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Abstract

Let n > 2 and 7 be an irreducible unitary supercuspidal representation of GL(2n) over a
local non-archimedean field. Assuming the twisted symmetric square L-function of 7 has a pole
at s = 0, we construct the local descent of 7 to the corresponding general spin group of even
rank (split over the base field, or over a quadratic extension). We show that this local descent is
non-trivial, generic, unitary and supercuspidal. Moreover, any generic irreducible supercuspidal
representation of the general spin group which lifts functorially to 7 is contragradient to some
constituent of the representation we construct.
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1 Introduction

Let G be a connected reductive algebraic group defined over a global field K or local field F,
let G be the group of rational points over that field. One of the central problems in the Langlands
program is to determine the functorial image of a Langlands functorial lift corresponding to some L-
homomorphism from G to a suitable general linear group. To this end, when G is a classical group,
with the exception of some low rank cases, it has been shown that the local and global descent method
is an effective approach in proving that the relevant functorial image is contained in the collection of
irreducible admissible representations of certain p-adic linear groups or automorphic representations
of adelic linear groups satisfying a list of conditions, cf. [GRS11], [GRS99b], [JNQI10] and [ST15]. The
global automorphic descents from general linear groups to GSpin groups, from GL7 to Go, have been
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carried out in [HS16] and [HL19|, respectively. In this paper, we work out the local descent theory for
GSpin(even) groups.

Fix a non-archimedean local field F' of characteristic 0. Let G be either the split group GSpin(2n)
or quasi-split non-split group GSpin*(2n) defined over F that splits over a quadratic extension E, cf.
§ for the definition of GSpin(2n) and GSpin*(2n). Then LG is either GSO(2n)(C) x Gal(F/F)
or GSO(2n)(C) x Gal(F/F) where GSO is the special orthogonal similitude group, the non-trivial
semi-direct product is defined by

(91,71)(g2,72) = (9192, M172) if 1| = idg
’ ’ (g1hgoh™, 1v2) i ylp # idg

for g1, g € GSO(2n)(C), 1, 72 € Gal(F/F) and

Infl

Let + : GSO(2n)(C) x Gal(F/F) — GL(2n)(C) x Gal(F/F) be the canonical inclusion and * :
GSO(2n)(C) x Gal(F/F) — GL(2n)(C) x Gal(F/F) be the L-homomorphism

’ (hgh™,7) if4|p # idp,

for g € GSO(2n)(C) and v € Gal(F/F). Denote the standard representation of GL(2n)(C) by pay.
Given an irreducible unitary supercuspidal representation 7 of GL(2n)(F') and a unitary character w
of F* such that the local Langlands-Shahidi L-function L(s, 7, Sym? ps,, ®w ') has a pole at s = 0, the
purpose of this paper is to construct a generic supercuspidal representation (descent) of G such that
any generic irreducible supercuspidal representation of G which lifts functorially to 7 is contragradient
to some constituent of the descent.

In § 2| for a quadratic form @ defined over a vector space V, we define the group GSpin(Q)
and show the existence of a canonical isomorphism of the Siegel Levi subgroup of GSpin(2m + 1)
to GL(1) x GL(m) with respect to a canonical projection pr : GSpin(2m + 1) — SO(2m + 1) for
m > 4. This isomorphism enables us to reduce calculations performed on the adelic or rational
points of the Siegel Levi of H = GSpin(2m + 1) to that of the Siegel Levi of SO(2m + 1). With
respect to the maximal torus of SO(2m + 1) consisting of the diagonal matrices of SO(2m + 1) and
the Borel subgroup of upper triangular matrices in SO(2m + 1), let P = M;Nj be the standard
parabolic subgroup of SO(2m + 1) whose Levi subgroup Mj is the direct product of I-copies of GL(1)
and SO(2(m — 1) + 1) and P; = pr—*(P}) have Levi decomposition MjNj. For a fixed a € K* and
anisotropic vector wy in V' depending on «, we define a rational additive character x;,., : N — Ga, cf.
subsection The SO(2(m —1)+1) factor acts on N and the set of rational additive characters from
Nj to G, by conjugation with stabilizer L] , isomorphic to a quasi-split form of SO(2(m —1)). Let
R}, = Lj,xNjand ¢ be a non-trivial character of K\A. Define 11 o = %0 Xi,w, °Pr |y (a)- Then ¢y 4
is a character of Nj(A) trivial on N;. Label the set of simple roots of H with respect to the maximal
torus pr—!(M.,) and the Borel subgroup pr—*(P’,) following [Bou68|. Denote the parabolic subgroup
of H containing pr—!(P%,) whose Levi subgroup is isomorphic to GL(j) x GSpin(2(m — j) + 1) by Q;
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and the unipotent radical of Q; by Uj;. We then define a global Rankin-Selberg integral and show
that it converges absolutely in a suitable right half plane and is factorizable.

To lighten the notation, we re-denote the local representations of p-adic groups using the same
notation as their global counterpart. Let Ly o = pr~'(L{,), Ria = pr ' (R} ,), w be a character of
F* and 7 be a smooth representation of GL(n)(F). For the Langlands quotient m,g, obtained by
normalized parabolic induction of w® | det |'/27 from the Siegel parabolic subgroup of H, we compute
the finite @Q-filtration of Jy, . (Tuer|r,. ), the twisted Jacquet module of the restriction of 7, g to
R o with respect to the character v, , on N;. This is in turn used to establish Theorem in
§ 24 Theorem is a generic multiplicity one result which enables us to define the Rankin-Selberg
~-factor for GSpin(2(m — 1) — 1) x GL(1) x GL(m). We then proceed to establish the fact that this
7-factor has a pole at s = 1 if and only if ¢ pairs non-trivially with Jy, . (Twgr|r, ) Which we define
as the descent oy (1) of 7 to G.

§ [3] states the Exchanging Roots Lemma which proves certain twisted Jacquet modules are isomor-
phic as vector spaces under certain conditions. This lemma will be used to prove Theorem [3:3} tower
property of descents. Denote the maximal parabolic subgroup of L; , with Levi subgroup isomorphic
to GL(p) x GSpin(2m — 2l — 2p) and containing a fixed Borel subgroup of G by Qf. The tower
property asserts there exists a suitable vector space isomorphism from the Jacquet module of the
descent o, (7) associated to Q5 to the compact induction from N;,,, to Py, of the descent oy 14,(7)
restricted to Nj4p.

In §[]we prove the vanishing of the descent in the relevant range. The main ingredient we use for the
proof is a class of exceptional representations, which are small in the sense that they are attached to one
of the coadjoint orbits next to the minimal one. In our setting these are the representations of double
covers of general linear groups constructed by Kazhdan and Patterson [KP84], or the representations
of double covers of general spin groups developed in [Kap17b] (following [BFG03]). We tensor two such
representations to form a representation of the linear group. Such a representation is typically quite
large, and may be considered as a model (see [Kab0ll, Kapl6a, [Kapl6b, Kapl7a]). For example, one
may prove multiplicity one results (e.g., [Kab01]), or analyze the structure of its irreducible quotients
([Kapl7a]). In this spirit, we say that a representation of the linear group affords an exceptional
model if it is a quotient of the tensor of two exceptional representations of the double cover of the
group.

Consider a supercuspidal representation 7 of GL(m)(F) such that its symmetric square L-function
has a pole at s = 0. According to the results of [Kapl6b], this representation affords an exceptional
model and so does the representation parabolically induced from 1 ® 7 to a general spin group. To
prove the vanishing results we use the smallness of the exceptional representations, namely that a
large class of their twisted Jacquet modules vanish ([Kapl7b, BFGO03]).

This reasoning is parallel to the procedure for the special odd orthogonal group of Ginzburg et. al.
[GRS99al, [GRS99D]. They used the interplay between Shalika models, which are related to the pole
of the exterior square L-function at s = 0, linear models, and symplectic models (see § for a more
precise description). The presence of exceptional representations here is expected and understood,
in light of the role these representations played in the (global) work of Bump and Ginzburg on the
integral representation of the symmetric square L-function, or even in the earlier low rank results
|GJ78, [PPS89).

To handle the twisted symmetric square L-function we use the recent construction of twisted
exceptional representations for double coverings of general linear groups by Takeda [Tak14], who used
them to develop an integral representation for the global partial L-function. We also rely on a result
of Yamana [YamI17] who proved that if the twisted symmetric square L-function of 7 has a pole at
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s =0, 7 admits a (twisted) exceptional model.

In § [5l we prove the non-vanishing of the descent oy (7). The main ingredients are the result
in |[JLS16] on raising of nilpotent orbits in the wave front set of representations and the result in
[GGSI7] on relations between degenerate Whittaker models and generalized Whittaker models of rep-
resentations. More explicitly, first, by [GGS1T], we show that 7,g, has a non-zero Fourier coefficient
attached to the partition [(2n)?1], which is not special. By [JLSI6], 7, has a non-zero Fourier coef-
ficient attached to the partition [(2n + 1)(2n — 1)1], which is the smallest orthogonal special partition
bigger than [(2n)?1]. Then by |[GGSIT| again, m,g, has a non-zero Fourier coefficient attached to
the partition [(2n + 1)1?"], which implies that the descent oy () is non-vanishing. In [GRSII], the
non-vanishing of the descent from automorphic representations of GL(2n) to automorphic representa-
tions of SO(2n) is proven by contradiction. Similar arguments also apply here and gives another proof
for the non-vanishing of oy, (7). But, the proof we provide in this paper is a new way of proving
non-vanishing of descent, and is more conceptual and much shorter. In [HS16], the non-vanishing of
the descent from automorphic representations of GL(2n) to automorphic representations of GSpin(2n)
is proven by similar ideas as in this paper, with much more details since they do not have the results
in [JLS16] and [GGST7] at that time.

For §[6] we state and prove the main result of this paper which relates local descent to Langlands
functoriality, namely, for an irreducible unitary supercuspidal representation 7 of GL(2n)(F') whose
twisted symmetric square L-function L(s, 7, Sym? ps, ® w™') has a pole at s = 0 for some unitary
character w, the descent o »(7) is a non-trivial unitary supercuspidal multiplicity-free representation
of G. Moreover, for any irreducible generic supercuspidal representation o of G such that ~(s,o x
(w®7T),1~1) has a pole at s =1, ¢V is a direct summand of oy, ,,(7).
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2 A Uniqueness Theorem

2.1 The groups

Let K be a field of characteristic 0, V' be a K-vector space, @ a quadratic form on V defined over
K. Denote the special orthogonal group of @ by SO(Q) and its simply connected cover by Spin(Q).
Let m : Spin(Q) — SO(Q) be the canonical isogeny and ¢ be the non-trivial element in ker ;. Then
(—1, ¢) generates an order 2 subgroup C' of GL(1) xSpin(Q). Define GSpin(Q) := (GL(1)xSpin(Q))/C.

Note that this definition agrees with the one in [AS06] when GSpin(Q) is split, cf. Proposition 2.2
of [AS0O6]. Also when dimg V' = 2n, 16.2.3 of [Spr98] shows that the index of our non-split quasi-split
GSpin*(2n) coincides with that of SO*(2n) which agrees with the index of the non-split quasi-split
GSpin*(2n) of [AST4].

From now on, assume dimg V' = 2m + 1. Let b be the corresponding symmetric bilinear form on
V. Fix maximal isotropic subspaces VT in duality with respect to b and a maximal flag in V',

OcVifcVyfconcV i =vT
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and choose a basis {e1, - -+ , e, } of VT over K such that V,* = Spang{er, ---, e;}. Let {e_1, -+, e_m}

be the basis of V'~ which is dual to {e1, - -+, e}, i.e. b(e;,e—;) = 0; 5 for all 1 <4, j < m. This choice

of a maximal flag fixes a Borel subgroup B’ and maximal torus TV of SO(Q) such that T/ < B’. Then

B =7, }(B’) and T = 7; ' (T") is a Borel subgroup and maximal torus of Spin(Q) such that T < B.
Denote the order of t € GL(1) by o(t).

Lemma 2.1. Suppose V is of dimension 2m + 1 where m = 4. Let A be the set of simple roots of
Spin(Q) with respect to (B, T), Q be the Siegel parabolic subgroup of Spin(Q) corresponding to the
subset A — {am} of A. Denote the Levi subgroup of Q by M.

(i) If m is odd, there exists an isomorphism
1 : M 5 (GL(1) x SL(m))/{(t,t2L,) [t™ = 1}

where the simple coroots af for 1 <j<m—1 of Spin(Q) are identified with the simple coroots
of SL(m) with respect to the Borel subgroup of upper triangular matrices and mazimal torus of
diagonal matrices in SL(m). We have p1(c) = (w,w™21,,) where w is a primitive 2m root of
unity. Moreover, if we further assume that oy for 1 < j < m are the usual coroots of SO(Q)
with respect to (B', T), then

mopr ! (GL(1) x SL(m))/{(t,t2L,) [t™ = 1} — GL(m)

is given by (t,g) — t2 - g.
(ii) If m is even, there exists an isomorphism
2 : M 5 (GL(1) x SL(m))/{(t, ¢ 1) [ £™2 = 1}

where the simple coroots af for 1 <j<m—1 of Spin(Q) are identified with the simple coroots
of SL(m) with respect to the Borel subgroup of upper triangular matrices and mazimal torus
of diagonal matrices in SL(m). We have @3(c) = (w,w™'1L,,) where w is a primitive m root of
unity. Moreover, if we further assume that myoa for1 < j < m are the usual coroots of SO(Q)
with respect to (B','T’), then

m oyt (GL(1) x SL(m))/{(t,t ™ L) | t™/? = 1} — GL(m)

is given by (t,g) — t-g.

Proof. Let A be the radical of M and Mp be the derived subgroup of M. Then direct calculation
gives

m—1 °
A= ( keraj>
j=1

* [{alt) = ay (Pag (1) -~ g _o (PO D)y, (2 D)ay, (™) [ € GL(1)}  for odd m;
C{alt) = oy W)y (82) -, o™ D)y, (™ Yy, (7/2) |t e GL(1)} for even m.

Since Spin(Q) is simply-connected, Mp is simply-connected. Hence Mp is isomorphic to SL(m). We
may and do assume the simple coroots a; for 1 < j < m—1 of Spin(Q) are identified with the simple
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coroots of SL(m) with respect to the Borel subgroup of upper triangular matrices and maximal torus
of diagonal matrices in SL(m). We have

AMy - {{a(t)|tm =1} = (2L, [t" =1}  for odd m;

{a(t) |t™? =1} = {tI,, |t™/? =1} for even m.
The canonical isogeny A x Mp — M has kernel {(a,a™!)|a € A n Mp} induces the suitable
isomorphism ; (resp. o) when m is odd (resp. even). Note that ¢ is the unique order 2 element
in the center of Spin(Q). It follows from [A02, Proposition 2.2| that ¢ = «.Y,(—1). Direct calculation
shows that

(W™ -y ow 2=y (w=2(m=1D)  where o(w) = 2m for odd m;

(W™2) -y ow MmNy (wm=1) where o(w) = m for even m,

_ ) (w,w™2I,,) where o(w) = 2m for odd m;
| (w,w='I,,) where o(w) = m for even m..

We further assume that m o} for 1 < j < m are the usual coroots of SO(Q) with respect to (B', T").
Then for odd m, we have the following commutative diagram

GL(1) x SL(m) GL(m)

l f

(GL(1) x SL(m))/{(t,t" L) [t™ = 1} ——» (GL(1) x SL(m))/{(t, ¢t~ L) [t*™ = 1}

where the top homomorphism is given by (¢, g) — t?-g with kernel {(t,¢~21,,) |t*™ = 1} and the other
two epimorphisms are the canonical epimorphisms. Thus the right vertical arrow is an isomorphism.
For even m, we have the following commutative diagram

GL(1) x SL(m) GL(m)

l I

(GL(1) x SL(m))/{(t,t™ " n) [ ™% = 1} ——» (GL(1) x SL(m))/{(t,t " Ln) [t™ = 1}

where the top homomorphism is given by (¢, g) +— t - g with kernel {(t,t7'1,,) |t"™ = 1} and the other
two epimorphisms are the canonical epimorphisms. Thus the vertical right arrow is an isomorphism.
O

Lemma 2.2. Let mo : GL(1) x Spin(Q) be the canonical projection onto Spin(Q).

(i) There exists a canonical surjective K-rational map pr : GSpin(Q) — SO(Q) with kerpr iso-
morphic to GL(1). In particular, unipotent subgroups of GSpin(Q) and SO(Q) are in bijective
correspondence and corresponding unipotent subgroups are isomorphic.

(i) Suppose V is of dimension 2m + 1 where m = 4 and M is the Siegel Levi subgroup as in Lemma
2.1l There exists an isomorphism A : (GL(1) x M)/C — GL(1) x GL(m) such that proA=! is
given by (t,g) — g for t € GL(1) and g € GL(m).
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Proof. Note that m o w9 is K-rational, surjective and factors through C. Hence m; o 7y induces a
canonical K-rational surjection pr : GSpin(Q) — SO(Q) with kerpr = {(¢,1) |t € GL(1)}. This shows

(i).

Assume for now the hypothesis of (ii). For odd m, we have the following commutative diagram

(1]

GL(1) x GL(1) x SL(m) - GL(1) x GL(m)

| l

GL(1) x (GL(1) x SL(m))/{(t,t2L) [t™ = 1} — (GL(1) x (GL(1) x SL(m))/{(t,t21) [t™ = 1})/(id x 1)(C)

lidw;l T

GL(1) x M (GL(1) x M)/C

where the top homomorphism Z; is given by (t1,ta,g) — (t1t5*,t3 - g) with kernel {((—1)% w?, w=2 -
I,)|o(w) = 2m and ¢ = j (mod 2)} and the other three two head arrows are the canonical epi-
morphisms. Thus the two right vertical arrows are isomorphisms. Call the composition of the
two vertical maps A. Given (t,g) € GL(1) x GL(m), let a be a fixed 2m-th root of detg. Then
Ei(ta™™, a,a"2g) = (t,g). Hence

proA~'(t,g) = pr(ta="™, a,a2g) = m(a,a2g) =g

by Lemma (1) For even m, we have the following commutative diagram

(1]

GL(1) x GL(1) x SL(m) 2 GL(1) x GL(m)

l [

GL(1) x (GL(1) x SL(m))/{(t,t " In) [t™/? = 1} —— (GL(1) x (GL(1) x SL(m))/{(t,t~" ) [#"/* = 1})/(id x 2)(C)

zd><<p2 T

(GL(1) x M)/C

\./(;

GL(1) x

where the top homomorphism = is given by (t1,t2,9) — (tltgn/Z, ty - g) with kernel {((—1)% w’/,w™7 -
I,)|o(w) = mand i = j (mod 2)} and the other three two head arrows are the canonical epi-
morphisms. Thus the two right vertical arrows are isomorphisms. Call the composition of the
two vertical maps A. Given (¢,g9) € GL(1) x GL(m), let 8 be a fixed mth root of detg. Then

Eo(tB7™/2, 8,8 g) = (t,g). Hence
proA~!(t,g) = pr(t6="/2, 8, f71g) = m (B, f~1g) = g
by Lemma (ii). 0

2.2 Unfolding a Rankin-Selberg integral

Suppose K is a number field with ring of adeles A. Let pr : GSpin(Q) — Spin(Q)/C = SO(Q)
be the surjective K-rational homomorphism such that pr(s, g)C = sC for all s € Spin(Q), g € GL(1).
Since the kernel of pr consists of only semisimple elements, pr restricted to a unipotent subgroup of
GSpin(Q) is a K-rational isomorphism to its image unipotent subgroup of SO(Q).
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Let
H = GSpin(Q) = GSpin(2m + 1).

For 1 <1 < m, let ¢; be the flag
LplZOCVfLCVYQJrC---CVTr.

Let P} be the parabolic subgroup of SO(V') stabilizing ¢;. Denote its Levi decomposition by Pj =
MNj. Then Mj is K-isomorphic to GL(V_} (1)) x---x GL(V,} (1)) xSO(W) where V,}} (i) = Span{e;},
1<i<!and
W= (V)
Let o € K*. For 0 <1 < m, choose wy = Yo = em + §e_m. Then b(wy, wp) = o and wy € W.
Define for u in N}
1
X1, (U) = Z b(u - ei,e_gi—1y) +b(u-wo,e_y).
i=2
Then x;w, is a K-rational homomorphism from Nj to G,. Let 1 be a non-trivial character of K\A.
Then
1%,& =to Xl,wo

is a character of Nj(A) trivial on Nj.

Let SO(W) act on Nj and the set of rational additive characters from Nj to G, by conjugation.
Then the stabilizer Lj , of X, in SO(W) is the stabilizer of wo in SO(W), i.e. SO(wg "W). Denote

Lo = L1 x Ni.

Let Py = pr~!(P}) have Levi decomposition MjNy, L; , = pr_l(Liva) and Ry, = pr_l(RLa). Then
GSpin(WW) acts on N; and the set of rational characters from N; to G, by conjugation. Also, L,
being the stabilizer of x; ., © pr in GSpin(W) is K-isomorphic to a GSpin group of one rank lower
than pr=!(SO(W)) = GSpin(W).

We choose ¢\, e € wt A W such that

b(eél),ej) = O,b(eél),e,j) =0, b(eél),e(()l)) =1, b(e(()l),eéz)) =0;
b(eéQ),ej) = O,b(eéQ),e,j) =0, b(eéQ),e(()Q)) = —c

forall I+ 1 < j < m—1 so that {ej41, " ,€m—1, eél) , 662) y €_(m—1)s """ > €—(+1)} 18 a basis of
wg N W and ¢ € K* is a square if and only if & € K* is a square. Note that GSpin(wg n W) is
quasi-split of semi-simple rank 2m — 2 and is split if and only if & € K* is a square.

Label the set of simple roots of H with respect to the maximal torus pr=!(M,,) and the Borel
subgroup pr—!(P2,) following [Bou68|. For 1 < j < m, let Q; be the standard parabolic subgroup of
H which corresponds to the subset of A omitting the jth simple root. Its Levi subgroup is isomorphic
to GL(j) x GSpin(2(m — j) + 1) where GSpin(1) is taken to be GL(1). Denote the unipotent radical
of Q; by Uj. Lemma ii) shows that we may and shall regard the elements of the Siegel Levi as
(t,g9),te K, g € GL(m).

Let 7 be a cuspidal automorphic representation of GL(m)(A) and w be a Hecke character of
GL(1)(A). Consider the normalized parabolic induction

Pu@r,s = Indgfﬁ)‘&) (w®T|det [71/2).
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Let fo@r,s be a smooth holomorphic section of p,gr,s. Define the Eisenstein series
E(h, fogrs) = D, fugrs(yh), he H(A).
'YEQm\H

Let (m,V) be an automorphic representation of H(A). Define for £ € V', h € H(A), the Gelfand-
Graev coefficient of ¢ with respect to ¢;,o = ¢ , o pr by

g ih) = | (o) do.
N1 (K)\N1(A)

We have
£V (9h) = €70 (h)

for all v € R . In particular, the function £¥. restricted to L; o (A) is automorphic.
Let w,, be the n x n matrix with 1 on the anti-diagonal and 0 everywhere else. For any 1 < 7 < m,
denote w; *y~1w; by v* and let

¥ 0 0
Y =10 Idgimxgv—z; O
0 0 ~*

The following proposition has been established in [ACS17].

Proposition 2.3 (JACS17|). Suppose that (V,Q) is a split quadratic space where dimV = 2m + 1.
Let 0 <1 < m be an integer and o € K*. Let o be a cuspidal automorphic representation of G(A),
7 a cuspidal automorphic representation of GL(m)(A) and w be the restriction of w1 to Z(G)°(A).
Consider the meromorphic functions

I(@mfw@ns) = Qﬁa(g)Ewl’a (gvfw®r,s)dg

JGL(l)(A)G(K)\G(A)
as @q varies in the space of o and fugr,s varies in the space of smooth holomorphic sections in p,gr.s-
Suppose that I(pe, fugr,s) s not identically zero (as a meromorphic function and as the data vary).
Then o is globally generic with respect to a certain Whittaker character ¢, where Ng s the unipotent
radical of a “standard” Borel subgroup of L o and

Yng(n) = (212 + - + Zm—i—2,m—i—1 + Um—1—1) where

z v

vz
1 0
pr(n) = q(z,v,z,u) = diag | I, 1 ,I; e SO(2m+1),ne Ng.

= O Opov
. |
Y L Bebe

Moreover, for Re(s) sufficiently large, we have

H(@0, fugrs) = f W (g) £ (B qug) i (u) du dg

GL(1)(A)Ng (A\G(A) JNn (A)nB; A Qum (4)B1,0\Ni(A)
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where Wg’a is the Whittaker functional of ¢,. Let wy be as in [GRS11, pp. 70-71]. Bi« is any fized

element in
A [0 0 I,
_ 0 27I,_
prt (I @ 0 l) 0 IDppmois1 0 |}
! I, 0 0

Denoting the upper triangular unipotent subgroup of GL(m) by Zm and identifying it with the iso-
morphic unipotent subgroup contained in pr—(Zm), the superscript (Z,,1) marks the application
to frews of the Whittaker coefficient along Zpm (K)\Zm(A) with respect to the character wgi (2) =

1/)71(251,2 + -+ Zm—l,m);
fZn% () = f Fugralz" Bz, (2) dz
Zm (K)\Zm(A)

Let S be a finite set of places of K containing the infinite places such that for all v ¢ S, o, and
Ty ® w, are unramified. Suppose the cusp form ¢, is a pure tensor, by the uniqueness of Whittaker

models, we have
w =T

where each WY is the local Whittaker function in the Whittaker model of o, and for v ¢ S, Wv
is spherical such that its value at the identity is 1. Similarly, assume that f,g. is a decomposable
section. Viewing

et = [ el Wi ()

as the global Whittaker functional on the induced space prg., s, we have
Z’VTL
w®7’1{; n fwv®n, 1 I ))

where f, ®r,.s iS @ holomorphic section in p,, &, s taking values in the local Whittaker model of
wy ® T, with respect to the character wzm for fixed h,, we denote the corresponding Whittaker
function in the Whittaker model of w, ® 7, by fwo@rs,s(hw; —). For all places v outside S, f.,@r,.s IS
spherical and the function f,, g, s(e, —) is the unique spherical and normalized Whittaker function
in the Whittaker model of w, ® 7.

Therefore Proposition implies the following:

Corollary 2.4. With notations as before, for Re(s) large enough,

I(@aafw®7's HI 7fwv®7—v, )

where

[v(Wyv ’ fwv®7'u,8)

- | W (g) | F228 o Braugs (1 1) () ) dudg

GL(l)(Kv)NG(KV)\G(KU) Nl(Kv)ﬁﬁlTiQm(Kv)Bl,a\Nl(Kv)
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2.3 Some twisted Jacquet modules

Suppose F' is the completion of K at some finite place v. To lighten the notation, we re-denote
the character v, by ¥, 7, by 7, w, by w and use the same notation for the base change to F' of vector
spaces and algebraic groups defined over K as they were over K.

For a smooth representation (m, V;;) of H, denote the Jacquet module of 7w with respect to N; and
its character 1y o by Jy, ., (7). The representation space of Jy, () is

V7r/ Span{ﬂ(n)g - 1l)z,a(")§ | ne Nl ) ’f € Vw} .

Let m = igm (w®T) where igm denotes normalized parabolic induction from @), to H. By Bruhat

theory, Jy, , (|qg,) has a finite Q;-filtration whose subquotients are indexed by elements of Q,,\H /Q;.
If I = 0, we consider the double cosets Q,,\H/G. The subquotient corresponding to a representative
w is
. 1/2c—1/2 2
Pw = c—1Qﬁw) 6Q/z 6Q(£)w Hw® 5({2/";7)
I,m I,m

where d¢,, 49, (;Ql(‘u:vz, are the modulus characters of Q;, @, Ql(iuyz respectively, wfl(égirg)w) is the

representation of w™1Q,,w on the same space as that of w ® 6(1,2/517 which takes ¢ to

w(wqw™) ® (522/517 ,

fv:rz = Qi nw 'Qmw and
C‘iQéw)
Ql,vn

denotes normalized compact induction from Ql(lf,z to Q. Since Jy, o(pw)la = Jy.alpwlr ), we

consider py|r, . The double coset spaces QZ(TQ\QZ/RW (resp. Qm\H/Q;) and pr( l(jf,z)\Pr(Ql)/Rf,a

(resp. pr(Q@m)\SO(Q)(F)/pr(Q;)) correspond bijectively under pr. It follows from the discussion in
[GRSTI] p. 82] that we may and do fix representatives 1 of Ql(ij)\Ql/Rha such that

0

pr(n) = 0

SO O™

0
v
0 ¢*

where € is a Weyl element of GL(I)(F) and 7 is a representative for Q;,\ SO(W)(F)/L; , where Qy, is
the maximal parabolic subgroup of SO(W) as follows. If w = €, s in equation (4.15) of [GRS11], QF,
is the parabolic subgroup of SO(W') which preserves the standard s —r dimensional isotropic subspace
V7t of W.

l,s—r

Lemma 2.5. Let w = €, 5 correspond to (r,s). Forr >0, Jy o(pw|r, ) = 0.

Proof. The proof proceeds exactly as the proof of [GRS11l Proposition 5.1] by replacing the base field
K with F. Note the typo in the last paragraph of [GRS11l p. 83], both occurrences of ijl(z )wgl
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should be replaced by ijl(i/)wj_l. Also, the notation

Il—r
I, Oy y3) wpy 23
IS—T
- ()
Isfr
I,
Il—r
really means
L. 0 0 0 0 0 0
0 L« 0 Yo Y3 z3 0
I, 0 O , 0 0 Is— O 0 w3 O ) I, 0 0
0 v 0w, 0O 0 0 ILp 0 w 0 [w|[O0 v O
0 0 I 0 0 0 0 I, O 0 0 0 I
0 0 0 0 0O I. O
0 0 0 0 0 0 I,
where y = —wy, 'yow, and y4 = —ws_, ‘ysw,. O

From Lemma Lemma 5.1 and the proof of Proposition 5.1 in [GRS11], it remains to consider
the case Jy, a(pw|r, ) Where w = €, 4, 7 =0,

I, 0 0
prn) =10 ~ 0
0 0 I

For any such choice of 7, let p, . be the normalized compact induction

R (w,m)

e 10y Thm (W OT)
where Wl(f:),ﬁ)(w ®7) sends h € Ry, N 77_1@1(,1:277 to
So w N w®3gEr) ) @62 52 (n).

Ry oo~ 1QE) n Riowo

For v = I5(p—)4+1, the inducing subgroup

Riwy 0 QL) = pr (R) o 0 pr(Q4))

is the subgroup of elements of the form (a,b) in w™'Q,,w where a € F* and

ni 0 0 yg O\ t
0 d u v y s
(2.1) b=|0 0 e o 0 2(m—1—s)+1
0 0 0 d* 0 s
0 0 0 0 nf t
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ZGZt}.

I _
ga((ds y)) =1 1(2'1,2+Z2,3+"'+Zt—1,t+ays,1)-

z

We have ny € Z; and t' = 0. Let Z} be the subgroup

{(f; ) & GLm)(F)

For a € F'*, define the character ¢y, : Z; — F' by

Denote the corresponding Jacquet module Jz; y» (7) by 7(;) 4. As representations of the mirabolic
subgroup P;_1 1 of GL(s)(F), 7(4),q and 7(;) o are isomorphic by [GRS1I, Lemma 5.2]. So we let 7,
denote any of the representations 7 , of Ps_11.

Lemma 2.6. Let 1, be a representative of Ql(wm)\Ql/Rha such that pr(n.) = Ioms1 and set QL, | =
Lion QE‘Q Fora= 7(—%)14', define

—1/2
(wldet e [T

Lo
T Py sysat = C_le;;h

by
7)) = |

Jzy1, (f(m?))%blji (n)dn
Neeng ' QE)nd\N

for each f € pu,1,,,_, .1t and each x € Ly o. Here detV,ﬁn,l(m) for x € Ly, denotes the determinant

of x restricted to Vl,tn_l. Then T is well-defined and gives an L o-isomorphism

,a

L —
(22) T/ : le,a(pw,fz(mftprht) >~ C-lQl,r'nil OJ‘ det Vl+m—l‘ l/QT(l) .

Proof. Let ne N; n Ql(wm) take the form in equation lb with

v
u | = I2(mfl)+1 .

d
0
0 d*

S o

We have

I, (00 = g, (v (5 8)) 0) = vt (5 %)) Tz, 0D = ratwis @)

T factors through the Jacquet module Jy, o (pw,zyn_y41,t) and for (a,q') € Q). € w™'Qpw, direct

calculation shows that 14t
2 — 2 5
02 (wa'w™) = 647 (@)l det s (&)]2

L,m—1

o

. . . R 4 -
Hence T gives amap 7" on Jy, o (Pw Iy, 1,t) Which has image contained in g w| dety . =27,

By similar arguments as in the proof of [GRSII] Lemma 5.3|, T” is bijective. O
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Remark 2.7. It follows from the paragraph right after |[GRS11, Proposition 5.3] and from [Bo91,
Theorem 22.6] that Q. is not a parabolic subgroup of Ly .

Since QY preserves a maximal isotropic subspace of W, [GRS11, Proposition 4.4] shows that
representatives v # Io(y,—y)41 for @, \SO(W)(F)/L; , show up only in case (2)(c) when SO(W) is
split. In this case, we choose

I,.1 O 0
Y= 0 Ve 0
0 0 Isq

where there are two non-trivial representatives v, = v+ given by [GRS11l (4.33)]. Let v, € Vj be
such that b(va,va) = —b(Y—a,¥—a) = (—1)37 V+1q Then

and for v € Vp, 74(v) — v € Fe_,. Here, a = 3? where 8 € F* and the two choices of v, are +Seq.
Denote the corresponding representative n by 7, ¢. We have

nwa,t(ya) =€q + Vo .

Redenoting Ry as Riy,, I < m implies n,ya,tNm;;t = Nj and 7, +Riy, n,?alvt =Ry
eq + Vo is isotropic only if & = —1. Thus

Mo (va) Where

Ria N n;al,th(fﬁ%a,t = U;al,t(Rl,nm,t(ya) N foﬁi)ma,t

is the subgroup of elements of the form (a,h) in n,;al,tw’lQmwn.ymt such that n%’t(a,h)n;{t =
(a, pr(y, ) pr(n;. ) where

ny 0 0 Y6 0 t
0 d u v y; s
(2.3) pr(ny, )hpr(ny ) =10 0 e v 0 |2m—1-s5)+1,
0 0 0 d* 0 S
0 00 0 nt t
ny € Z; and
d u v
(2.4) 0 e v |7aWa)=YaWa)-
0 0 d*

The action of W;Tfr;"m”’)(w ® 7) on (a, h) satisfying equations 1) and 1) is

- IR d g
AR 05, g O ot (3 %))

Q/s,i =Ljan ﬁJﬁ,thgnvi,t = n;il,t(Ll,mi,t(ya) a Qfﬁ)%i,t
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for each of the choices of v+. This is a parabolic subgroup of L;, whose Levi part is isomorphic
to GL(s) x GL(1) since pr(n,, +) pr(Qg +) pr(n;j}t) is realized as the subgroup of elements such that
d e GL(s), e(vy) = v and -

0

u(va) = (d—=1I) | :
1
Denote the Bernstein-Zelevinski derivative [BZ76] of 7 along the subgroup Z, corresponding to the

character
I _
1?2((0 y)) =1 1(21,2+22,3+"'+Zt—1,t)

z

by 7). Note that the representation 7() of GL(s)(F) is acting on the Jacquet module Jz; 4 (V;) by

the embedding
d 0
d— (0 It) .

Lemma 2.8. Let pu .t = Puwya,t Where 7o = v4 respectively. Forr =0, Jy, o(pw~y,t) = 0.

Proof. Since 7 is supercuspidal, it suffices to show that

Lio 1t
sz,a(pw,fyi,t) = C_IQZ N w| det Vlt| 3 7_(1‘,) )

1—t
Define T": puy,~, ¢ — c_igﬁ’i w| det |TT(t) by

T(f)(x) = Tzg,0; (f (n@))9p o (n) dn

J\Nlﬁrl;i ,f,Ql(;lj,)Ln'yi,t\Nl

for each f € py 4, + and each x € L; . Let n€ Ny n n;j,tQﬁrz%i’t be such that

ni 0 0 Ye 0
0 I, 0 0 uyi
pr(ny, ;) =10 0 1 0 0
0 0 0 I, O
0 0 0 0 nf

with nq € Z;. We have

Iz (a) = azo (7 (5 58) ) 0@n) =ut ((§ %)) Tzn(@) = a0

Thus T is well-defined. By similar arguments as in of [GRS11, Lemma 5.3], T gives an Lj -
isomorphism

/. ~ o ilia A 0)
(2.5) T Ty 0(Pwryst) = c-ig” w|det| 2 7).

The proof is complete. O
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cs Lo
Proposition 2.9. Jy, (7|r,.) = c-i

o OJ‘ det VL-,mez ‘_l/2’7'(l) .

Proof. Lemma Lemma and Lemma [2.8] imply that only the representation corresponding to
the double coset

Qmeo,m—lLl,oc (TeSP- Ql(?Um)Rl,a)

in the first (resp. second) filtration gives some non-trivial representation. O

2.4 Generic Multiplicity One

From now on, we re-denote o, by o. Then o, is locally generic with respect to the local Whittaker
character v, n. which we re-denote by ¢ n,. Let ;o be as in Proposition @ and

LW, fogrs) = f W (g) f 12552 (Bt (T, 1)) o) du g
GL(1)(F)Ne\G NinB; 2 QmBra\Ni

Proposition 2.10. There ezists s € R such that WY, fugr.s) is absolutely convergent for all s with
Re(s) > so, for all W e WY and fogrs € i, (w®|det |s=1/27).

Proof. Since we are dividing by the center of L; o, convergence of these integrals is proved in exactly
the same way as it was proved for the corresponding integrals of odd orthogonal groups, see [Sou93,
§ 4.4-4.6]. O

Lemma 2.11. In the domain of absolute convergence of (WY, fugr.s), for all g € Lo and n € N,
(2.6) (o ()W, m(gn) fugr,s) = Yia(WIW?, fugrs) -
Proof. Note that I(WY, f,gr.s) is invariant with respect to L; . We have

[ s (i du

NiAB L Qum Bl e \Ni

= ey e L ) ) d
NiaB; 2 QmBra\Ni

_ Zom . I 1 —1 -1 -1 d

- fw@ns(ﬁl,auy’( m )Wm(uﬁm g ) u

NiAB L QumBra\Ni

) [ B (L D) () du
NiAB QB e \Ni
and so (WY, 71(n) fugr.s) = YVr.a(m)I(WY, fugr.s)- O

Let (71, V) and (w2, Vy,) be smooth representations of a p-adic group L. Denote the set of
bilinear forms on (V;,,V,) which are invariant under L by Bily (71, m2) and the contragradient of
(71, Vi) by (my, V7). We relabel iff (w® |det[*7127) as I(s —1/2,w®7).
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—S

Theorem 2.12. Except for a finite number of values of q—*, the space of bilinear forms satisfying

(2.6) is at most one dimensional.
Proof. This is the local analog of the proof of Proposition Proposition implies that

Bily, . (0, Jya(I(s = 1/2,0®7)|r,.)) 2 Bilp, . (0, c-igy” [[Fw@|det o 70/
%HOIDLL) (0715110 _1®|det |(l+1)/2 s (\l/))

Applying Frobenius reciprocity gives

Homy, (o, Zgl,a w7l @ |det s |(l+1)/2757_(\l,))

= Homg,,_ (olg;, o' @|dety: 2 B )

Let Qg m_1 be the parabolic subgroup of L , which preserves W ny; and Qa,m-1=pr~ Qg m_1)
with Levi decomposition Mg m-1Ug,m-1,
Cem-1={u€Ugm-1]| pr(u)em = emn}.

Since Cg m— acts trivially on the representation space of w™! ® | det v l|(l+1)/2_5(5é2/,2 Y

_ssel/2
JeDrmeg )

/2y
~ HomQ’m_l/Cc,mfl (JCG,mfl (U|Q;nfz) 1® | det |(l+1)/2 9(5 / T(l)) )

HOInQ/"Hl(0’|Q/m7 ,w_1®|det -+

Since Q/m_1/CG,m71 ~ GL(l) X Pm_1-1,1 and Hl(Gal(F/F),CG)mfl) =1, Q;n_l/CG,mfl ~ F* x
Py,—1—1,1. Restriction of the last Hom space to Hom over P,,_;_1,; has trivial kernel so

sgl/2 v
|(z+1)/2 5/ )

HomQIm_l/CG‘mfz (JCG,mfl (UlQ/m,l)’ w! ® | det Vlfmil . ()

injects into
|(l+1 /2— 551/2 )

Houm—l—l,l(JCG,m—l(U|pI‘(le D ) |det pr(Q’, ) Twy) -

For each 0 <7 <m — 1 — 1, denote by R; the subgroup of the form

{(8 z) €Pph_1—11

Let ¥ = Jog,. (0lpr(q, ), T = |det+ |(l+1+c)/27’(j) where 0y ) = |det ‘/ﬁm-z|c for some

lm,l

- |(+1)/2— 561/?@ )7'(7) = |det Vﬁm,l|_sn' It follows from Theorem 7.2 of
(E, | det v l| SH) embeds into

ge GL(Z)(F) y X € Zm—i—i , VE Mi,m—l—i} .

constant ¢ so that |det +
[GPR8T7| that Homp

m—1—1,1

m—I
@ Houm,l,l,l(C 1}1;1: 11 1, 1(E(m I—i+1) ®1/} ) P11, 1(H(m I—j+1) ® | det| Sw ))

ij=1
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Here ¢ is a character of Z,,_;_; 1 defined by ¢'((2;;)) = 1//(2;.":71#" zjj+1) and M TEHD @ 4 s

extended from GL(i — 1)(F) X Zp—i—i+1 to R;— trivially across

Ii—l (%
N;_1= .
! { ( 0 Im—l—i+1> }

Since c-ig’i’:l’l’l (R(m=1=i+1) @ 4") and c-iz’;j’l’l (TT(m=1=7+1) @ | det | ~5¢’) are irreducible for all 1 <
i,j < m—1, a summand is non-trivial only if i = j and (1= ~ [[(m~I=7+1) @ | det | ~* by Schur’s
Lemma and Proposition 5.12d) of [BZ76]. For fixed ¢ = j, taking central characters forces ¢~ to be

unique. Hence besides the m —1[ values of ¢~ corresponding to m — [ possibilities of 1 < ¢ = j < m—I,
dim Bily, (0, Jy,,a(I(s = 1/2,0®T)|r,.)) < 1. O

Proposition 2.13. There is a choice of W € WY and furs € igm(w ® |det|5_1/27) such that
I(WY, fugrs) =1 for all se C.

Proof. Write L; , as a disjoint union of double cosets Ngw B~ where B~ is the opposite Borel subgroup
of L;, and w is an arbitrary Weyl group element. Since the double cosets NgwB™ for w # 1 as
algebraic varieties is of strictly smaller dimension than the dimension of L ,, the measure of NqwB™
is 0. Hence writing /3, as xw’ where w’ is the long Weyl element in H such that w'Njw'~! = N
and N is the unipotent radical of the parabolic opposite to Py,

W fw@'r s)
J f WY (tv) J fhm (w'utv; (k,1))0 5" ()¢ o (u) dudv dt
T ng NiaB; 2 QmBra\Ni

[ st (5 1)8m g ()3 00 ) dudods

T NG NiAB L QumBra\Ni

[ [ e e s 1)), e (95" (00 (0) dudods
T Ng NinB A QmBra\Ni

:J J WY (tv) j fom 2 (w'uv; (kw'tw' ™, D)OR, .nq\R.. (E )05 ()0 o (u) dudv dt
T N NinB; o QuBra\Ni

= f f WY (tw'~tow’) J fw(gfﬁ (wow'; (kw'tw' ™, 1))0p, . ~o\m,.. ()
T ' N w1 N ow' B3 Qum Br,aw = \N;~

X85t (DY o (w' ™ uw') du dv dt

where dg- is the modulus character of the opposite Borel subgroup B~ of L , with Levi decomposition
B~ = TN. Note that the second equality follows by making the change of variable from u to t~lut
and the third equality follows from the change of variable from ¢ to w'tw’ ™"

Let n = GL(1)(F)\G n (I + My(p")) for some 7 » 0. We choose fugr.s € i (w® |det |s=1/27)
such that the support of the right translate f,g- s by w’ is contained in pr—1(Q,,n) and f,g.s(qn) =
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W ((a,x)) for ¢ = (a,z)u € Q,, where (a,z) € GL(m)(F) x F* and u € U, n € n. Suppose u € U, is
such that fugrs(uw’) # 0. Then pr(u) € Q,,n. Write

I,. 0\ (b ¢
pr(u) - < a Im) - (0 b*) d
. . boe\ '
where d € n. Pre-multiplying the last equation by 0 b gives

1= (0 @) ™

Therefore (b*)~! € I + M,,(p") and so b* € I + M,,(p"). Pre-multiplying by (8 bg) to the last

% % b 0
<a Im>_<0 b*>den.

Hence a € M,,(p") and pr(u) € n. Note that conjugation by wtw ™! preserves N; n 51_;Qmﬁl,a\Nl and
(R

equality yields

J ffé”;i(ﬁl,aug’ (Ima 1))1%?0{ (u) du

NiAB EQumBr e \Ni

_ J 7% (kug; (I, 1) 072 () du

(Nl_ mwﬁl_’;Qm,Bl,awfl\Nl_)mn

Similar calculations and arguments as in the proofs of [Kapl3| Lemma 5.2] and [Kapl3, Proposi-
tion 5.11] show that the integrations over u, v and ¢ are positive constants. O

By Proposition and Lemma in a right half plane I(W?, f,grs) can be regarded as an
element of Bilg(o, Jy, o(I(s —1/2,w ® 7)|r,.)). Together with Theorem and Proposition m
and using Bernstein’s continuation principle ([Ban98]), we deduce the meromorphic continuation of
the integral.

Corollary 2.14. (WY, f,ors) is a rational function of ¢—*.

Let U be the unipotent radical of the standard Borel subgroup in H and x be a non-degenerate
character of U defined by ¢! and the F-splitting of H. Suppose Q,, = MN is the Levi decomposition
of Qp with M F-isomorphic to GL(1) x GL(m) and N < U. Set « to be the mth simple root, & the
fundamental weight for o and wy the unique element in the Weyl group in H which sends A — {a}
to a subset of A and « to a negative root. Denote the local coefficient attached to y, s&, w ® 7 and
wo in [Shal0l, § 5.1] by Cy(s&,w® T, wp). Here, we write wg as a product of simple reflections and for
each simple reflection ws corresponding to a simple root ¢, let Ps be the parabolic subgroup defined
by 8 = {6}. The Levi subgroup My of Ps has semisimple rank 1 and so its commutator subgroup
(Ms, M) is semisimple of rank 1. Thus we have a F-algebraic homomorphism ¢s : SL(2) — (Mjs, My)
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such that the image of the upper triangular unipotent group in SL(2) is the root subgroup Us for the

root 8. We choose
0 1
w=e((50))

In this way, the choice of wy is unique and the local coefficient C\ (s&, w®T, wp) is uniquely determined.
Let A(s,w ® T,wp) : I(s,w ®7) — I(wo(s), wo(w ® 7)) be the standard intertwining operator.
Define the Rankin-Selberg y-factor associated to o, w @ 7 and ¥~! by

I(Wwa A(Sa w ® T, wO)fw@‘r,s)
I(Wd), fw@r,s) '

(2.7) Y(s,0 x (W®T), 97 := Cy(sG,w @ T, wo)
It follows from the proof of Lemma that

DY (furs) = f 128 (B qugs (T, )72 () du

NiB; o Qm B\ Ny
factors through the twisted Jacquet module Jy, . (7|g, )

Proposition 2.15. Assume that o and T are supercuspidal, o is generic with respect to the Whittaker
character Yy, with Whittaker function WY in the Whittaker model of o. Then I(WY, fugr.s) is
holomorphic, and I(W¥, A(s,w ® T,wo) fugr.s) is holomorphic outside the poles of A(s,w ® T,wp).

Proof. Since o is supercuspidal, W% has compact support modulo GL(1)(F)Ng. This together with
the fact that the inner integral

J fo e Braugs (I, 1)y 4 (u) du

NiAB, L QumBr,o \Ni

stabilizes for large compact open subgroups of N; N 65_;Qmﬂl,a\Nl implies that I(WY, fugrs) is
holomorphic. The statement regarding (WY, A(s,w ® T, wo) fugr.s) follows immediately. O

Theorem 2.16. Let o, 7 be irreducible supercuspidal representations of G, GL(m)(F) respectively
where o is generic with respect to the Whittaker character V¥ with Whittaker function W¥ in the
Whittaker model of o and m,g be the image ofz'gm (w®|det |V27) by A(1,w®T,wo). Set pm to be the
standard m-dimensional representation of GL(m)(C), u to be the similitude character of GSO(2m,C)
and r = Sym? p,, ® p~'. For the Rankin-Selberg y-factor v(s,o x (w ® 7),%~") to have a pole at
s =1, it is necessary and sufficient that the Langlands-Shahidi L-function L(s,w™* ® 7,7) has a pole
at s =0 and o pairs non-trivially with Jy, . (Twgr|Rr,.)-

Proof. By Proposition we may and do choose suitable W € WY and
foors € g, (w®|det |*1/27)

such that I(WY, f,gr.s) = 1 for all s € C. Since A(1,w®7,wp) is holomorphic (JCS98, Theorem 5.1],
L(2s — 1,w™t ® 7,7) is holomorphic for s = 1), it follows from equation (2.7) and Proposition m
that y(s,0 x (w®7),1 ") has a pole at s = 1 if and only if C) (s&,w ® 7, wp) has a pole at s = 1 and

I(W“’, A(s,w® 7, w0) fu@r,s)
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is non-zero at s = 1. Condition 2) of Theorem 8.3.2 of [Shal(] shows that C, (s&,w ® T, wp) having
a pole at s = 1 is equivalent to the Langlands-Shahidi v-factor v(s,w™! ® 7,7,9) having a pole at
s = 1, i.e. the Langlands-Shahidi L-function L(s,w™! ® 7,7) having a pole at s = 0. Non-vanishing
of I(WY, A(s,w ®T,wp) fugr,s) at s = 1 is equivalent to o pairing with Jy, , (Tuer|r, . )- O

Note that 7,g; is isomorphic to the Langlands quotient of ifj (w® |det |1/27).

For a given irreducible unitary supercuspidal representation 7 of GL(2n)(F') such that the local
Langlands-Shahidi L-function L(s,T,Sym? pa, ® w™!) has a pole at s = 0, define the descent of 7 to
Ll,av

0p1(7) = Ty o (Tuwr |y o) -

Remark 2.17. Theorem implies that any representation of Ly, that pairs up with oy (7) is
YN, -generic.

3 Tower Property

The following lemma is a minor modification of [GRS99al Lemma 2.2]. Their arguments for unipo-
tent subgroups of the symplectic group apply to our setting as well, but in their case the intersections
(in item (6) below) X n C and Y n C were trivial. See also [LMI5, Appendix 1] for analogous
integration formulas.

Lemma 3.1. (Exchanging Roots) Let C be an F-subgroup of a mazimal unipotent subgroup of H
and Yo be a non-trivial character of C. Assume that there are two unipotent F-subgroups X, Y such
that the following conditions are satisfied.

(1) X and Y normalize C.

(2) XN C and Y n C are normal in X and Y respectively and (X n C)\X and (Y n C)\Y are
abelian.

3) X andY preserve y¢ (when acting by conjugation).
4) e s trivial on X nC and on'Y n C'.

5) [X,Y]<C.

(3)
(4)
(5)
(6) The pairing (X n C)\X x (Y n C)\Y — C* given by

(x,y) = wc([%y])

is multiplicative in each coordinate, non-degenerate and identifies (Y n C)\Y with the dual of
(X nON\X and (X n C)\X with the dual of (Y n C)\Y.

Represent the setup above by the following diagram,
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Here, A= BX = DY = CXY. Extend the character ¢ to a character ¥ of B (resp. ¥p of D) by
making it trivial on' Y (resp. X). Let m be a smooth representation of A. As representations of C,

IBars (T)le = Jpwp (7)o -
In particular, Jg g, (7) and Jp ¢, (T) are isomorphic as vector spaces.

Proof. Note that the first five conditions imply that for each y € Y, ¥¢([z,y]) is a character of X
which is trivial on X n C. (Similarly upon fixing x, we get a character of (Y n C)\Y.) Indeed for x;,
T2 € XJ since [xlea y] =T [x27 y]xl_l[xla y]7

Yol[z12,y]) = Vo (@1[z2, yloy Do (21, y)ve (22, 9]) -

As y preserve Y¢,
Yo(ly, ) = ve(yey ole™) = vole)olc™) = 1.

Thus ¥e([y,c]) =1 for all ce C.
The rest of the proof follows similarly as the proof of Lemma 2.2 in [GRS99a] where Sp,,, is replaced
by H and two lines after equation (2.6), the typo y~'zy € C should be replaced by =ty taye C. O

Denote by g, the Witt index of the restriction of the form b to W nyL. For 1 < p < qj.q, let Q)
be the standard maximal parabolic subgroup of L{_’a which preserves the totally isotropic subspace

n n
Vip+ = Spanp{ejp1, -, epp Ny € W Ny,

and Qj = prfl(Q;‘j’). Denote by UJ the unipotent radical of Q. For 1 <i<p+1—1, let

; Lvii *\ I, 0\"
1+p_{(pBl z) ZGZ1}~U1+ch1+p,E—{<f Il) }

ForO<i<l—1,let

A
i) (L, 0\" . o . .
L= ()\ Iz) eL|A=]| |, \=0forallj#1l—-1i,,
Al
A )\1
— Ip 0 — : = . = —
Ei— ()\ Il) el | A= . ,)\l_l— —/\l—O
Al

To simplify notation, we identify each of the unipotent subgroups U}, U} +p £, £ and £; with

the respective isomorphic unipotent subgroup contained in the respective pre-image under pr. For

1<p<q,, fix B = pp, such that
(0 L\"
pr(ﬂpvl) - (IZ 0) .
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Let
d = ® %
0 =z * *
i+p = 0 0 Iygmp-nt+1 * * [€SO(V)(F)|deGL(p), z€Zy
0 0 0 z¥ %
0 0 0 0 d*

Since P +p s isomorphic to the semi-direct product of GL(p) with a unipotent subgroup, we may
choose a suitable F-subgroup in its pre-image under pr in H which is isomorphic and call this group

Piip.
Also let
m x 0 0 O
0 1 0 0 O
E = 0 0 Du-p-n+1 0 0 Je SO(V)(F) | m e GL(p)
0 O 0 1 o
0 O 0 0 m*

and E be a suitable F-subgroup of pr~!(E’) which is isomorphic.
Proposition 3.2. Let m be a smooth representation of H and ©' be the representation of E on
JU;;;’WW‘Q () via restriction. There exists a filtration
0=WoccW,c-.--c Wp+1 = JU;(JM,Q(W))
of vector spaces such that each successive quotient W;_1\W; is isomorphic to c—i;’:i (7' (P=42) @ 1))

as vector spaces for each i = 1, ---, p + 1. Identifying Ppiq1 with the mirabolic subgroup Py 1 of
GL(p+ 1), here R;_1 is the subgroup of Pyi1 of the form

(%
{(g z) € Pota
p—i+1

and v is regarded as a character of Z,_; 1o defined by ¥((2i5)) = ¥( ya zji41) and 7/ (P=i+2) @ 4
is extended from GL(i — 1) x Z,_;19 to R;_1 trivially across

N L;,l v
e (0]

Proof. Denote the subgroup BNlU;“ﬁ*l by S. The elements of S are identified with its image in
SO(V) under pr which are of the form

geGL(i—1)(F),2€ Zyiy2,vE Mil,pi+2}

I, 0 x d y
u oz a e d
s(zyu,a,d,e;e,y) =1 0 0 Ipgp_g—pyp1 o 2
0 0 0 zZf 0
0 0 0 u I,
with z € Z; and =z - yé“p ) = 0 where y&”p ) is the vector Yo regarded as a column vector in

P V2R proof, we identify Z; as a subgroup of S.
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We first extend v o, to U N so that it is trivial on Uy and then let ¥s(s) = ¥1.o(871sB). Thus

VYs(s(zyu,a,d,e;2,y)) = (212 + 223+ -+ 2211 +ar - ygﬂ’)) .

Denote by 75 the restriction of m to SR; o87". Then the map v — 7(8)v for v € V, induces an
isomorphism

JU;," (sz,a (77)) = JS;'L/)S (VTFB)

of vector spaces.

To avoid confusion, we shall denote the subgroups C, X and Y to which Lemma [3.1]is applied the
(i + 1)th time by C!, X!, Y respectively. Also, set Bl = C'Y! D! = CiX! and Al = CIX'Y!,

Let C° be the subgroup of S which consists of the elements of the form s(z;u,a,d, e;x,y) with
u = 0, z = I;. Note that L is the subgroup of elements in S which are lower triangular and g is trivial
on L. Let X9 and Y? be unipotent subgroups of H such that pr(X°) = {s(1;;0,0,0,0;z,y) € SO(V)}
and pr(Y©?) = £°. Also let Jo = X® n'S = gULS™! = X% n CO. Then Jo\X" is identified with FP
and so is abelian. The commutator of an element of X° and an element of Y(©) has the form

0
S Ilvoa 7*3*7070

u-xT

and thus lies in C°%. Note that D® = C°X° = Uy, and ¥po = ¥14p.a|po-
Conditions (1) — (6) of Lemma are satisfied and invoking it gives Jpo 4, (7) = Jpo y_, () as
vector spaces. Since Js,ys(Vr,) and Jz, 4., . (Jzo(JBo 4, (7)) are isomorphic as vector spaces,

Juz (T o (M) = Tz, 000 (To (JUrs s, (7))

as vector spaces. Write
Lo=LY0q,2, =77,

{5 D) me (G e

Let C! = Uy pZ%, Y! = 1,

where

A

I, 0 T
X! = 0 ;-1 O
0 0 1

Then 1c1 = i1 p,o and we have the set-up in Lemma [3.1] It follows from Lemma [3.1] that

J.cl(JUHpZ(l),szp,a(W)) = Je,(Jon wlw,a(ﬁ))

l+p’

as vector spaces. Hence Jyx (Jy, . (7)) = Jz,_1 14,0 (Jzy (Jo2 (m))) as vector spaces. Assume

Witp,a

I+p P,

by induction for 1 < i <1 =2, Jyx(Jy, . (7)) = Jz,_, 00, a(JL:i(JUZL+ Viipa(T))) as vector spaces.
: : pltpa

Write ) _
Li=L00, 23 =2 25
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where
I ;1 =

i 0 z 0
Zl+1 = 0 1 0 R Zy_ i1 = {(0 T > € Z]} .
0 0 Iz i+1

Let C'*1 = U}, 71 Y+ = £ and

AN

I, 0 z 0
0 L1.;—1 0 O
i+t1 _ l—i—1
X 0 0 1 0
0 0 0 I
Then Yci+1 = Y11 o and conditions (1) — (6) of Lemma are satisfied. Thus Lemma implies

Jpit (JUL'ZFPZ(“'“WH;;,Q (7‘(’)) = Jgiﬂ (JU;IPIJ/JH;;,Q (ﬂ'))

as vector spaces. Therefore Jyx(Jy, (7)) = Jz,_ s iy o (Jri (Jyin (7))) as vector spaces.

Lip Yitp,a
Taking ¢ =1 — 2,
(3.1) Jug (Jou.a (M) = 2110y it (7))
as vector spaces. By Theorem 7.2 of [GPRS&7], we see that 7’ has a filtration
0=WoccW,<c---C Wp+1 = JULI'J:;l/)Hp,a (77)
such that each successive quotient
z 1\W p+1( 1(p—i+2) ®,¢))

for each i =1, ---, p+ 1. Transporting the vector space structure of Jyi-1 () to Jyx (Jy, . (7)),
I+p? P, !

the conclusion follows. O

Theorem 3.3. (Tower Property) Let T be a supercuspidal representation of GL(m)(F) where m =
2n and 797 be a subquotient of i (w® |det |1/27). We have a vector space isomorphism

o (T o (707)) 2 ¢in? (g0 (7% i, ) -

Proof. Replacing 7 in Proposition by m“®7 7/(P=i+2) ig trivial for 2 < i < p + 1 since 7 is
supercuspidal and 7“®" is a subquotient of i} (w®|det|"/?7). The conclusion then follows from the
fact that

= Ja
UH—p’

v (@ and APV @p =gy, (79T,

as vector spaces. O

We know that igm (w®|det |~Y/27) has two constituents: one irreducible sub-representation which
is not generic and an irreducible quotient which is generic. The irreducible sub-representation is
isomorphic to m,gr-
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4 Vanishing of Descents

4.1 Background

In this section we prove the vanishing of the descent map for m/2 < I < m. We briefly re-
call the analogous result in the descent construction for SOs,.1. For details see Ginzburg et. al.
[GRS99a), [GRS99b]. Let 7 be an irreducible unitary supercuspidal representation of GL(m)(F')
such that L(s, T, A%p,,) has a pole at s = 0 (in particular, m is even). Then 7 affords a Shalika
model, hence also a linear model, i.e., 7 embeds into C*(GL(m/2)(F) x GL(m/2)(F)\ GL(m)(F)).
It then follows that the representation parabolically induced from 7|det |2 to Sp,,, injects into
C*(Sp,,(F) x Sp,,,(F)\ Spa,, (F)). Granted these results, the vanishing of the tower of local descent
maps up to and except the top level, is effectively proved by showing that the corresponding twisted
Jacquet modules vanish on the latter space. This is precisely [GRS99D, Theorem 17].

The integral representation for the symmetric square L-function was first developed by Shimura
for m = 2 (see also [GJ7S8]). Patterson and Piatetski-Shapiro [PPS89] extended his result to m = 3
and Bump and Ginzburg [BG92| developed the general case. The twisted version was constructed by
Gelbart and Jacquet [GJ78] for m = 2, Banks [Ban97| for m = 3, and recently for any m by Takeda
[Tak14].

We consider a representation 7 such that the symmetric or twisted symmetric square L-function has
a pole at s = 0. Here and throughout, these L-functions are the ones defined by Shahidi ([Sha90]). Let
us begin with the case of L(s, 7, Sym? p,,,). As exhibited by Bump and Ginzburg [BG92], the (global
and local) study of this L-function involves the theory of exceptional representations of Kazhdan and
Patterson [KP84]. Globally, the period of a cusp form against a pair of theta functions characterizes
the pole of the partial symmetric square L-function at s = 1 ([BG92, Theorem 7.6]). Let 6 and 6’ be
a pair of exceptional representations in the sense of [KP84] of the double cover é\i(m) of GL(m), over
a local p-adic field. The tensor #® 6’ is a well defined representation of GL(m) and, in light of several
results (|[Kap15| [Kap16al, Kap16bl [Kap17b, [Kapl7a)]), is expected to play the role of the linear model
in an analog of the aforementioned construction.

In more detail, one can find a pair (6, 0) such that 7 is a quotient of 6®6’" ([Kap16b, Theorem1.3]).
Then in [Kapl6bl Proposition 4.1] it was proved that the representation parabolically induced from
1®7|det |'/? to GSpin(2m +1) is a quotient of ©®©O’, where © and @’ are exceptional representations
of a double cover (?S\p_/in(Qm +1) of GSpin(2m + 1), defined in [Kap17b]. The remaining step, proving
the vanishing of the twisted Jacquet modules of © ® ©’, has already been partially worked out in
[Kapl6b, Theorem 1.1], but only for the “ground level", i.e., the generic case (I = m). Here we
complete the proof for all I > m/2.

Now assume that w is a unitary character of F* and L(s,7,Sym? p,, ® w™!) has a pole at s =
0. The integral representation for the global version of this L-function involved a variant of the
aforementioned representations 8, which we call an extended exceptional representation (exceptional
ones are included in the definition). For m = 2, this representation is an extension of the Weil
representation ([Gel76l [GPS80]). Banks [Ban94| constructed it over p-adic fields of odd residual
characteristic, and Takeda [Tak14] developed the general case (under the name “twisted exceptional
representations").

Yamana proved that if L(s, 7, Sym? p,, ®w ') has a pole at s = 0, 7 (or a twist of 7 for odd m) is a
quotient of a tensor of two extended exceptional representations ([YamI7, Theorem 3.19]). To proceed,
we need to define an extended version of the exceptional representation of GTS\p_/in(2m +1). This can be
done along the line of arguments of [Tak14, [Kap17b|, and [Kapl6bl Proposition 4.1] will now apply to
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extended exceptional representations. Thus we can treat both Sym? p,,, and Sym? p,, ®w ™! uniformly.

4.2 Exceptional representations

Put H = GSpin(2m + 1) and fix the Borel subroup By = Ty x Ng of H as described above
(i.e., using pr=1). Recall that Qx = My x Uy is the standard maximal parabolic subgroup of H,
whose Levi part My is isomorphic to GL(k) x GSpin(2(m — k) + 1). Let T denote the “canonical”
character of H constructed in [KapI7b} § 1.2]. Its restriction to the GL(k) part of My is det. Let H
be the double cover of H, constructed in [KapI7b] by restricting the double cover of Spin(2m + 3) of
Matsumoto [Mat69| and using the cocycle o of Banks et. al. [BLS99] (in [Kapl7b| we showed that o
is block-compatible). We fix a section s : H — H such that o (h, h') = s(h)s(h')s(hh/)~1. This section

~

is a homomorphism of Ng. For any X < H let X be its preimage in H. For any group L, Z(L)

~

denotes its center. Then we have Z(H) = Z(H) (in contrast with double coverings of GL(2m)).

The exceptional representations of H were developed (locally and globally) in [Kap17b|, by adapt-
ing the construction of Bump et. al. [BEG03, BEGOG] for a covering of SOag,,1. For a convenient
summary see [Kapl6bj § 2.8]. In the group GL(m) let Tgr(m) X Zm be the Borel subgroup of up-
per triangular matrices, where Tqy,(m) is the diagonal torus. Regard Tgy(m) as a subgroup of H

by identifying it with the natural subgroup of My,. Let £ be a genuine character of Z (ZN“H), whose

restriction to Z(ZN“GL(M)) and Z(H) is a genuine lift of 53§L(m) -|det |(m*+1/4 and the trivial character,

respectively (note that Z (TGL(m)) < Z(Ty)). This determines ¢ uniquely when m is even, in the
odd case there is an additional choice of a Weil factor. Let p(£) denote the corresponding genuine

irreducible representation of Ty (see e.g., [KP84, McN12]). Then igH (p(€)) has a unique irreducible

quotient O (normalized induction). An exceptional representation © of H is then any twist of O by
a non-genuine character of H, i.e., © = (x o T) - O where  is a quasi-character of F*.

The main property of © is that the Jacquet functor along a radical of a parabolic subgroup
is, essentially, an exceptional representation of the stabilizer. See [Kapl7bl Proposition 2.19] for a
more precise statement (see also [BEG03, Theorem 2.3]). This result and the fact that exceptional
representations of G\i(m) do not afford a Whittaker functional for m > 2 ([KP84, [KaplTal, see also
[Yam17]), imply through a series of intermediate results, that © is “small" in the sense that it is
attached to one of the unipotent orbits next to the minimal one (see [BFG03]). The following theorem
encapsulates all the vanishing properties of ©.

We may regard the elements of Uy(= Uy (F)) as row vectors (ug,...,uzm—1). Fix an additive
character i of F.. Then any character A\ of U; takes the form

2m—1
AMu) = ( Z /@Uz') :
i=1
with 8; € F. Define the length of A by
m—1
2 Z BiBom—i + B2,
i=1

While the length depends on v, we are only interested in the case when it is non-zero, and this does
not depend on 1.
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Theorem 4.1. ([BFG03, Theorem 2.6/, [BEG06, Proposition 3] and [Kap17b, Lemma 2.25]) For any
X with non-zero length, Jy, A(©) = 0.

Corollary 4.2. Let V be a subgroup of Uy and A be a character of V', such that any extension of A
to a character of Uy has non-zero length. Then Jy x(©) = 0.

Proof. Since Uy is abelian, the representation Jy x(0) is filtered by Jy, »(©), where X is a character
of U; extending A. Since X has non-zero length, the latter module vanishes. O

For example when m = 2, if V is defined by w; = 0, the character A(v) = ¥(Bus) satisfies the
requirement of the corollary, for any g # 0.

Corollary 4.3. Let A be a character of Uy defined by the vector (8,0,...,0), where 5 # 0. The
subgroup Us acts trivially on Jy, A(0).

Proof. We argue exactly as in the proof of [BEG06l Proposition 4]. O

As mentioned above, the Jacquet functor takes exceptional representations into exceptional rep-
resentations. We describe the particular case of Jy;,. Let 6y be the unique irreducible quotient of
FSLm) (p(&)), where & is a lift of 6}3/;

Bar(m) (m
when m is even and depends on a Weil factor in the odd case; still, if we fix one Weil factor, the

representations ¢y corresponding to the different lifts are twists of one another by a square-trivial
character (see [KaplT7a, Claim 2.6]). The exceptional representations of GL(m) are thus 6, and its
twists @ = (x o det) - 0y (see [KP84] BG92, [Kab01]). Then

 toa genuine character of Z (ZN“GL(m)). This lift is unique

(4.1) 32 Ju,,(©0) = 1® | det | ™~ 1/1g,

([Kapl6bl (2.8)], the Jacquet functor there was not normalized; see also [Kap17bl Claim 2.21]). Note
that the direct factors of M,, commute in the cover, but this is a special phenomenon, which does
not hold for My, with k < m. Equality implies (almost formally) that when we take a unitary
quotient 7 of # ® §’, there is a suitable unitary character w of F* (depending on # and 6’) and a pair
of exceptional representations (©,©’) of H , such that the representation parabolically induced from
w™ @ 7| det |2 to H is a quotient of © ® ©' ([Kapl6bl Proposition 4.1]).

As explained in § [4] to handle the twisted symmetric square L-function we need to consider a
wider class of exceptional representations, which we call extended exceptional representations. These
will only be used here for even m, so assume this is the case. We begin with a brief description of
the construction of Takeda [Tak14l § 2.2-2.4] (following [GPS80, Ban94]) of these representations for

é\i(m) Let x be a unitary character of F* such that x(—1) = —1. Denote by w,, the irreducible

summand of the Weil representation w, of é?)z consisting of odd functions. One can extend w, toa

~ (2 ~
representation of the subgroup GL( )(2) of GL(2), where GL®(2) is the subgroup of matrices whose
determinant is a square, by letting Z(GL(2)) act by x. More precisely if s : GL(2) — GL(2) is the
chosen section, the action is given by s(alz) — x(a)vy (a), where 7y, is the Weil factor corresponding
to an additive character 1)’ of F. The extended exceptional representation 6 of GL(2) is obtained by
~ (2 ~
inducing from GL( )(2) to GL(2). Tt is an irreducible representation, and independent of the choice

of ¢'. Moreover, it is unitary and supercuspidal (as opposed to the exceptional representations of
[KP8&4]).
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Now let R = Mg x Ugr be the standard parabolic subgroup of GL(m) whose Levi part Mg
is isomorphic to GL(2) x ... x GL(2), where GL(2) appears m/2 times (m is even). Consider the
representation

iSHM(03®. .. @0%)01").
Here ® is the metaplectic tensor ([Kab01, Mez04]), which in this case is canonical (see [Takl6l Re-
mark 4.3]).

The inducing data is tempered, hence the Langlands Quotient Theorem, proved for metaplectic
groups by Ban and Jantzen [BJ13|, implies that it has a unique irreducible quotient 6%, which is
an extended exceptional representation of éi(m) The representation 6%, is also the image of the
intertwining operator with respect to the longest Weyl element relative to R. Furthermore, the
“periodicity result" [Tak14l Proposition 2.36] reads

Jun(6%) = (05&...%05)5,"*

(Ju, was not normalized there). See [KP84, Theorem 1.2.9] for this statement on exceptional repre-
sentations. As above, we can twist 6%, by x; o det for a quasi-character x;.

We follow a similar paradigm, to construct extended exceptional representations of H. Let Q =
M x U be the standard parabolic subgroup of H whose Levi part M is isomorphic to Mg x GL(1).
Consider the representation

I =i (1@ (03®...@0)))oy").

Again, according to the Langlands Quotient Theorem [BJ13| this representation has a unique irre-
ducible quotient ©* = ©X. Since the inducing data is supercuspidal, according to [BZ77, Corol-
lary 2.13c¢|, Jy (IT*) is glued from

U1 (5. &0)))5g "),

where w varies over the Weyl elements of H, which satisfy wMw~™! = M and are reduced modulo the
Weyl group of M. The periodicity result becomes

(4.2) Ju(0*) = (1@ (03®...303))s,"".

See [Kapl7b, Proposition 2.16] for this statement on ©. A family of extended exceptional representa-
tions can be obtained by varying , and twisting using y; o Y.

Let Q' = M’ x U’ be a standard parabolic subgroup of H. The following statements follow from
[BZ77, Corollary 2.13]: if U’ n M is non-trivial, Jy»(©*) = 0; and if M/ strictly contains M, Jy (©*)
is irreducible (also use the transitivity of the Jacquet functor and )

Utilizing the above observations, the results of [Kap17bl § 2.3.1] for © are applicable to ©* as well.
Also note that Yamana [Yaml17] proved that 6% does not afford a Whittker functional when m > 3.
Therefore the arguments of [KapI7b| § 2.3.2] are valid as well, in particular [Kap17b, Lemma 2.25|,
and we deduce that Theorem and its corollaries are applicable also to ©*.

Additionally, the analog of holds as well (see [Kap17b Claim 2.21]), where 6y is replaced by

60X, and thus the proof of [Kapl6bl Proposition 4.1] extends to ©*. For example if 7 is a quotient

m?
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127 to H is a quotient of two

of 97’,{1 ® 6Oy, the representation parabolically induced from x ® | det |
extended exceptional representations of H.

For specific choices of parameters, the construction we described produces the (non-extended)
exceptional representations. To conclude, since the extended exceptional representation ©* enjoys
the same properties of ©, that are relevant for the proof of the vanishing theorem in the following

section, we omit references to y from the notation and simply write © in all cases.

4.3 Vanishing theorem

Let 1 be a non-trivial additive character of F', 7 be an irreducible unitary supercuspidal represen-
tation of GL(m), and w be a unitary character of F*.

Our assumption is that L(s, 7, Sym? p,, ®w ') has a pole at s = 0. If w = 1, according to [Kapl6h,
Theorem 1.3] the representation 7 is a quotient of #®6’ for some pair of exceptional representations of
GL(m). For the case w # 1, by [Yam17, Theorem 3.19(1)] when m is even 7 is a quotient of 6% ®6,,.
The extended exceptional representations are determined (non-uniquely) by 7 and w. When w # 1
and m is odd, a twist of 7, namely w;lw(mfl)/QT where w, is the central character of 7, is a quotient
of # ® 0" [Yam1T, Theorem 3.19(2)]. The vanishing property does not depend on this twist, hence we
can assume in all cases that 7 is such a quotient.

By virtue of [Kapl6b, Proposition 4.1], there is a pair of extended exceptional representations
(6,0 of H such that the representation igm (w® | det |27) is a quotient of © ® ©'. Therefore, the
vanishing result follows from the following theorem.

Theorem 4.4. For any ©, ©' and m/2 <1 <m, Jy, (©®0O") = 0. In particular, oy,(7) = 0 for
m/2 <l < m.

Remark 4.5. We do not assume anything on «, except that it is non-zero. i.e., the proof is valid
whether the connected component of the stabilizer of 1y o is GSpin(2(m — 1)) or GSpin*(2(m — 1)).
This is an incarnation of the fact that Theorem[{.1] applies to any character of non-zero length.

Proof. For | = m this is [Kap16b, Theorem 1.1]. The general case is not very different. For brevity,
we focus on the differences.
Put @ = Q; and write @ = M x U (i.e., U = U;). Denote N = N,

z v c
(43) N = Ig(m,l)Jrl v |:iz€ Zl

Z*

Let C = Z(U) (the center of U). The Levi subgroup M acts on the characters of C' with |//2] orbits.
We choose representatives for these orbits: ¢g(c) = 1 and

Yilc) =1 (Z Cl2j+i,i) ) 0<j<]|l/2]
i=1

Here c is regarded as an ! x | matrix. When j = [/2 (in particular, [ is even), any character in the
orbit of v; is called generic. Denote the stabilizer of 1; in M by St;. By virtue of the Geometric
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Lemma of Bernstein and Zelevinsky ([BZ77, Theorem 5.2] and [BZ76l 5.9-5.12|), as a representation
of @, © is glued from

C-lé\{jU(JCﬂﬁj (©)), 0<yj<|l/2

(compact normalized induction). A similar result applies to ©', where we use =1 for the repre-
sentatives of the orbits. In turn ©® ® ©’ is glued from tensors of such representations, with indices
j,7'. According to [Kapl7a, Lemma 2.3], when we apply the Jacquet functor with respect to N and
11, only those with j = j’ remain. Since the tensor of two genuine representations is a non-genuine
representation, we need to show that for all j,

(4.4) Ty o (A3 (e, (0) ® I, »1(0) =0.
First consider j = 0. Then C_ié@E»U<JC’wi (©)) = Jo(O©) and the left hand side of (4.4) becomes

Jy . (Jo(0) ® Jo(©)).

We apply a second filtration argument, according to the orbits of characters of C\U, with respect to
the action of M. Note that if ¢ is a character of U which is trivial on C, Jo\p,y, Jo(©) = Ju .y, (O).

Let w € U be written as in . Consider the restriction of ¥y to the last row b of v. Using the
action of M, we can assume it takes the form b — (b1 + Bby(m—1)41), for some 3 e F. If 5 # 0,
this character can be conjugated into a character A of a subgroup of Uy, such that any extension of A
to a character of U; is of non-zero length. But then by Corollary the Jacquet module vanishes.
Hence 8 = 0. Re-denote by b the (I — 1)-th row of v, on this row the character takes the form
b — (b + Bby(m—r)) and again we deduce 3 = 0. Proceeding similarly, it follows that ¢y can be
non-trivial on at most m — [ rows, which we assume are the last ones. Indeed, otherwise it can be
conjugated into a character whose restriction to one of the rows is b +— 1)(b1 + Bba(y,—1y41) for 8 # 0,
and as above Corollary implies that the Jacquet module vanishes.

Therefore, we only need to consider m — [ + 1 orbits, with representatives ¢y = 1 and

k
Yuk(u) =¥ (2 Uli+1,i> ., 0<k<m-1L
i=1

As above, we begin with quotients Jy 4, , (©)®J, b (©’), but when we apply Jy, ., only those with
: R ,

k = k' remain (|[Kapl7al Lemma 2.3]).

For k > 0, let Zj_x x be the unipotent radical of the standard maximal parabolic subgroup of
GL(1) whose Levi part is isomorphic to GL(1 — k) x GL(k). Since !l > m/2, Z;_j j, is non-trivial. The
group Zj_j r normalizes U and stabilizes ¢y, and we prove that its action on Jy y,, , (©) is trivial.
To this end we show that for any non-trivial character p of Z;_j g, '

(45) JZI,k,kKUylle,k(@) = 0

Indeed, as in [Kapl6b, Claim 3.3| applying Lemma (the version of [GRS99al Lemma 2.2|) and
another conjugation, we see that Jz,_, , xv,uvy, (©) is a quotient of Jy, A(©), where A(u) = ¥(uq),
and the action of the (I — k + 1)-th row of U, which is given by the restriction of 1, to this row,
transforms into a non-trivial action of Us. This contradicts Corollary unless holds.
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We deduce that for all £ > 0, there is a root subgroup of N on which %), , is non-trivial, but its
action on

JU,wu,k (6) ® JUJ/’[},lk (Gl)

is trivial. Note that for £ = 0, U itself acts trivially on this space while 1 ,, is non-trivial on U. This

proves (4.4]) for j = 0.

Next we state the generic case.
Lemma 4.6. Equality (4.4) holds for j =1/2.

The proof is deferred to § 4] below, we now explain how to reduce the remaining cases to the
generic one. Assume 0 < j < I/2. Consider the standard parabolic subgroup Qi_2; whose Levi part
is isomorphic to GL(1 — 2j) x H, where H = GSpin(2(m — 1+ 2j) + 1). Let Q = MJ x UJ be the
standard parabolic subgroup of Hi with MJ =~ GL(2j), and C? = Z(U7). Note that 1;|cs is a generic
character of C7. Also set Qo = Q N Q;—2;.

Claim 4.7. The representation Jc,wj (©) is trivial on Uj_aj. As a representation of M_Qj it is
a finite direct sum of representations ¥ & Jos g, (©7), where ¥ is a finite direct sum of irreducible

representations of GVIJ(Z —27) and ©7 is an extended exceptional representation of HI.

Remark 4.8. The representation ¥ is essentially an exceptional representation, its description was
given in the similar result [Kap16b, Proposition 3.1], but will not be needed here.

Using the claim and transitivity of induction, the left-hand side of (4.4]) becomes a finite sum of
representations

i (18, 800 (0©9) ® (Jos 4, (07) ® T, 1 (07))))

We can compute this module using the Geometric Lemma [BZ77, Theorem 5.2]. Specifically, choose a
set of Weyl elements w representing the double cosets Qo\Q/N. We see that ¢ o|wiw-1~n # 1 unless

w = ( L, L ), regarded as an element of () via its embedding in M. The corresponding quotient is,

up to a modulus character,
JZ!—2j7'¢'l,a (19 ® 19/) ® le,a (JCj,wj (@j) ® Jc'jwjfl (@,j))'

Since 1  restricts to a similar character on the subgroup Zs; x U7 of @7, i.e., a generic character
on Zy; and the coordinates of U where ) ., is non-trivial belong to U7, Lemma (the generic case)
implies

i o (03,0, (07) ® Jey 4 1(€7)) = 0.

This completes the proof of (4.4) for all j. O

Proof of Claim[{.7 As in [Kapl6b, Proposition 3.1], the claim follows once we show that the action of
Ui—2j on Joy, (©) is trivial. The main difference is that when | = m, there are only two orbits for the
characters of U,,, namely the orbit of a character defined by a vector of non-zero length (restriction
of the generic character of Ny to U,,), and the trivial orbit. When [ < m there are also non-trivial
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characters defined by vectors of zero length to consider. (For a character defined by a vector in F27+1
the length of the character is the length of the vector with respect to the symmetric bilinear form
deﬁning SOQT»+1.)

Write Up_g; = V - (C n Uj_gj). Clearly C' n Uj_g; acts trivially on Jg y,(©). It remains to show
Jv,u(Jo,w, (©)) = 0 for all non-trivial characters p of V.

Let i be such a character. Using the action of GL(I —2j) x M7, we may assume that its restriction
to the last row of v € V' is given by

b (b1 + baji1 + Bba(m—i45)+1)

where b is a row of length 2(m — [+ j) + 1 and g€ F. If 8 # 0, Jy,,(Jo,p;(©)) = 0 because as in
the case j = 0, we can conjugate this character into a character of U; and apply Corollary [£.2] Hence
8 =0.

Now let g € M;_5; be such that Iu(v) = p(g~vg) restricts to the character b — 1(b;) on b. The
element g does not normalize U’ and does not stabilize 1;|cs, but g7'C7g < U7. Let X < C7 be
consisting of matrices whose only non-zero coordinates are the (1,1) and (27, 2j5)-th ones. We can
regard ¢ as the matrix

1 1

diag | I;_aj, Iy s Iagm—1y—1, Iy; 4 Iy
1 1 -1 1

Since U7 normalizes U;_s;, we deduce that g~' X g normalizes U;_y; and Jy,,(Jc,yp, (©)) is a quotient
of

J971X9'><Ul—2j,u(@)'

Conjugating by g, we obtain Jx wu,_,; s,(©), where 94 is non-trivial on X (g normalizes U;_5;). Now
we can proceed exactly as in [Kapl6bj, Claim 3.3]: applying Lemma (JGRS99a), Lemma 2.2]) and
another conjugation, Jx v, ,,,9,,(©) is seen to be a quotient of Jy, A(©), where A(u) = 1)(u;), and the
action of X becomes a non-trivial action of Us, contradicting Corollary Thus Jxxv;,_s;,9.(0) =0
whence Jv,,(Jc,y,(©)) vanishes. O

4.4 Proof of Lemma [4.6

Let j = 1/2 and r = 2j(2(m — ) + 1). The subgroup U is a generalized Heisenberg group H of
rank r + 1. Idenfity H with the set of elements (a,b;c), where a and b are rows in F/2 and c € F,
with the product given by

(a,b;c) - (d',b';c) = (a +ad b+, c+d +1(a,b) <_J7‘/2 JT‘/Q) 75(a’,b')) .

Here J, )5 is the 7/2 x r/2 permutation matrix having 1 on its anti-diagonal and *(a’, b’) is the transpose
of (a/,1"). We have the epimorphism ¢ : U — H defined by

J
l(u) = (a1,...,a;,b1,...,bj, %(Z Ciji — Claii+i))s

i=1
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where b1, ...,b; are the first j rows of v and a1, ..., a; are the last and we recall that u is written with
the notation of (with z = I;). Also let R < H be the subgroup consisting of elements (0, b; 0).

Since 1; is trivial on the kernel of £, we may regard Jc .y, (©) as a smooth representation of H,
and as such it is the direct sum of irreducible Weil representations wy,, where 1) is our fixed character
of F.

The representation w,, extends to a representation of é\f),, x H, where é?),, is the metaplectic double
cover of Sp,. Since St; = Sp;, using the action of St; on each of the 2(m — ) + 1 columns of v we
construct an embedding of St; in Sp,. Moreover, the covering Sth obtained by restricting H does
not split over Stj;, hence it is the metaplectic double cover, therefore the embedding extends to an
embedding of the coverings, also denoted ¢ (one may also apply the strong block compatibility property
of the cocycle [BLS99, Theorem 7| to deduce this). The action of g € §f)l is now given by wy, (¢(g)).

As a smooth representation of a generalized Jacobi group, Jo,y, (©) is isomorphic to a representa-
tion kK ® wy, where k @ wy (£(9)h) = Kk(g) @ wy(L(g)h) for g e é\f)l and h € H, and k is a non-genuine
representation. The following claim proves that k is trivial.

Claim 4.9. The representation Jo .y, (©) is isomorphic to a (possibly infinite) direct sum of the
representation wy.

The proof appears below. Now we proceed to prove (4.4), exactly as in [Kapl6b, Claim 4.3].
Observe that by Claim [.9]

JU’wz,a (JC,IIJ]- (©)® Jc,qu—l (@/>)
is a direct sum of

J’H,wz,ad’l (w¢ ® (A.)wfl )

Note that ;o 0¢~! is well defined because v 4, is trivial on C and the coordinates of v in the preimage
of ¢ are uniquely defined.

Applying the theory of l-sheafs of Bernstein and Zelevinsky ([BZ76l 1.13, § 6, Theorem 6.9]), it
suffices to show that for all representatives g € GL(I) such that the last row of ¢ is (0,...,0,1),

(4.6) Homg s (9 Jpg,y ot (wp @wy ), tr.a)-

Here Sp{ = ¢! Sp, g n Z; and for z € SpY, 9 J..(--)(x) = J.(---)(£(%)). Note that since the last
row of g is (0,...,0,1), 9(Sp]) stabilizes the restriction of ¢; 4 to U.

According to [Kapl6bl Claim 2.5], if A is the character of H given by (z,y; 2) — ¥(x1), Jux(wy ®
wy-1) is the trivial one-dimensional representation of its stabilizer in Sp,.. Since Sp,. acts transitively
on the non-trivial characters of Z(H)\H, the same applies to any such character, in particular to the
character 1, o o £71. Thus gflJH,wl_aoga (wy @wyy-1) is trivial.

We conclude that vanishes, using the results of Offen and Sayag [OS08, Proposition 2| (we
use H™" with » = 0 and ' = [, in their notation), namely that for any generic character ¢ of Z,
1/)|Splg # 1 for any g € GL(l). The proof of the lemma is complete.

Proof of Claim[].9 We proved this result in [KapI6b, Theorem 1.4] when [ = m (whence j = m/2).
The proof carries over to [ < m, we briefly describe the argument.
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We need to show that x is a trivial representation. Let

1 Yy
Y = IZ_Q < Spl
1

It is enough to show Jyy) 4, (k) = 0, where 15(y) = ¥ (By), for all 3 # 0. To this end consider the
subgroup

1 y b1 *
I,
1
V= IQ(nL—l)+1 b’ < Us.
1 y
I
1

The mapping ¢ is an isomorphism of V' onto the direct product ¢(Y) - Ry, where Ry < R consists of
elements (0, (b,0,...,0);0) with b e F2(m=0+1,
First observe that

(4.7) Juypot(Joy, (©)) = 0.

This follows from Corollary because this space is a quotient of Jy.(cnv,),(wso)y (©) and since for

ce CnUi, ¢j(c) = ¥(ci,1), any extension of (¢g o f)1); to a character of Uy is a character of non-zero
length.

Since Jg(wy) is one-dimensional ([Kapl6b, Claim 2.4]), there is a vector ¢ in the space of wy, such
that the Jacquet integrals

VR = Jwa(yr)wdrdy
YR

do not vanish for all compact subgroups Y <Y and R < R (see [BZ76), 2.33]). Then given & in the
space of , using a change of variables, again the fact that Jr(wy) is one-dimensional, and (4.7)), one
shows that for sufficiently large ) and R,

Jﬁ(y)wgl(yk dy ® > = 0.
y

This implies that § vanishes in Jyyy 4 (k) (IBZT6, 2.33]). O

5 Non-vanishing of the Descent for [ =n and m = 2n

In this section, let m = 2n, we show that oy ,(7) := Jy, . (Twer|R, . ) is non-zero, for some a € F™*.
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5.1 Generalized and degenerate Whittaker models

We recall the generalized and degenerate Whittaker models attached to nilpotent orbits, following
the formulation in [GGS17]. Let H be a reductive group defined over F or a central extension of finite
degree. Fix a non-trivial additive character ¢ : F' — C*. Let h be the Lie algebra of H = H(F') and
u be a nilpotent element in h. The element u defines a function on b:

1/}71:’)4’@)(

by ¥ (z) = ¥(k(u,x)), where & is the Killing form on b.

Given any semisimple element s € ), under the adjoint action, b is decomposed to a direct sum of
eigenspaces b of h corresponding to eigenvalues i. The element s is called rational semisimple if all
its eigenvalues are rational. Given a nilpotent element w, a Whittaker pair is a pair (s,u) with s € b
being a rational semisimple element and u € §* ,. The element s in a Whittaker pair (s, u) is called a
neutral element for u if there exists v € b5 such that (v, s,u) is an sly-triple. A Whittaker pair (s, u)
is called a neutral pair if s is a neutral element for u. For any X € B, let hx be the centralizer of X
in b.

Given any Whittaker pair (s, u), define an anti-symmetric form w,, on b by w, (X, Y) := k(u, [X,Y]).
For any rational number r, let %, = @».b;,. Let u, = b, and let n,,, be the radial of wy|,,. Then
[us,us] < g5 < ny . By [GGS17, Lemma 3.2.6], ns ., = 2, +bi nbh,. Note that if the Whittaker pair
(s,u) comes from an sly-triple (v, s, u), then ny, = hZ,. Let Us = exp(u,) and Ny, = exp(ns,) be
the corresponding unipotent subgroups of H. Define a character of N, by ¥, (n) = ¢¥(k(u,log(n))).
Let N;, = Ns. nker(,). Then Us/N, , is a Heisenberg group with center N; . /N, ,

Let m be any irreducible admissible representation of H and (s,u) be a Whittaker pair, call the
twisted Jacquet module Jy, , 4, (7) a degenerate Whittaker model of m, denoted by m, . If (s.u) is a
neutral pair, then 7, ,, is also called a generalized Whittaker model of m. The wave-front set n(m) of 7
is defined to the set of nilpotent orbits O such that 7, ,, is non-zero, for some neutral pair (s,u) with
u € O. Note that if 7, ,, is non-zero for some neutral pair (s, «) with v € O, then it is non-zero for any
such neutral pair (s,u), since the non-vanishing property of such Jacquet modules does not depend
on the choices of representatives of O. Let n™(m) be the set of maximal elements in n(r) under the
natural order of nilpotent orbits. We recall [GGS17, Theorem A] as follows.

Theorem 5.1 (Theorem A, [GGS17]). Let 7 be an irreducible admissible representation of G. Given
two Whittaker pairs (s,u) and (s',u') with s being a neutral element for u, if u € Gy (F)u’ where Gy
is the centralizer of s’ in G and my v is non-zero, then ms,, is non-zero.

Note that a particular case of Theorem is that u = «’. In this case, the condition u € G4 (F)u/
is automatically satisfied and hence Theorem asserts in this case that if 74 ,, is non-zero for some
Whittaker pair (s',u), then 7, is non-zero for any neutral pair (s, u).

When H is a quasi-split classical group, it is known that the nilpotent orbits are parametrized
by pairs (p,q), where p is a partition and ¢ is a set of non-degenerate quadratic forms (see [Wp0I,

Section 1.6]). When H = Sp(2n)(F), p is a symplectic partition, namely, odd parts occur with even

multiplicities. When H = SO*(2n)(F), SO(2n + 1)(F), p is a orthogonal partition, namely, even parts
occur with even multiplicities. In these cases, given any irreducible admissible representation 7 of H,
let p™ () be the partitions corresponding to nilpotent orbits in n™ (7). For any symplectic/orthogonal
partition p, by a generalized Whittaker model attached to p, we mean a generalized Whittaker model

T, attached to an orbit O parametrized by a pair (p,q) for some ¢, where v € O and (s,u) is a
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neutral pair. Sometimes, for convenience, we also write a generalized Whittaker model attached to p
as Ty, , without specifying the F-rational orbit O and neutral pairs. B

Let H = GSpin(4n + 1), as for SO(4n + 1), an orthogonal partition p is called special if it has
an even number of odd parts between two consecutive even parts and an odd number of odd parts
greater than the largest even part (see [CM93| Section 6.3]). By the main results of [JLSI6], given
any irreducible admissible representation 7 of H, any p € p"(w) is special.

5.2 Non-vanishing of oy ,(7)
First we prove the following theorem.
Theorem 5.2. m,g, has a non-zero generalized Whittaker model attached to the partition [(2n)?1].

Proof. Let a; = e; —e;41, 1 <1 <2n—1, ag, = ey, be the set of roots for GSpin(4n + 1). Let z,,
be the one-dimensional root subgroup in b corresponding to «a;, 1 < i < 2n. By [Wp01], Section 1.6],
there is only one nilpotent orbit O corresponding to the partition [(2n)?1]. A representative of the
nilpotent orbit O can be taken as follows:

2n—1

u = Z ZT_q,(1).

Let s be the following semi-simple element
s=diag(2n—1,2n—3,...,1 —-2n,0,2n —1,2n —3,...,1 —2n).

Then it is clear that (s,u) is a neutral pair.
Claim: the generalized Whittaker model (7, )5, is non-zero.
To show the above claim, we take another semisimple element

s’ = diag(4n,4n —2,...,2,0,—2,...,—4n).

It is clear that (s',u) is a Whittaker pair. We consider the corresponding degenerate Whittaker
model of m,g,. Recall that Q2, is the parabolic subgroup of H with Levi subgroup isomorphic to
GL(1) x GL(2n) and unipotent radical subgroup Usy,. Then, by definition, (Tugr)s o is equivalent
to first taking the Jacquet module with respect to Us,, then taking Whittaker model of 7. Since 7 g,
is isomorphic to the Langlands quotient of ig%’ (w® |det|/?7) and 7 is an irreducible supercuspidal
representation of GL(2n)(F) which is automatically generic, both the Jacquet module of 7,g, with
respect to Us, and the Whittaker model of 7 are non-zero. Hence the generalized Whittaker model
(Tw@r)s',u 1s non-zero. By Theorem [5.1} we know that the generalized Whittaker model (Tygr)s,v 1S
non-zero, hence we proved the Claim above.

This completes the proof of the theorem. O

Next we prove the following result.

Theorem 5.3. m,g. has a non-zero generalized Whittaker model attached to the partition [(2n +
1)(2n — 1)1].
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Proof. By Theorem we know that 7,g, has a non-zero generalized Whittaker model attached to
the partition [(2n)?1]. But it is known that as an orthogonal partition, [(2n)%1] is not special, and
the smallest special partition which is greater than it is [(2n +1)(2n —1)1], by definition, this is called
the special expansion of the partition [(2n)%1]. By [JLS16, Theorem 11.1], we know that 7,g, has a
non-zero generalized Whittaker model attached to the partition [(2n + 1)(2n — 1)1].

This completes the proof of the theorem. O

Theorem 5.4. There exists a € F*, such that 0y n(7) := Jy, . (Tuer|R,. ) is non-zero.

Proof. By Theorem [5.3] we know that 7,g- has a non-zero generalized Whittaker model attached to
the partition [(2n+1)(2n—1)1]. By [Wp01l Section I.6], nilpotent orbits corresponding to the partition
[(2n + 1)(2n — 1)1] are parametrized by certain one-dimensional quadratic forms, i.e., certain square-
classes {@an+1, ®an_1, 01}, corresponding to the parts (2n+1), (2n—1), 1. By [JLS16, Proposition 8.1,
actually, 7,g- has a non-zero generalized Whittaker model attached to the nilpotent O, corresponding
to the partition [(2n + 1)(2n — 1)1] and parametrized by square-classes {a, —a, 1} for some o € F'*.

Claim: for the above a, Jy, . (Tugr|R, ) is non-zero.

Indeed, for the nilpotent orbit O@ above which is parametrized by square-classes {«, —«, 1}, one can
take a representative u = uy + ug, where u; = Z?;ll T, (1) + Tey,—e, (1) + T_ey, e, (@/2), ug is any
representative of the nilpotent orbit in the Levi part of the stabilizer of w; which is GSpin(2n)(Q) for
certain quadratic form @, corresponding to the partition [(2n — 1)1], parametrized by square-classes
{—a,1}. Let s,s; be semi-simple elements such that s is neutral element for v and s; is a neutral
element for uy. Then, from above discussion, we know that (7,gr)s. is non-zero. On the other hand,
it is easy to see that u; € GSpin(4n + 1)s(F)u. By Theorem we know that (Tugr)s, u, IS also
non-zero. Note that (Tuer)s, u, is exactly Jy, . (To@r|R,..), i-€., 0y n(7). Hence, the Claim has been
proved.

This completes the proof of the theorem. O

Remark 5.5. Similarly, we can also show that if m = 2n+1, then there exists some a € F'* | such that
T o (Tw@r| R, ) @8 non-zero. We briefly sketch the main steps here: first, as an analogue of Theorem

we can show that Twer has a non-zero generalized Whittaker model attached to the partition
[(2n + 1)21], which is already a special orthogonal partition. Then, following a similar argument as in
the proof of Theorem we can obtain the non-vanishing result for the case of m = 2n + 1.

Theorem 5.6. Let 7 be an irreducible unitary supercuspidal representation of GL(2n)(F') and w be
a unitary character of F* such that the Langlands-Shahidi L-function L(s, T, Sym? pan ®w™!) has a
pole at s = 0. Then there exists cuspidal automorphic representation T and a finite place v such that
To = 7 and the partial L-function L% (s, T, Sym® ps, ® w™') has a pole at s = 1. Here S is a finite set
of places containining v and the archimedean places.

6 Local Descent and Langlands Functoriality

Theorem 6.1. Set ps, to be the standard 2n-dimensional representation. Let T be an irreducible
unitary supercuspidal representation of GL(2n)(F) and w be a unitary character of F* such that the
Langlands-Shahidi L-function L(s, T, Sym? ps, ® w™") has a pole at s = 0.

(1) There exists some a € F* such that oy (1) := Jy,  (Twgr|Rr,..) 15 a non-trivial unitary super-
cuspidal representation of G = Ly, . Fach of its irreducible subrepresentations is wx,é -generic.
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(2) The representation oy, (T) is multiplicity free.

(3) Let o be an irreducible supercuspidal representation of G which is generic with respect to the
Whittaker character V. with Whittaker function WY in the Whittaker model of o. Then the
Rankin-Selberg y-factor y(s,0 x (w® 7),%~ 1) has a pole at s = 1 if and only if ¢V is a direct
summand of oy (7).

Proof. By Theorem there exists some a € F™* such that oy (7) = Jy, . (Twer|R, ) # 0. It follows
from Theorem and Theorem that oy, (7) is supercuspidal. Theorem 8.1b) of [Sha90] asserts
that 7,g- is unitary. Thus the central character of 7, restricted to the connected component of the
center of H is unitary. Denote the center of the split Spin(2n) or respectively quasi-split Spin*(2n) by
Z. Then (1 x Z)/C being isomorphic to the Klein 4-group decomposes the representation space V' of
Twer iNto a direct sum of at most 4 subspaces, each on which (1 x Z)/C acts via a unique quadratic
character. Thus the center of G acts on each such subspace as a unitary character. Suppose there is
one such subspace V; which is not invariant under the action of G. Then there exists v; € V; and g € G
such that oy ,,(7)(g)v1 ¢ V1. Since the representation space is the direct sum of such subspaces, there
exists another subspace V; and a projection map 7 : V' — V5 such that 7[oy ,(7)(g)v1] = v2 is a non-
zero element of V5. Choose z € (1 x Z)/C such that 7 : 0y, (7)(2)v1 = £v1 and oy, (7)(2)ve = Foe.
We have
tuy = 70y (T)(92)01] = Tloya(r)(zg)0r] = Fos,

contradiction. Hence each of the subspace for which the center of G acts via a unique unitary char-
acter is invariant under the action of G and so being supercuspidal is a countable direct sum of
irreducible unitary supercuspidal representations. Remark [2.17] implies that each of its irreducible
subrepresentations is wﬁé—generic. This proves (1).

The proof of Proposition and Proposition further implies that for any w;,é—generic Su-
percuspidal representation o, the space of bilinear forms satisfying equation is one dimensional
for all s. This proves (2).

(3) follows from Theorem and the supercuspidality of . O

Remark 6.2. (1) The proofs of vanishing and non-vanishing of the descent oy ,(7) also work for
the case of T = 11 X 7o X -+ X T, where T; is a supercuspidal representation of GL(m;) and
L(s,7i,Sym? @ w™1) has a pole at s = 0, fori = 1,2,...,r. Regarding the vanishing, if w = 1,
by |[Kap16d, Theorem 1.5] the representation T is a quotient of exceptional representations, since
each T; is. Moreover, the proof in [Kap16df applies also to the case w # 1, given that all m; are
even, ormy = ... =m, = 2mgy+1, so that 7 is a quotient of extended exceptional representations
(to treat the remaining cases we may need to consider twisted exceptional representations of
(Ei(Zm +1)). Then by [Kap16b, Proposition 4.1] we deduce that the representation parabolically
induced from w ® 7| det |1/2 to H is a quotient of a pair of extended exceptional representations
ofH Now we may apply Theorele/J For the non-vanishing part, the proof is applicable with
basically the same arguments.

(2) The analogous statement of Theorem still holds for the case of T = 71 X -+ - X T, with suitable
modification of proof.

(3) The proof of supercupidality of oy »(T) when T =11 X --- x 7, follows similarly along the same
lines from (1) and (2).
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