) which
is of G type, such that m,, is induced from a character of the form at some finite place vyg.

fo
UAg,wUA,, )

Then ET(r 57 is a cuspidal automorphic representation of Ga(A).

7.5. Unramified local descent. The purpose of this section is to show that m is a weak functorial
lift of each irreducible summand of D,, provided that for almost all finite places v, 7, is a principal
series representation of GL7(F,) which is attached to a character of the form .

Recall that PAg =M A’5’U A = P, = M U; is the parabolic subgroup defined as in Section
where s =s Ar is the standard semisimple element (cf. Definition attached to A7, M Ay = M
is the Levi subgroup, and Uar =Us is the unipotent radical.

We consider the twisted Jacquet module
Ty g, (MGG o)z 0w ).
For x; and v;, see §7.3, To that end we study the space of double cosets Q(F,)\GE7(F,)/Ga(Fy)Uaz (Fy),
where G is embedded into M Ar s the stabilizer of fj.

For v € Q(Fy)\GE7(Fy)/G2(Fy)Uaz(Fy) we say that v is admissible if Pio

Uan
A5

1.

Ugrn(v1@Qy)
Each double coset contains elements of the form wp with w in the Weyl group of minismal length in
its (Q, PAg)—double coset, and p € MAg(FU). Indeed, p may be taken modulo Go(F,) on the right

and M A0 w™'Qw — which is a standard parabolic subgroup of M Ay—on the left. Then
fo

Uan
A5

fo

vh,, 1.

=] < u-
UAgﬂ(v‘lQ'y) ey

UAgn(w‘le)

Note also that p-f° = Q/JAd(“)'fO. Clearly Ad(u).fo is in the open orbit for the action of M,z on

U pnr U g1
A5 A5
EV

9725-
Lemma 7.5.1. Let ®47(2) = {a € ®:{a,sar) =2}. Then Yoep ,,(2) daX-a is in A7 if and only if
5

2
(a0011110a0101110 — @pp01110@0111110 ~ @000011040112110 ~ a0000010a0112210) X

2 2
X (a1011100a1111000 — @101100021111100 + @101000021112100 + a1000000a1122100) ap000001 # 0.

Proof. Direct computation using SageMath, with adjoint matrices obtained using GAP. O

UAgﬂw’le

Proposition 7.5.2. The set of reduced representatives w for Q\GE~r/ Py such that l/J(];A”
5

S Al
1 for some f in the open M Az-orbit of 9_25 has only one element, namely,

wo = w[4231435423165423143542654317654231435426543176].

Proof. 1f w(J;A”
5

=1 with f = Y4es ,,(2) @aX-a, then
5

UAgﬂwile
{ae @yp(2) s wa <0}
contains {a € ®4r(2) : aq # 0}. If f is in the open orbit, then it follows from Lemma [7.5.1} that
{ave ®4r(2) : aq # 0} contains
(1) the root 0000001,

(2) two roots of the form 1 * % * 00 that add up to 2122100,
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(3) two roots of the form 0 * * * *10 that add up to 0112220.

One can check using LiE that Q\GE7/PA151 has 786 elements. Of these, only 342 map 0000001 to a
negative root. Of these 342 only 120 map two roots of the form 1 % * * *x00 that add up to 2122100
to negative roots, and of these 120 only one maps two roots of the form 0 * * % *10 that add up to
0112220 to negative roots. Thus there is only one element of Q\GE7/PAg such that

EV ¥
€g o0 =1
{f 99 ﬂ)UAIB/ UAgﬁwile }

contains elements of the orbit A7. This element is wp. O

Lemma 7.5.3. The orbit A{ is a single rational orbit.

E . . .
Proof. The space g_,° decomposes as a direct sum of three irreducible M 4»-modules:
(5}
{X0000001), 0010 := (X0000010, X0000110, X00011105 X01011105 X00111105 X0111110, X0112110, X 0112210+

0100 := (X1000000, X 1010000, X 1011000, X 1111000, X1011100, X1111100, X 11121005 X 1122100)-
. . sSar . .
We identify an element of g_,°> with a triple (z,y,2) where 2 and y are column vectors of size

8 and z is a scalar. The action of My~ on gigg then induces a rational homomorphism M Ay~
GLg x GLg x GLy. From Lemma the triple (z,y,z) corresponds to an element of Af if
q1(2)q2(y)z # 0, where 1 and g2 are two quadratic forms. The derived group of M Ay is isomorphic
to Sping, and its image in GLg x GLg x GLy preserves the forms ¢q; and ¢o. That is, the image the
derived group is contained in SOg(q1) x SOs(g2) x {1}. By Propositions 1 and 4 of [I70], we can
map any triple which corresponds to an element of A{ to one of the form

0] o
ol |o
ol |o
a b
117
ol |o
ol |o
_0_ _0‘

using an element of the derived group of M v. It then suffices to show that the torus of GEx

contains an element ¢ which acts by ™! on X_ 1111000 by b} on X _g101110 by 27! on X_gggoo01 and
by 1 on X_1911100 and X _go11110- Since the images of ¢t under the 7 simple roots of E7 can be chosen
arbitrarily, this is easy. O

Proposition 7.5.4. Let Py, = Mar nwy 1Quyg. Then P ,, acts transitively on
SA//
eg o> (F)nAl o) =1.
{f g.,° (F) 5 ¢UA%’ UAgﬁw(}leO
In the language of the wo-admissible subvariety of Pyy is equal to Piu, - GaUay.

U

. Say . P . .
Proof. Write f e g 5® as Y., aaX_q, and identify it with a triple (z,y,2) as above, given by
t
z = [CL1000000 1010000 @1011000 @1111000 @1011100 @1111100 @1112100 a1122100:|a

t
QZ[CLOOOOOIO @0000110 @0001110 @0101110 @0011110 A0111110 40112110 a0112210]-
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The group P, is the standard parabolic subgroup of M Al whose Levi contains U.qa, and U.q,,
and whose unipotent radical contains U,, and U,,. This parabolic preserves a flag in each of the
spaces v199 and vg1g which is compatible with the order placed on the roots above. Specifically
write

Y1
Zq Yo
_ | X2 _
L= 23 ) g_ yg 9
Ly z:

where z, is a column vector of size 2 for each i, y, is a column vector of size four, and y; is a

scalar for ¢ = 1,2,4,5. Then the standard Levi subgroup of P, respects this decomposition. The

oy f _ . . _ _ _ _ .
condition 1/JUA" =1is equlvalent to ap112110 = @0112210 = A1112100 = @1122100 = 0, 1.e., to

5

UA’5’ ﬁwaleo
24=0,y4=y5=0.

The triple (z,y,2) corresponds to an element of Af if z # 0 and 2 and y are each anisotropic
relative to a certain quadratic form (cf. Lemma . When z,,y4 and ys are trivial, this forces
Y and (ig) to be anisotropic.

The derived group of the Levi of P, is isomorphic to SLgx SLs, its action on the Y, component
of vg1p can be identified with the action of SLs x SLy on 2 x 2 matrices by (g1,92) Y = legQ’I.
Anisotropic elements correspond to matrices Y with detY # 0. Clearly, each such matrix is in
the same orbit as a diag(a, 1) for some a. It follows that each f is in the same orbit as one with
a0011110 = ao101110 = 0,ap0111110 = 1. The condition f € Ag forces agopi110 # 0. Once Yq is of this
form, the subgroup of SLo x SLy which preserves it is isomorphic to SLy. The four-dimensional
space corresponding to z, and x5 can then be identified with 2 x 2 matrices with this SLs acting by
g-X = ¢gX (matrix multiplication). Once again, det X # 0 for (%ﬁ ) anisotropic. Hence we can choose
a suitable element of SLy so that gX = diag(b,1). Hence we can arrange ai111100 = 1, @1011100 =
aii11000 = 0. The condition f e A{ then forces ajpii000 # 0. Now, acting by a suitable element of
the torus, we can arrange a1911000 = @0001110 = @oooooo1 = 1 without changing the existing conditions

ao111110 = @1111100 = 1. Finally, we can act by an element 20011000(@)Z0101100 (0)Z0001100(¢)Z0111000(d)
to make z,,y; and ys trivial. O

Proposition 7.5.5. The twisted Jacquet module 7, (IndgE7 ((Xl ov1)(x2 oyg)%§6)) is

fo
Ag’wUAg

isomorphic as a representation of Gy to Indgz i, where p is given in Section |7.3.1, Bg, is the
2

Borel subgroup of G2 obtained by intersecting G5 with our standard Borel of GE7.
Proof. It now follows from the results of that

jUAg’w(fj(Lg (IndgE7 ((Xl ° Vl)(XQ ° Vz)ﬁéei)) - jUAg’wlj;(l‘g (T’LUO) )

where
— GoU Al

1
Ly, 2 c—ind 1 Quo ((x1ov1)(x20 yg){x?éﬁ) 64 © Ad(wo).

GQUAgﬂ’LU

The group Go mwngwo is the standard Borel subgroup of G2, while U 4» mwaleo is the product
of the roots subgroups attached to the following five roots:

{0112110,0112210,0112211,1112100, 1122100}

Let J denote the sum of these five roots.
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We compute

J = 2w + 2wy + w5 — 2w — w7 — wWs,

V10 Ad(wo) = -1 + W4

— W5 — We + Wy + W8,

V9 o Ad(wo) = —Ty4 + 2’@'5 - 2@7 + w8,

2oy o Ad(wp) = s,

1
5622 = 3@4 + 2@6 - 13@8,

1
(522 o Ad(wo) = —8w + 3wy + 2W5 - 8@6 - 2@7 + 13w8.
Each of these induces a rational character of the standard torus T, of the embedded Ga. If the

Go

fundamental weights are denoted w;* and w,

2, then

J = w12+2w

vy 0 Ad(wp) 7o, - _wfz n sz
vz 0 Ad(wo) Te, 2w - w5,
@s o Ad(wo) 70, =0,

56%2 o Ad(wo) To, 2072 + 352

Thus (x10v1)(x2012)E0 0 Ad(wg)‘

is precisely, the character p given in Section

7.3.1

and an

element h of I, satisfies h(utg) = ,u(t)é (wotwy)h(g) for u in the standard maximal unipotent

of Go and t € T, .
Now, for h e I, let

W.h(g) := f .
(g) (UAgﬂwngwO)\UA” ( g)wU ”(u) u.

(This is convergent, since the support of h is compact modulo (U ArGanwg 1Quwp).) Then the kernel

of W is the kernel of the canonical map Iy,

concrete realization of J w

direct computation shows that

Woh(uruatg) = vff, (un)n(t)05 © Ad () (O] W-h(9)

But

( 63 0 Ad(wo) - J) |

- jUA,,,w

us

up € Upr,ug € Updy t €Ty, 9

G

_ 2 G
—wl +w2

1
2 _ 52
_5BG2

Ga

(Iwo). That is, the image of W is a

(Two) . (The proof is the same as in [HS16], Section 10.) Further,

€ GQ.

Hence restriction from GoUxy to G2 is a linear isomorphism from the image of W onto Indgz (p).
2

Hence, we have proved the following theorem.

Theorem 7.5.6. Assume that for almost all finite places v, 7, is a principal series representation
of GL7(F,) which is attached to a character of the form (7.3.1)), then D, weakly functorial lifts to

.
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8. THE A9 +3A; CASE

Recall from Definition that in the As + 34, case the descent module D, is defined by
applying the Fourier coefficient (U, w?) from Section to the residual representation &,, where
7 be an irreducible cuspidal automorphic representation of GL7(A) which is of Gy type. In this
section, we prove the following theorem.

Theorem 8.0.1. Assume that 7 is an irreducible cuspidal automorphic representation of GL7(A)
which is of G5 type, and D; is defined as in Definition Then
(1) Dy is generic.
(2) Dy is not cuspidal. Actually, D, supports all degenerate Whittaker Fourier coefficients of
Go.

We also study the unramified local descent as in Section which is motivated by the question
of whether irreducible subquotients of D, would lift functorially back to w, and provides evidence
that they might well not.

8.1. Nonvanishing Fourier coefficients of the descent module. The main goal of this subsec-
tion is to prove (in the following theorem) that the descent module supports the Whittaker-Fourier
integral along the maximal unipotent of G5 against any character of this group. In particular, it is
globally generic, but not cuspidal, and it’s constant term along the Borel is nontrivial.

Theorem 8.1.1. Recall that US2, is the standard maximal unipotent subgroup of Gs, let %2 be

max

any character of UG2 (F)\US2 (A). Write (US2,,1)%2) for the corresponding (possibly) degenerate

max

Whittaker-Fourier integral. That is for any f e C*(G2(F)\G2(4)),
G G _—
pUR D gy= [ fug)i® (u) du,

U (F)\Unx(A)
Then (US2,,4%2) does not vanish identically on the descent module D,. That is, there is some
D € D, such that D(Ugg’”w%) + 0.
Define Vi := UUS2 and define ¢y, = Vi(F)\Vi(A) - C* by v, (urug) = ¢ (u1)yp“2 (ug), for
uy € U, ug € US2, (this is a well-defined character of Vi(F)\V1(A)). Then the composed period

max
(USG2 &2 o (U, Yi?) = (Vi,%v;). Theorem is therefore an immediate consequence of the

following theorem.
Theorem 8.1.2. The period (V1,%y;) does not vanish identically on &;.

Lemma 8.1.3. Let
g0 _ 0100000,0101000,0111000,0101100,1111000,0111100,0101110,1111100,
2- 0112100,0111110,0101111,1112100,1111110,0112110,0111111

Let Sy = @\ SY and let S5 = S9 U {1223210,1223211}. Let V3 and Vj be the T-stable unipotent
subgroups of GE7; corresponding to Sy and S5.
Let 1y, denote a character of V5 such that supp )y, is contained in

{1000000, 0010000, 0001000, 0000100, 0000010, 0000001,1111111,1122100,1112110,0112210,0112111},
and w‘@‘Vl(A)mVQ(A) =y, ‘Vl(A)mVQ(A)' Then for any automorphic function f: GE;(F)\GE;(A) - C
of uniformly moderate growth, and any g € GE7(A),
f(Vhwvl)(g) - f f(Vzﬂ#vg) (vhg)dvy.
(VanVz (A)\V5(A)

Moreover, (Vi,9y;) ~ (Va,¥v;,).
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Proof. The proof is by nine successive applications of Lemma The applications come in three
basic types. In the first type there are two roots 1 € ®(M,T), v1 € ®(U,T') such that X = U,, and
Y = Up,. In these cases go nu,, = {0}, and the roots 31,7y, are given in the table below. Recall that
go is the Lie algebra of the Gs.

In the second type, there are two roots 31,82 € ®(M,T) and ¢ € <I>1Gg’2+ (positive long roots of G2)
such that go Nnug, ®ug, = us. In these cases, there is a root v € ®(U,T') such that X = U, which has
a pairing with U, Ug, as in Lemma and Uy, is the right kernel of this pairing. We may take
Y to be any complement of Us in Ug, Ug, so that the group D in Lemma contains the whole
group U, Ug,. For these cases, the roots 31, 2 and 7 are given in the table below.

The third type is similar to the second, except that § is a short root of Gs. In this case, (cf.
proof of Lemma there are four roots f1, 32,03, 84 € ®(M,T) such that go n 69?:1 ug, = Uus.
Moreover, there is a unique pair of them such that the sum is another root 85 € ®(M,T). The
product ]'[;-r’zl Up, is a T-stable subgroup. In fact it is the smallest T-stable subgroup of G'E7 which
contains Us. We denote it V5. It is two-step nilpotent with center Ug,. In these cases the group X
is a product H‘z’:l U,, which has a pairing with Vs as in Lemma|7.1.1, and UsUg,, is the right kernel
of this pairing. For Y, we may select any subgroup of V5 which contains Ug,, such that the image
in the abelian quotient V;/Upg, is complementary to the image of Us. In the table below we give
Y1,72,73 and B1,..., B35 with S5 in parentheses.

X Y 0
0100000 1011111
0101000 0011111,1011110 3a+20
0111000 0001111,1011100 3a+p
0101100 0011110

1111000,0111100,0101110 | 0000111,0001110,0011100, 1011000, (1011111) | 2a+ 3
1111100,0112100,0101111 | 0000011,0011000,0000110, 1010000, (0011110) | « + 3
0111110 0001100
1112100 0000010, 0010000 B
1111110,0112110,0111111 | 0000001, 0001000,0000100, 1000000, (0001100) |  «

At the first stage, the group B is just Vi. In each stage later it is the group D obtained from the
previous stage. At each stage the group C' may be thought of as the subgroup of B obtained by
deleting the roots listed below “X” in the table. More precisely, the Lie algebra, ¢, of C is the
largest subalgebra of the Lie algebra, b, of B, whose projection onto u,, is trivial for each ¢. The
group D is the product of C' and the root subgroups attached to the roots listed under “Y” in the
table.

Checking conditions (1) to (6) for Lemma is fairly routine. The order in which the nine
applications of Lemma [7.1.1] are carried out is important. It is useful to consider the bigrading in
which the root subgroup U, where vy = ¥'7_; ¢;o; gets grading (cz2, (X1 ¢;) - c2). Notice that as the
table is read top-to-bottom the second component of this grading is nondecreasing in the column
labelled “X” and nonincreasing in the column labelled “Y”. This determines a partial ordering on
the nine rows. It’s fairly easy to check most of the conditions of Lemma[7.1.1] provided this partial
ordering is respected, but (3) and (6) take some care, particularly for applications of the third type.
We discuss the first application of the third type in some detail and leave all the remaining details
to the reader.

For the first application of the third type, X = Ui111000Uo111100U0101110 2 U1111000 © Uo111100 ©
up1o1110, While Vs = Ugooo111U0001110U0011100U1011000U1011111- The center of Vs is Ug; = Uior1111-
The quotient V5(A)/Uio11111(A) may be identified with 100111 @ too01110 @ Uoo11100 © U1011000- The
character of C'(A) which we consider is given by

U (expe) = ¢(k(eo,c)),  (cec(A)).
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In order to check conditions (3) and (6) we must consider the pairing

T(z,y) = ¢ ([2,9]),
where
[2,y] = aya™y™ @ e X(A),y e Vs(A).
It is trivial on X (A) xUpg. (A) and hence may be regarded as a pairing on X (A) x Vy5/Ug.(A).) The
Bs Bs
pairing Y satisfies

(8.1.4) Y(expa,expb) =¥ (r(eo, [a,b])) = P (we, (a, b)),

where

[a,b] = ab-ba,a € uj111000 @ Uo111100 ® U0101110, 0 € Upo00111 © Up001110 D Up011100 D U1011000-

To check condition (3), we have to check that X(A) and Y (A) preserve ¢¢. This amounts to
checking that T is trivial on X (A) x Us/Up, (A) and on Y (A) x Us/Upg, (A). The former is obvious,
since us = g2 N @7, ug,. The latter is also obvious, since Y c Vs and V;/Up, is abelian. To check
condition (6), we have to check that Y is nondegenerate on X (A) x Y (A)/Ug, (A) for any Y such
that Y /Ug, is complementary to Us/Ug,. In other words, we have to show that

{yeVs(A): T(z,y) =1 Vo e X(A)} =Us(A).
By equation (8.1.4)), this reduces to showing that

{b € uooo111 @ Uo001110 @ Uoo11100 ® U1011000 * K(€0, [@,D]) =0 Ya € ur111000 © Uo111100 © U0101110} = Us-

Now r(eq,[a,b]) = —k([b, e0],a), which is certainly trivial if b € ug, since [b,ep] =0 for all b € go. On
the other hand, if b ¢ us = g2 N}, ug,, then [b, eo] is nonzero, hence £([b,eg],a) # 0 for some a € e7
because « is nondegenerate, and hence k([b,eg],a) # 0 for some a € u1111000 ® Uo111100 D 0101110
because k respects the bigrading. O

Remark 8.1.5. As noted, for applications of Lemma [7.1.1] of the second and third types, the group
Y is not uniquely determined, but can be taken as any complement to a given subgroup. This is
the reason that 1y, may be chosen with some degree of freedom. In addition we have a degree of
freedom in the choice of 12,

In order to proceed further, it will be convenient to write 1y, and %2 explicitly in coordinates.
There exist a1, ag, aq, as, ag, a7 € F such that

Py, (U) = ¢(01122100 +01112110 V1111111 700112210 T V0112111 A1V 1 A3Va3 1+ A4V, +A5V05 A6V +a7va7)

for all v € Va. Then ¢%2(u) = 1((a1 + as + as + ag)uq + (a3 + ag)ug) for all u e US2 . Rewrite 1y, as
Py, with a = {a1,a3, a4, a5, ag, a7}

Lemma 8.1.6. Let

S3 = & u{-a4}{0000001, 0001000,0001100,0001111,0011000,0101000,0112100,0112111, 1011000,
1112100,1112111,1123211,0100000,0010000, 0000100, 0000010},

and let V3 be the corresponding T-stable unipotent subgroup. Let w%/; : V3(A) - C* be given by

¥ (V0000111 +00111100+V0101110+V1010000+0011110+@1 V0101100 +E3V0000011+E4V0011100+ @5 Vary +06U0111000+7V0001110) -

Let wy = w[745632451342]. Then there is a representative wy for wy such that for each a there

exists @’ with a being nonzero scalar multiple of a; and f(V3’wVS)(g) = f(v2’w‘72)(u')4g) for all f €

C>(GE7(F)\GE-(A)) and g € GE7(A), whence (Va,9{,) ~ (Vs,41,).
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Proof. Let
Ry ={1122100,1112110,1111111,0112210,0112111}, Ry = {cv; : 1 <9 < 7,0 # 2},
R’ ={0000111,0111100,0101110, 1010000, 0011110},
R}, ={0101100,0000011,0011100, 1000000, 0111000,0001110}.

Then wyR; = R}, and wyRy = R).
For any representative w, for wy, V3 = w4v2w;1, and

7

1/’%2 (wilvwﬁl) =1 Z Cirg,0Vuwaa T Z AiCopy,0; Vwaa; |

aeRy 1
k2

for some nonzero constants ¢, o depending on the choice of the representative 4. The point is to
show that w4 may be chosen so that ¢, o =1 for all o € R;. Now, w4 is unique up to an element
of the maximal torus T of GFEr, so it suffices to check that the mapping T — GL? induced by
the five elements of R; is surjective. This follows from the fact that these five elements can be
simultaneously conjugated to simple roots, as seen in Section ([l

Remark 8.1.7. Recall that the descent Fourier coefficient is attached to the standard semisimple
00 0 0O0O

element 9 . The regular nilpotent orbit of gy is attached to a standard semisimple

. .. 2 2 2 2 2

element of g2, which may then mapped to a semisimple element of ge,, namely _19 .
.22 2 2 2 2 . . o . .

The sum is . If we regard it as a coweight, it is not dominant. The dominant

-10
0 2 00 2

element of its Weyl orbit is 2 0

, which is the standard semisimple element attached to

2 2 2 2 2

a nilpotent orbit of F; whose Bala-Carter label is E7(a4). The element wy maps 10

to 20 g 00 2. This was the original motivation for considering wy, V3, and 1/1‘%;

Lemma 8.1.8. Let
Sy =®" u{-ay} \ {0000001,0001000,0001100,0001111,0011000,0101000,0112100, 1011000,
0100000, 0010000, 0000100,0000010},

and let V4 be the corresponding unipotent subgroup. Let 111‘%; be the character such that ¢%/;|V3 )=

¢%3 and w‘%‘l‘Uv =1 for vy e ®(Vy, T) N~ ®(V3,T). Then (1/},,1#%3)|(V4,1/)%/4).
Proof. One may write (V4,1/}%/;) as a double integral with (‘/9,,1/}‘%;) as inner integral. O

Lemma 8.1.9. Let S5 = .S4u{0001111,0000001} \ {-c4,0000110}. Let V5 be the corresponding 7-
stable unipotent group. Let ¢€75 : V5(A) — C* be the character such that ¢%5|V40V5(A) = w%l|v4ﬂv5(A)

a’ -
and wV5|Ua7U0001111(A) =1. Then

f(v4’¢‘74)(9)=]ff(va%)(x—a4(7“1)960000110(7“2)9)dm dry.
A A

Moreover, (V, ¢y, ) ~ (Va, ¥y, )-

Proof. This is another application of Lemma [7.1.1 ([l
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The key feature of V5 is that it is contained in the unipotent subgroup attached to the weighted
0200 2
0

{a7,0001110,0011100,0101100,0111000,0000011,0011110,1010000,0101110,0111100,0000111},

which is contained in the two-graded piece for this weighting.
020 0 2

0
bigger than or equal to 2) and w‘%; be the character of it with w%/; ‘V5 = w%; and supp %%; = supp w%;
f(VG 7w‘£/6 )

L. 2 . e, . .
Dynkin diagram for the orbit E;(ay). Further supp ¢%,5 is contained in

Let Vg be the full unipotent group for 2 (that is, all root subgroups with weights

Then for any automorphic function f of uniformly moderate growth, can be written as a

double integral with inner integral f (59%) | Hence (%,1&%2)) | (Vg,@b%éj). Notice that (%,Q,Z)‘%;) isa
unipotent period of the type considered in Section

Lemma 8.1.10. Let

Xa = X 1010000 + X—-0000111 + X_0011110 + X-0101110 + X-0111100
! ! 14 ! ! 14
+ a7 X_0001110 + a4 X 0011100 + @1 X 0101100 + @gX-0111000 + @3X 0000011 + @5X_-1000000;

and
eo = X_-1010000 + X-0000011 + X 0111000 + X-0101100 + X-0011100 + X-0001110-
Then
(1) X is an element of the closure of the orbit Ag if and only if
(8.1.11) 1716(a}asal + ayalal — 2a]aal, — asalal — alagal)?afafaf = 0.
(2) When af =0, the element X, lies in A6 if and only if a}a%alagal + 0.
(3) If Xy isin A6 then it is conjugate to ef).

Proof. To any nilpotent element X € ¢; we may associate the rank sequence (rankad(X)")°,.
(All but finitely many entries are zero.) It is clear that the rank sequence is an invariant of the
stable orbit of X. In general the map from stable orbits to rank sequences is not injective, but one
can check (using GAP, for example) that for e it is. We may regard X, first as an element of the
Lie algebra e¢7 over a polynomial ring in six indeterminates and compute its rank sequence as such.
This can be done, for example, by obtaining 133 x 133 matrices for ad(X, ) from GAP and then
loading them into SageMath. This tells us what orbit X,/ lies in for @’ in general position, and
allows us to obtain polynomial conditions for X to lie in a smaller orbit.

It turns out that for a’ in general position, X,/ lies in the orbit E7(a4). The largest value of k
such that X ff, #0is 14, and X ;,4 is rank one, with only one nonzero entry. This nonzero entry is
@1T11). N

There are three stable orbits which are less than E;(a4) but not less than Ag. Their Bala-Carter
labels are Ds + Ay, Dg(ay1), and Ds. For X in any of these orbits we have rankad(X)'* = 1. This
proves the first part.

It is then clear that af = 0 implies X, is in the closure of Ag. It turns out that O < Ag <=
O < FE7(as). By inspecting the rank sequences of these two orbits, we can see that if X e Ag,
then rankad(X)!? = 3, while if X € F7(as), then rankad(X)? = 0. When af = 0, if we calculate
the matrix ad(X,)'? (as an element of ¢; over a polynomial ring) and then discard all rows and
columns which consist entirely of zeros, we obtain the following three by three matrix

0 0 -462a3ad)afal?
0 924aafaaial? 0
-462a'3a}a)afal? 0 0
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This completes the proof of the second part.
To prove the third part we consider
X, = X 1010000 + a3 X 0000011 + a6 X 0111000 + @3 X 0101100 + @4 X 0011100 + @7 X 0001110,
and
u(b17 ) b5) = Tean (bl)x—a:; (bQ)x—Oés (b3)x—045—046 (b4)x—aﬁ (b5)

Using SageMath, one can check that for each af,a$,a},ag, a7 (all nonzero) there exists unique
by,...,bs such that

Ad(u(bl, oo ,b5)).XQI = Xé/.
These six roots which appear in X/, may be simultaneously conjugated to simple roots (cf.
Lemma [7.1.12]). Hence we can conjugate X/, to e; using a suitable element of the torus. ([l
Corollary 8.1.12. Let ¢y, : Vg - C* be given by

7#{/6(”) = (V0001110 + V0011100 + V0101100 + V0111000 + V0000011 + V1010000)-
Then for each a' = (a}, a5, a},0,a4,ar) with a] # 0 for i = 1,3,4,6,7, there exists vy € GEg(F') such
that vy Vev,! = Vg and Yy, (Varvvy 1) = ¢y, (v), for all v € Vg(A). Hence f(V6¥7)(g) = f( Vo) (Varg)
for all smooth automorphic functions f : GE;(F)\GE7(A) - C and all g € GE7(A), and in partic-
ular (Vi) ~ (Ve, 4, ).

This completes the proof of Theorem [8.1.1} since (Vj, w{/ﬁ) has appeared previously as (Us, wg’%),
and it was already shown in Lemma [7.1.15[that £, supports this period.

8.1.1. Remarks. The proof of Theorem can be summarized as follows. For ¢ = (¢1,c2), let
G2 (u) = w(clua +caug) for uwe UG2, . Then (Ug;x,z/JCGQ) o (U,+p) divides (Vﬁ,wv) whenever ¢ is

max*
the image of a’ under a certain linear map. In this situation, every representation which supports

max?
¢ and corresponds to an element of the orbit AG The residual representation &, supports the

(VG,wV) must also support (US2 C G2) o (U, Y?). For any ¢, we can choose @’ which maps to

Fourier coefficient (V6,1,Z)V) whenever a’ corresponds to an element of Ag. Therefore it supports
(UG, 052) o (U, 4)5?) for all c.

In particular, the conclusion applies not only to &, but to any automorphic representation
II which supports the Fourier coefficient (Vé,”(ﬂ%;) whenever a’ corresponds to an element of Ag.
Moreover, it is reasonable to ask whether Ag can be replaced by a smaller orbit. In this connection
we note that taking a} = a; = 1 and the rest zero, or, aj = af = 1 and the rest zero, gives an element
X, in the orbit 245 + Ay, which lies immediately above the orbit As + 34 attached to ;7

If 7 is not of Gy type but L%(s,m,A) has a pole at s = 1, then Theorem is still valid for
the residual representation &£, with exactly the same proof.

8.2. Local descent. Since the results of [GGS17] hold in both the local and global settings, the
same set of arguments given in the global setting above also provides a local analogue.

Theorem 8.2.1. Let F, be a nonarchimedean local field. Suppose that an irreducible admissible
representation I, of GE;(F,) supports the twisted Jacquet module attached to (V, 1/1‘%, ) with o/
now in F¢ corresponding to an element of Ag. Then the (U, YP)-twisted Jacquet module of II,
supports (twisted and untwisted) Jacquet modules attached to Ugﬁx and all characters of UG2 . In
particular, this holds when II, is the local component of any irreducible subquotient IT of £; where
7 has the property that L°(s, 7, A%) has a pole at s = 1.
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8.3. Unramified local descent. One may now consider the twisted Jacquet module
GEr(Fy) ~16
JU,wz,O (IndQ(;U) (x10ov1)(x2012)T3 ) .
If 7 is an irreducible cuspidal automorphic representation of GLy with m, being induced from a
character of the form (7.3.1) and o is an irreducible quotient of &, then o, will be a quotient of
this twisted Jacquet module.

The study of such a twisted Jacquet module is closely connected with the structure of the double
coset space Q(F,)\GE7(F,)/G2(F,)U(F,). Notice that this space is infinite, since

dim GE; = 134, dim @ + dim Gy +dim U = 133.

This stands in contrast to the situation encountered in |[GRS11) [HS16|, where [BZ77, Theorem 5.2
could be applied.

Moreover, suppose we say that a double coset is admissible if its elements ~y satisfy ;7 |Un(771 Q) =
1. Then we have

Lemma 8.3.1. The set of admissible double cosets in Q(F,)\GE~(F,)/G2(F,)U(F,) is infinite.

Proof. We can sort the elements of Q(F,)\GE7(F,)/G2(F,)U(F,) according to which element
of Q(Fy)\GE;(F,)/P(Fy,). Of course this latter double coset space is finite and represented by
elements of the Weyl group. We use elements w of the Weyl group that are of minimal length in
their double coset. For each such w

0 = Q(Fy)wéGe(Fy)U(Fy)

is induces a bijection between the set of Q(F,), Ga(F,)U(F,)-double cosets in Q(F,)wP(F,) and
(M(F,) nwQ(F,)w)\M(F,)/G2(F,). Moreover for § € M(F,),

1/}[6]0|U05‘1w‘1Qw6 =]l = [5 : wE)IHUOw‘le =1
We consider the longest element wy of Q(F,)\GE7(F,)/P(F,), and show that

{0 € (M(F) 0w QR wo)\M () [Ga(Fu) 6 0 lumust guo = 1

is infinite.

To do this we first compute M nw; LQuwg and find that it is the product of the GL; factor of M
and the parabolic of type (2,2,3) in the Levi factor. Note that the dimension of this parabolic is
33.

If we let GL7(F,) act on ¢, then the stabilizer is G2(F,), and so the orbit is a variety of
dimension 35. Recall that 17 is identified with a nilpotent element X of ge7, lying in g°, for the
00 00

2

Finally, we compute that {a € ®(U,T) : woar > 0} = {1123321}. Because wy is of shortest length in
Quwo P, this implies that U ﬂwngwg = Uy123321- This means that the condition ¢ - w[ej‘)|Unw61Qw0 =1
amounts to a single polynomial equation on the entries of §, so we get a 34-dimensional subvariety.
Clearly, our 33-dimensional parabolic can not act transitively on this subvariety. O

Lemma 8.3.2. At least eight different Q(F),), P(F,)-double cosets contain admissible Q(F},),
G2(F,)U(F,)-double cosets.

Proof. Indeed, there are eight elements of w € Q\G'E7/P such that ¢ |yny-10w, = 1. O

semisimple element 0, our variety is then identified with the G L7-orbit of X in g°,.

Remark 8.3.3. We expect that if 7 is of G5 type then the local components of 7w at unramified

places will be induced from characters of the form , with 1, x2 being unitary characters.

However, we would expect that in general x1, x2 would not satisfy any special condition that would

permit to be reducible. The representation has a P-module filtration parametrized
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by the elements of Q\GE7/P, and Lemma suggests that at least eight of the P-modules in this
filtration will have nontrivial twisted Jacquet modules. Thus the local unramified descent appears
to be highly reducible.

This is consistent with our global results. We would expect an irreducible cuspidal automorphic
representation 7 of G type to be a weak functorial lift attached to the embedding Go(C) = GL7(C)
of some generic cuspidal automorphic representation of Go(A). In the classical cases considered in
[GRS11] and [HS16], the descent recovers the original cuspidal representation that was lifted (up to
near equivalence). In our case, our global results let us know that the descent module also contains
noncuspidal functions. In general, we would not expect any noncuspidal automorphic forms to
lift weakly to w. Hence our noncuspidality result predicts that the descent module will not consist
solely of automorphic forms which lift weakly to .
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