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Abstract. We complete the proof of Proposition 5.3 of [GJR04].

In this note, we complete the proof of Proposition 5.3 of [GJR04]
which is stated as follows.

Proposition 0.1 (Proposition 5.3, [GJR04]). If the period, defined in
(5.2) of [GJR04],

Pr,r−l(φσ, φ̃τ̃ , ϕl),

does not vanish for some given φσ ∈ Vσ and φ̃τ̃ ∈ Vτ̃ , then the integral∫
K×Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(mk)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)wk)dmdp1dk,

does not vanish for some choice of data φπψ(τ̃)⊗σ ∈ AP2r,l,πψ(τ̃)⊗σ and

φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0.

The proof of Proposition 5.3 of [GJR04] is reduced to the proof of
the non-vanishing of the following integral (see (0.15) below)∫

Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)w)dmdp1

for a proper set of sections, which was not complete in [GJR04]. In
this note, we complete this proof by proving Proposition 0.3 below.
Notation in the above proposition will be explained in Section 0.1.
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0.1. Notation and the main result in Section 4 of [GJR04]. Let
F be a number field. We will use the notation from [GJR04] freely.
Let AP2r,l,πψ(τ̃)⊗σ be the set of functions

φ : M2r,l(F )U2r,l(A)\Sp4r+2l(A)→ C,

such that φ is right KSp4r+2l
(A)-finite, and for each k ∈ KSp4r+2l

(A),
the function φk : m 7→ φ(mk), m ∈M2r,l(A), belongs to πψ(τ̃)⊗σ. For
φ ∈ AP2r,l,πψ(τ̃)⊗σ, let

Φ(·, s, φ) = φ(·) exp〈s+ ρP2r,l
, HP2r,l

(·)〉.

Then {
Φ(·, s, φ) : φ ∈ AP2r,l,πψ(τ̃)⊗σ

}
is equivalent to I(s, πψ(τ̃) ⊗ σ). Similarly, let ÃP̃2r,r,πψ(τ̃)⊗τ̃ be the set

of functions

φ̃ : M̃2r,r(F )U2r,r(A)\S̃p6r(A)→ C,

such that φ̃ is right KSp6r
(A)-finite, and for each k ∈ KSp6r

(A), the

function φ̃k : m̃ 7→ φ̃(m̃k), m̃ ∈ M̃2r,r(A), belongs to πψ(τ̃) ⊗ τ̃ . For

φ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ , let

Φ̃(·, s, φ̃) = φ̃(·)γψ(det(·)) exp〈s+ ρP̃2r,r
, HP̃2r,r

(·)〉.

Then {
Φ̃(·, s, φ̃) : φ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃

}
is equivalent to Ĩ(s, πψ(τ̃)⊗ τ̃).

The goal of Section 4 of [GJR04] is to compute the period
(0.1)

P3r,r−l(E 1
2
(·, φ), Ẽ1(·, φ̃), ϕ2r+l) =

∫
[Sp4r+2l]

E 1
2
(g, φ)Fψϕ2r+l

(Ẽ1(·, φ̃))(g)dg,

where, φ = φπψ(τ̃)⊗σ ∈ AP2r,l,πψ(τ̃)⊗σ, E 1
2
(·, φ) is the residue at s = 1

2
of

the following Eisenstein series

E(g, s, φ) =
∑

γ∈P2r,l(F )\Sp4r+2l(F )

Φ(γg, s, φ), g ∈ Sp4r+2l(A);

φ̃ = φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ , Ẽ1(·, φ̃) is the residue at s = 1 of the

following Eisenstein series

Ẽ(g, s, φ̃) =
∑

γ∈P2r,r(F )\Sp6r(F )

Φ̃(γg̃, s, φ̃), g̃ ∈ S̃p6r(A);
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and

Fψϕ2r+l
(Ẽ1(·, φ̃))(g) =

∫
[V2r+l]

θ̃ψ
−1

ϕ2r+l
(`2r+l(v)g̃)Ẽ1(vg̃, φ̃)ψr−l(v)dv.

It turns out (see (4.8) of [GJR04]) that the period (0.1) is the residue
at s = 1

2
of the following period

(0.2) P3r,r−l(E1, Ẽ1(·, φ̃), ϕ2r+l) =

∫
[Sp4r+2l]

E1(g)Fψϕ2r+l
(Ẽ1(·, φ̃))(g)dg,

where,

E1(g) =
∑

γ∈P2r,l(F )\Sp4r+2l(F )

Φ(γg, s, φ)(1− τc(H(γg))).

Recall from (4.4) of [GJR04] that for g = um(g)k ∈ Sp4r+2l(A) with u ∈
U2r,l(A), m(g) ∈ M2r,l(A) and k ∈ KSp4r+2l

(A), H(g) = |det(m(g))|.
We remark that all θ̃ occurred in Sections 4 and 5 of [GJR04], namely
for the case of r ≥ l, should be with respect to the character ψ−1.

Let Φc(γg, s, φ) = Φ(γg, s, φ)(1 − τc(H(γg))). By [GJR04, Proposi-
tion 4.3], the period (0.2) is equal to
(0.3)∫
M(F )U(A)\Sp4r+2l(A)

Φc(γg, s, φ)

∫
Matr−l,2r(A)

∫
[Vr,l]

∑
ξl∈F l

ωψ−1(`(p2, z)`(p1)g̃)

ϕ2r+l((0, ξl))Ẽ1,P̃2r,r
(vv−(p1)wg̃, φ̃)ψr−l(v)dvdp1dg,

where w is the following Weyl element on p. 696 of [GJR04],

(0.4) w =


0 I2r 0 0 0
Ir−l 0 0 0 0

0 0 I2l 0 0
0 0 0 0 Ir−l
0 0 0 I2r 0

 ,

Ẽ1,P̃2r,r
(g̃, φ̃) is the constant term of the residue Ẽ1(g̃, φ̃) along the max-

imal parabolic subgroup P̃2r,r, which equals M̃1(Φ̃)(g̃), the residue

at s = 1 of the intertwining operator M̃(w2r,r, s)(Φ̃)(g̃) defined in

Section 3.2 of [GJR04]. M̃(w2r,r, s) maps sections in the induced

representation Ĩ(s, πψ(τ̃) ⊗ τ̃) to those in the induced representation

Ĩ(−s, w2r,r(πψ(τ̃) ⊗ τ̃)). Note that M̃1(Φ̃)(g̃) is not identically zero,
and w2r,r(πψ(τ̃)⊗ τ̃) = πψ(τ̃)⊗ τ̃ since πψ(τ̃) is self-dual.

After applying the Iwasawa decomposition Sp4r+2l(A) = P2r,l(A)K,
K = KSp4r+2l

(A), we obtain the integral (4.31) of [GJR04], in which
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M̃1(Φ̃) belongs to Ĩ(−1, πψ(τ̃)⊗ τ̃). Since the induced representation

Ĩ(−1, πψ(τ̃)⊗τ̃) is reducible, the image M̃1(Φ̃) belongs to a proper sub-

representation of Ĩ(−1, πψ(τ̃) ⊗ τ̃). This is the key point that makes
the original argument in the proof in [GJR04] for Proposition 5.3 in-

sufficient. Denote the subrepresentation of Ĩ(−1, πψ(τ̃)⊗ τ̃) consisting

of the images of M̃1 by Ĩ0(−1, πψ(τ̃)⊗ τ̃). Recall that Ĩ(−1, πψ(τ̃)⊗ τ̃)
is equivalent to {

Φ̃(·,−1, φ̃) : φ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃

}
.

Denote the subspace of ÃP̃2r,r,πψ(τ̃)⊗τ̃ corresponding to Ĩ0(−1, πψ(τ̃)⊗τ̃)

by ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0.

In order to complete the proof of Proposition 5.3 in [GJR04], we find
a technically more involved argument, which is not sensitive to which

section to be taken in the subrepresentation Ĩ0(−1, πψ(τ̃)⊗ τ̃) or even

in the whole induced representation Ĩ(−1, πψ(τ̃)⊗ τ̃).

Since M̃1(Φ̃) ∈ Ĩ0(−1, πψ(τ̃) ⊗ τ̃), from the discussion above, there

exists φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0, such that

M̃1(Φ̃) = φ̃πψ(τ̃)⊗τ̃ γψ(det) exp〈−1 + ρP̃2r,r
, HP̃2r,r

〉.

It follows that

M̃1(Φ̃)(m̃(a, b)vv−(p1)wk)

= |det a|−1+2r+ 1
2γψ(det a)φ̃πψ(τ̃)⊗τ̃ (m̃(a, b)vv−(p1)wk).

After carrying out the calculations from (4.32) to (4.35) of [GJR04],
one obtains in Theorem 4.4 of [GJR04] that the period (0.1) is equal to
a product that a constant c times the integral (4.35) of [GJR04] which
is given by
(0.5)∫
K×Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(mk)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)wk)dmdp1dk,

where the function Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)wk) is defined as in (4.33) of

[GJR04] by
(0.6)∫

[Vr,l]

θ̃ψ
−1

ϕ2r+l,l
(`(p2, z)`(p1)m̃(b)k)φ̃πψ(τ̃)⊗τ̃ (vm̃(a, b)v−(p1)wk)ψr−l(v)dv,

the integration domain PM2r,l is given by

(0.7) PM2r,l := (ZGL2r(A)GL2r(F )\GL2r(A))× (Sp2l(F )\Sp2l(A))
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as in (4.34) of [GJR04], and

(0.8) c =
vol(A1\F×)

2rd

with d being the number of the real archimedean places of the number

field F . Recall from (4.29) of [GJR04] that θ̃ψ
−1

ϕ2r+l,l
is defined as follows:

(0.9) θ̃ψ
−1

ϕ2r+l,l
(`(p̄2, z̄)`(p̄1)g̃) =

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)g̃)ϕ2r+l((0, ξl)).

Recall that for each k ∈ KSp4r+2l
(A), φ ∈ AP2r,l,πψ(τ̃)⊗σ, φk : m 7→

φ(mk) belongs to πψ(τ̃)⊗σ, and for each k ∈ KSp6r
(A), φ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,

φ̃k : m̃ 7→ φ̃(m̃k) belongs to πψ(τ̃)⊗ τ̃ . Let AssP2r,l,πψ(τ̃)⊗σ be the subset

of AP2r,l,πψ(τ̃)⊗σ consisting of sections φπψ(τ̃)⊗σ which are factorizable
and have the property that φπψ(τ̃)⊗σ,1 is decomposable in πψ(τ̃)⊗ σ:

(0.10) φπψ(τ̃)⊗σ,1 = φπψ(τ̃) ⊗ φσ ∈ πψ(τ̃)⊗ σ,

where φπψ(τ̃) ∈ πψ(τ̃), φσ ∈ σ. Let Ãss
P̃2r,r,πψ(τ̃)⊗τ̃ ,0 be the subset of

ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 consisting of sections φ̃πψ(τ̃)⊗τ̃ which are factorizable and

have the property that φ̃πψ(τ̃)⊗τ̃ ,w is decomposable in πψ(τ̃)⊗ τ̃ :

(0.11) φ̃πψ(τ̃)⊗τ̃ ,w = φ′πψ(τ̃) ⊗ φ̃τ̃ ∈ πψ(τ̃)⊗ τ̃ ,

where φ′πψ(τ̃) ∈ πψ(τ̃), φ̃τ̃ ∈ τ̃ , and w is the Weyl element on p. 696 of

[GJR04], see (0.4).

Lemma 0.2. AssP2r,l,πψ(τ̃)⊗σ generates a dense subspace of AP2r,l,πψ(τ̃)⊗σ.

Proof. Since πψ(τ̃)⊗σ is generated by pure tensors φπψ(τ̃)⊗φσ, φπψ(τ̃) ∈
πψ(τ̃), φσ ∈ σ, the set

{φπψ(τ̃)⊗σ|φπψ(τ̃)⊗σ,1 ∈ πψ(τ̃)⊗ σ}

is generated by the set

{φπψ(τ̃)⊗σ|φπψ(τ̃)⊗σ,1 = φπψ(τ̃) ⊗ φσ ∈ πψ(τ̃)⊗ σ, φπψ(τ̃) ∈ πψ(τ̃), φσ ∈ σ}.

Hence, AssP2r,l,πψ(τ̃)⊗σ generates the subset of AP2r,l,πψ(τ̃)⊗σ consisting

of factorizable sections. Since factorizable sections generate a dense
subspace of AP2r,l,πψ(τ̃)⊗σ, AssP2r,l,πψ(τ̃)⊗σ generates a dense subspace of

AP2r,l,πψ(τ̃)⊗σ. �
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0.2. Proof of Proposition 5.3 of [GJR04]. We repeat the proof for
Proposition 5.3 in [GJR04] and point out the place that needs a more
technical argument, which is now taken care of by Proposition 0.3 be-
low.

Recall from (5.2), (2.11), and (2.13) of [GJR04] that the period

Pr,r−l(φσ, φ̃τ̃ , ϕl) equals

(0.12)

∫
[Sp2l]

φσ(g)

∫
[Vr,l]

θ̃ψ
−1

ϕl
(`l(v)g̃)φ̃τ̃ (vg̃)ψr−l(v)dvdg.

It defines a continuous functional on the space of

Vσ ⊗
(

Θ̃ψ−1

l ⊗ Vτ̃
)Vr,l,ψr−l

,

where Θ̃ψ−1

l is the space generated by the theta functions θ̃ψ
−1

ϕl
with

ϕl ∈ S(Al) and (Θ̃ψ−1

l ⊗Vτ̃ )Vr,l,ψr−l is the space generated by the Fourier-
Jacobi coefficients of automorphic forms in τ̃ .

It is clear that S(A2r+l) = S(A2r)⊗̂S(Al). If we take ϕ2r+l = ϕ2r⊗ϕl
(separation of variables), then we have

θ̃ψ
−1

ϕ2r+l,l
(`(p2, z)`(p1)g̃) = ϕ2r(`(p1)) · θ̃ψ−1

ϕl
(`(p2, z)g̃)

for g̃ ∈ S̃p2l(A) (see (0.9) for the definition of θ̃ψ
−1

ϕ2r+l,l
). For any fixed

ϕ2r ∈ S(A2r), we consider all Bruhat-Schwartz functions

ϕ2r+l = ϕ2r ⊗ ϕl ∈ S(A2r+l),

with ϕl ∈ S(Al). It follows that the space generated by θ̃ψ
−1

ϕ2r+l,l
(`(p2, z)g̃)

(with a fixed ϕ2r ∈ S(A2r) and all ϕl ∈ S(Al)) is the same as the space

Θ̃ψ−1

l (generated by all θ̃ψ
−1

ϕl
(`(p2, z)g̃)) as automorphic representations

of the Jacobi group S̃p2l(A)nHl(A), where Hl is the Heisenberg group
generated by all `(p2, z). In the following we may assume that ϕ2r is
supported in a small neighborhood of zero.

It follows that the non-vanishing of the period Pr,r−l(φσ, φ̃τ̃ , ϕl) is
equivalent to the non-vanishing of the following integral∫

[Sp2l]

φσ(b)

∫
[Vr,l]

θ̃ψ
−1

ϕ2r+l,l
(`(p2, z)̃b)φ̃τ̃ (vb̃)ψr−l(v)dvdb.

On the other hand, it is clear that the integral∫
ZGL2r

(A)GL2r(F )\GL2r(A)

φπψ(τ̃)(a)φπψ(τ̃)(a)da
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is not zero for any choice of nonzero φπψ(τ̃), where φπψ(τ̃) is the complex
conjugate of φπψ(τ̃). Hence, combining the above two non-vanishing
integrals, we obtain that the integral

(0.13)

∫
PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mw)dm,

does not vanish for some choice of data φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ and

φ̃πψ(τ̃)⊗τ̃ ∈ ÃssP̃2r,r,πψ(τ̃)⊗τ̃ ,0 (by taking φ′πψ(τ̃) to be φπψ(τ̃) in (0.11)), where

PM2r,l is as in (0.7), and for m = m(a, b), Fψ(φ̃πψ(τ̃)⊗τ̃ )(mw) is defined
by

(0.14)

∫
[Vr,l]

θ̃ψ
−1

ϕ2r+l,l
(`(p2, z)m̃(b))φ̃πψ(τ̃)⊗τ̃ (m̃(a)vm̃(b)w)ψr−l(v)dv.

We claim that for any choice of φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ, there exists

φ̃πψ(τ̃)⊗τ̃ ∈ ÃssP̃2r,r,πψ(τ̃)⊗τ̃ ,0 such that the integral (0.13) does not van-

ish. Indeed, from the discussion above and the definitions of the sets

AssP2r,l,πψ(τ̃)⊗σ and Ãss
P̃2r,r,πψ(τ̃)⊗τ̃ ,0, it suffices to show that for any choice

of φσ ∈ σ, there exists φ̃τ̃ ∈ τ̃ such that the period Pr,r−l(φσ, φ̃τ̃ , ϕl)
is nonzero. This follows from the fact that since σ is irreducible, if

the period Pr,r−l(φσ, φ̃τ̃ , ϕl) is nonzero for some choice of φσ ∈ σ and

φ̃τ̃ ∈ τ̃ , then the whole σ occurs in the descent module of τ̃ (for the
definition of descent modules see [GRS11, Chapter 3]).

Next we consider the following inner integration from Proposition
0.1:

(0.15)

∫
Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)w)dmdp1.

Recall from p. 697 of [GJR04] that the element v−(p1) belongs to a
unipotent subgroup of Sp6r consisting of elements of the form

v−(p1) =


I2r

p1 Ir−l
I2l

Ir−l
p∗1 I2r

 .

By Proposition 0.3 below and the claim above, for any choice of φπψ(τ̃)⊗σ ∈
AssP2r,l,πψ(τ̃)⊗σ, there exists φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 such that the inte-

gral (0.15) does not vanish. This is the place where the original ar-
gument in the proof of Proposition 5.3 of [GJR04] is not complete.
Proposition 0.3 will be proved in Sections 0.3 – 0.5.
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In order to prove finally the integral∫
K×Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(mk)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)wk)dmdp1dk

is nonzero for some choice of data, for k ∈ K, we set

Ψ(k) :=

∫
Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(mk)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)wk)dmdp1.

According to the discussion above, under the assumption of the propo-

sition, for any choice of φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ, there exists φ̃πψ(τ̃)⊗τ̃ ∈
ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 such that Ψ(k) is nonzero at k = 1, the identity. By

Lemma 0.2, AssP2r,l,πψ(τ̃)⊗σ generates a dense subspace of AP2r,l,πψ(τ̃)⊗σ,

hence we have the freedom on the K-support of the factorizable section
φπψ(τ̃)⊗σ.

Therefore, at non-archimedean ramified local places v, we can choose
a small support Ωv ⊂ Kv of φπψ(τ̃)⊗σ near the identity, such that

Ψ(k∞ · kv) = Ψ(k∞).

At the archimedean local places v, by using the continuity at k = 1
of Ψ(k), there is a small support Ω∞ ⊂ K∞ for φπψ(τ̃)⊗σ such that the
integral ∫

K

Ψ(k)dk = cf ·
∫

Ω∞

Ψ(k∞)dk∞ 6= 0,

with a constant cf depending on the ramified finite local places.
This completes the proof of Proposition 5.3 of [GJR04], up to proving

Proposition 0.3 below. �

Proposition 0.3. For any choice of data φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ,

there exists φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 such that the integral (0.15),

which equals∫
Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)w)dmdp1,

does not vanish.

The proof of this proposition will be given in following sections.

0.3. The idea for proving Proposition 0.3. In this section, we
briefly introduce the idea for proving Proposition 0.3. First, we recall
a lemma from [GRS11], which plays the same role as [GJR04, Lemma
4.2].

Let H be any F -quasisplit classical group, including the general lin-
ear group. Let C be an F -subgroup of a maximal unipotent subgroup
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of H, and let ψC be a non-trivial character of [C] = C(F )\C(A). X, Y
are two unipotent F -subgroups, satisfying the following conditions:

(1) X and Y normalize C;
(2) X∩C and Y ∩C are normal inX and Y , respectively, (X∩C)\X

and (Y ∩ C)\Y are abelian;
(3) X(A) and Y (A) preserve ψC ;
(4) ψC is trivial on (X ∩ C)(A) and (Y ∩ C)(A);
(5) [X, Y ] ⊂ C;
(6) there is a non-degenerate pairing (X∩C)(A)×(Y ∩C)(A)→ C∗,

given by (x, y) 7→ ψC([x, y]), which is multiplicative in each
coordinate, and identifies (Y ∩ C)(F )\Y (F ) with the dual of
X(F )(X ∩ C)(A)\X(A), and (X ∩ C)(F )\X(F ) with the dual
of Y (F )(Y ∩ C)(A)\Y (A).

Let B = CY and D = CX, and extend ψC trivially to characters of
[B] = B(F )\B(A) and [D] = D(F )\D(A), which will be denoted by
ψB and ψD respectively. When there is no confusion, we may denote
ψB and ψD all by ψC .

Lemma 0.4 (Lemma 7.1 of [GRS11]). Assume that the quadruple
(C,ψC , X, Y ) satisfies all the above conditions. Let f be an automor-
phic form on H(A). Then for any g ∈ H(A),∫

[B]

f(vg)ψ−1
B (v)dv =

∫
(Y ∩C)(A)\Y (A)

∫
[D]

f(uyg)ψ−1
D (u)dudy.

The right hand side of the the above equality is convergent in the sense∫
(Y ∩C)(A)\Y (A)

|
∫

[D]

f(uyg)ψ−1
D (u)du|dy <∞,

and this convergence is uniform as g varies in compact subsets of H(A).

The idea for proving Proposition 0.3.
First, based on the discussion in Section 0.2, for any choice of φπψ(τ̃)⊗σ ∈
AssP2r,l,πψ(τ̃)⊗σ, there exists φ̃πψ(τ̃)⊗τ̃ ∈ ÃssP̃2r,r,πψ(τ̃)⊗τ̃ ,0 such that the inte-

gral (0.13):

(0.16)

∫
PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(φ̃πψ(τ̃)⊗τ̃ )(mw)dm,

does not vanish, where PM2r,l is as in (0.7), and for m = m(a, b),

Fψ(φ̃πψ(τ̃)⊗τ̃ )(mw) is defined in (0.14).
The proof of Proposition 0.3 briefly consists of the following 4 steps.

(1) Reversing the calculations from (4.29) – (4.35) and reversing the

step of taking Fourier expansion of Ẽ1 along [C1] as in [GJR04,
9



Section 4], we can transform the integral (0.16) to a nonzero
constant times the residue at s = 1

2
of a multiple integral over

[M ] and [V (1)] (see (0.18), (0.31) below).

(2) Note that V (1) =
∏r−l

n=2 CnV (0), we consider the integral over
[V (1)]. Applying Lemma 0.4 repeatedly to exchange roots from∏r−l

i=2 Ci to
∏r−l−1

j=1 Rj, we obtain a multiple integral over
∏r−l

i=2 Ci(A),

[
∏r−l−1

j=1 Rj] and [V (0)] (see (0.20), (0.33) below). Combining

with the outer integral over [M ], after changing of variables, we

obtain a non-vanishing multiple integral over
∏r−l

i=2 Ci(A), [M ],

[
∏r−l−1

j=1 Rj] and [V (0)] (see (0.22), (0.34) below). Then we drop

the outer integral over
∏r−l

i=2 Ci(A). Clearly the inner multiple

integral over [M ], [
∏r−l−1

j=1 Rj] and [V (0)] is non-vanishing.

(3) Then we consider the non-vanishing inner multiple integral over

[
∏r−l−1

j=1 Rj] and [V (0)]. Applying Lemma 0.4 repeatedly to ex-

change roots from
∏r−l−1

j=1 Rj to
∏r−l

i=2 Ci, we obtain a multi-

ple integral over
∏r−l−1

j=1 Rj(A), [
∏r−l

i=2 Ci] and [V (0)] (see (0.25),

(0.37) below). Combining with the outer integral over [M ], after
changing of variables, we obtain a non-vanishing multiple inte-
gral over

∏r−l−1
j=1 Rj(A), [M ], [

∏r−l
i=2 Ci] and [V (0)] (see (0.27),

(0.39) below). Note that
∏r−l

i=2 CiV (0) = V (1).
(4) By choosing appropriate ϕ2r ∈ S(A2r), we obtain a non-vanishing

multiple integral over
∏r−l

j=1Rj(A), [M ] and [V (1)] (see (0.28),

(0.40) below). Note that
∏r−l

j=1Rj(A) is exactly the group Matr−l,2r(A).

After taking Fourier expansion of Ẽ1 along [C1] and the calcula-
tions from (4.29) – (4.35) as in [GJR04, Section 4], we obtain a
non-vanishing integral which is exactly a product of a nonzero
constant with the integral in (0.15), for φπψ(τ̃)⊗σ and some right

translation of φ̃πψ(τ̃)⊗τ̃ .

0.4. Proof of Proposition 0.3: special case l = 1, r = 3. In this
section, we prove Proposition 0.3 for the first non-trivial case: l =
1, r = 3.

We start from the non-vanishing integral (0.16). Reversing the cal-
culations from (4.29) – (4.35) as in [GJR04, Section 4], the integral
(0.16) is equal to 1

c
times the residue at s = 1

2
of

(0.17)

∫
[M ]

Φc(m, s, φ)|det a|−
21
2

∫
[V3,1]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃)

10



ϕ7((0, ξ1))Ẽ1,P̃6,3
(vm̃w, φ̃)ψ2(v)dvdm,

where c is as in (0.8).

Reversing the step of taking Fourier expansion of Ẽ1 along [C1] as in
[GJR04, Section 4], the integral (0.17) is equal to

(0.18)

∫
[M ]

Φc(m, s, φ)|det a|−
21
2

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃)

ϕ7((0, ξ1))Ẽ1(v(1)m̃w, φ̃)ψ2(v(1))dv(1)dm.

Recall that V (1) consists of elements of the type

v(1) =


I6 q y p∗3 z′

n p2 z p3

I2 p∗2 y∗

n∗ q∗

I6

 ,

where q ∈ Mat6,2 with the first column being zero.
Recall that V (0) consists of elements of the type

v(0) =


I6 0 y p∗3 z′

n p2 z p3

I2 p∗2 y∗

n∗ 0
I6

 .

And for 1 ≤ t ≤ 2,

Ct =




I6 q 0 0 0

I2 0 0 0
I2 0 0

I2 q∗

I6

 : q ∈ Mat6,2, qi,j = 0, j 6= t

 ,

Rt =




I6 0 0 0 0
p I2 0 0 0

I2 0 0
I2 0
p∗ I6

 : p ∈ Mat2,6, qi,j = 0, i 6= t

 .

Note that V (1) = C2V
(0). Next, we consider the integral over [V (1)]

and apply Lemma 0.4 to exchange the roots from C2 to R1. It is easy
to see that the quadruple

(V (0), ψ2,R1, C2)
11



satisfies all the conditions in Lemma 0.4. Hence, applying Lemma 0.4
to the quadruple (V (0), ψ2,R1, C2), the integral

(0.19)

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃)ϕ7((0, ξ1))

Ẽ1(v(1)m̃w, φ̃)ψ2(v(1))dv(1)

is equal to

(0.20)

∫
C2(A)

∫
[R1]

∫
[V (0)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ7((0, ξ1))

Ẽ1(v(0)v−(p1)vm̃w, φ̃)ψ2(v(0))dv(0)dp1dv.

Hence, the integral (0.18) is equal to
(0.21)∫

[M ]

Φc(m, s, φ)|det a|−
21
2

∫
C2(A)

∫
[R1]

∫
[V (0)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ7((0, ξ1))Ẽ1(v(0)v−(p1)vm̃w, φ̃)ψ2(v(0))dv(0)dp1dvdm.

Since [M ] normalizes the group C2(A), after changing of variables,
we obtain the following non-vanishing integral
(0.22)∫
C2(A)

∫
[M ]

Φc(m, s, φ)|det a|−
23
2

∫
[R1]

∫
[V (0)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ7((0, ξ1))Ẽ1(v(0)v−(p1)m̃w(w−1vw), φ̃)ψ2(v(0))dv(0)dp1dmdv.

Therefore, as an inner integral, the following integral is non-vanishing

(0.23)

∫
[M ]

Φc(m, s, φ)|det a|−
23
2

∫
[R1]

∫
[V (0)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ7((0, ξ1))Ẽ1(v(0)v−(p1)m̃wg, φ̃)ψ2(v(0))dv(0)dp1dm,

where g = w−1vw, for some v ∈ C2(A).
Now, we consider the multiple integral over [R1] and [V (0)], and apply

Lemma 0.4 to exchange the roots from R1 to C2. Precisely, applying
Lemma 0.4 to the quadruple (V (0), ψ2, C2,R1) (which also satisfies all
the conditions in Lemma 0.4), the integral

(0.24)

∫
[R1]

∫
[V (0)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ7((0, ξ1))

Ẽ1(v(0)v−(p1)m̃wg, φ̃)ψ2(v(0))dv(0)dp1
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is equal to

(0.25)

∫
R1(A)

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ7((0, ξ1))

Ẽ1(v(1)v−(p1)m̃wg, φ̃)ψ2(v(1))dv(1)dp1.

Hence, the integral (0.23) is equal to
(0.26)∫

[M ]

Φc(m, s, φ)|det a|−
23
2

∫
R1(A)

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ7((0, ξ1))

Ẽ1(v(1)v−(p1)m̃wg, φ̃)ψ2(v(1))dv(1)dp1dm.

Since [M ] normalizes R1(A), after changing of variables, we obtain the
following non-vanishing integral
(0.27)∫

R1(A)

∫
[M ]

Φc(m, s, φ)|det a|−
21
2

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃`(p̄1))

ϕ7((0, ξ1))Ẽ1(v(1)m̃v−(p1)wg, φ̃)ψ2(v(1))dv(1)dmdp1.

By choosing appropriate ϕ2 ∈ S(A6), the integral (0.27) is non-vanishing
if and only if the following integral is non-vanishing
(0.28)∫

R1R2(A)

∫
[M ]

Φc(m, s, φ)|det a|−
21
2

∫
[V (1)]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃`(p̄1))

ϕ7((0, ξ1))Ẽ1(v(1)m̃v−(p1)wg, φ̃)ψ2(v(1))dv(1)dmdp1.

After taking Fourier expansion of Ẽ1 along [C1], arguing as in [GJR04,
Section 4], the integral (0.28) is equal to
(0.29)∫

R1R2(A)

∫
[M ]

Φc(m, s, φ)|det a|−
21
2

∫
[V3,1]

∑
ξ1∈F 1

ωψ−1(`(p̄2, z̄)m̃`(p̄1))

ϕ7((0, ξ1))Ẽ1,P6,3(vm̃v
−(p1)wg, φ̃)ψ2(v)dvdmdp1.

Then, following the calculations from (4.29) – (4.35) in [GJR04], we
obtain that the following integral

c

∫
Mat2,6(A)×PM6,1

φπψ(τ̃)⊗σ(m)Fψ(R(g)φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)w)dmdp1

does not vanish, where R(g) is the right translation operator. Hence,

for φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ, R(g)φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 would be

suffice, in order for the integral (0.15) to be non-vanishing.
13



This completes the proof of Proposition 0.3 for the special case l = 1,
r = 3. �

0.5. Proof of Proposition 0.3: the general case. In this section,
we prove Proposition 0.3 for the general case.

Again, we start from the non-vanishing integral (0.16). Reversing the
calculations from (4.29) – (4.35) as in [GJR04, Section 4], the integral
(0.16) is equal to 1

c
times the residue at s = 1

2
of

(0.30)∫
[M ]

Φc(m, s, φ)|det a|−3r−l− 1
2

∫
[Vr,l]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃)ϕ2r+l((0, ξl))

Ẽ1,P̃2r,r
(vm̃w, φ̃)ψr−l(v)dvdm,

where again c is as in (0.8).

Reversing the step of taking Fourier expansion of Ẽ1 along [C1], the
integral (0.30) is equal to
(0.31)∫

[M ]

Φc(m, s, φ)|det a|−3r−l− 1
2

∫
[V (1)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃)ϕ2r+l((0, ξl))

Ẽ1(v(1)m̃w, φ̃)ψr−l(v
(1))dv(1)dm.

Recall that V (1) consists of elements of the type

v(1) =


I2r q y p∗3 z′

n p2 z p3

I2l p∗2 y∗

n∗ q∗

I2r

 ,

where q ∈ Mat2r,r−l with the first column being zero.
Recall that V (0) consists of elements of the type

v(0) =


I2r 0 y p∗3 z′

n p2 z p3

I2l p∗2 y∗

n∗ 0
I2r

 .
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And for 1 ≤ t ≤ r − l,

Ct =




I2r q 0 0 0

Ir−l 0 0 0
I2l 0 0

Ir−l q∗

I2r

 : q ∈ Mat2r,r−l, qi,j = 0, j 6= t

 ,

Rt =




I2r 0 0 0 0
p Ir−l 0 0 0

I2l 0 0
Ir−l 0
p∗ I2r

 : p ∈ Matr−l,2r, qi,j = 0, i 6= t

 .

Note that V (1) =
∏r−l

i=2 CiV (0). Next, we consider the integral over

[V (1)] and apply Lemma 0.4 repeatedly to exchange roots from
∏r−l

i=2 Ci
to
∏r−l−1

j=1 Rj. First, one can see that the quadruples(
t−1∏
j=1

Rj

r−l∏
i=t+2

CiV (0), ψr−l,Rt, Ct+1

)
, 1 ≤ t ≤ r − l − 1,

satisfy all the conditions in Lemma 0.4. Hence, applying Lemma 0.4
to the following ordered sequence of quadruples(

r−l∏
i=3

CiV (0), ψr−l,R1, C2

)
,

(
R1

r−l∏
i=4

CiV (0), ψr−l,R2, C3

)
,

· · ·(
t−1∏
j=1

Rj

r−l∏
i=t+2

CiV (0), ψr−l,Rt, Ct+1

)
,

· · ·(
r−l−2∏
j=1

RjV
(0), ψr−l,Rr−l−1, Cr−l

)
,

the integral

(0.32)

∫
[V (1)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃)ϕ2r+l((0, ξl))

Ẽ1(v(1)m̃w, φ̃)ψr−l(v
(1))dv(1)
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is equal to
(0.33)∫

∏r−l
i=2 Ci(A)

∫
[
∏r−l−1
j=1 Rj ]

∫
[V (0)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ2r+l((0, ξl))

Ẽ1(v(0)v−(p1)vm̃w, φ̃)ψr−l(v
(0))dv(0)dp1dv.

Since M normalizes the group
∏r−l

i=2 Ci, after changing of variables,
we obtain the following non-vanishing integral
(0.34)∫

∏r−l
i=2 Ci(A)

∫
[M ]

Φc(m, s, φ)|det a|−4r+ 1
2

∫
[
∏r−l−1
j=1 Rj ]

∫
[V (0)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ2r+l((0, ξl))Ẽ1(v(0)v−(p1)m̃w(w−1vw), φ̃)ψr−l(v
(0))dv(0)dp1dmdv.

Therefore, as an inner integral, the following integral is non-vanishing
(0.35)∫

[M ]

Φc(m, s, φ)|det a|−4r+ 1
2

∫
[
∏r−l−1
j=1 Rj ]

∫
[V (0)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ2r+l((0, ξl))Ẽ1(v(0)v−(p1)m̃wg, φ̃)ψr−l(v
(0))dv(0)dp1dm,

where g = w−1vw, for some v ∈
∏r−l

i=2 Ci(A).

Now, we consider the multiple integral over [
∏r−l−1

j=1 Rj] and [V (0)],

and apply Lemma 0.4 repeatedly to exchange roots from
∏r−l−1

j=1 Rj to∏r−l
i=2 Ci. One can see that the quadruples(

t∏
i=2

Cm
r−l−1∏
j=t+1

RjV
(0), ψr−l, Ct+1,Rt

)
, 1 ≤ t ≤ r − l − 1,

also satisfy all the conditions in Lemma 0.4. Hence, applying Lemma
0.4 to the following ordered sequence of quadruples(

r−l−1∏
j=2

RjV
(0), ψr−l, C2,R1

)
,

(
C2

r−l−1∏
j=3

RjV
(0), ψr−l, C3,R2

)
,

· · ·(
t∏
i=2

Ci
r−l−1∏
j=t+1

RnV
(0), ψr−l, Ct+1,Rt

)
,

· · ·
16



(
r−l−1∏
i=2

CiV (0), ψr−l, Cr−l,Rr−l−1

)
,

the integral

(0.36)

∫
[
∏r−l−1
j=1 Rj ]

∫
[V (0)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ2r+l((0, ξl))

Ẽ1(v(0)v−(p1)m̃wg, φ̃)ψr−l(v
(0))dv(0)dp1

is equal to
(0.37)∫

∏r−l−1
j=1 Rj(A)

∫
[
∏r−l
i=2 Ci]

∫
[V (0)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)ϕ2r+l((0, ξl))

Ẽ1(v(0)vv−(p1)m̃wg, φ̃)ψr−l(v
(0))dv(0)dvdp1.

Hence, the integral (0.35) becomes
(0.38)∫

[M ]

Φc(m, s, φ)|det a|−4r+ 1
2

∫
∏r−l−1
j=1 Rj(A)

∫
[V (1)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)`(p̄1)m̃)

ϕ2r+l((0, ξl))Ẽ1(v(1)v−(p1)m̃wg, φ̃)ψr−l(v
(1))dv(1)dp1dm.

Since M normalizes the group
∏r−l−1

j=1 Rj, after changing of variables,
we obtain the following non-vanishing integral
(0.39)∫

∏r−l−1
j=1 Rj(A)

∫
[M ]

Φc(m, s, φ)|det a|−3r−l− 1
2

∫
[V (1)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃`(p̄1))

ϕ2r+l((0, ξl))Ẽ1(v(1)m̃v−(p1)wg, φ̃)ψr−l(v
(1))dv(1)dmdp1.

By choosing appropriate ϕ2 ∈ S(A2r), the following integral is also
non-vanishing
(0.40)∫

∏r−l
j=1Rj(A)

∫
[M ]

Φc(m, s, φ)|det a|−3r−l− 1
2

∫
[V (1)]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃`(p̄1))

ϕ2r+l((0, ξl))Ẽ1(v(1)m̃v−(p1)wg, φ̃)ψr−l(v
(1))dv(1)dmdp1.

After taking Fourier expansion of Ẽ1 along [C1], arguing as in [GJR04,
Section 4], the integral (0.40) is equal to
(0.41)∫

∏r−l
j=1Rj(A)

∫
[M ]

Φc(m, s, φ)|det a|−3r−l− 1
2

∫
[Vr,l]

∑
ξl∈F l

ωψ−1(`(p̄2, z̄)m̃`(p̄1))
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ϕ2r+l((0, ξl))Ẽ1,P̃2r,r
(vm̃v−(p1)wg, φ̃)ψr−l(v)dvdmdp1.

Then, following the calculations from (4.29) – (4.35) as in [GJR04,
Section 4], we obtain that the following integral

c

∫
Matr−l,2r(A)×PM2r,l

φπψ(τ̃)⊗σ(m)Fψ(R(g)φ̃πψ(τ̃)⊗τ̃ )(mv
−(p1)w)dmdp1,

does not vanish, where R(g) is the right translation operator. Hence,

for φπψ(τ̃)⊗σ ∈ AssP2r,l,πψ(τ̃)⊗σ, R(g)φ̃πψ(τ̃)⊗τ̃ ∈ ÃP̃2r,r,πψ(τ̃)⊗τ̃ ,0 would be

suffice, in order for the integral (0.15) to be non-vanishing.
This completes the proof of Proposition 0.3. �
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