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Abstract

Let n ě 2 and τ be an irreducible unitary supercuspidal representation of GLp2nq over a
local non-archimedean field. Assuming the twisted symmetric square L-function of τ has a pole
at s “ 0, we construct the local descent of τ to the corresponding general spin group of even
rank (split over the base field, or over a quadratic extension). We show that this local descent is
non-trivial, generic, unitary and supercuspidal. Moreover, any generic irreducible supercuspidal
representation of the general spin group which lifts functorially to τ is contragradient to some
constituent of the representation we construct.
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1 Introduction
Let G be a connected reductive algebraic group defined over a global field K or local field F ,

let G be the group of rational points over that field. One of the central problems in the Langlands
program is to determine the functorial image of a Langlands functorial lift corresponding to some L-
homomorphism from LG to a suitable general linear group. To this end, when G is a classical group,
with the exception of some low rank cases, it has been shown that the local and global descent method
is an effective approach in proving that the relevant functorial image is contained in the collection of
irreducible admissible representations of certain p-adic linear groups or automorphic representations
of adelic linear groups satisfying a list of conditions, cf. [GRS11], [GRS99b], [JNQ10] and [ST15]. The
global automorphic descents from general linear groups to GSpin groups, from GL7 to G2, have been
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carried out in [HS16] and [HL19], respectively. In this paper, we work out the local descent theory for
GSpin(even) groups.

Fix a non-archimedean local field F of characteristic 0. Let G be either the split group GSpinp2nq
or quasi-split non-split group GSpin˚p2nq defined over F that splits over a quadratic extension E, cf.
§ 2.1 for the definition of GSpinp2nq and GSpin˚p2nq. Then LG is either GSOp2nqpCq ˆ GalpF {F q
or GSOp2nqpCq ¸ GalpF {F q where GSO is the special orthogonal similitude group, the non-trivial
semi-direct product is defined by

pg1, γ1qpg2, γ2q “

#

pg1g2, γ1γ2q if γ1|E “ idE ,

pg1hg2h
´1, γ1γ2q if γ1|E ‰ idE ,

for g1, g2 P GSOp2nqpCq, γ1, γ2 P GalpF {F q and

h “

¨

˚

˚

˝

In´1

0 1
1 0

In´1

˛

‹

‹

‚

.

Let ι : GSOp2nqpCq ˆ GalpF {F q Ñ GLp2nqpCq ˆ GalpF {F q be the canonical inclusion and ι˚ :
GSOp2nqpCq ¸GalpF {F q Ñ GLp2nqpCq ˆGalpF {F q be the L-homomorphism

pg, γq ÞÑ

#

pg, γq if γ|E “ idE ,

phgh´1, γq if γ|E ‰ idE ,

for g P GSOp2nqpCq and γ P GalpF {F q. Denote the standard representation of GLp2nqpCq by ρ2n.
Given an irreducible unitary supercuspidal representation τ of GLp2nqpF q and a unitary character ω
of F˚ such that the local Langlands-Shahidi L-function Lps, τ, Sym2 ρ2nbω

´1q has a pole at s “ 0, the
purpose of this paper is to construct a generic supercuspidal representation (descent) of G such that
any generic irreducible supercuspidal representation of G which lifts functorially to τ is contragradient
to some constituent of the descent.

In § 2, for a quadratic form Q defined over a vector space V , we define the group GSpinpQq
and show the existence of a canonical isomorphism of the Siegel Levi subgroup of GSpinp2m ` 1q
to GLp1q ˆ GLpmq with respect to a canonical projection pr : GSpinp2m ` 1q � SOp2m ` 1q for
m ě 4. This isomorphism enables us to reduce calculations performed on the adelic or rational
points of the Siegel Levi of H “ GSpinp2m ` 1q to that of the Siegel Levi of SOp2m ` 1q. With
respect to the maximal torus of SOp2m ` 1q consisting of the diagonal matrices of SOp2m ` 1q and
the Borel subgroup of upper triangular matrices in SOp2m ` 1q, let P1l “ M1

lN
1
l be the standard

parabolic subgroup of SOp2m` 1q whose Levi subgroup M1
l is the direct product of l-copies of GLp1q

and SOp2pm ´ lq ` 1q and Pl “ pr´1pP1lq have Levi decomposition MlNl. For a fixed α P K˚ and
anisotropic vector w0 in V depending on α, we define a rational additive character χl,w0

: N1
l Ñ Ga, cf.

subsection 2.2. The SOp2pm´ lq`1q factor acts on N1
l and the set of rational additive characters from

N1
l to Ga by conjugation with stabilizer L1l,α isomorphic to a quasi-split form of SOp2pm ´ lqq. Let

R1l,α “ L1l,α˙N1
l and ψ be a non-trivial character of KzA. Define ψl,α “ ψ˝χl,w0 ˝pr |NlpAq. Then ψl,α

is a character of NlpAq trivial on Nl. Label the set of simple roots of H with respect to the maximal
torus pr´1pM1

mq and the Borel subgroup pr´1pP1mq following [Bou68]. Denote the parabolic subgroup
of H containing pr´1pP1mq whose Levi subgroup is isomorphic to GLpjq ˆGSpinp2pm´ jq ` 1q by Qj
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and the unipotent radical of Qj by Uj. We then define a global Rankin-Selberg integral and show
that it converges absolutely in a suitable right half plane and is factorizable.

To lighten the notation, we re-denote the local representations of p-adic groups using the same
notation as their global counterpart. Let Ll,α “ pr´1pL1l,αq, Rl,α “ pr´1pR1l,αq, ω be a character of
F˚ and τ be a smooth representation of GLpnqpF q. For the Langlands quotient πωbτ obtained by
normalized parabolic induction of ωb| det |1{2τ from the Siegel parabolic subgroup of H, we compute
the finite Ql-filtration of Jψl,αpπωbτ |Rl,αq, the twisted Jacquet module of the restriction of πωbτ to
Rl,α with respect to the character ψl,α on Nl. This is in turn used to establish Theorem 2.12 in
§ 2.4. Theorem 2.12 is a generic multiplicity one result which enables us to define the Rankin-Selberg
γ-factor for GSpinp2pm ´ lq ´ 1q ˆ GLp1q ˆ GLpmq. We then proceed to establish the fact that this
γ-factor has a pole at s “ 1 if and only if σ pairs non-trivially with Jψl,αpπωbτ |Rl,αq which we define
as the descent σψ,lpτq of τ to G.

§ 3 states the Exchanging Roots Lemma which proves certain twisted Jacquet modules are isomor-
phic as vector spaces under certain conditions. This lemma will be used to prove Theorem 3.3: tower
property of descents. Denote the maximal parabolic subgroup of Ll,α with Levi subgroup isomorphic
to GLppq ˆ GSpinp2m ´ 2l ´ 2pq and containing a fixed Borel subgroup of G by Q˚p. The tower
property asserts there exists a suitable vector space isomorphism from the Jacquet module of the
descent σψ,lpτq associated to Q˚p to the compact induction from Nl`p to Pl`p of the descent σψ,l`ppτq
restricted to Nl`p.

In § 4 we prove the vanishing of the descent in the relevant range. The main ingredient we use for the
proof is a class of exceptional representations, which are small in the sense that they are attached to one
of the coadjoint orbits next to the minimal one. In our setting these are the representations of double
covers of general linear groups constructed by Kazhdan and Patterson [KP84], or the representations
of double covers of general spin groups developed in [Kap17b] (following [BFG03]). We tensor two such
representations to form a representation of the linear group. Such a representation is typically quite
large, and may be considered as a model (see [Kab01, Kap16a, Kap16b, Kap17a]). For example, one
may prove multiplicity one results (e.g., [Kab01]), or analyze the structure of its irreducible quotients
([Kap17a]). In this spirit, we say that a representation of the linear group affords an exceptional
model if it is a quotient of the tensor of two exceptional representations of the double cover of the
group.

Consider a supercuspidal representation τ of GLpmqpF q such that its symmetric square L-function
has a pole at s “ 0. According to the results of [Kap16b], this representation affords an exceptional
model and so does the representation parabolically induced from 1 b τ to a general spin group. To
prove the vanishing results we use the smallness of the exceptional representations, namely that a
large class of their twisted Jacquet modules vanish ([Kap17b, BFG03]).

This reasoning is parallel to the procedure for the special odd orthogonal group of Ginzburg et. al.
[GRS99a, GRS99b]. They used the interplay between Shalika models, which are related to the pole
of the exterior square L-function at s “ 0, linear models, and symplectic models (see § 4.1 for a more
precise description). The presence of exceptional representations here is expected and understood,
in light of the role these representations played in the (global) work of Bump and Ginzburg on the
integral representation of the symmetric square L-function, or even in the earlier low rank results
[GJ78, PPS89].

To handle the twisted symmetric square L-function we use the recent construction of twisted
exceptional representations for double coverings of general linear groups by Takeda [Tak14], who used
them to develop an integral representation for the global partial L-function. We also rely on a result
of Yamana [Yam17] who proved that if the twisted symmetric square L-function of τ has a pole at
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s “ 0, τ admits a (twisted) exceptional model.
In § 5, we prove the non-vanishing of the descent σψ,npτq. The main ingredients are the result

in [JLS16] on raising of nilpotent orbits in the wave front set of representations and the result in
[GGS17] on relations between degenerate Whittaker models and generalized Whittaker models of rep-
resentations. More explicitly, first, by [GGS17], we show that πωbτ has a non-zero Fourier coefficient
attached to the partition rp2nq21s, which is not special. By [JLS16], πωbτ has a non-zero Fourier coef-
ficient attached to the partition rp2n` 1qp2n´ 1q1s, which is the smallest orthogonal special partition
bigger than rp2nq21s. Then by [GGS17] again, πωbτ has a non-zero Fourier coefficient attached to
the partition rp2n` 1q12ns, which implies that the descent σψ,npτq is non-vanishing. In [GRS11], the
non-vanishing of the descent from automorphic representations of GLp2nq to automorphic representa-
tions of SOp2nq is proven by contradiction. Similar arguments also apply here and gives another proof
for the non-vanishing of σψ,npτq. But, the proof we provide in this paper is a new way of proving
non-vanishing of descent, and is more conceptual and much shorter. In [HS16], the non-vanishing of
the descent from automorphic representations of GLp2nq to automorphic representations of GSpinp2nq
is proven by similar ideas as in this paper, with much more details since they do not have the results
in [JLS16] and [GGS17] at that time.

For § 6, we state and prove the main result of this paper which relates local descent to Langlands
functoriality, namely, for an irreducible unitary supercuspidal representation τ of GLp2nqpF q whose
twisted symmetric square L-function Lps, τ, Sym2 ρ2n b ω´1q has a pole at s “ 0 for some unitary
character ω, the descent σψ,npτq is a non-trivial unitary supercuspidal multiplicity-free representation
of G. Moreover, for any irreducible generic supercuspidal representation σ of G such that γps, σ ˆ
pω b τq, ψ´1q has a pole at s “ 1, σ_ is a direct summand of σψ,npτq.

Acknowledgements
We would like to thank Mahdi Asgari, Mikhail Borovoi, Wee Teck Gan, Joseph Hundley, Ei-
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conversations.

2 A Uniqueness Theorem

2.1 The groups
Let K be a field of characteristic 0, V be a K-vector space, Q a quadratic form on V defined over

K. Denote the special orthogonal group of Q by SOpQq and its simply connected cover by SpinpQq.
Let π1 : SpinpQq� SOpQq be the canonical isogeny and c be the non-trivial element in kerπ1. Then
p´1, cq generates an order 2 subgroup C of GLp1qˆSpinpQq. Define GSpinpQq :“ pGLp1qˆSpinpQqq{C.

Note that this definition agrees with the one in [AS06] when GSpinpQq is split, cf. Proposition 2.2
of [AS06]. Also when dimK V “ 2n, 16.2.3 of [Spr98] shows that the index of our non-split quasi-split
GSpin˚p2nq coincides with that of SO˚p2nq which agrees with the index of the non-split quasi-split
GSpin˚p2nq of [AS14].

From now on, assume dimK V “ 2m` 1. Let b be the corresponding symmetric bilinear form on
V . Fix maximal isotropic subspaces V ˘ in duality with respect to b and a maximal flag in V `,

0 Ă V `1 Ă V `2 Ă ¨ ¨ ¨ Ă V `m “ V `
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and choose a basis te1 , ¨ ¨ ¨ , em u of V ` overK such that V `i “ SpanKte1 , ¨ ¨ ¨ , eiu. Let te´1 , ¨ ¨ ¨ , e´mu
be the basis of V ´ which is dual to te1 , ¨ ¨ ¨ , emu, i.e. bpei, e´jq “ δi,j for all 1 ď i, j ď m. This choice
of a maximal flag fixes a Borel subgroup B1 and maximal torus T1 of SOpQq such that T1 Ă B1. Then
B “ π´1

1 pB1q and T “ π´1
1 pT1q is a Borel subgroup and maximal torus of SpinpQq such that T Ă B.

Denote the order of t P GLp1q by optq.

Lemma 2.1. Suppose V is of dimension 2m ` 1 where m ě 4. Let ∆ be the set of simple roots of
SpinpQq with respect to pB,Tq, Q be the Siegel parabolic subgroup of SpinpQq corresponding to the
subset ∆´ tαmu of ∆. Denote the Levi subgroup of Q by M.

(i) If m is odd, there exists an isomorphism

ϕ1 : M
∼
ÝÑ pGLp1q ˆ SLpmqq{tpt, t´2Imq | t

m “ 1u

where the simple coroots α_j for 1 ď j ď m´ 1 of SpinpQq are identified with the simple coroots
of SLpmq with respect to the Borel subgroup of upper triangular matrices and maximal torus of
diagonal matrices in SLpmq. We have ϕ1pcq “ pω, ω´2Imq where ω is a primitive 2m root of
unity. Moreover, if we further assume that π1 ˝α

_
j for 1 ď j ď m are the usual coroots of SOpQq

with respect to pB1,T1q, then

π1 ˝ ϕ
´1
1 : pGLp1q ˆ SLpmqq{tpt, t´2Imq | t

m “ 1u� GLpmq

is given by pt, gq ÞÑ t2 ¨ g.

(ii) If m is even, there exists an isomorphism

ϕ2 : M
∼
ÝÑ pGLp1q ˆ SLpmqq{tpt, t´1Imq | t

m{2 “ 1u

where the simple coroots α_j for 1 ď j ď m´ 1 of SpinpQq are identified with the simple coroots
of SLpmq with respect to the Borel subgroup of upper triangular matrices and maximal torus
of diagonal matrices in SLpmq. We have ϕ2pcq “ pω, ω´1Imq where ω is a primitive m root of
unity. Moreover, if we further assume that π1 ˝α

_
j for 1 ď j ď m are the usual coroots of SOpQq

with respect to pB1,T1q, then

π1 ˝ ϕ
´1
2 : pGLp1q ˆ SLpmqq{tpt, t´1Imq | t

m{2 “ 1u� GLpmq

is given by pt, gq ÞÑ t ¨ g.

Proof. Let A be the radical of M and MD be the derived subgroup of M. Then direct calculation
gives

A “

˜

m´1
č

j“1

kerαj

¸˝

“

#

taptq “ α_1 pt
2qα_2 pt

4q ¨ ¨ ¨α_m´2pt
2pm´2qqα_m´1pt

2pm´1qqα_mpt
mq | t P GLp1qu for odd m ;

taptq “ α_1 ptqα
_
2 pt

2q ¨ ¨ ¨α_m´2pt
m´2qα_m´1pt

m´1qα_mpt
m{2q | t P GLp1qu for even m.

Since SpinpQq is simply-connected, MD is simply-connected. Hence MD is isomorphic to SLpmq. We
may and do assume the simple coroots α_j for 1 ď j ď m´ 1 of SpinpQq are identified with the simple
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coroots of SLpmq with respect to the Borel subgroup of upper triangular matrices and maximal torus
of diagonal matrices in SLpmq. We have

AXMD “

#

taptq | tm “ 1u “ tt2Im | t
m “ 1u for odd m ;

taptq | tm{2 “ 1u “ ttIm | t
m{2 “ 1u for even m.

The canonical isogeny A ˆ MD � M has kernel tpα, α´1q |α P A X MDu induces the suitable
isomorphism ϕ1 (resp. ϕ2) when m is odd (resp. even). Note that c is the unique order 2 element
in the center of SpinpQq. It follows from [A02, Proposition 2.2] that c “ α_mp´1q. Direct calculation
shows that

c “

#

apωqα_1 pω
´2qα_2 pω

´4q ¨ ¨ ¨α_m´2pω
´2pm´2qqα_m´1pω

´2pm´1qq where opωq “ 2m for odd m ;

apωqα_1 pω
´1qα_2 pω

´2q ¨ ¨ ¨α_m´2pω
´pm´2qqα_m´1pω

´pm´1qq where opωq “ m for even m,

“

#

pω, ω´2Imq where opωq “ 2m for odd m ;

pω, ω´1Imq where opωq “ m for even m.

We further assume that π1 ˝α
_
j for 1 ď j ď m are the usual coroots of SOpQq with respect to pB1,T1q.

Then for odd m, we have the following commutative diagram

GLp1q ˆ SLpmq GLpmq

pGLp1q ˆ SLpmqq{tpt, t´2Imq | t
m “ 1u pGLp1q ˆ SLpmqq{tpt, t´2Imq | t

2m “ 1u

where the top homomorphism is given by pt, gq ÞÑ t2 ¨g with kernel tpt, t´2Imq | t
2m “ 1u and the other

two epimorphisms are the canonical epimorphisms. Thus the right vertical arrow is an isomorphism.
For even m, we have the following commutative diagram

GLp1q ˆ SLpmq GLpmq

pGLp1q ˆ SLpmqq{tpt, t´1Imq | t
m{2 “ 1u pGLp1q ˆ SLpmqq{tpt, t´1Imq | t

m “ 1u

where the top homomorphism is given by pt, gq ÞÑ t ¨ g with kernel tpt, t´1Imq | t
m “ 1u and the other

two epimorphisms are the canonical epimorphisms. Thus the vertical right arrow is an isomorphism.

Lemma 2.2. Let π2 : GLp1q ˆ SpinpQq be the canonical projection onto SpinpQq.

(i) There exists a canonical surjective K-rational map pr : GSpinpQq � SOpQq with ker pr iso-
morphic to GLp1q. In particular, unipotent subgroups of GSpinpQq and SOpQq are in bijective
correspondence and corresponding unipotent subgroups are isomorphic.

(ii) Suppose V is of dimension 2m` 1 where m ě 4 and M is the Siegel Levi subgroup as in Lemma
2.1. There exists an isomorphism Λ : pGLp1q ˆMq{C Ñ GLp1q ˆ GLpmq such that pr ˝Λ´1 is
given by pt, gq ÞÑ g for t P GLp1q and g P GLpmq.
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Proof. Note that π1 ˝ π2 is K-rational, surjective and factors through C. Hence π1 ˝ π2 induces a
canonical K-rational surjection pr : GSpinpQq� SOpQq with ker pr “ tpt, 1q | t P GLp1qu. This shows
(i).

Assume for now the hypothesis of (ii). For odd m, we have the following commutative diagram

GLp1q ˆGLp1q ˆ SLpmq GLp1q ˆGLpmq

GLp1q ˆ pGLp1q ˆ SLpmqq{tpt, t´2Imq | t
m “ 1u pGLp1q ˆ pGLp1q ˆ SLpmqq{tpt, t´2Imq | t

m “ 1uq{pidˆ ϕ1qpCq

GLp1q ˆM pGLp1q ˆMq{C

Ξ1

idˆϕ´1
1

where the top homomorphism Ξ1 is given by pt1, t2, gq ÞÑ pt1t
m
2 , t

2
2 ¨ gq with kernel tpp´1qi, ωj , ω´2j ¨

Imq | opωq “ 2m and i ” j pmod 2qu and the other three two head arrows are the canonical epi-
morphisms. Thus the two right vertical arrows are isomorphisms. Call the composition of the
two vertical maps Λ. Given pt, gq P GLp1q ˆ GLpmq, let α be a fixed 2m-th root of det g. Then
Ξ1ptα

´m, α, α´2gq “ pt, gq. Hence

pr ˝Λ´1pt, gq “ pr ptα´m, α, α´2gq “ π1pα, α´2gq “ g

by Lemma 2.1(i). For even m, we have the following commutative diagram

GLp1q ˆGLp1q ˆ SLpmq GLp1q ˆGLpmq

GLp1q ˆ pGLp1q ˆ SLpmqq{tpt, t´1Imq | t
m{2 “ 1u pGLp1q ˆ pGLp1q ˆ SLpmqq{tpt, t´1Imq | t

m{2 “ 1uq{pidˆ ϕ2qpCq

GLp1q ˆM pGLp1q ˆMq{C

Ξ2

idˆϕ´1
2

where the top homomorphism Ξ2 is given by pt1, t2, gq ÞÑ pt1t
m{2
2 , t2 ¨ gq with kernel tpp´1qi, ωj , ω´j ¨

Imq | opωq “ m and i ” j pmod 2qu and the other three two head arrows are the canonical epi-
morphisms. Thus the two right vertical arrows are isomorphisms. Call the composition of the
two vertical maps Λ. Given pt, gq P GLp1q ˆ GLpmq, let β be a fixed mth root of det g. Then
Ξ2ptβ

´m{2, β, β´1gq “ pt, gq. Hence

pr ˝Λ´1pt, gq “ pr ptβ´m{2, β, β´1gq “ π1pβ, β´1gq “ g

by Lemma 2.1(ii).

2.2 Unfolding a Rankin-Selberg integral
Suppose K is a number field with ring of adeles A. Let pr : GSpinpQq Ñ SpinpQq{C – SOpQq

be the surjective K-rational homomorphism such that prps, gqC “ sC for all s P SpinpQq, g P GLp1q.
Since the kernel of pr consists of only semisimple elements, pr restricted to a unipotent subgroup of
GSpinpQq is a K-rational isomorphism to its image unipotent subgroup of SOpQq.
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Let
H “ GSpinpQq “ GSpinp2m` 1q .

For 1 ď l ď m, let ϕl be the flag

ϕl : 0 Ă V `1 Ă V `2 Ă ¨ ¨ ¨ Ă V `l .

Let P1l be the parabolic subgroup of SOpV q stabilizing ϕl. Denote its Levi decomposition by P1l “
M1

lN
1
l. ThenM1

l isK-isomorphic to GLpV `ϕl p1qqˆ¨ ¨ ¨ˆGLpV `ϕl plqqˆSOpW q where V `ϕl piq “ SpanKteiu,
1 ď i ď l and

W “ pV `l ` V ´l q
K .

Let α P K˚. For 0 ď l ă m, choose w0 “ yα “ em `
α
2 e´m. Then bpw0, w0q “ α and w0 PW .

Define for u in N1
l

χl,w0puq “
l
ÿ

i“2

bpu ¨ ei, e´pi´1qq ` bpu ¨ w0, e´lq .

Then χl,w0
is a K-rational homomorphism from N1

l to Ga. Let ψ be a non-trivial character of KzA.
Then

ψ1l,α “ ψ ˝ χl,w0

is a character of N1
lpAq trivial on N 1l .

Let SOpW q act on N1
l and the set of rational additive characters from N1

l to Ga by conjugation.
Then the stabilizer L1l,α of χl,w0

in SOpW q is the stabilizer of w0 in SOpW q, i.e. SOpwK0 XW q. Denote

R1l,α “ L1l,α ˙N1
l .

Let Pl “ pr´1pP1lq have Levi decomposition MlNl, Ll,α “ pr´1pL1l,αq and Rl,α “ pr´1pR1l,αq. Then
GSpinpW q acts on Nl and the set of rational characters from Nl to Ga by conjugation. Also, Ll,α

being the stabilizer of χl,w0
˝ pr in GSpinpW q is K-isomorphic to a GSpin group of one rank lower

than pr´1pSOpW qq “ GSpinpW q.
We choose ep1q0 , ep2q0 P wK0 XW such that

bpe
p1q
0 , ejq “ 0 , bpe

p1q
0 , e´jq “ 0 , bpe

p1q
0 , e

p1q
0 q “ 1 , bpe

p1q
0 , e

p2q
0 q “ 0 ;

bpe
p2q
0 , ejq “ 0 , bpe

p2q
0 , e´jq “ 0 , bpe

p2q
0 , e

p2q
0 q “ ´c

for all l ` 1 ď j ď m ´ 1 so that tel`1 , ¨ ¨ ¨ , em´1 , e
p1q
0 , e

p2q
0 , e´pm´1q , ¨ ¨ ¨ , e´pl`1qu is a basis of

wK0 XW and c P K˚ is a square if and only if α P K˚ is a square. Note that GSpinpwK0 XW q is
quasi-split of semi-simple rank 2m´ 2l and is split if and only if α P K˚ is a square.

Label the set of simple roots of H with respect to the maximal torus pr´1pM1
mq and the Borel

subgroup pr´1pP1mq following [Bou68]. For 1 ď j ď m, let Qj be the standard parabolic subgroup of
H which corresponds to the subset of ∆ omitting the jth simple root. Its Levi subgroup is isomorphic
to GLpjq ˆGSpinp2pm´ jq ` 1q where GSpinp1q is taken to be GLp1q. Denote the unipotent radical
of Qj by Uj. Lemma 2.2(ii) shows that we may and shall regard the elements of the Siegel Levi as
pt, gq, t P K, g P GLpmq.

Let τ be a cuspidal automorphic representation of GLpmqpAq and ω be a Hecke character of
GLp1qpAq. Consider the normalized parabolic induction

ρωbτ,s “ Ind
HpAq
QmpAqpω b τ |det |s´1{2q .
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Let fωbτ,s be a smooth holomorphic section of ρωbτ,s. Define the Eisenstein series

Eph, fωbτ,sq “
ÿ

γPQmzH

fωbτ,spγhq , h P HpAq .

Let pπ, V q be an automorphic representation of HpAq. Define for ξ P V , h P HpAq, the Gelfand-
Graev coefficient of ξ with respect to ψl,α “ ψ1l,α ˝ pr by

ξψl,αphq “

ż

NlpKqzNlpAq
ξpvhqψ´1

l,αpvq dv .

We have
ξψl,αpγhq “ ξψl,αphq

for all γ P Rl,α. In particular, the function ξψl,α restricted to Ll,αpAq is automorphic.
Let wn be the nˆn matrix with 1 on the anti-diagonal and 0 everywhere else. For any 1 ď j ď m,

denote wj tγ´1wj by γ˚ and let

γ^ “

¨

˝

γ 0 0
0 IdimK V´2j 0
0 0 γ˚

˛

‚ .

The following proposition has been established in [ACS17].

Proposition 2.3 ([ACS17]). Suppose that pV,Qq is a split quadratic space where dimV “ 2m ` 1.
Let 0 ď l ă m be an integer and α P K˚. Let σ be a cuspidal automorphic representation of GpAq,
τ a cuspidal automorphic representation of GLpmqpAq and ω be the restriction of ω´1

σ to ZpGq˝pAq.
Consider the meromorphic functions

Ipϕσ, fωbτ,sq “

ż

GLp1qpAqGpKqzGpAq
ϕσpgqE

ψl,αpg, fωbτ,sq dg

as ϕσ varies in the space of σ and fωbτ,s varies in the space of smooth holomorphic sections in ρωbτ,s.
Suppose that Ipϕσ, fωbτ,sq is not identically zero pas a meromorphic function and as the data varyq.
Then σ is globally generic with respect to a certain Whittaker character ψNG where NG is the unipotent
radical of a “standard" Borel subgroup of Ll,α and

ψNGpnq “ ψpz1,2 ` ¨ ¨ ¨ ` zm´l´2,m´l´1 ` vm´l´1q where

prpnq “ qpz, v, x, uq “ diag

¨

˚

˚

˚

˚

˝

Il,

¨

˚

˚

˚

˚

˝

z v x ´ 2
αv u

1 0 0 ´ 2
αv
1

1 0 x1

1 v1

z˚

˛

‹

‹

‹

‹

‚

, Il

˛

‹

‹

‹

‹

‚

P SOp2m` 1q , n P NG .

Moreover, for Repsq sufficiently large, we have

Ipϕσ, fωbτ,sq “

ż

GLp1qpAqNGpAqzGpAq
Wψ
ϕσ pgq

ż

NlpAqXβ´1
l,αQmpAqβl,αzNlpAq

fZm,ψωbτ,spβl,αugqψ
´1
l,αpuq du dg
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where Wψ
ϕσ is the Whittaker functional of ϕσ. Let ωb be as in [GRS11, pp. 70–71]. βl,α is any fixed

element in

pr´1

¨

˝

ˆ

0 2
αIm´l

Il 0

˙^

¨

˝

0 0 Il
0 I2m´2l`1 0
Il 0 0

˛

‚ωlb

˛

‚ .

Denoting the upper triangular unipotent subgroup of GLpmq by Zm and identifying it with the iso-
morphic unipotent subgroup contained in pr´1pZmq, the superscript pZm, ψq marks the application
to fτbω,s of the Whittaker coefficient along ZmpKqzZmpAq with respect to the character ψ´1

Zm
pzq “

ψ´1pz1,2 ` ¨ ¨ ¨ ` zm´1,mq,

fZm,ψωbτ,sphq “

ż

ZmpKqzZmpAq
fωbτ,spz

^hqψZmpzq dz .

Let S be a finite set of places of K containing the infinite places such that for all v R S, σv and
τv b ωv are unramified. Suppose the cusp form ϕσ is a pure tensor, by the uniqueness of Whittaker
models, we have

Wψ
ϕσ “

ź

v

Wψv
v

where each Wψv
v is the local Whittaker function in the Whittaker model of σv and for v R S, Wψv

v

is spherical such that its value at the identity is 1. Similarly, assume that fτbω is a decomposable
section. Viewing

fZm,ψωbτ,sphq “

ż

ZmpKqzZmpAq
fωbτ,spz

^hqψZmpzq dz

as the global Whittaker functional on the induced space ρτbω,s, we have

fZm,ψωbτ,sphq “
ź

v

fωvbτv,sphv; p1, Imqq

where fωvbτv,s is a holomorphic section in ρωvbτv,s taking values in the local Whittaker model of
ωv b τv with respect to the character ψ´1

Zm,v
; for fixed hv, we denote the corresponding Whittaker

function in the Whittaker model of ωv b τv by fωvbτv,sphv;´q. For all places v outside S, fωvbτv,s is
spherical and the function fωvbτv,spe,´q is the unique spherical and normalized Whittaker function
in the Whittaker model of ωv b τv.

Therefore Proposition 2.3 implies the following:

Corollary 2.4. With notations as before, for Repsq large enough,

Ipϕσ, fωbτ,sq “
ź

v

IvpW
ψv
v , fωvbτv,sq

where

IvpW
ψv
v , fωvbτv,sq

“

ż

GLp1qpKvqNGpKvqzGpKvq

Wψv
v pgq

ż

NlpKvqXβ
´1
l,αQmpKvqβl,αzNlpKvq

fZm,ψωvbτv,spβl,αug; p1, Imqqpψvq
´1
l,αpuq du dg .
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2.3 Some twisted Jacquet modules
Suppose F is the completion of K at some finite place v. To lighten the notation, we re-denote

the character ψv by ψ, τv by τ , ωv by ω and use the same notation for the base change to F of vector
spaces and algebraic groups defined over K as they were over K.

For a smooth representation pπ, Vπq of H, denote the Jacquet module of π with respect to Nl and
its character ψl,α by Jψl,αpπq. The representation space of Jψl,αpπq is

Vπ{Spantπpnqξ ´ ψl,αpnqξ |n P Nl , ξ P Vπu .

Let π “ iHQmpωb τq where i
H
Qm

denotes normalized parabolic induction from Qm to H. By Bruhat
theory, Jψl,αpπ|Qlq has a finite Ql-filtration whose subquotients are indexed by elements of QmzH{Ql.
If l “ 0, we consider the double cosets QmzH{G. The subquotient corresponding to a representative
w is

ρw “ c-iQl
Q
pwq
l,m

δ
1{2
Ql
δ
´1{2

Q
pwq
l,m

w´1pω b δ
1{2
Qm

τq

where δQl , δQm , δQpwql,m

are the modulus characters of Ql, Qm, Qpwql,m respectively, w´1pδ
1{2
Qm

τ bωq is the

representation of w´1Qmw on the same space as that of ω b δ1{2
Qm

τ which takes q to

ωpwqw´1q b δ
1{2
Qm

τ ,

Q
pwq
l,m “ Ql X w

´1Qmw and
c-iQl
Q
pwq
l,m

denotes normalized compact induction from Q
pwq
l,m to Ql. Since Jψl,αpρwq|G “ Jψl,αpρw|Rl,αq, we

consider ρw|Rl,α . The double coset spaces Qpwql,mzQl{Rl,α presp. QmzH{Qlq and prpQ
pwq
l,mqzprpQlq{R

1
l,α

presp. prpQmqzSOpQqpF q{prpQlqq correspond bijectively under pr. It follows from the discussion in
[GRS11, p. 82] that we may and do fix representatives η of Qpwql,mzQl{Rl,α such that

prpηq “

¨

˝

ε 0 0
0 γ 0
0 0 ε˚

˛

‚

where ε is a Weyl element of GLplqpF q and γ is a representative for Q1wzSOpW qpF q{L1l,α where Q1w is
the maximal parabolic subgroup of SOpW q as follows. If w “ εr,s in equation p4.15q of [GRS11], Q1w
is the parabolic subgroup of SOpW q which preserves the standard s´r dimensional isotropic subspace
V `l,s´r of W .

Lemma 2.5. Let w “ εr,s correspond to pr, sq. For r ą 0, Jψ,αpρw|Rl,αq “ 0.

Proof. The proof proceeds exactly as the proof of [GRS11, Proposition 5.1] by replacing the base field
K with F . Note the typo in the last paragraph of [GRS11, p. 83], both occurrences of ωjN

pi1q
l ω´1

0
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should be replaced by ωjN
pi1q
l ω´1

j . Also, the notation
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Il´r
Ir p0 y2 y3q ωt

1

b γ z3

Is´r

Im2

ˆ

˚
˙

Is´r
Ir

Il´r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

really means

¨

˝

Il 0 0
0 γ´1 0
0 0 Il

˛

‚ω´t
1

b

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Il´r 0 0 0 0 0 0
0 Ir 0 y2 y3 z3 0
0 0 Is´r 0 0 y13 0
0 0 0 Im2 0 y12 0
0 0 0 0 Is´r 0 0
0 0 0 0 0 Ir 0
0 0 0 0 0 0 Il´r

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

ωt
1

b

¨

˝

Il 0 0
0 γ 0
0 0 Il

˛

‚

where y12 “ ´wm2 ty2wr and y13 “ ´ws´r ty3wr.

From Lemma 2.5, Lemma 5.1 and the proof of Proposition 5.1 in [GRS11], it remains to consider
the case Jψl,αpρw|Rl,αq where w “ εr,s, r “ 0,

prpηq “

¨

˝

It 0 0
0 γ 0
0 0 It

˛

‚ .

For any such choice of η, let ρw,γ,t be the normalized compact induction

c-i
Rl,w0

Rl,w0
Xη´1Q

pwq
l,mη

π
pw,ηq
l,m pω b τq

where πpw,ηql,m pω b τq sends h P Rl,w0
X η´1Q

pwq
l,mη to

δ
1{2
Ql
w´1pω b δ

1{2
Qm

τqpηhη´1q b δ
´1{2

Rl,w0
Xη´1Q

pwq
l,mη

δ
1{2
Rl,w0

phq .

For γ “ I2pm´lq`1, the inducing subgroup

Rl,w0 XQ
pwq
l,m “ pr´1pR1l,α X prpQ

pwq
l,mqq

is the subgroup of elements of the form pa, bq in w´1Qmw where a P F˚ and

b “

¨

˚

˚

˚

˚

˝

n1 0 0 y6 0
0 d u v y16
0 0 e u1 0
0 0 0 d˚ 0
0 0 0 0 n˚1

˛

‹

‹

‹

‹

‚

ωt
1

b t
s

2pm´ l ´ sq ` 1
s
t

.(2.1)
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We have n1 P Zt and t1 “ 0. Let Z 1t be the subgroup
#

ˆ

Is y
0 z

˙

P GLpmqpF q

ˇ

ˇ

ˇ

ˇ

ˇ

z P Zt

+

.

For a P F˚, define the character ψ2t,a : Z 1t Ñ F by

ψ2t,a

ˆˆ

Is y
0 z

˙˙

“ ψ´1pz1,2 ` z2,3 ` ¨ ¨ ¨ ` zt´1,t ` ays,1q .

Denote the corresponding Jacquet module JZ1t,ψ2t,apτq by τptq,a. As representations of the mirabolic
subgroup Ps´1,1 of GLpsqpF q, τptq,a and τptq,a1 are isomorphic by [GRS11, Lemma 5.2]. So we let τptq
denote any of the representations τptq,a of Ps´1,1.

Lemma 2.6. Let ηt be a representative of Qpwql,mzQl{Rl,α such that prpηtq “ I2m`1 and set Q1m´l “

Ll,α XQ
pwq
l,m . For a “ ´p´α

2 q
1´t1 , define

T : ρw,I2pm´tq`1,t Ñ c-i
Ll,α
Q1m´l

ω|det V `l,m´l
|´l{2τplq

by

T pfqpxq “

ż

NlXη
´1
t Q

pwq
l,mηtzNl

JZ1t,ψ2t,apfpnxqqψ
´1
l,αpnq dn

for each f P ρw,I2pm´tq`1,t and each x P Ll,α. Here detV `l,m´l
pxq for x P Ll,w0 denotes the determinant

of x restricted to V `l,m´l. Then T is well-defined and gives an Ll,α-isomorphism

T 1 : Jψl,αpρw,I2pm´tq`1,tq – c-i
Ll,α
Q1m´l

ω|det V `l,m´l
|´l{2τplq .(2.2)

Proof. Let n P Nl XQ
pwq
l,m take the form in equation p2.1q with

¨

˝

d u v
0 e u1

0 0 d˚

˛

‚“ I2pm´lq`1 .

We have

JZ1t,ψ2t,apfpnxqq “ JZ1t,ψ2t,a

ˆ

τ

ˆˆ

Is y16
0 n˚1

˙˙

pfpxqq

˙

“ ψ2t,a

ˆˆ

Is y16
0 n˚1

˙˙

JZ1t,ψ2t,apfpxqq “ ψl,αpnqfpxq .

T factors through the Jacquet module Jψl,αpρw,I2pm´tq`1,tq and for pa, q1q P Q1m´l Ă w´1Qmw, direct
calculation shows that

δ
1{2
Qm
pwq1w´1q “ δ

1{2
Q1s
pq1q| det V `l,m´l

pq1q|
1`t

2 .

Hence T gives a map T 1 on Jψl,αpρw,I2pm´tq`1,tq which has image contained in c-i
Ll,α
Q1m´l

ω|detV `l,m´l
|´l{2τplq.

By similar arguments as in the proof of [GRS11, Lemma 5.3], T 1 is bijective.
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Remark 2.7. It follows from the paragraph right after [GRS11, Proposition 5.3] and from [Bo91,
Theorem 22.6] that Q1m´l is not a parabolic subgroup of Ll,α.

Since Q1w preserves a maximal isotropic subspace of W , [GRS11, Proposition 4.4] shows that
representatives γ ‰ I2pm´tq`1 for Q1wzSOpW qpF q{L1l,α show up only in case (2)(c) when SOpW q is
split. In this case, we choose

γ “

¨

˝

Is´1 0 0
0 γα 0
0 0 Is´1

˛

‚

where there are two non-trivial representatives γα “ γ˘ given by [GRS11, (4.33)]. Let vα P V0 be
such that bpvα, vαq “ ´bpy´α, y´αq “ p´1qdimF V`1α. Then

γαpeqq “ y´α ´ vα ; γαpe´qq “ e´q

and for v P V0, γαpvq ´ v P Fe´q. Here, α “ β2 where β P F˚ and the two choices of vα are ˘βe0.
Denote the corresponding representative η by ηγα,t. We have

ηγα,tpyαq “ eq ` vα .

Redenoting Rl,α as Rl,yα , l ă m implies ηγα,tNlη
´1
γα,t “ Nl and ηγα,tRl,yαη

´1
γα,t “ Rl,ηγα,t pyαq

where
eq ` vα is isotropic only if α “ ´1. Thus

Rl,α X η
´1
γα,tQ

pwq
l,mηγα,t “ η´1

γα,tpRl,ηγα,t pyαq XQ
pwq
l,mqηγα,t

is the subgroup of elements of the form pa, hq in η´1
γα,tw

´1Qmwηγα,t such that ηγα,tpa, hqη
´1
γα,t “

pa,prpηγα,tqhprpη´1
γα,tqq where

prpηγα,tqhprpη´1
γα,tq “

¨

˚

˚

˚

˚

˝

n1 0 0 y6 0
0 d u v y16
0 0 e u1 0
0 0 0 d˚ 0
0 0 0 0 n˚1

˛

‹

‹

‹

‹

‚

t
s

2pm´ l ´ sq ` 1
s
t

,(2.3)

n1 P Zt and
¨

˝

d u v
0 e u1

0 0 d˚

˛

‚γαpyαq “ γαpyαq .(2.4)

The action of πpw,ηγα,tql,m pω b τq on pa, hq satisfying equations p2.3q and p2.4q is

ωpaqδ
1{2
Rl,w0

phqδ
´1{2

Rl,w0
Xη´1Q

pwq
l,mη

phqδ
1{2
Qm
pwηγα,thη

´1
γα,tw

´1qτ

ˆˆ

d y16
0 n˚1

˙˙

.

Set Ll,yα “ Ll,α and

Q1s,˘ “ Ll,α X η
´1
γ˘,tQ

pwq
l,mηγ˘,t “ η´1

γ˘,tpLl,ηγ˘,tpyαq
XQ

pwq
l,mqηγ˘,t
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for each of the choices of γ˘. This is a parabolic subgroup of Ll,α whose Levi part is isomorphic
to GLpsq ˆGLp1q since prpηγ˘,tqprpQ1s,˘qprpη´1

γ˘,tq is realized as the subgroup of elements such that
d P GLpsq, epvαq “ vα and

upvαq “ pd´ Isq

¨

˚

˝

0
...
1

˛

‹

‚

.

Denote the Bernstein-Zelevinski derivative [BZ76] of τ along the subgroup Z 1t corresponding to the
character

ψ1t

ˆˆ

Is y
0 z

˙˙

“ ψ´1pz1,2 ` z2,3 ` ¨ ¨ ¨ ` zt´1,tq

by τ ptq. Note that the representation τ ptq of GLpsqpF q is acting on the Jacquet module JZ1t,ψ1tpVτ q by
the embedding

d ÞÑ

ˆ

d 0
0 It

˙

.

Lemma 2.8. Let ρw,γ˘,t “ ρw,γα,t where γα “ γ˘ respectively. For r “ 0, Jψl,αpρw,γ˘,tq “ 0.

Proof. Since τ is supercuspidal, it suffices to show that

Jψl,αpρw,γ˘,tq – c-i
Ll,α
Q1s,˘

ω|det V `l,s
|
1´t

2 τ ptq .

Define T : ρw,γ˘,t Ñ c-i
Ll,α
Q1s,˘

ω|det |
1´t

2 τ ptq by

T pfqpxq “

ż

NlXη
´1
γ˘,t

Q
pwq
l,mηγ˘,tzNl

JZ1t,ψ1tpfpnxqqψ
´1
l,αpnq dn

for each f P ρw,γ˘,t and each x P Ll,α. Let n P Nl X η´1
γ˘,tQ

pwq
l,mηγ˘,t be such that

prpηγα,tnη
´1
γα,tq “

¨

˚

˚

˚

˚

˝

n1 0 0 y6 0
0 Is 0 0 y16
0 0 1 0 0
0 0 0 Is 0
0 0 0 0 n˚1

˛

‹

‹

‹

‹

‚

with n1 P Zt. We have

JZ1t,ψ1tpfpnxqq “ JZ1t,ψ1t

ˆ

τ

ˆˆ

Is y16
0 n˚1

˙˙

pfpxqq

˙

“ ψ1t

ˆˆ

Is y16
0 n˚1

˙˙

JZ1t,ψ1tpfpxqq “ ψl,αpnqfpxq .

Thus T is well-defined. By similar arguments as in of [GRS11, Lemma 5.3], T gives an Ll,α-
isomorphism

T 1 : Jψl,αpρw,γ˘,tq – c-i
Ll,α
Q1s,˘

ω|det |
1´t

2 τ ptq .(2.5)

The proof is complete.
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Proposition 2.9. Jψl,αpπ|Rl,αq – c-i
Ll,α
Q1m´l

ω|det V `l,m´l
|´l{2τplq.

Proof. Lemma 2.5, Lemma 2.6 and Lemma 2.8 imply that only the representation corresponding to
the double coset

Qmε0,m´lLl,α (resp. Qpwql,mRl,αq

in the first presp. secondq filtration gives some non-trivial representation.

2.4 Generic Multiplicity One
From now on, we re-denote σv by σ. Then σv is locally generic with respect to the local Whittaker

character ψv,NG which we re-denote by ψNG . Let βl,α be as in Proposition 2.3 and

IpWψ, fωbτ,sq “

ż

GLp1qpF qNGzG

Wψpgq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpuq du dg .

Proposition 2.10. There exists s0 P R such that IpWψ, fωbτ,sq is absolutely convergent for all s with
Repsq ą s0, for all W PWψ and fωbτ,s P iHQmpω b | det |s´1{2τq.

Proof. Since we are dividing by the center of Ll,α, convergence of these integrals is proved in exactly
the same way as it was proved for the corresponding integrals of odd orthogonal groups, see [Sou93,
§ 4.4–4.6].

Lemma 2.11. In the domain of absolute convergence of IpWψ, fωbτ,sq, for all g P Ll,α and n P Nl,

IpσpgqWψ, πpgnqfωbτ,sq “ ψl,αpnqIpW
ψ, fωbτ,sq .(2.6)

Proof. Note that IpWψ, fωbτ,sq is invariant with respect to Ll,α. We have
ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αugn; pIm, 1qqψ
´1
l,αpuq du

“

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αugng
´1g; pIm, 1qqψ

´1
l,αpuq du

“

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpugn

´1g´1q du

“ψl,αpnq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpuq du

and so IpWψ, πpnqfωbτ,sq “ ψl,αpnqIpW
ψ, fωbτ,sq.

Let pπ1, Vπ1
q and pπ2, Vπ2

q be smooth representations of a p-adic group L. Denote the set of
bilinear forms on pVπ1

, Vπ2
q which are invariant under L by BilLpπ1, π2q and the contragradient of

pπ1, Vπ1
q by pπ_1 , V _π1

q. We relabel iHQmpω b | det |s´1{2τq as Ips´ 1{2, ω b τq.
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Theorem 2.12. Except for a finite number of values of q´s, the space of bilinear forms satisfying
p2.6q is at most one dimensional.

Proof. This is the local analog of the proof of Proposition 2.3. Proposition 2.9 implies that

BilLl,αpσ, Jψl,αpIps´ 1{2, ω b τq|Rl,αqq –BilLl,αpσ, c-i
Ll,α
Q1m´l

||sω b | det V `l,m´l
|s´pl`1q{2τplqq

–HomLl,αpσ, i
Ll,α
Q1m´l

ω´1 b | det V `l,m´l
|pl`1q{2´sτ_plqq .

Applying Frobenius reciprocity gives

HomLl,αpσ, i
Ll,α
Q1m´l

ω´1 b | det V `l,m´l
|pl`1q{2´sτ_plqq

– HomQ1m´l
pσ|Q1m´l , ω

´1 b | det V `l,m´l
|pl`1q{2´sδ

1{2
Q1m´l

τ_plqq .

Let Q1G,m´l be the parabolic subgroup of L1l,α which preserves W X yKα and QG,m´l “ pr´1pQ1G,m´lq

with Levi decomposition MG,m´lUG,m´l,

CG,m´l “ tu P UG,m´l | prpuqem “ emu .

Since CG,m´l acts trivially on the representation space of ω´1 b | det V `l,m´l
|pl`1q{2´sδ

1{2
Q1m´l

τ_
plq,

HomQ1m´l
pσ|Q1m´l , ω

´1 b | det V `l,m´l
|pl`1q{2´sδ

1{2
Q1m´l

τ_plqq

– HomQ1m´l{CG,m´l
pJCG,m´lpσ|Q1m´lq, ω

´1 b | det V `l,m´l
|pl`1q{2´sδ

1{2
Q1m´l

τ_plqq .

Since Q1m´l{CG,m´l – GLp1q ˆ Pm´l´1,1 and H1pGalpF {F q,CG,m´lq “ 1, Q1m´l{CG,m´l – F˚ ˆ
Pm´l´1,1. Restriction of the last Hom space to Hom over Pm´l´1,1 has trivial kernel so

HomQ1m´l{CG,m´l
pJCG,m´lpσ|Q1m´lq, ω

´1 b | det V `l,m´l
|pl`1q{2´sδ

1{2
Q1m´l

τ_plqq

injects into
HomPm´l´1,1

pJCG,m´lpσ|prpQ1m´lq
q, |det V `l,m´l

|pl`1q{2´sδ
1{2
prpQ1m´lq

τ_plqq .

For each 0 ď i ď m´ l ´ 1, denote by Ri the subgroup of the form
#

ˆ

g v
0 z

˙

P Pm´l´1,1

ˇ

ˇ

ˇ

ˇ

ˇ

g P GLpiqpF q , z P Zm´l´i , v PMi,m´l´i

+

.

Let Σ “ JCG,m´lpσ|prpQ1m´lq
q, Π “ |det V `l,m´l

|pl`1`cq{2τ_
plq where δprpQ1m´lq

“ |det V `l,m´l
|c for some

constant c so that | det V `l,m´l
|pl`1q{2´sδ

1{2
prpQ1m´lq

τ_
plq “ | det V `l,m´l

|´sΠ. It follows from Theorem 7.2 of
[GPR87] that HomPm´l´1,1

pΣ, |det V `l,m´l
|´sΠq embeds into

m´l
à

i,j“1

HomPm´l´1,1
pc-i

Pm´l´1,1

Ri´1
pΣpm´l´i`1q b ψ1q, c-i

Pm´l´1,1

Rj´1
pΠpm´l´j`1q b | det |´sψ1qq .
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Here ψ1 is a character of Zm´l´i`1 defined by ψ1ppzijqq “ ψ1p
řm´l´i
j“1 zj,j`1q and Σpm´l´i`1q b ψ1 is

extended from GLpi´ 1qpF q ˆ Zm´l´i`1 to Ri´1 trivially across

Ni´1 “

"ˆ

Ii´1 v
0 Im´l´i`1

˙*

.

Since c-i
Pm´l´1,1

Ri´1
pΣpm´l´i`1q bψ1q and c-i

Pm´l´1,1

Rj´1
pΠpm´l´j`1q b | det |´sψ1q are irreducible for all 1 ď

i, j ď m´ l, a summand is non-trivial only if i “ j and Σpm´l´i`1q – Πpm´l´j`1qb|det |´s by Schur’s
Lemma and Proposition 5.12dq of [BZ76]. For fixed i “ j, taking central characters forces q´s to be
unique. Hence besides the m´ l values of q´s corresponding to m´ l possibilities of 1 ď i “ j ď m´ l,
dim BilLl,αpσ, Jψl,αpIps´ 1{2, ω b τq|Rl,αqq ď 1.

Proposition 2.13. There is a choice of W P Wψ and fωbτ,s P iHQmpω b | det |s´1{2τq such that
IpWψ, fωbτ,sq “ 1 for all s P C.

Proof. Write Ll,α as a disjoint union of double cosetsNGwB´ whereB´ is the opposite Borel subgroup
of Ll,α and w is an arbitrary Weyl group element. Since the double cosets NGwB

´ for w ‰ 1 as
algebraic varieties is of strictly smaller dimension than the dimension of Ll,α, the measure of NGwB´
is 0. Hence writing βl,α as κw1 where w1 is the long Weyl element in H such that w1Nlw1´1 “ N´l
and N´

l is the unipotent radical of the parabolic opposite to Pl,

IpWψ, fωbτ,sq

“

ż

T

ż

N´G

Wψptvq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spw
1utv; pκ, 1qqδ´1

B´
ptqψ´1

l,αpuq du dv dt

“

ż

T

ż

N´G

Wψptvq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spw
1tuv; pκ, 1qqδRl,αXQ0zRl,αpt

´1qδ´1
B´
ptqψ´1

l,αpuq du dv dt

“

ż

T

ż

N´G

Wψptvq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spw
1tw1´1w1uv; pκ, 1qqδRl,αXQ0zRl,αpt

´1qδ´1
B´
ptqψ´1

l,αpuq du dv dt

“

ż

T

ż

N´G

Wψptvq

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spw
1uv; pκw1tw1´1, 1qqδRl,αXQ0zRl,αpt

´1qδ´1
B´
ptqψ´1

l,αpuq du dv dt

“

ż

T

ż

w1N´Gw
1´1

Wψptw1´1vw1q

ż

N´l Xw
1β´1
l,αQmβl,αw

1´1zN´l

fZm,ψωbτ,spuvw
1; pκw1tw1´1, 1qqδRl,αXQ0zRl,αpt

´1q

ˆδ´1
B´
ptqψ´1

l,αpw
1´1uw1q du dv dt

where δB´ is the modulus character of the opposite Borel subgroupB´ of Ll,α with Levi decomposition
B´ “ TN´

G. Note that the second equality follows by making the change of variable from u to t´1ut
and the third equality follows from the change of variable from t to w1tw1´1.

Let n “ GLp1qpF qzG X pI `Mkpp
rqq for some r " 0. We choose fωbτ,s P iHQmpω b | det |s´1{2τq

such that the support of the right translate fωbτ,s by w1 is contained in pr´1pQmnq and fωbτ,spqnq “
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W ppa, xqq for q “ pa, xqu P Qm where pa, xq P GLpmqpF q ˆ F˚ and u P Um, n P n. Suppose u P U´m is
such that fωbτ,spuw1q ‰ 0. Then prpuq P Qmn. Write

prpuq “

ˆ

Im 0
a Im

˙

“

ˆ

b c
0 b˚

˙

d

where d P n. Pre-multiplying the last equation by
ˆ

b c
0 b˚

˙´1

gives

d “

ˆ

˚ ˚

pb˚q´1a pb˚q´1

˙

P n .

Therefore pb˚q´1 P I `Mmpp
rq and so b˚ P I `Mmpp

rq. Pre-multiplying by
ˆ

b 0
0 b˚

˙

to the last

equality yields
ˆ

˚ ˚

a Im

˙

“

ˆ

b 0
0 b˚

˙

d P n .

Hence a PMmpp
rq and prpuq P n. Note that conjugation by wtw´1 preserves NlXβ´1

l,αQmβl,αzNl and
ψ´1.

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpuq du

“

ż

pN´l Xwβ
´1
l,αQmβl,αw

´1zN´l qXn

fZm,ψωbτ,spκuwg; pIm, 1qqψ
´1
l,αpuq du

Similar calculations and arguments as in the proofs of [Kap13, Lemma 5.2] and [Kap13, Proposi-
tion 5.11] show that the integrations over u, v and t are positive constants.

By Proposition 2.10 and Lemma 2.11, in a right half plane IpWψ, fωbτ,sq can be regarded as an
element of BilGpσ, Jψl,αpIps ´ 1{2, ω b τq|Rl,αqq. Together with Theorem 2.12 and Proposition 2.13
and using Bernstein’s continuation principle ([Ban98]), we deduce the meromorphic continuation of
the integral.

Corollary 2.14. IpWψ, fωbτ,sq is a rational function of q´s.

Let U be the unipotent radical of the standard Borel subgroup in H and χ be a non-degenerate
character of U defined by ψ´1 and the F -splitting ofH. SupposeQm “MN is the Levi decomposition
of Qm with M F -isomorphic to GLp1q ˆGLpmq and N Ă U. Set α to be the mth simple root, α̃ the
fundamental weight for α and w0 the unique element in the Weyl group in H which sends ∆ ´ tαu
to a subset of ∆ and α to a negative root. Denote the local coefficient attached to χ, sα̃, ω b τ and
w0 in [Sha10, § 5.1] by Cχpsα̃, ωb τ, w0q. Here, we write w0 as a product of simple reflections and for
each simple reflection wδ corresponding to a simple root δ, let Pδ be the parabolic subgroup defined
by θ “ tδu. The Levi subgroup Mδ of Pδ has semisimple rank 1 and so its commutator subgroup
pMδ,Mδq is semisimple of rank 1. Thus we have a F -algebraic homomorphism ϕδ : SLp2q Ñ pMδ,Mδq
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such that the image of the upper triangular unipotent group in SLp2q is the root subgroup Uδ for the
root δ. We choose

wδ “ ϕδ

ˆˆ

0 1
´1 0

˙˙

.

In this way, the choice of w0 is unique and the local coefficient Cχpsα̃, ωbτ, w0q is uniquely determined.
Let Aps, ω b τ, w0q : Ips, ω b τq Ñ Ipw0psq, w0pω b τqq be the standard intertwining operator.

Define the Rankin-Selberg γ-factor associated to σ, ω b τ and ψ´1 by

γps, σ ˆ pω b τq, ψ´1q :“ Cχpsα̃, ω b τ, w0q
IpWψ, Aps, ω b τ, w0qfωbτ,sq

IpWψ, fωbτ,sq
.(2.7)

It follows from the proof of Lemma 2.11 that

Dψpfωbτ,sq “

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpuq du

factors through the twisted Jacquet module Jψl,αpπ|Rl,αq.

Proposition 2.15. Assume that σ and τ are supercuspidal, σ is generic with respect to the Whittaker
character ψNG with Whittaker function Wψ in the Whittaker model of σ. Then IpWψ, fωbτ,sq is
holomorphic, and IpWψ, Aps, ω b τ, w0qfωbτ,sq is holomorphic outside the poles of Aps, ω b τ, w0q.

Proof. Since σ is supercuspidal, Wψ has compact support modulo GLp1qpF qNG. This together with
the fact that the inner integral

ż

NlXβ
´1
l,αQmβl,αzNl

fZm,ψωbτ,spβl,αug; pIm, 1qqψ
´1
l,αpuq du

stabilizes for large compact open subgroups of Nl X β´1
l,αQmβl,αzNl implies that IpWψ, fωbτ,sq is

holomorphic. The statement regarding IpWψ, Aps, ω b τ, w0qfωbτ,sq follows immediately.

Theorem 2.16. Let σ, τ be irreducible supercuspidal representations of G, GLpmqpF q respectively
where σ is generic with respect to the Whittaker character ψNG with Whittaker function Wψ in the
Whittaker model of σ and πωbτ be the image of iHQmpωb| det |1{2τq by Ap1, ωbτ, w0q. Set ρm to be the
standard m-dimensional representation of GLpmqpCq, µ to be the similitude character of GSOp2m,Cq
and r “ Sym2 ρm b µ´1. For the Rankin-Selberg γ-factor γps, σ ˆ pω b τq, ψ´1q to have a pole at
s “ 1, it is necessary and sufficient that the Langlands-Shahidi L-function Lps, ω´1 b τ, rq has a pole
at s “ 0 and σ pairs non-trivially with Jψl,αpπωbτ |Rl,αq.

Proof. By Proposition 2.13, we may and do choose suitable W PWψ and

fωbτ,s P i
H
Qmpω b | det |s´1{2τq

such that IpWψ, fωbτ,sq “ 1 for all s P C. Since Ap1, ωb τ, w0q is holomorphic ([CS98, Theorem 5.1],
Lp2s ´ 1, ω´1 b τ, rq is holomorphic for s “ 1), it follows from equation p2.7q and Proposition 2.15
that γps, σˆ pωb τq, ψ´1q has a pole at s “ 1 if and only if Cχpsα̃, ωb τ, w0q has a pole at s “ 1 and

IpWψ, Aps, ω b τ, w0qfωbτ,sq
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is non-zero at s “ 1. Condition 2q of Theorem 8.3.2 of [Sha10] shows that Cχpsα̃, ω b τ, w0q having
a pole at s “ 1 is equivalent to the Langlands-Shahidi γ-factor γps, ω´1 b τ, r, ψq having a pole at
s “ 1, i.e. the Langlands-Shahidi L-function Lps, ω´1 b τ, rq having a pole at s “ 0. Non-vanishing
of IpWψ, Aps, ω b τ, w0qfωbτ,sq at s “ 1 is equivalent to σ pairing with Jψl,αpπωbτ |Rl,αq.

Note that πωbτ is isomorphic to the Langlands quotient of iHQmpω b | det |1{2τq.
For a given irreducible unitary supercuspidal representation τ of GLp2nqpF q such that the local

Langlands-Shahidi L-function Lps, τ, Sym2 ρ2n b ω
´1q has a pole at s “ 0, define the descent of τ to

Ll,α,
σψ,lpτq :“ Jψl,αpπωbτ |Rl,αq .

Remark 2.17. Theorem 2.12 implies that any representation of Ll,α that pairs up with σψ,lpτq is
ψNG-generic.

3 Tower Property
The following lemma is a minor modification of [GRS99a, Lemma 2.2]. Their arguments for unipo-

tent subgroups of the symplectic group apply to our setting as well, but in their case the intersections
(in item p6q below) X X C and Y X C were trivial. See also [LM15, Appendix 1] for analogous
integration formulas.

Lemma 3.1. pExchanging Rootsq Let C be an F -subgroup of a maximal unipotent subgroup of H
and ψC be a non-trivial character of C. Assume that there are two unipotent F -subgroups X, Y such
that the following conditions are satisfied.

p1q X and Y normalize C.

p2q X X C and Y X C are normal in X and Y respectively and pX X CqzX and pY X CqzY are
abelian.

p3q X and Y preserve ψC pwhen acting by conjugationq.

p4q ψC is trivial on X X C and on Y X C.

p5q rX,Ys Ă C.

p6q The pairing pX X CqzX ˆ pY X CqzY Ñ C˚ given by

px, yq ÞÑ ψCprx, ysq

is multiplicative in each coordinate, non-degenerate and identifies pY X CqzY with the dual of
pX X CqzX and pX X CqzX with the dual of pY X CqzY .

Represent the setup above by the following diagram,

A
Õ Ô

B “ CY D “ CX
Ô Õ

C
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Here, A “ BX “ DY “ CXY . Extend the character ψC to a character ψB of B presp. ψD of Dq by
making it trivial on Y presp. Xq. Let π be a smooth representation of A. As representations of C,

JB,ψB pπq|C – JD,ψD pπq|C .

In particular, JB,ψB pπq and JD,ψD pπq are isomorphic as vector spaces.

Proof. Note that the first five conditions imply that for each y P Y , ψCprx, ysq is a character of X
which is trivial on X XC. pSimilarly upon fixing x, we get a character of pY XCqzY .q Indeed for x1,
x2 P X, since rx1x2, ys “ x1rx2, ysx

´1
1 rx1, ys,

ψCprx1x2, ysq “ ψCpx1rx2, ysx
´1
1 qψCprx1, ysqψCprx2, ysq .

As y preserve ψC ,
ψCpry, csq “ ψCpycy

´1qψCpc
´1q “ ψCpcqψCpc

´1q “ 1 .

Thus ψCpry, csq “ 1 for all c P C.
The rest of the proof follows similarly as the proof of Lemma 2.2 in [GRS99a] where Sp4n is replaced

by H and two lines after equation p2.6q, the typo y´1xy P C should be replaced by x´1y´1xy P C.

Denote by ql,α the Witt index of the restriction of the form b to W X yKα . For 1 ď p ď ql,α, let Q˚1p
be the standard maximal parabolic subgroup of L1l,α which preserves the totally isotropic subspace

Vl,p,` “ SpanF tel`1 , ¨ ¨ ¨ , el`pu X y
K
α ĂW X yKα

and Q˚p “ pr´1pQ˚1p q. Denote by U˚p the unipotent radical of Q˚p. For 1 ď i ď p` l ´ 1, let

Ui
l`p “

#

ˆ

Ip`l´i ˚

0 z

˙^
ˇ

ˇ

ˇ

ˇ

ˇ

z P Zi

+

¨Ul`p Ă Nl`p , L “
"ˆ

Ip 0
˚ Il

˙^*

.

For 0 ď i ď l ´ 1, let

Li “

$

’

&

’

%

ˆ

Ip 0
λ Il

˙^

P L

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ “

¨

˚

˝

λ1

...
λl

˛

‹

‚

, λj “ 0 for all j ‰ l ´ i

,

/

.

/

-

,

Li “

$

’

&

’

%

ˆ

Ip 0
λ Il

˙^

P L

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ “

¨

˚

˝

λ1

...
λl

˛

‹

‚

, λl´i “ ¨ ¨ ¨ “ λl “ 0

,

/

.

/

-

.

To simplify notation, we identify each of the unipotent subgroups U˚p, Ui
l`p, L, Li and Li with

the respective isomorphic unipotent subgroup contained in the respective pre-image under pr. For
1 ď p ď ql,α, fix β “ βp,l such that

prpβp,lq “

ˆ

0 Ip
Il 0

˙^

.
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Let

P1l`p “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

d ˚ ˚ ˚ ˚

0 z ˚ ˚ ˚

0 0 I2pm´p´lq`1 ˚ ˚

0 0 0 z˚ ˚

0 0 0 0 d˚

˛

‹

‹

‹

‹

‚

P SOpV qpF q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d P GLppq , z P Zl

,

/

/

/

/

.

/

/

/

/

-

.

Since P1l`p is isomorphic to the semi-direct product of GLppq with a unipotent subgroup, we may
choose a suitable F -subgroup in its pre-image under pr in H which is isomorphic and call this group
Pl`p.

Also let

E1 “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

m x 0 0 0
0 1 0 0 0
0 0 I2pm´p´1q`1 0 0
0 0 0 1 x1

0 0 0 0 m˚

˛

‹

‹

‹

‹

‚

P SOpV qpF q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m P GLppq

,

/

/

/

/

.

/

/

/

/

-

and E be a suitable F -subgroup of pr´1pE1q which is isomorphic.

Proposition 3.2. Let π be a smooth representation of H and π1 be the representation of E on
JU l´1

l`p ,ψl`p,α
pπq via restriction. There exists a filtration

0 “W0 ĎW1 Ď ¨ ¨ ¨ ĎWp`1 “ JU˚p pJψl,αpπqq

of vector spaces such that each successive quotient Wi´1zWi is isomorphic to c-i
Pp`1

Ri´1
pπ1pp´i`2q b ψq

as vector spaces for each i “ 1, ¨ ¨ ¨ , p ` 1. Identifying Pp`1 with the mirabolic subgroup Pp,1 of
GLpp` 1q, here Ri´1 is the subgroup of Pp`1 of the form

#

ˆ

g v
0 z

˙

P Pp`1

ˇ

ˇ

ˇ

ˇ

ˇ

g P GLpi´ 1qpF q , z P Zp´i`2 , v PMi´1,p´i`2

+

and ψ is regarded as a character of Zp´i`2 defined by ψppzijqq “ ψp
řp´i`1
j“1 zj,j`1q and π1pp´i`2q b ψ

is extended from GLpi´ 1q ˆ Zp´i`2 to Ri´1 trivially across

Ni´1 “

"ˆ

Ii´1 v
0 Ip´i`2

˙*

.

Proof. Denote the subgroup βNlU
˚
pβ
´1 by S. The elements of S are identified with its image in

SOpV q under pr which are of the form

spz;u, a, d, e;x, yq “

¨

˚

˚

˚

˚

˝

Ip 0 x d y
u z a e d1

0 0 I2pm´l´pq`1 a1 x1

0 0 0 z˚ 0
0 0 0 u1 Ip

˛

‹

‹

‹

‹

‚

with z P Zl and x ¨ y
pl`pq
α “ 0 where y

pl`pq
α is the vector yα regarded as a column vector in

F
dimF V´2pl`pq

. In this proof, we identify Zl as a subgroup of S.
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We first extend ψl,α to U˚pNl so that it is trivial on U˚p and then let ψSpsq “ ψl,αpβ
´1sβq. Thus

ψSpspz;u, a, d, e;x, yqq “ ψpz1,2 ` z2,3 ` ¨ ¨ ¨ ` zl´1,1 ` al ¨ y
pl`pq
α q .

Denote by πβ the restriction of π to βRl,αβ´1. Then the map v ÞÑ πpβqv for v P Vπ induces an
isomorphism

JU˚p pJψl,αpπqq – JS,ψS pVπβ q

of vector spaces.
To avoid confusion, we shall denote the subgroups C, X and Y to which Lemma 3.1 is applied the

pi` 1qth time by Ci, Xi, Yi respectively. Also, set Bi “ CiYi, Di “ CiXi and Ai “ CiXiYi.
Let C0 be the subgroup of S which consists of the elements of the form spz;u, a, d, e;x, yq with

u “ 0, z “ Il. Note that L is the subgroup of elements in S which are lower triangular and ψS is trivial
on L. Let X0 and Y0 be unipotent subgroups of H such that prpX0q “ tspIl; 0, 0, 0, 0;x, yq P SOpV qu
and prpY0q “ L0. Also let J0 “ X0 X S “ βU˚pβ

´1 “ X0 XC0. Then J0zX
0 is identified with F p

and so is abelian. The commutator of an element of X0 and an element of Yp0q has the form

s

¨

˚

˝

Il, 0,

¨

˚

˝

0
...

u ¨ x

˛

‹

‚

, ˚, ˚, 0, 0

˛

‹

‚

and thus lies in C0. Note that D0 “ C0X0 “ Ul`p and ψD0 “ ψl`p,α|D0 .
Conditions p1q ´ p6q of Lemma 3.1 are satisfied and invoking it gives JB0,ψB0

pπq – JD0,ψD0
pπq as

vector spaces. Since JS,ψS pVπβ q and JZl,ψl`p,αpJL0
pJB0,ψB0

pπqqq are isomorphic as vector spaces,

JU˚p pJψl,αpπqq – JZl,ψl,αpJL0pJUl`p,ψl`p,αpπqqq

as vector spaces. Write
L0 “ L1L1 , Z1 “ Z1Zl´1

where
Z1 “

"ˆ

Il´1 ˚

0 1

˙*

, Zl´1 “

"ˆ

z 0
0 1

˙

P Zl

*

.

Let C1 “ Ul`pZ
1, Y1 “ L1,

X1 “

$

&

%

¨

˝

Ip 0 x
0 Il´1 0
0 0 1

˛

‚

^,

.

-

.

Then ψC1 “ ψl`p,α and we have the set-up in Lemma 3.1. It follows from Lemma 3.1 that

JL1pJUl`pZp1q,ψl`p,αpπqq – JL1pJU1
l`p,ψl`p,α

pπqq

as vector spaces. Hence JU˚p pJψl,αpπqq – JZl´1,ψl`p,αpJL1
pJU1

l`p,ψl`p,α
pπqqq as vector spaces. Assume

by induction for 1 ď i ď l ´ 2, JU˚p pJψl,αpπqq – JZl´i,ψl`p,αpJLipJUil`p,ψl`p,αpπqqq as vector spaces.
Write

Li “ Li`1Li`1 , Zl´i “ Zi`1Zl´i´1
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where

Zi`1 “

$

&

%

¨

˝

Il´i´1 x 0
0 1 0
0 0 Ii

˛

‚

,

.

-

, Zl´i´1 “

"ˆ

z 0
0 Ii`1

˙

P Zl

*

.

Let Ci`1 “ Ui
l`pZ

i`1, Yi`1 “ Li`1 and

Xi`1 “

$

’

’

&

’

’

%

¨

˚

˚

˝

Ip 0 x 0
0 Il´i´1 0 0
0 0 1 0
0 0 0 Ii

˛

‹

‹

‚

^,

/

/

.

/

/

-

.

Then ψCi`1 “ ψl`p,α and conditions p1q ´ p6q of Lemma 3.1 are satisfied. Thus Lemma 3.1 implies

JLi`1pJUil`pZpi`1q,ψl`p,αpπqq – JLi`1
pJUi`1

l`p ,ψl`p,α
pπqq

as vector spaces. Therefore JU˚p pJψl,αpπqq – JZl´i´1,ψl`p,αpJLi`1
pJUi`1

l`p ,ψl`p,α
pπqqq as vector spaces.

Taking i “ l ´ 2,

JU˚p pJψl,αpπqq – JZ1,ψl`p,αpJU l´1
l`p ,ψl`p,α

pπqq(3.1)

as vector spaces. By Theorem 7.2 of [GPR87], we see that π1 has a filtration

0 “W0 ĎW1 Ď ¨ ¨ ¨ ĎWp`1 “ JU l´1
l`p ,ψl`p,α

pπq

such that each successive quotient

Wi´1zWi – c-i
Pp`1

Ri´1
pπ1pp´i`2q b ψq

for each i “ 1, ¨ ¨ ¨ , p` 1. Transporting the vector space structure of JU l´1
l`p ,ψl`p,α

pπq to JU˚p pJψl,αpπqq,
the conclusion follows.

Theorem 3.3. pTower Propertyq Let τ be a supercuspidal representation of GLpmqpF q where m “

2n and πωbτ be a subquotient of iHQmpω b | det |1{2τq. We have a vector space isomorphism

JU˚p pJψl,αpπ
ωbτ qq – c-i

Pl`p
Nl`p

pJψl`p,αpπ
ωbτ q|Nl`pq .

Proof. Replacing π in Proposition 3.2 by πωbτ , π1pp´i`2q is trivial for 2 ď i ď p ` 1 since τ is
supercuspidal and πωbτ is a subquotient of iHQmpωb |det |1{2τq. The conclusion then follows from the
fact that

π1 – JU l´1
l`p ,ψl`p,α

pπq and π1pp`1q b ψ – Jψl`p,αpπ
ωbτ q|Nl`p

as vector spaces.

We know that iHQmpωb|det |´1{2τq has two constituents: one irreducible sub-representation which
is not generic and an irreducible quotient which is generic. The irreducible sub-representation is
isomorphic to πωbτ .
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4 Vanishing of Descents

4.1 Background
In this section we prove the vanishing of the descent map for m{2 ă l ď m. We briefly re-

call the analogous result in the descent construction for SO2n`1. For details see Ginzburg et. al.
[GRS99a, GRS99b]. Let τ be an irreducible unitary supercuspidal representation of GLpmqpF q
such that Lps, τ,^2ρmq has a pole at s “ 0 (in particular, m is even). Then τ affords a Shalika
model, hence also a linear model, i.e., τ embeds into C8pGLpm{2qpF q ˆ GLpm{2qpF qzGLpmqpF qq.
It then follows that the representation parabolically induced from τ |det |1{2 to Sp2m injects into
C8pSpmpF q ˆ SpmpF qzSp2mpF qq. Granted these results, the vanishing of the tower of local descent
maps up to and except the top level, is effectively proved by showing that the corresponding twisted
Jacquet modules vanish on the latter space. This is precisely [GRS99b, Theorem 17].

The integral representation for the symmetric square L-function was first developed by Shimura
for m “ 2 (see also [GJ78]). Patterson and Piatetski-Shapiro [PPS89] extended his result to m “ 3
and Bump and Ginzburg [BG92] developed the general case. The twisted version was constructed by
Gelbart and Jacquet [GJ78] for m “ 2, Banks [Ban97] for m “ 3, and recently for any m by Takeda
[Tak14].

We consider a representation τ such that the symmetric or twisted symmetric square L-function has
a pole at s “ 0. Here and throughout, these L-functions are the ones defined by Shahidi ([Sha90]). Let
us begin with the case of Lps, τ, Sym2 ρmq. As exhibited by Bump and Ginzburg [BG92], the (global
and local) study of this L-function involves the theory of exceptional representations of Kazhdan and
Patterson [KP84]. Globally, the period of a cusp form against a pair of theta functions characterizes
the pole of the partial symmetric square L-function at s “ 1 ([BG92, Theorem 7.6]). Let θ and θ1 be
a pair of exceptional representations in the sense of [KP84] of the double cover ĂGLpmq of GLpmq, over
a local p-adic field. The tensor θb θ1 is a well defined representation of GLpmq and, in light of several
results ([Kap15, Kap16a, Kap16b, Kap17b, Kap17a]), is expected to play the role of the linear model
in an analog of the aforementioned construction.

In more detail, one can find a pair pθ, θ1) such that τ is a quotient of θbθ1 ([Kap16b, Theorem1.3]).
Then in [Kap16b, Proposition 4.1] it was proved that the representation parabolically induced from
1bτ | det |1{2 to GSpinp2m`1q is a quotient of ΘbΘ1, where Θ and Θ1 are exceptional representations
of a double cover ČGSpinp2m` 1q of GSpinp2m` 1q, defined in [Kap17b]. The remaining step, proving
the vanishing of the twisted Jacquet modules of Θ b Θ1, has already been partially worked out in
[Kap16b, Theorem 1.1], but only for the “ground level", i.e., the generic case (l “ m). Here we
complete the proof for all l ą m{2.

Now assume that ω is a unitary character of F˚ and Lps, τ, Sym2 ρm b ω´1q has a pole at s “
0. The integral representation for the global version of this L-function involved a variant of the
aforementioned representations θ, which we call an extended exceptional representation (exceptional
ones are included in the definition). For m “ 2, this representation is an extension of the Weil
representation ([Gel76, GPS80]). Banks [Ban94] constructed it over p-adic fields of odd residual
characteristic, and Takeda [Tak14] developed the general case (under the name “twisted exceptional
representations").

Yamana proved that if Lps, τ, Sym2 ρmbω
´1q has a pole at s “ 0, τ (or a twist of τ for odd m) is a

quotient of a tensor of two extended exceptional representations ([Yam17, Theorem 3.19]). To proceed,
we need to define an extended version of the exceptional representation of ČGSpinp2m`1q. This can be
done along the line of arguments of [Tak14, Kap17b], and [Kap16b, Proposition 4.1] will now apply to
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extended exceptional representations. Thus we can treat both Sym2 ρm and Sym2 ρmbω
´1 uniformly.

4.2 Exceptional representations
Put H “ GSpinp2m` 1q and fix the Borel subroup BH “ TH ˙NH of H as described above

(i.e., using pr´1). Recall that Qk “ Mk ˙ Uk is the standard maximal parabolic subgroup of H,
whose Levi part Mk is isomorphic to GLpkq ˆGSpinp2pm´ kq ` 1q. Let Υ denote the “canonical"
character of H constructed in [Kap17b, § 1.2]. Its restriction to the GLpkq part of Mk is det. Let rH
be the double cover of H, constructed in [Kap17b] by restricting the double cover of Spinp2m` 3q of
Matsumoto [Mat69] and using the cocycle σ of Banks et. al. [BLS99] (in [Kap17b] we showed that σ
is block-compatible). We fix a section s : H Ñ rH such that σph, h1q “ sphqsph1qsphh1q´1. This section
is a homomorphism of NH . For any X Ă H let rX be its preimage in rH. For any group L, ZpLq
denotes its center. Then we have Zp rHq “ ČZpHq (in contrast with double coverings of GLp2mq).

The exceptional representations of rH were developed (locally and globally) in [Kap17b], by adapt-
ing the construction of Bump et. al. [BFG03, BFG06] for a covering of SO2m`1. For a convenient
summary see [Kap16b, § 2.8]. In the group GLpmq let TGLpmq ˙ Zm be the Borel subgroup of up-
per triangular matrices, where TGLpmq is the diagonal torus. Regard TGLpmq as a subgroup of H
by identifying it with the natural subgroup of Mm. Let ξ be a genuine character of Zp rTHq, whose
restriction to Zp rTGLpmqq and Zp rHq is a genuine lift of δ1{4

BGLpmq
¨ | det |pm`1q{4 and the trivial character,

respectively (note that Zp rTGLpmqq ă Zp rTHq). This determines ξ uniquely when m is even, in the
odd case there is an additional choice of a Weil factor. Let ρpξq denote the corresponding genuine
irreducible representation of rTH (see e.g., [KP84, McN12]). Then iĂH

rBH
pρpξqq has a unique irreducible

quotient Θ0 (normalized induction). An exceptional representation Θ of rH is then any twist of Θ0 by
a non-genuine character of H, i.e., Θ “ pχ ˝Υq ¨Θ0 where χ is a quasi-character of F˚.

The main property of Θ is that the Jacquet functor along a radical of a parabolic subgroup
is, essentially, an exceptional representation of the stabilizer. See [Kap17b, Proposition 2.19] for a
more precise statement (see also [BFG03, Theorem 2.3]). This result and the fact that exceptional
representations of ĂGLpmq do not afford a Whittaker functional for m ą 2 ([KP84, Kap17a], see also
[Yam17]), imply through a series of intermediate results, that Θ is “small" in the sense that it is
attached to one of the unipotent orbits next to the minimal one (see [BFG03]). The following theorem
encapsulates all the vanishing properties of Θ.

We may regard the elements of U1p“ U1pF qq as row vectors pu1, . . . , u2m´1q. Fix an additive
character ψ of F . Then any character λ of U1 takes the form

λpuq “ ψ

˜

2m´1
ÿ

i“1

βiui

¸

,

with βi P F . Define the length of λ by

2
m´1
ÿ

i“1

βiβ2m´i ` β
2
m.

While the length depends on ψ, we are only interested in the case when it is non-zero, and this does
not depend on ψ.
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Theorem 4.1. ([BFG03, Theorem 2.6], [BFG06, Proposition 3] and [Kap17b, Lemma 2.25]) For any
λ with non-zero length, JU1,λpΘq “ 0.

Corollary 4.2. Let V be a subgroup of U1 and λ be a character of V , such that any extension of λ
to a character of U1 has non-zero length. Then JV,λpΘq “ 0.

Proof. Since U1 is abelian, the representation JV,λpΘq is filtered by JU1,λ1pΘq, where λ1 is a character
of U1 extending λ. Since λ1 has non-zero length, the latter module vanishes.

For example when m “ 2, if V is defined by u1 “ 0, the character λpvq “ ψpβu2q satisfies the
requirement of the corollary, for any β ‰ 0.

Corollary 4.3. Let λ be a character of U1 defined by the vector pβ, 0, . . . , 0q, where β ‰ 0. The
subgroup U2 acts trivially on JU1,λpΘq.

Proof. We argue exactly as in the proof of [BFG06, Proposition 4].

As mentioned above, the Jacquet functor takes exceptional representations into exceptional rep-
resentations. We describe the particular case of JUm . Let θ0 be the unique irreducible quotient of
i
ĄGLpmq
rBGLpmq

pρpξ0qq, where ξ0 is a lift of δ1{4
BGLpmq

to a genuine character of Zp rTGLpmqq. This lift is unique
when m is even and depends on a Weil factor in the odd case; still, if we fix one Weil factor, the
representations θ0 corresponding to the different lifts are twists of one another by a square-trivial
character (see [Kap17a, Claim 2.6]). The exceptional representations of ĂGLpmq are thus θ0 and its
twists θ “ pχ ˝ detq ¨ θ0 (see [KP84, BG92, Kab01]). Then

δ
1{2
Qm

JUmpΘ0q “ 1b | det |pm´1q{4θ0(4.1)

([Kap16b, (2.8)], the Jacquet functor there was not normalized; see also [Kap17b, Claim 2.21]). Note
that the direct factors of Mm commute in the cover, but this is a special phenomenon, which does
not hold for Mk with k ă m. Equality (4.1) implies (almost formally) that when we take a unitary
quotient τ of θ b θ1, there is a suitable unitary character ω of F˚ (depending on θ and θ1) and a pair
of exceptional representations pΘ,Θ1q of rH, such that the representation parabolically induced from
ω´1 b τ |det |1{2 to H is a quotient of ΘbΘ1 ([Kap16b, Proposition 4.1]).

As explained in § 4.1, to handle the twisted symmetric square L-function we need to consider a
wider class of exceptional representations, which we call extended exceptional representations. These
will only be used here for even m, so assume this is the case. We begin with a brief description of
the construction of Takeda [Tak14, § 2.2–2.4] (following [GPS80, Ban94]) of these representations for
ĂGLpmq. Let χ be a unitary character of F˚ such that χp´1q “ ´1. Denote by ω´ψ the irreducible
summand of the Weil representation ωψ of ĂSp2 consisting of odd functions. One can extend ω´ψ to a

representation of the subgroup ĂGL
p2q
p2q of ĂGLp2q, where GLp2qp2q is the subgroup of matrices whose

determinant is a square, by letting ZpGLp2qq act by χ. More precisely if s : GLp2q Ñ ĂGLp2q is the
chosen section, the action is given by spaI2q ÞÑ χpaqγψ1paq, where γψ1 is the Weil factor corresponding
to an additive character ψ1 of F . The extended exceptional representation θχ2 of ĂGLp2q is obtained by

inducing from ĂGL
p2q
p2q to ĂGLp2q. It is an irreducible representation, and independent of the choice

of ψ1. Moreover, it is unitary and supercuspidal (as opposed to the exceptional representations of
[KP84]).



4 VANISHING OF DESCENTS 29

Now let R “ MR ˙ UR be the standard parabolic subgroup of GLpmq whose Levi part MR

is isomorphic to GLp2q ˆ . . . ˆGLp2q, where GLp2q appears m{2 times (m is even). Consider the
representation

i
ĄGLpmq
rR

ppθχ2 rb . . . rbθ
χ
2 qδ

1{4
R q.

Here rb is the metaplectic tensor ([Kab01, Mez04]), which in this case is canonical (see [Tak16, Re-
mark 4.3]).

The inducing data is tempered, hence the Langlands Quotient Theorem, proved for metaplectic
groups by Ban and Jantzen [BJ13], implies that it has a unique irreducible quotient θχm, which is
an extended exceptional representation of ĂGLpmq. The representation θχm is also the image of the
intertwining operator with respect to the longest Weyl element relative to R. Furthermore, the
“periodicity result" [Tak14, Proposition 2.36] reads

JURpθ
χ
mq “ pθ

χ
2
rb . . . rbθχ2 qδ

´1{4
R

(JUR was not normalized there). See [KP84, Theorem I.2.9] for this statement on exceptional repre-
sentations. As above, we can twist θχm by χ1 ˝ det for a quasi-character χ1.

We follow a similar paradigm, to construct extended exceptional representations of rH. Let Q “

M˙U be the standard parabolic subgroup of H whose Levi part M is isomorphic to MR ˆGLp1q.
Consider the representation

Π˚ “ i
ĂH
rQ
pp1b pθχ2 rb . . . rbθ

χ
2 qqδ

1{4
Q q.

Again, according to the Langlands Quotient Theorem [BJ13] this representation has a unique irre-
ducible quotient Θ˚ “ Θχ. Since the inducing data is supercuspidal, according to [BZ77, Corol-
lary 2.13c], JU pΠ˚q is glued from

wpp1b pθχ2 rb . . . rbθ
χ
2 qqδ

1{4
Q q,

where w varies over the Weyl elements of H, which satisfy wMw´1 “M and are reduced modulo the
Weyl group of M . The periodicity result becomes

JU pΘ
˚q “ p1b pθχ2 rb . . . rbθ

χ
2 qqδ

´1{4
Q .(4.2)

See [Kap17b, Proposition 2.16] for this statement on Θ. A family of extended exceptional representa-
tions can be obtained by varying χ, and twisting using χ1 ˝Υ.

Let Q1 “M1 ˙U1 be a standard parabolic subgroup of H. The following statements follow from
[BZ77, Corollary 2.13]: if U1XM is non-trivial, JU 1pΘ˚q “ 0; and if M1 strictly contains M, JU 1pΘ˚q
is irreducible (also use the transitivity of the Jacquet functor and (4.2)).

Utilizing the above observations, the results of [Kap17b, § 2.3.1] for Θ are applicable to Θ˚ as well.
Also note that Yamana [Yam17] proved that θχm does not afford a Whittker functional when m ě 3.
Therefore the arguments of [Kap17b, § 2.3.2] are valid as well, in particular [Kap17b, Lemma 2.25],
and we deduce that Theorem 4.1 and its corollaries are applicable also to Θ˚.

Additionally, the analog of (4.1) holds as well (see [Kap17b, Claim 2.21]), where θ0 is replaced by
θχm, and thus the proof of [Kap16b, Proposition 4.1] extends to Θ˚. For example if τ is a quotient
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of θχ
´1

m b θm, the representation parabolically induced from χ b | det |1{2τ to H is a quotient of two
extended exceptional representations of rH.

For specific choices of parameters, the construction we described produces the (non-extended)
exceptional representations. To conclude, since the extended exceptional representation Θ˚ enjoys
the same properties of Θ, that are relevant for the proof of the vanishing theorem in the following
section, we omit references to χ from the notation and simply write Θ in all cases.

4.3 Vanishing theorem
Let ψ be a non-trivial additive character of F , τ be an irreducible unitary supercuspidal represen-

tation of GLpmq, and ω be a unitary character of F˚.
Our assumption is that Lps, τ, Sym2 ρmbω

´1q has a pole at s “ 0. If ω “ 1, according to [Kap16b,
Theorem 1.3] the representation τ is a quotient of θbθ1 for some pair of exceptional representations of
ĂGLpmq. For the case ω ‰ 1, by [Yam17, Theorem 3.19(1)] when m is even τ is a quotient of θω

´1

m bθm.
The extended exceptional representations are determined (non-uniquely) by τ and ω. When ω ‰ 1
and m is odd, a twist of τ , namely ω´1

τ ωpm´1q{2τ where ωτ is the central character of τ , is a quotient
of θ b θ1 [Yam17, Theorem 3.19(2)]. The vanishing property does not depend on this twist, hence we
can assume in all cases that τ is such a quotient.

By virtue of [Kap16b, Proposition 4.1], there is a pair of extended exceptional representations
pΘ,Θ1q of rH such that the representation iHQmpω b |det |1{2τq is a quotient of ΘbΘ1. Therefore, the
vanishing result follows from the following theorem.

Theorem 4.4. For any Θ, Θ1 and m{2 ă l ď m, Jψl,αpΘ b Θ1q “ 0. In particular, σψ,lpτq “ 0 for
m{2 ă l ď m.

Remark 4.5. We do not assume anything on α, except that it is non-zero. i.e., the proof is valid
whether the connected component of the stabilizer of ψl,α is GSpinp2pm ´ lqq or GSpin˚p2pm ´ lqq.
This is an incarnation of the fact that Theorem 4.1 applies to any character of non-zero length.

Proof. For l “ m this is [Kap16b, Theorem 1.1]. The general case is not very different. For brevity,
we focus on the differences.

Put Q “ Ql and write Q “M ˙ U (i.e., U “ Ul). Denote N “ Nl,

N “

$

&

%

¨

˝

z v c
I2pm´lq`1 v1

z˚

˛

‚: z P Zl

,

.

-

.(4.3)

Let C “ ZpUq (the center of U). The Levi subgroup M acts on the characters of C with tl{2u orbits.
We choose representatives for these orbits: ψ0pcq “ 1 and

ψjpcq “ ψ

˜

j
ÿ

i“1

cl´2j`i,i

¸

, 0 ă j ď tl{2u.

Here c is regarded as an l ˆ l matrix. When j “ l{2 (in particular, l is even), any character in the
orbit of ψj is called generic. Denote the stabilizer of ψj in M by Stj . By virtue of the Geometric
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Lemma of Bernstein and Zelevinsky ([BZ77, Theorem 5.2] and [BZ76, 5.9–5.12]), as a representation
of rQ, Θ is glued from

c-i
rQ
ĂStjU

pJC,ψj pΘqq, 0 ď j ď tl{2u

(compact normalized induction). A similar result applies to Θ1, where we use ψ´1 for the repre-
sentatives of the orbits. In turn Θ b Θ1 is glued from tensors of such representations, with indices
j, j1. According to [Kap17a, Lemma 2.3], when we apply the Jacquet functor with respect to N and
ψl,α only those with j “ j1 remain. Since the tensor of two genuine representations is a non-genuine
representation, we need to show that for all j,

Jψl,αpc-iQStjU
pJC,ψj pΘq b JC,ψ´1

j
pΘ1qqq “ 0.(4.4)

First consider j “ 0. Then c-i
rQ
ĂStjU

pJC,ψj pΘqq “ JCpΘq and the left hand side of (4.4) becomes

Jψl,αpJCpΘq b JCpΘ
1qq.

We apply a second filtration argument, according to the orbits of characters of CzU , with respect to
the action of M . Note that if ψU is a character of U which is trivial on C, JCzU,ψUJCpΘq “ JU,ψU pΘq.

Let u P U be written as in (4.3). Consider the restriction of ψU to the last row b of v. Using the
action of M , we can assume it takes the form b ÞÑ ψpb1 ` βb2pm´lq`1q, for some β P F . If β ‰ 0,
this character can be conjugated into a character λ of a subgroup of U1, such that any extension of λ
to a character of U1 is of non-zero length. But then by Corollary 4.2, the Jacquet module vanishes.
Hence β “ 0. Re-denote by b the pl ´ 1q-th row of v, on this row the character takes the form
b ÞÑ ψpb2 ` βb2pm´lqq and again we deduce β “ 0. Proceeding similarly, it follows that ψU can be
non-trivial on at most m ´ l rows, which we assume are the last ones. Indeed, otherwise it can be
conjugated into a character whose restriction to one of the rows is b ÞÑ ψpb1 ` βb2pm´lq`1q for β ‰ 0,
and as above Corollary 4.2 implies that the Jacquet module vanishes.

Therefore, we only need to consider m´ l ` 1 orbits, with representatives ψU,0 “ 1 and

ψU,kpuq “ ψ

˜

k
ÿ

i“1

vl´i`1,i

¸

, 0 ă k ď m´ l.

As above, we begin with quotients JU,ψU,kpΘqbJU,ψ´1

U,k1
pΘ1q, but when we apply Jψl,α , only those with

k “ k1 remain ([Kap17a, Lemma 2.3]).
For k ą 0, let Zl´k,k be the unipotent radical of the standard maximal parabolic subgroup of

GLplq whose Levi part is isomorphic to GLpl´ kqˆGLpkq. Since l ą m{2, Zl´k,k is non-trivial. The
group Zl´k,k normalizes U and stabilizes ψU,k and we prove that its action on JU,ψU,kpΘq is trivial.
To this end we show that for any non-trivial character µ of Zl´k,k,

JZl´k,k˙U,µψU,kpΘq “ 0.(4.5)

Indeed, as in [Kap16b, Claim 3.3] applying Lemma 3.1 (the version of [GRS99a, Lemma 2.2]) and
another conjugation, we see that JZl´k,k˙U,µψU,kpΘq is a quotient of JU1,λpΘq, where λpuq “ ψpu1q,
and the action of the pl ´ k ` 1q-th row of U , which is given by the restriction of ψk to this row,
transforms into a non-trivial action of U2. This contradicts Corollary 4.3, unless (4.5) holds.
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We deduce that for all k ě 0, there is a root subgroup of N on which ψl,α is non-trivial, but its
action on

JU,ψU,kpΘq b JU,ψ´1
U,k
pΘ1q

is trivial. Note that for k “ 0, U itself acts trivially on this space while ψl,α is non-trivial on U . This
proves (4.4) for j “ 0.

Next we state the generic case.

Lemma 4.6. Equality (4.4) holds for j “ l{2.

The proof is deferred to § 4.4 below, we now explain how to reduce the remaining cases to the
generic one. Assume 0 ă j ă l{2. Consider the standard parabolic subgroup Ql´2j whose Levi part
is isomorphic to GLpl´ 2jq ˆHj, where Hj “ GSpinp2pm´ l` 2jq ` 1q. Let Qj “Mj ˙Uj be the
standard parabolic subgroup of Hj with Mj – GLp2jq, and Cj “ ZpU jq. Note that ψj |Cj is a generic
character of Cj . Also set Q0 “ QXQl´2j .

Claim 4.7. The representation JC,ψj pΘq is trivial on Ul´2j. As a representation of ĂMl´2j it is
a finite direct sum of representations ϑ b JCj ,ψj pΘ

jq, where ϑ is a finite direct sum of irreducible
representations of ĂGLpl ´ 2jq and Θj is an extended exceptional representation of rHj.

Remark 4.8. The representation ϑ is essentially an exceptional representation, its description was
given in the similar result [Kap16b, Proposition 3.1], but will not be needed here.

Using the claim and transitivity of induction, the left-hand side of (4.4) becomes a finite sum of
representations

Jψl,α

´

c-iQQ0
c-iQ0

StkU

´

pϑb ϑ1q b pJCj ,ψj pΘ
jq b JCj ,ψ´1

j
pΘ1

j
qq

¯¯

.

We can compute this module using the Geometric Lemma [BZ77, Theorem 5.2]. Specifically, choose a
set of Weyl elements w representing the double cosets Q0zQ{N . We see that ψl,α|wUw´1XN ‰ 1 unless
w “

´

I2j
Il´2j

¯

, regarded as an element of Q via its embedding in M . The corresponding quotient is,
up to a modulus character,

JZl´2j ,ψl,αpϑb ϑ
1q b Jψl,αpJCj ,ψj pΘ

jq b JCj ,ψ´1
j
pΘ1

j
qq.

Since ψl,α restricts to a similar character on the subgroup Z2j ˙ U j of Qj , i.e., a generic character
on Z2j and the coordinates of U where ψl,α is non-trivial belong to U j , Lemma 4.6 (the generic case)
implies

Jψl,αpJCj ,ψj pΘ
jq b JCj ,ψ´1

j
pΘ1

j
qq “ 0.

This completes the proof of (4.4) for all j.

Proof of Claim 4.7. As in [Kap16b, Proposition 3.1], the claim follows once we show that the action of
Ul´2j on JC,ψj pΘq is trivial. The main difference is that when l “ m, there are only two orbits for the
characters of Um, namely the orbit of a character defined by a vector of non-zero length (restriction
of the generic character of NH to Um), and the trivial orbit. When l ă m there are also non-trivial
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characters defined by vectors of zero length to consider. (For a character defined by a vector in F 2r`1,
the length of the character is the length of the vector with respect to the symmetric bilinear form
defining SO2r`1.)

Write Ul´2j “ V ¨ pC X Ul´2jq. Clearly C X Ul´2j acts trivially on JC,ψj pΘq. It remains to show
JV,µpJC,ψj pΘqq “ 0 for all non-trivial characters µ of V .

Let µ be such a character. Using the action of GLpl´2jqˆM j , we may assume that its restriction
to the last row of v P V is given by

b ÞÑ ψpb1 ` b2j`1 ` βb2pm´l`jq`1q,

where b is a row of length 2pm ´ l ` jq ` 1 and β P F . If β ‰ 0, JV,µpJC,ψj pΘqq “ 0 because as in
the case j “ 0, we can conjugate this character into a character of U1 and apply Corollary 4.2. Hence
β “ 0.

Now let g P Ml´2j be such that gµpvq “ µpg´1vgq restricts to the character b ÞÑ ψpb1q on b. The
element g does not normalize U j and does not stabilize ψj |Cj , but g´1Cjg ă U j . Let X ă Cj be
consisting of matrices whose only non-zero coordinates are the p1, 1q and p2j, 2jq-th ones. We can
regard g as the matrix

diag

¨

˝Il´2j ,

¨

˝

1
I2j´1

1 1

˛

‚, I2pm´lq´1,

¨

˝

1
I2j´1

´1 1

˛

‚, Il´2j

˛

‚.

Since U j normalizes Ul´2j , we deduce that g´1Xg normalizes Ul´2j and JV,µpJC,ψj pΘqq is a quotient
of

Jg´1Xg˙Ul´2j ,µpΘq.

Conjugating by g, we obtain JX˙Ul´2j ,gµpΘq, where gµ is non-trivial on X (g normalizes Ul´2j). Now
we can proceed exactly as in [Kap16b, Claim 3.3]: applying Lemma 3.1 ([GRS99a, Lemma 2.2]) and
another conjugation, JX˙Ul´2j ,gµpΘq is seen to be a quotient of JU1,λpΘq, where λpuq “ ψpu1q, and the
action of X becomes a non-trivial action of U2, contradicting Corollary 4.3. Thus JX˙Ul´2j ,gµpΘq “ 0
whence JV,µpJC,ψj pΘqq vanishes.

4.4 Proof of Lemma 4.6
Let j “ l{2 and r “ 2jp2pm ´ lq ` 1q. The subgroup U is a generalized Heisenberg group H of

rank r ` 1. Idenfity H with the set of elements pa, b; cq, where a and b are rows in F r{2 and c P F ,
with the product given by

pa, b; cq ¨ pa1, b1; c1q “
´

a` a1, b` b1, c` c1 ` 1
2 pa, bq

´

Jr{2
´Jr{2

¯

tpa1, b1q
¯

.

Here Jr{2 is the r{2ˆr{2 permutation matrix having 1 on its anti-diagonal and tpa1, b1q is the transpose
of pa1, b1q. We have the epimorphism ` : U Ñ H defined by

`puq “ pa1, . . . , aj , b1, . . . , bj ,
1
2 p

j
ÿ

i“1

ci,i ´ cl`i,l`iqq,
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where b1, . . . , bj are the first j rows of v and a1, . . . , aj are the last and we recall that u is written with
the notation of (4.3) (with z “ Il). Also let R ă H be the subgroup consisting of elements p0, b; 0q.

Since ψj is trivial on the kernel of `, we may regard JC,ψj pΘq as a smooth representation of H,
and as such it is the direct sum of irreducible Weil representations ωψ, where ψ is our fixed character
of F .

The representation ωψ extends to a representation of ĂSpr˙H, where ĂSpr is the metaplectic double
cover of Spr. Since Stj “ Spl, using the action of Stj on each of the 2pm ´ lq ` 1 columns of v we
construct an embedding of Stj in Spr. Moreover, the covering rStj obtained by restricting rH does
not split over Stj , hence it is the metaplectic double cover, therefore the embedding extends to an
embedding of the coverings, also denoted ` (one may also apply the strong block compatibility property
of the cocycle [BLS99, Theorem 7] to deduce this). The action of g P ĂSpl is now given by $ψp`pgqq.

As a smooth representation of a generalized Jacobi group, JC,ψj pΘq is isomorphic to a representa-
tion κ b ωψ, where κ b ωψp`pgqhq “ κpgq b ωψp`pgqhq for g P ĂSpl and h P H, and κ is a non-genuine
representation. The following claim proves that κ is trivial.

Claim 4.9. The representation JC,ψj pΘq is isomorphic to a (possibly infinite) direct sum of the
representation ωψ.

The proof appears below. Now we proceed to prove (4.4), exactly as in [Kap16b, Claim 4.3].
Observe that by Claim 4.9,

JU,ψl,αpJC,ψj pΘq b JC,ψ´1
j
pΘ1qq

is a direct sum of

JH,ψl,α˝`´1pωψ b ωψ´1q.

Note that ψl,α˝`´1 is well defined because ψl,α is trivial on C and the coordinates of v in the preimage
of ` are uniquely defined.

Applying the theory of l-sheafs of Bernstein and Zelevinsky ([BZ76, 1.13, § 6, Theorem 6.9]), it
suffices to show that for all representatives g P GLplq such that the last row of g is p0, . . . , 0, 1q,

HomSpgl
pg
´1

JH,ψl,α˝`´1pωψ b ω
´1
ψ q, ψl,αq.(4.6)

Here Spgl “ g´1 Spl g X Zl and for x P Spgl ,
g´1

J¨¨¨p¨ ¨ ¨ qpxq “ J¨¨¨p¨ ¨ ¨ qp`p
gxqq. Note that since the last

row of g is p0, . . . , 0, 1q, gpSpgl q stabilizes the restriction of ψl,α to U .
According to [Kap16b, Claim 2.5], if λ is the character of H given by px, y; zq ÞÑ ψpx1q, JH,λpωψb

ωψ´1q is the trivial one-dimensional representation of its stabilizer in Spr. Since Spr acts transitively
on the non-trivial characters of ZpHqzH, the same applies to any such character, in particular to the
character ψl,α ˝ `´1. Thus g

´1

JH,ψl,α˝`´1pωψ b ωψ´1q is trivial.
We conclude that (4.6) vanishes, using the results of Offen and Sayag [OS08, Proposition 2] (we

use Hr,r1 with r “ 0 and r1 “ l, in their notation), namely that for any generic character ψ of Zl,
ψ|Spgl

‰ 1 for any g P GLplq. The proof of the lemma is complete.

Proof of Claim 4.9. We proved this result in [Kap16b, Theorem 1.4] when l “ m (whence j “ m{2).
The proof carries over to l ă m, we briefly describe the argument.
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We need to show that κ is a trivial representation. Let

Y “

$

&

%

¨

˝

1 y
Il´2

1

˛

‚

,

.

-

ă Spl .

It is enough to show J`pY q,ψβ pκq “ 0, where ψβpyq “ ψpβyq, for all β ‰ 0. To this end consider the
subgroup

V “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 y b1 ˚

Il´2

1
I2pm´lq`1 b1

1 y1

Il´2

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

ă U1.

The mapping ` is an isomorphism of V onto the direct product `pY q ¨ R1, where R1 ă R consists of
elements p0, pb, 0, . . . , 0q; 0q with b P F 2pm´lq`1.

First observe that

JU,ψβ˝`pJC,ψj pΘqq “ 0.(4.7)

This follows from Corollary 4.2, because this space is a quotient of JV ¨pCXU1q,pψβ˝`qψj pΘq and since for
c P C XU1, ψjpcq “ ψpc1,1q, any extension of pψβ ˝ `qψj to a character of U1 is a character of non-zero
length.

Since JRpωψq is one-dimensional ([Kap16b, Claim 2.4]), there is a vector ϕ in the space of ωψ such
that the Jacquet integrals

ϕY,R “

ż

Y

ż

R

ωψpyrqϕdr dy

do not vanish for all compact subgroups Y ă Y and R ă R (see [BZ76, 2.33]). Then given ξ in the
space of κ, using a change of variables, again the fact that JRpωψq is one-dimensional, and (4.7), one
shows that for sufficiently large Y and R,

ż

Y

κpyqψ´1
β pyqξ dy b ϕ

Y,R “ 0.

This implies that ξ vanishes in J`pY q,ψβ pκq ([BZ76, 2.33]).

5 Non-vanishing of the Descent for l “ n and m “ 2n

In this section, letm “ 2n, we show that σψ,npτq :“ Jψn,αpπωbτ |Rn,αq is non-zero, for some α P F˚.
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5.1 Generalized and degenerate Whittaker models
We recall the generalized and degenerate Whittaker models attached to nilpotent orbits, following

the formulation in [GGS17]. Let H be a reductive group defined over F or a central extension of finite
degree. Fix a non-trivial additive character ψ : F Ñ Cˆ. Let h be the Lie algebra of H “ HpF q and
u be a nilpotent element in h. The element u defines a function on h:

ψu : hÑ Cˆ

by ψupxq “ ψpκpu, xqq, where κ is the Killing form on h.
Given any semisimple element s P h, under the adjoint action, h is decomposed to a direct sum of

eigenspaces hsi of h corresponding to eigenvalues i. The element s is called rational semisimple if all
its eigenvalues are rational. Given a nilpotent element u, a Whittaker pair is a pair ps, uq with s P h
being a rational semisimple element and u P hs´2. The element s in a Whittaker pair ps, uq is called a
neutral element for u if there exists v P hs2 such that pv, s, uq is an sl2-triple. A Whittaker pair ps, uq
is called a neutral pair if s is a neutral element for u. For any X P h, let hX be the centralizer of X
in h.

Given anyWhittaker pair ps, uq, define an anti-symmetric form ωu on h by ωupX,Y q :“ κpu, rX,Y sq.
For any rational number r, let hsěr “ ‘r1ěrhsr1 . Let us “ hsě1 and let ns,u be the radial of ωu|us . Then
rus, uss Ă gsě2 Ă ns,u. By [GGS17, Lemma 3.2.6], ns,u “ hsě2`hs1Xhu. Note that if the Whittaker pair
ps, uq comes from an sl2-triple pv, s, uq, then ns,u “ hsě2. Let Us “ exppusq and Ns,u “ exppns,uq be
the corresponding unipotent subgroups of H. Define a character of Ns,u by ψupnq “ ψpκpu, logpnqqq.
Let N 1s,u “ Ns,u X kerpψuq. Then Us{N 1s,u is a Heisenberg group with center Ns,u{N 1s,u.

Let π be any irreducible admissible representation of H and ps, uq be a Whittaker pair, call the
twisted Jacquet module JNs,u,ψupπq a degenerate Whittaker model of π, denoted by πs,u. If ps.uq is a
neutral pair, then πs,u is also called a generalized Whittaker model of π. The wave-front set npπq of π
is defined to the set of nilpotent orbits O such that πs,u is non-zero, for some neutral pair ps, uq with
u P O. Note that if πs,u is non-zero for some neutral pair ps, uq with u P O, then it is non-zero for any
such neutral pair ps, uq, since the non-vanishing property of such Jacquet modules does not depend
on the choices of representatives of O. Let nmpπq be the set of maximal elements in npπq under the
natural order of nilpotent orbits. We recall [GGS17, Theorem A] as follows.

Theorem 5.1 (Theorem A, [GGS17]). Let π be an irreducible admissible representation of G. Given
two Whittaker pairs ps, uq and ps1, u1q with s being a neutral element for u, if u P Gs1pF qu1 where Gs1
is the centralizer of s1 in G and πs1,u1 is non-zero, then πs,u is non-zero.

Note that a particular case of Theorem 5.1 is that u “ u1. In this case, the condition u P Gs1pF qu1
is automatically satisfied and hence Theorem 5.1 asserts in this case that if πs1,u is non-zero for some
Whittaker pair ps1, uq, then πs,u is non-zero for any neutral pair ps, uq.

When H is a quasi-split classical group, it is known that the nilpotent orbits are parametrized
by pairs pp, qq, where p is a partition and q is a set of non-degenerate quadratic forms (see [Wp01,
Section I.6]). When H “ Spp2nqpF q, p is a symplectic partition, namely, odd parts occur with even
multiplicities. When H “ SOα

p2nqpF q, SOp2n` 1qpF q, p is a orthogonal partition, namely, even parts
occur with even multiplicities. In these cases, given any irreducible admissible representation π of H,
let pmpπq be the partitions corresponding to nilpotent orbits in nmpπq. For any symplectic/orthogonal
partition p, by a generalized Whittaker model attached to p, we mean a generalized Whittaker model
πs,u attached to an orbit O parametrized by a pair pp, qq for some q, where u P O and ps, uq is a
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neutral pair. Sometimes, for convenience, we also write a generalized Whittaker model attached to p
as πψp , without specifying the F -rational orbit O and neutral pairs.

Let H “ GSpinp4n ` 1q, as for SOp4n ` 1q, an orthogonal partition p is called special if it has
an even number of odd parts between two consecutive even parts and an odd number of odd parts
greater than the largest even part (see [CM93, Section 6.3]). By the main results of [JLS16], given
any irreducible admissible representation π of H, any p P pmpπq is special.

5.2 Non-vanishing of σψ,npτq
First we prove the following theorem.

Theorem 5.2. πωbτ has a non-zero generalized Whittaker model attached to the partition rp2nq21s.

Proof. Let αi “ ei ´ ei`1, 1 ď i ď 2n ´ 1, α2n “ e2n be the set of roots for GSpinp4n ` 1q. Let xαi
be the one-dimensional root subgroup in h corresponding to αi, 1 ď i ď 2n. By [Wp01, Section I.6],
there is only one nilpotent orbit O corresponding to the partition rp2nq21s. A representative of the
nilpotent orbit O can be taken as follows:

u “
2n´1
ÿ

i“1

x´αip1q.

Let s be the following semi-simple element

s “ diagp2n´ 1, 2n´ 3, . . . , 1´ 2n, 0, 2n´ 1, 2n´ 3, . . . , 1´ 2nq .

Then it is clear that ps, uq is a neutral pair.
Claim: the generalized Whittaker model pπωbτ qs,u is non-zero.
To show the above claim, we take another semisimple element

s1 “ diagp4n, 4n´ 2, . . . , 2, 0,´2, . . . ,´4nq .

It is clear that ps1, uq is a Whittaker pair. We consider the corresponding degenerate Whittaker
model of πωbτ . Recall that Q2n is the parabolic subgroup of H with Levi subgroup isomorphic to
GLp1q ˆ GLp2nq and unipotent radical subgroup U2n. Then, by definition, pπωbτ qs1,u is equivalent
to first taking the Jacquet module with respect to U2n then taking Whittaker model of τ . Since πωbτ
is isomorphic to the Langlands quotient of iHQ2n

pω b |det|1{2τq and τ is an irreducible supercuspidal
representation of GLp2nqpF q which is automatically generic, both the Jacquet module of πωbτ with
respect to U2n and the Whittaker model of τ are non-zero. Hence the generalized Whittaker model
pπωbτ qs1,u is non-zero. By Theorem 5.1, we know that the generalized Whittaker model pπωbτ qs,u is
non-zero, hence we proved the Claim above.

This completes the proof of the theorem.

Next we prove the following result.

Theorem 5.3. πωbτ has a non-zero generalized Whittaker model attached to the partition rp2n `
1qp2n´ 1q1s.
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Proof. By Theorem 5.2, we know that πωbτ has a non-zero generalized Whittaker model attached to
the partition rp2nq21s. But it is known that as an orthogonal partition, rp2nq21s is not special, and
the smallest special partition which is greater than it is rp2n`1qp2n´1q1s, by definition, this is called
the special expansion of the partition rp2nq21s. By [JLS16, Theorem 11.1], we know that πωbτ has a
non-zero generalized Whittaker model attached to the partition rp2n` 1qp2n´ 1q1s.

This completes the proof of the theorem.

Theorem 5.4. There exists α P F˚, such that σψ,npτq :“ Jψn,αpπωbτ |Rn,αq is non-zero.

Proof. By Theorem 5.3, we know that πωbτ has a non-zero generalized Whittaker model attached to
the partition rp2n`1qp2n´1q1s. By [Wp01, Section I.6], nilpotent orbits corresponding to the partition
rp2n` 1qp2n´ 1q1s are parametrized by certain one-dimensional quadratic forms, i.e., certain square-
classes tα2n`1, α2n´1, α1u, corresponding to the parts p2n`1q, p2n´1q, 1. By [JLS16, Proposition 8.1],
actually, πωbτ has a non-zero generalized Whittaker model attached to the nilpotent O, corresponding
to the partition rp2n` 1qp2n´ 1q1s and parametrized by square-classes tα,´α, 1u for some α P F˚.

Claim: for the above α, Jψn,αpπωbτ |Rn,αq is non-zero.
Indeed, for the nilpotent orbit O above which is parametrized by square-classes tα,´α, 1u, one can

take a representative u “ u1 ` u2, where u1 “
řn´1
i“1 x´αip1q ` xe2n´enp1q ` x´e2n´enpα{2q, u2 is any

representative of the nilpotent orbit in the Levi part of the stabilizer of u1 which is GSpinp2nqpQq for
certain quadratic form Q, corresponding to the partition rp2n´ 1q1s, parametrized by square-classes
t´α, 1u. Let s, s1 be semi-simple elements such that s is neutral element for u and s1 is a neutral
element for u1. Then, from above discussion, we know that pπωbτ qs,u is non-zero. On the other hand,
it is easy to see that u1 P GSpinp4n` 1qspF qu. By Theorem 5.1, we know that pπωbτ qs1,u1

is also
non-zero. Note that pπωbτ qs1,u1

is exactly Jψn,αpπωbτ |Rn,αq, i.e., σψ,npτq. Hence, the Claim has been
proved.

This completes the proof of the theorem.

Remark 5.5. Similarly, we can also show that if m “ 2n`1, then there exists some α P F˚, such that
Jψn,αpπωbτ |Rn,αq is non-zero. We briefly sketch the main steps here: first, as an analogue of Theorem
5.2, we can show that πωbτ has a non-zero generalized Whittaker model attached to the partition
rp2n` 1q21s, which is already a special orthogonal partition. Then, following a similar argument as in
the proof of Theorem 5.4, we can obtain the non-vanishing result for the case of m “ 2n` 1.

Theorem 5.6. Let τ be an irreducible unitary supercuspidal representation of GLp2nqpF q and ω be
a unitary character of F˚ such that the Langlands-Shahidi L-function Lps, τ, Sym2 ρ2n b ω´1q has a
pole at s “ 0. Then there exists cuspidal automorphic representation T and a finite place v such that
Tv – τ and the partial L-function LSps, T ,Sym2 ρ2nbω

´1q has a pole at s “ 1. Here S is a finite set
of places containining v and the archimedean places.

6 Local Descent and Langlands Functoriality
Theorem 6.1. Set ρ2n to be the standard 2n-dimensional representation. Let τ be an irreducible
unitary supercuspidal representation of GLp2nqpF q and ω be a unitary character of F˚ such that the
Langlands-Shahidi L-function Lps, τ, Sym2 ρ2n b ω

´1q has a pole at s “ 0.

p1q There exists some α P F˚ such that σψ,npτq :“ Jψn,αpπωbτ |Rn,αq is a non-trivial unitary super-
cuspidal representation of G “ Ln,α. Each of its irreducible subrepresentations is ψ´1

NG
-generic.
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p2q The representation σψ,npτq is multiplicity free.

p3q Let σ be an irreducible supercuspidal representation of G which is generic with respect to the
Whittaker character ψNG with Whittaker function Wψ in the Whittaker model of σ. Then the
Rankin-Selberg γ-factor γps, σ ˆ pω b τq, ψ´1q has a pole at s “ 1 if and only if σ_ is a direct
summand of σψ,npτq.

Proof. By Theorem 5.3, there exists some α P F˚ such that σψ,npτq “ Jψn,αpπωbτ |Rn,αq ‰ 0. It follows
from Theorem 3.3 and Theorem 4.4 that σψ,npτq is supercuspidal. Theorem 8.1b) of [Sha90] asserts
that πωbτ is unitary. Thus the central character of πωbτ restricted to the connected component of the
center of H is unitary. Denote the center of the split Spinp2nq or respectively quasi-split Spin˚p2nq by
Z. Then p1ˆZq{C being isomorphic to the Klein 4-group decomposes the representation space V 1 of
πωbτ into a direct sum of at most 4 subspaces, each on which p1ˆ Zq{C acts via a unique quadratic
character. Thus the center of G acts on each such subspace as a unitary character. Suppose there is
one such subspace V1 which is not invariant under the action of G. Then there exists v1 P V1 and g P G
such that σψ,npτqpgqv1 R V1. Since the representation space is the direct sum of such subspaces, there
exists another subspace V2 and a projection map π : V 1 Ñ V2 such that πrσψ,npτqpgqv1s “ v2 is a non-
zero element of V2. Choose z P p1ˆ Zq{C such that π : σψ,npτqpzqv1 “ ˘v1 and σψ,npτqpzqv2 “ ¯v2.
We have

˘v2 “ πrσψ,npτqpgzqv1s “ πrσψ,npτqpzgqv1s “ ¯v2 ,

contradiction. Hence each of the subspace for which the center of G acts via a unique unitary char-
acter is invariant under the action of G and so being supercuspidal is a countable direct sum of
irreducible unitary supercuspidal representations. Remark 2.17 implies that each of its irreducible
subrepresentations is ψ´1

NG
-generic. This proves p1q.

The proof of Proposition 2.12 and Proposition 2.13 further implies that for any ψ´1
NG

-generic su-
percuspidal representation σ, the space of bilinear forms satisfying equation p2.6q is one dimensional
for all s. This proves p2q.
p3q follows from Theorem 2.16 and the supercuspidality of σ.

Remark 6.2. p1q The proofs of vanishing and non-vanishing of the descent σψ,npτq also work for
the case of τ “ τ1 ˆ τ2 ˆ ¨ ¨ ¨ ˆ τr, where τi is a supercuspidal representation of GLpmiq and
Lps, τi, Sym

2 b ω´1q has a pole at s “ 0, for i “ 1, 2, . . . , r. Regarding the vanishing, if ω “ 1,
by [Kap16a, Theorem 1.3] the representation τ is a quotient of exceptional representations, since
each τi is. Moreover, the proof in [Kap16a] applies also to the case ω ‰ 1, given that all mi are
even, or m1 “ . . . “ mr “ 2m0`1, so that τ is a quotient of extended exceptional representations
(to treat the remaining cases we may need to consider twisted exceptional representations of
ĂGLp2m`1q). Then by [Kap16b, Proposition 4.1] we deduce that the representation parabolically
induced from ω b τ |det |1{2 to H is a quotient of a pair of extended exceptional representations
of rH. Now we may apply Theorem 4.4. For the non-vanishing part, the proof is applicable with
basically the same arguments.

p2q The analogous statement of Theorem 3.3 still holds for the case of τ “ τ1ˆ¨ ¨ ¨ˆ τr with suitable
modification of proof.

p3q The proof of supercupidality of σψ,npτq when τ “ τ1 ˆ ¨ ¨ ¨ ˆ τr follows similarly along the same
lines from p1q and p2q.
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