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BRANCHING PROBLEMS AND L-FUNCTIONS

BAIYING LIU AND BIN XU

Abstract. We study certain automorphic descent constructions for symplectic groups, and ob-
tain results related to branching problems of automorphic representations. As a byproduct of the
construction, based on the knowledge of the global Vogan packets for Mp2(A), we give a new ap-
proach to prove the result that for an automorphic cuspidal representation of GL2(A) of symplectic
type, if there exists a quadratic twist with positive root number, then there exist quadratic twists
with non-zero central L-values.

1. Introduction

1.1. Background. The automorphic descent method, developed by Ginzburg, Rallis and Soudry
in their series of papers [27, 28, 29, 30, 31], gives rise to an inverse map of the functorial lift
(see [8, 9, 10]) of automorphic representations of classical groups. More precisely, starting from
irreducible generic isobaric sum automorphic representations of general linear groups with certain
(symmetric) properties, this method constructs (generic) cuspidal automorphic representations of
quasi-split classical groups, by taking various Fourier coefficients on certain residual representations
obtained from Siegel Eisenstein series. A complete and detailed reference of this theory is [33].
With developments in related fields, automorphic descent method shows its importance in vast
aspects of the study of automorphic representations and automorphic L-functions. For one thing,
the representations constructed provide concrete generic members in the global (generic) Arthur
packets (see [4, 51, 59]). And for another, the construction is related to the global zeta integrals of
Rankin-Selberg type (or Shimura type), which represent Rankin-Selberg L-functions with respect
to classical groups and general linear groups (see, for example, [26, 33]). In addition, some related
subjects, such as irreducibility of the descent, are taken into account in [44, 24, 53, 60].

In the works [42, 47, 48, 41, 50], and also some early considerations in [25, 20, 21], a twisted
version of automorphic descent is developed. In this case, not just starting from an irreducible
generic isobaic sum automorphic representation τ of a general linear group, an irreducible cuspi-
dal automorphic representation σ of a classical group is also involved in the initial data, and the
descent is constructed by taking Fourier coefficients on certain residual representations obtained
from Eisenstein series supported on maximal parabolic subgroups of non-Siegel type. The point
is, guided by the endoscopic classification theory (see [4, 51, 59]), the twisted automorphic descent
provides a systematic way to concretely construct more members (e.g. the non-generic ones) in the
global Arthur packets of classical groups parametrized by generic global parameters. Moreover,
the twisted automorphic descent method is capable of constructing representations of pure inner
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forms of classical groups, hence has potential to recover the global Vogan packets. From this point
of view, based on more understandings of these global packets, more applications are expected
under this framework. On the other hand, this construction is connected to more general global
zeta integrals, and one important significance of them is that the Bessel and Fourier-Jacobi periods
come out naturally from them by the unfolding of Eisenstein series. Thus the twisted automorphic
descent has a natural relation to the well-known Gan-Gross-Prasad (GGP) conjectures ([35, 14]),
which relate such periods to central values of Rankin-Selberg L-functions. Results on non-vanishing
of such L-values, as well as examples of global GGP conjectures in symplectic-metaplectic, orthog-
onal, and unitary cases, have been obtained using this approach (see [20, 21, 22, 47, 49]). In these
works, concrete constructions via twisted automorphic descent have shown notable importance.

We note that in order to provide concrete representations in global packets and show non-
vanishing of global periods, it is crucial to show the non-vanishing of certain Fourier coefficients
of automorphic forms. This is not easy in general, however, when the representation σ in the
initial data (τ, σ) is a representation of a small size group, it is possible to obtain some definite
results, as in [20, 21, 22, 42, 41]. The objective of this article is to study some new cases of twisted
automorphic descent for symplectic groups, where the desired non-vanishing properties can be
obtained. As applications, we can obtain some results on the GGP conjecture for the symplectic-
metaplectic case, and also some results on non-vanishing of central L-values (see §1.2 below for
details).

1.2. The global GGP conjecture in symplectic-metaplectic case and related problems.
The questions under consideration in this article are about branching problems of automorphic
representations and their impacts on the study of L-functions. Their formulations are based on
the GGP conjecture.

We recall first the global GGP conjecture for the symplectic-metaplectic case, based on [14].
Let F be a number field and A = AF be its ring of adeles. Let ψ : F\A −→ C× be a fixed
non-trivial additive character. For an integer N ≥ 1, we denote VN to be a symplectic space over
F of dimension 2N . Let n and r be positive integers. We denote by Gn = Sp(Vn) the symplectic
group of rank n over F , and denote by Hr = Mp(Vr) the metaplectic group of rank r over F , i.e.
the unique two-fold central extension of Sp(Vr):

1 −→ {±1} −→ Mp(Vr) −→ Sp(Vr) −→ 1.

A generic global Arthur parameter (see [4]) for Gn is given as a formal sum

(1.1) φ = (τ1, 1) � · · ·� (τt, 1),

where τi, with i = 1, 2, . . . , t, is a unitary irreducible cuspidal automorphic representation of
GLai(A), and τi 6∼= τj if i 6= j. Moreover, each τi is of orthogonal type in the sense that the
symmetric square L-function L(s, τi, Sym2) has a pole at s = 1. Such parameters are also called
discrete global L-parameters in [14, §25]. Note that one must have 2n + 1 =

∑t
i=1 ai, and each

generic global Arthur parameter φ in (1.1) parametrizes an irreducible generic isobaric sum au-

tomorphic representation of GL2n+1(A). We denote by Φ̃2(Gn) the set of generic global Arthur

parameters of Gn. For each Arthur parameter φ ∈ Φ̃2(Gn), the associated global Arthur packet is

denoted by Π̃φ(Gn(A)), which is also the global Vogan packet Π̃φ[Gn(A)] associated to φ, since Gn

is the only pure inner form of itself. In this article we use the terminology of global Vogan packets
following [14, §25].
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Similarly, we have generic global Arthur parameters φ′ for Hr

(1.2) φ′ = (τ ′1, 1) � · · ·� (τ ′t′ , 1),

where τ ′i ’s (i = 1, . . . , t′) are distinct unitary irreducible cuspidal automorphic representations of
GLa′i(A) (i = 1, . . . , t′) respectively, which are of symplectic type in the sense that each exterior

square L-function L(s, τ ′i ,∧2) has a pole at s = 1 (see [14, §11] or [16]). We denote the set of

generic global Arthur parameters of Hr by Φ̃2(Hr). Accordingly, we have the global Arthur packet

Π̃ψ
φ′(Hr(A)), which is also the global Vogan packet Π̃ψ

φ′ [Hr(A)]. Note that the parameters, and also
the packets for metaplectic groups depend on a fixed additive character ψ (see [14, §11, §25] and
[24]). With the above data, we have the global Vogan packet (see [14, §25]) for φ× φ′:

(1.3) Π̃ψ
φ×φ′ [Gn(A)×Hr(A)].

From now on, we assume that n ≥ r. For irreducible cuspidal automorphic representations π
and σ̃ of Gn(A) and Hr(A) respectively, one defines the Fourier-Jacobi period (see [14, §23] or §2.3
for details)

(1.4) PFJ
ψ,ϕr(φπ,φσ̃), (φπ ∈ π, φσ̃ ∈ σ̃, ϕr ∈ S(Ar))

whose non-vanishing is used to detect whether σ occurs in the “restriction” of π to Hr(A). On
the other hand, one defines the tensor product L-function

(1.5) Lψ(s, φ× φ′) :=
t∏
i=1

t′∏
j=1

L(s, τi × τ ′j)

associated to the pair of generic global Arthur parameters φ and φ′ for the fixed ψ (see [14,
§22]). The global GGP conjecture asserts that the central value Lψ(1/2, φ × φ′) is non-zero if

and only if there exists a pair (π0, σ̃0) in the global Vogan packet Π̃ψ
φ×φ′ [Gn(A) × Hr(A)] with a

non-zero Fourier-Jacobi period PFJ
ψ,ϕr

(φπ0 ,φσ̃0). An important feature is that such a pair (π0, σ̃0) ∈
Π̃ψ
φ×φ′ [Gn(A)×Hr(A)] is unique, following from the local GGP conjecture ([14, §17]). When such

a pair exists, we call it the Gan-Gross-Prasad pair (or GGP pair for short) for the given pair of
generic global Arthur parameter (φ, φ′).

The GGP conjecture is about the branching problem, which concerns about the decomposition
of a representation when restricting to subgroups. As seen in some previous works (see [20, 21,
42, 38, 41]), constructive methods, in particular the twisted version of the automorphic descent
method, can be used to study the global GGP conjecture. With this approach, besides a generic
automorphic representation τ of some GLN(A) which determines a global parameter φτ , one also
takes an automorphic representation σ̃ of the group Hr(A) with a generic global parameter. Then
one may ask the following:

Problem 1.1. For a given irreducible cuspidal automorphic representation σ̃ of Hr(A) with a
generic global Arthur parameter φ′, how to find some group Gt∗, and an irreducible cuspidal auto-
morphic representation π of Gt∗(A) with a generic global Arthur parameter φ, such that π and σ̃
have a non-zero Fourier-Jacobi period?

This is understood as the reciprocal branching problem introduced in [41]. From the pair of
representations (τ, σ̃) mentioned above, the twisted automorphic descent method gives a concrete
and uniform construction of a tower of representations {πi}t of {Gt(A)}t. An important feature of
this method is that, if πt is non-zero, it has a non-zero Fourier-Jacobi period with σ̃ (see §2.3 for
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some examples). Then it follows that if moreover some basic properties (such as cuspidality), as
well as the global Arthur parameter φt of πt, can be determined, one obtains (πt, σ̃) as the GGP
pair for the pair of global Arthur parameters (φt, φ

′), where φ′ is the Arthur parameter of σ̃. We
remark here that even when φt is not generic, the construction could also provide examples for
the non-tempered GGP (see [15])

We explain the general framework with more details. Assume that σ̃ belongs to the generic global

Vogan packet Π̃ψ
φ′ [Hr(A)] (for a fixed non-trivial additive character ψ : F\A −→ C×). Towards the

above reciprocal branching problem, we take a generic global Arthur parameter φ ∈ Φ̃2(Gn) and
assume that Lψ(1/2, φ×φ′) 6= 0. Assume that (π0, σ̃0) is the unique GGP pair in the global Vogan

packet Π̃ψ
φ×φ′ [Gn(A)×Hr(A)] as in the global GGP conjecture. Then, if σ̃ ' σ̃0, the global GGP

conjecture predicts that the member π0 in the global Vogan packet Π̃φ[Gn(A)] gives an answer to
the reciprocal branching problem, and this member π0 is expected to be constructed by twisted
automorphic descent method from the parameter φ and the representation σ̃0. However, for an

arbitrary σ̃ ∈ Π̃ψ
φ′ [Hr(A)], we can not always expect σ̃ to be part of the GGP pair for φ×φ′ by the

uniqueness property in the GGP conjecture, for a fixed parameter φ ∈ Φ̃2(Gn). In this situation,
the automorphic descent method helps us to find a (specific) group Gn+k for some k ≥ 1, and an
explicit irreducible cuspidal automorphic representation πn+k of Gn+k(A) with the property that
πn+k has a generic global Arthur parameter φn+k, and has a non-zero Fourier-Jacobi period with
the given σ̃. Moreover, it turns out that, the group Gn+k, and also the parameter φn+k, should be
controlled by certain first occurrence property (see §2.2) of the construction. Hence, they are all
determined by the initial data φ, φ′ and σ̃ via the constructive mechanism.

On the other hand, based on some known cases that the non-vanishing of GGP periods implies
non-vanishing of L-functions (see, for example, [20, 48]), one may obtain some results on non-
vanishing of (twists) of central L-values by showing the corresponding periods are non-zero. Under
the framework suggested above, this can be obtained by proving certain automorphic descent
construction is non-zero, provided that one knows enough information about the related global

parameters. In particular, from the understanding of the global packet Π̃ψ
φ′ [Mp2(A)] (see [74, 76, 63,

13]), the symplectic-metaplectic cases are naturally related to quadratic twists of L-functions (see
also §6.1). Then one can obtain certain non-vanishing results for quadratic twists of L-functions
for GL2 via a more conceptional approach (see Theorem 1.5 below) which depends on the whole
machinery of twisted automorphic descent. We hope this approach is applicable to more general
cases.

1.3. The cases in this article. In this article we consider the above mentioned problems for
r = 1. In this case, starting with an irreducible genuine cuspidal automorphic representation σ̃
of H1(A) = Mp2(A), we want to construct cuspidal representations with generic global Arthur
parameters which have non-zero Fourier-Jacobi periods with σ̃, and then study related cases of
the global GGP conjectures and the applications to L-functions.

We fix a non-trivial additive character ψ : F\A −→ C×. Without particularly notification,
the parameters and Vogan packets are associated to this character. Assume that σ̃ has a generic
global Arthur parameter φτ0 = (τ0, 1), where τ0 is an irreducible unitary cuspidal representation
GL2(A) of symplectic type. For the parameter φτ0 parametrizing an automorphic representation
σ̃ of Mp2(A), one requires

(1.6) ε(
1

2
, τ0 ⊗ η0) = 1
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for some quadratic character η0 : F×\A× −→ C× (see [13, Lemma 8.6]).
Let

(1.7) τ = τ1 � τ2 � · · ·� τt

be an irreducible generic isobaric sum automorphic representation of GLm(A). Here τi’s are distinct
irreducible unitary cuspidal automorphic representations of GLni(A) such that

∑t
i=1 ni = m. Then

τ corresponds to a generic global Arthur parameter

φτ = (τ1, 1) � (τ2, 1) � · · ·� (τt, 1),

and we also assume that each τi is of orthogonal type, i.e. the L-function L(s, τi, Sym2) has a pole
at s = 1. Moreover, we require that

Lψ(1/2, τ × σ̃) 6= 0

as suggested by the global GGP conjecture. Here the L-function Lψ(s, τ × σ̃) is defined in [26],
which also depends on the character ψ, and we always suppose the following identification of
L-functions:

(1.8) Lψ(s, τ × σ̃) = L(s, τ × τ0) = Lψ(s, φτ × φτ0).

For the given pair of representations (τ, σ̃), we have a square-integrable residual automorphic

representation Ẽτ⊗σ̃ on H(A) = Hm+1(A) generated by the residues of Eisenstein series supported

at (P̃ , τ ⊗ σ̃) (see §2.2), where P = MN is the standard parabolic subgroup of Sp2m+2 such that

the Levi subgroup M ' GLm × Sp2, and P̃ is the pull back of P to Hm+1(A) with Levi subgroup

M̃ ∼= GLm × Mp2. The representation Ẽτ⊗σ̃, which depends on ψ again, contains information
of both τ and σ̃, and serves as a source of our descent construction. For any β ∈ F× and
1 < ` < 2m− 1, a tower of automorphic descent of τ twisted by σ̃, denoted by

(1.9)
{
π`,β = DFJ

ψ`,β
(Ẽτ⊗σ̃)

}
`
,

is constructed by taking Fourier-Jacobi coefficients of depth ` (see §2.2) of the residual representa-

tion Ẽτ⊗σ̃. For each `, if the twisted descent π`,β is non-zero for some choice of β ∈ F×, it consists
of certain automorphic functions on Gm−`(A) = Sp2m−2`(A). As in previously known cases, the
descent tower {π`,β}` satisfies certain tower property (see §2.2), and the first occurrence in this
tower gives a cuspidal representation with desired properties. In particular, as indicated by the
general framework of Rankin-Selberg method (see, for example [25, 26, 20, 21, 33, 46, 47, 48]),
unfolding Eisenstein series in certain global zeta integrals will show that each irreducible cuspidal
component has a non-zero Fourier-Jacobi period with σ̃. Hence it is always crucial to determine
the first occurrence in the above descent tower.

For our purpose as described in §1.2, there are some differences between the cases that m = 2n
and m = 2n+ 1:

(Case I). Suppose that m = 2n. In this case, φτ is not relevant to a symplectic group, and hence
we do not expect an element in the descent tower {π`,β}` would be parametrized by φτ .

(Case II). Suppose that m = 2n + 1. In this case, we have φτ⊗ωτ ∈ Φ̃2(Gn), where ωτ is the
central character of τ . Under the general framework of twisted automorphic descent, one expects
that, if πn+1,β (which is a representation of Gn(A) = Sp2n(A)) in the descent tower is non-zero
for some β ∈ F×, then it will be parametrized by φτ⊗ωτ (see, for example, the local calculation
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in §3.3, in particular Proposition 3.3). Then (πn+1,β, σ̃) will be the GGP pair in the global Vogan
packet

(1.10) Π̃ψβ

φτ⊗ωτ×φτ0
[Gn(A)×H1(A)],

here ψβ(x) = ψ(βx). However, since σ̃ may not be a part of the GGP pair in the global Vogan
packet (1.10) by the uniqueness of GGP pairs, πn+1,β may not always be non-vanishing. Then, to
get definite results, we make moreover the following assumption to exclude the existence of πn+1,β:

Assumption 1.2. In (Case II), the representation σ̃ does not occur in the GGP pair (π0, σ̃0)

in the global Vogan packet Π̃ψβ

φτ⊗ωτ×φτ0
[Gn(A) × H1(A)] for the fixed positive integer n and any

β ∈ F×/(F×)2.

The point is that, in both (Case I) and (Case II) (under Assumption 1.2), we can show that
the first occurrence in the tower (1.9) is at the depth `∗ = n (for some choice of β ∈ F×). Denote
the resulting representation by

πβ = DFJ
ψn,β(Ẽτ⊗σ̃),

which turns out to be a cuspidal automorphic representation of Gm−n(A) = Sp2m−2n(A) (see §4).
Moreover, basic information about the global Arthur parameters of irreducible components of πβ
can be obtained by calculations of the local counterparts at unramified places (see §3). We state
the main results on the above construction in the following two theorems.

Theorem 1.3. Let σ̃ ∈ Π̃ψ
φτ0

[Mp2(A)] be an irreducible genuine cuspidal automorphic representa-

tion, where φτ0 = (τ0, 1) with τ0 being an irreducible unitary cuspidal representation of GL2(A) of
symplectic type. Let τ = τ1� · · ·� τt be an irreducible generic isobaric sum automorphic represen-
tation of GLm(A), where τi’s are distinct irreducible unitary cuspidal automorphic representations
of GLni(A) of orthogonal type, such that ni > 1 and

∑t
i=1 ni = m. Assume moreover that

Lψ(
1

2
, τ × σ̃) = L(

1

2
, τ × τ0) 6= 0.

Then we have:

(1) In both (Case I) and (Case II) (presuming Assumption 1.2 in (Case II)), there exists β ∈
F× such that the automorphic descent πβ = DFJ

ψn,β
(Ẽτ⊗σ̃) is a non-zero cuspidal automorphic

representation.
(2) Suppose moreover that ηβ 6= ωτ in (Case II). Here β ∈ F× is the one occurs in Part (1),

and ηβ is the quadratic character associated to the quadratic extension F (
√
β)/F . Then in

both cases, any irreducible component π of πβ has a generic global Arthur parameter, and
has a non-zero Fourier-Jacobi period with σ̃. In other words, irreducible components of the
descent πβ give answers to the reciprocal branching problem (Problem 1.1) introduced in
§1.2.

Moreover, we can determine the generic global Arthur parameter of the descent in (Case I) if
ωτ = 1, and hence deduce the following result related to the global GGP conjecture for symplectic
groups.

Theorem 1.4. Assume that ωτ = 1 in (Case I). Then any irreducible component π of πβ has a
generic global Arthur parameter

φβ = φτ⊗ηβ � 1GL1 ,
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and (π, σ̃) gives the GGP pair in the global Vogan packet Π̃ψβ

φβ×φτ0
[Sp2n(A) ×H1(A)]. Here φτ⊗ηβ

is the global Arthur parameter associated to the generic automorphic representation τ ⊗ ηβ.

We remark that in the situation of Theorem 1.4, if we assume the corresponding local GGP
conjecture in Archimedean cases (see §6), then πβ is irreducible (Proposition 6.6). More detailed
discussions can be found in §6.1.

In this article, we talk about GGP conjectures in the context of cuspidal automorphic repre-
sentations with generic global parameters. It is worthwhile to mention that in a recent paper
[15] of Gan, Gross and Prasad, they generalize the GGP conjectures to non-tempered cases. In
our construction, it is also possible to get cuspidal automorphic representations π of Sp2m−2n(A)
with non-generic Arthur parameters which have non-zero Fourier-Jacobi periods with σ̃ (see local
calculations in §3). Then, as predicted in [15], the representations (π, σ̃) should have relevant
global parameters in sense of [15, §3], and satisfy certain non-vanishing property of L-functions
(see [15, Conjecture 9.1]). One may also refer to [50] and [41] for related results.

As a byproduct of the construction in (Case I), we can also prove a result on non-vanishing of
quadratic twists of L-functions. Note that by some known results on global GGP conjecture (see,
for example, [48, Theorem 5.4] or [73] for the pair (SL2,Mp2)), we have

Lψ(
1

2
, φβ × φ0,β) 6= 0

for some β ∈ F× from the non-vanishing of Fourier-Jacobi periods stated in Part (2) of Theorem
1.3 (see §6.1 for details). Here φ0,β = φτ0⊗ηβ is the twist of φ0 by the quadratic character ηβ.
Combining with the uniqueness property in global GGP conjectures, we obtain (Theorem 6.8):

Theorem 1.5. Let τ0 be an irreducible unitary cuspidal automorphic representation of GL2(A) of
symplectic type, such that

ε(
1

2
, τ0 ⊗ η0) = 1

for some quadratic character η0 : F×\A× −→ C×. Then there exist ]Π̃ψ
φτ0

[Mp2(A)] different

quadratic characters η such that

L(
1

2
, τ0 ⊗ η) 6= 0.

The above result is not new. In [12], using analytic methods, Friedberg and Hoffstein proved a
stronger result, where the number of different quadratic twists is infinite, and the ramification of η’s
can be controlled. There are also some other related results on quadratic twists of automorphic L-
functions for GL2, see [37], [76] and [7], and Luo obtains a result in the case of GL3(AQ) twisted by
Dirichlet characters (see [54]). However, our approach is new, which is based on the understanding

of the global packet Π̃ψ
φτ0

[Mp2(A)], and the non-vanishing of certain twisted automorphic descent

constructions.
We also remark here that the existence of such quadratic twists in Theorem 1.5 played an

important role in the classification of automorphic discrete spectrum of Mp2(A) (see [74, 76], also
[63] and [13] for expository references). Its higher rank generalization seems quite difficult, and
hence one can not follow Waldspurger’s approach to get a similar description of the automorphic
discrete spectrum of Mp2n(A). In [16], Gan and Ichino found a novel way to get such a description
for Mp2n without knowing the analogous non-vanishing results of L-functions. Regarding that the
framework of twisted automorphic descent is also general, it seems possible to generalize our new
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approach to extend Theorem 1.5 to higher rank cases. We will consider this generalization in our
subsequent work.

As mentioned above, the proof of the Theorem 1.3 is based on the conventional approach of
automorphic descent method (see, for example, [33]). There are both local and global arguments.
The local arguments are mainly the calculations of certain twisted Jacquet modules, which give
both the local information for the global Arthur parameters of the descent modules, and the van-
ishing results for the tower property. The global arguments are used to show the non-vanishing of
the automorphic descent, which is fundamental to our main results. It is always the most technical
part, and involves precise study of Fourier coefficients of automorphic forms. Our arguments use
the work of Gomez, Gourevitch and Sahi ([34]), which generalizes a local result of Mœglin and
Waldspurger ([55]). Applying [34], we first show a basic non-vanishing result for the residual rep-

resentation Ẽτ⊗σ̃, namely, Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier coefficient attached
to the partition [m212] (see Proposition 5.3 and Proposition 5.8). This result serves as a starting
point of our proofs. To get the non-vanishing result for the descent, we use a result of Jiang, Liu,
and Savin on raising nilpotent orbits (see [40]) in (Case II) (see Proposition 5.6), which is similar
to the argument used in [41] to study the Fourier coefficients of Bessel type. In (Case I), however,
the orbits corresponding to [m212] can not be raised, we give a more technical proof by the roots
exchange technique (see [33]) directly (see Proposition 5.9) and a contradiction argument similar
to that used in [20].

The structure of this article is outlined in the following. We introduce the two descent construc-
tions in details in §2, and study their local and global properties in §3 and §4. The non-vanishing
results for the descent construction are proved in §5, and their applications are studied in §6.

Acknowledgement. The authors would like to thank Dihua Jiang and Freydoon Shahidi for
their interests, constant support and encouragement. They also would like to thank Wee Teck
Gan for his interest and helpful conversations. Parts of the article were written during B. Xu’s
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much for reading our manuscript carefully, as well as the very useful comments and suggestions,
in particular, those on the validity of Theorem 1.5 and Theorem 6.8 in the previous version, which
improve the exposition of the paper much.

2. The descent construction of Fourier-Jacobi type

2.1. Notation. Let F be a number field and A = AF be its ring of adeles. Let V be a symplectic
space of dimension (2m + 2) defined over F , with symplectic form denoted by 〈 , 〉. Then V has
a polarization

V = V + ⊕ V − ,
where V + is a maximal totally isotropic subspace of V with dimension (m + 1). Fix a maximal
flag

F : 0 ⊂ V +
1 ⊂ V +

2 ⊂ · · · ⊂ V +
m+1 = V +

in V +, and choose a basis {e1, . . . , em+1} of V + over F such that

V +
i = Span{e1, . . . , ei}

for 1 ≤ i ≤ m + 1. Let {e−1, . . . , e−(m+1)} be a basis for V −, which is dual to {e1, . . . , em+1}, i.e.,
〈ei, e−j〉 = δi,j for 1 ≤ i, j ≤ m + 1. For simplicity, we denote G = Sp(V ), the symplectic group
over F associated to V . Note that with the above choice of basis, the form of V is associated with
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the skew-symmetric matrix J2m+2 =

(
wm+1

−wm+1

)
, where wi is an (i× i)-matrix with 1’s on

the anti-diagonal and zero’s elsewhere.
We fix a Borel subgroup B0 = T0 ·U0 of G consisting of upper-triangular matrices, and call

a parabolic subgroup to be standard if it contains B0. For 1 ≤ k ≤ 2m, we let Qk be the
maximal standard parabolic subgroup of G which stabilizes the partial flag 0 ⊂ V +

k . It has a Levi
decomposition Qk = Lk · Uk with Levi subgroup Lk isomorphic to GLk × Sp(V (k)). Here V (k) is
the subspace of V which sits into the decomposition

V = V +
k ⊕ V

(k) ⊕ V −k ,
where V −k = Span{e−k, . . . , e−1}. Hence V (k) = Span{ek+1, . . . , em+1, e−(m+1), . . . , e−(k+1)} under

the above choice of basis. It is clear that the symplectic space V (k) also has a polar decomposition

V (k) = V (k),+ ⊕ V (k),−,

where V (k),+ = Span{ek+1, . . . , em+1} and V (k),− = Span{e−(m+1), . . . , e−(k+1)}. For simplicity, we
will denote P = Qm, M = Lm and U = Um.

For 1 ≤ ` ≤ m, let P` be the standard parabolic subgroup of G which stabilizes the partial flag

F` : 0 ⊂ V +
1 ⊂ V +

2 ⊂ · · · ⊂ V +
` .

It has a Levi decomposition P` = M` ·N` with Levi subgroup M` ' GL`1×Sp(V (`)). The unipotent
subgroup N` consists of elements of the form

u = u`(z, x, y) =

z z · x y
I2m−2`+2 x′

z∗

 ,

where z ∈ Z`, x ∈ Mat`×(2m−2`+2), x
′ = J2m−2`+2

txw`, and y ∈ Sym`×`. Here Z` is the maximal
upper-triangular unipotent subgroup of GL`, and Sym`×` is the set of (`× `)-symmetric matrices.
Define a homomorphism χ` : N` −→ Ga by

(2.1) χ`(u) =
`+1∑
i=2

〈u · ei, e−(i−1)〉.

Here we view ei’s as column vectors, and u · ei is the multiplication of matrices.

Let H be the metaplectic double cover of G, i.e. H = Mp(V ). We also let P̃ be the parabolic
subgroup of H which is the inverse image of P ⊂ G. Note that we have the Levi decomposition

P̃ = M̃ · U , where M̃ ' GLm ×Mp(V (m)) (see [17, §2.3]).
We recall some notation for the group structure of metaplectic groups. Following [65], at each

local place v, one may identify Mp(V )(Fv) = Sp(V )(Fv)× {±1} with multiplication given by

(h1, ε1) · (h2, ε2) = (h1h2, ε1ε2c(h1, h2)) ,

here εi ∈ {±1} (i = 1, 2) and c( , ) ∈ {±1} is the Rao cocycle defined explicitly in [65]. The
Rao cocycle depends on the choice of symplectic basis of V , and we inherit the choice at the
beginning of this subsection. The properties of the Rao cocycle are outlined in [52], [45] and [72].
In particular, let P0 be the Siegel parabolic subgroup of Sp(V )(Fv) fixing V +, then one has

(2.2) c(p, h) = c(h, p) = 1,

and also

(2.3) (p, ε′) · (h, ε) · (p, ε′)−1 = (php−1, ε)
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for any p ∈ P0(Fv), h ∈ Sp(V )(Fv), and ε, ε′ ∈ {±1}. With the explicit descriptions of local
double covers, the global double cover Mp(V )(A) of Sp(V )(A) is defined to be compatible with
the local double covers at all places (see [45, §2.2]).

In this article, without particular specification, we will always identify h ∈ Sp(V ) with (h, 1) ∈
Mp(V ). Note that if B0 = T0 ·U0 is a Borel subgroup of Sp(V ), then the double covering splits
uniquely over U0(Fv) for each place v of F . It follows that in the adelic setting, there is a unique
splitting of the double cover over U0(A), and more generally over the adelic group of the unipotent
radical of any parabolic subgroup of Sp(V ). Hence sometimes we do not differ unipotent subgroups
in Sp(V ) and Mp(V ) for simplicity.

We will need some notation for parabolic subgroups in the general linear group GLN in §3
and §4. For positive integers n1, . . . , nt with n1 + · · · + nt = N , we denote Pn1,...,nt to be the
upper-block-triangular parabolic subgroup of GLN with Levi subgroup GLn1 × · · ·GLnt .

Finally we recall some notation on Weil representations. Fix a non-trivial additive character
ψ : F\A −→ C×. For any α ∈ F , let ψα : F\A −→ C× be the translation of ψ by α, i.e.
ψα(·) = ψ(α ·). For a symplectic space (W, 〈 , 〉) of dimension 2r over F with polarization W =
W+ ⊕W−, we realize the Heisenberg group HW (or H2r+1 if we just need to emphasize the
dimension) corresponding to

(
W, 2〈 , 〉

)
as HW = W ⊕ F , with multiplication given by

(w1; t1) · (w2; t2) =
(
w1 + w2; t1 + t2 + 〈w1, w2〉

)
, (wi ∈W, ti ∈ F, i = 1, 2).

We will also denote the elements in HW by

(2.4) (w+, w−; t)

with w± ∈W± and t ∈ F if we need to specify the vectors corresponding to the polarization. For

any α ∈ F×, we denote by ω
(r)
ψα to be the (global) Weil representation of HW(A) o Mp(W)(A)

(see, for example, [33, §1.2]) on the Schwartz space S(W+(A)) ' S(Ar) with respect to ψα (the
Schrödinger model). Note that the center of the Heisenberg group acts by

ω
(r)
ψα((0; t))ϕ = ψ(αt)ϕ, ϕ ∈ S(W+(A)).

We define the corresponding theta series by

θϕψα(h · h̃) =
∑

ξ∈W+(F )

ω
(r)
ψα(h · h̃)ϕ(ξ),

here h ∈ HW(A) and h̃ ∈ Mp(W)(A). If α = 1, we will denote ω
(r)

ψ1 by ω
(r)
ψ , and θϕψ1(h · h̃) by

θϕψ(h · h̃).

2.2. The twisted automorphic descent of Fourier-Jacobi type. In this section, we describe
the twisted automorphic descent construction we will use in this article. It is given by a family of
Fourier-Jacobi coefficients.

For 0 < ` < m+ 1, define a character

ψ` : N`(F )\N`(A) −→ C×

by ψ` = ψ ◦ χ` (see (2.1)). In matrix form, we have

(2.5) ψ`(u`(z, x, y)) = ψZ`(z)ψ(x`,1) .

We extend ψ` trivially to N`+1(A). Note that N`\N`+1 is isomorphic to the Heisenberg group
HV (`+1) . We will fix such an isomorphism

(2.6) j` : N`\N`+1 ' HV (`+1) ,
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under which the center of HV (`+1) corresponds to the subgroup C` ⊂ N`+1 consisting of elements
of the form

(2.7) c`(t) = diag

I`,
1 t

I2m−2`
1

 , I`

 .

Let Π̃ be an irreducible genuine automorphic representation of H(A). For an automorphic form

f ∈ Π̃ and β ∈ F×, we define the depth-` Fourier-Jacobi coefficient of f to be (see also [33, §3.2])

(2.8) FJ ϕ
ψ`,β

(f)(h) =

∫
N`+1(F )\N`+1(A)

f(uh̃)ψ−1` (u)θϕ
ψ−β

(j`(u) · h̃) du ,

where ϕ ∈ S(V (`+1),+) ' S(Am−`), ω
(m−`)
ψ−β

is the global Weil representation of HV (`+1)(A) o
Mp(V (`+1))(A), θϕ

ψ−β
is the corresponding theta series, and h̃ is a projection pre-image of h in

Mp(V (`+1))(A). It is easy to see that FJ ϕ
ψ`,β

(f)(h) is an automorphic function on Gm−`(A) =

Sp(V (`+1))(A).
We define

(2.9) DFJ
ψ`,β

(Π̃) = Gm−`(A)− Span

{
FJ ϕ

ψ`,β
(f)

∣∣∣∣
Gm−`(A)

∣∣∣∣ f ∈ Π̃, ϕ ∈ S(Am−`)

}
.

Let the depth ` vary, we obtain a tower of automorphic modules of Gm−`(A), and we call it

the automorphic descent tower of Π̃ of Fourier-Jacobi type. In particular, if β = 1, we denote
FJ ϕ

ψ`
(f) = FJ ϕ

ψ`,1
(f) and also

DFJ
ψ`

(Π̃) = DFJ
ψ`,1

(Π̃).

For our purpose, we will consider a descent tower for some specific Π̃. Let

(2.10) τ = τ1 � τ2 � · · ·� τt

be an irreducible generic isobaric sum automorphic representation of GLm(A), and σ̃ ∈ Π̃ψ
φτ0

[H1(A)]

be an irreducible unitary cuspidal automorphic representation. Here τ0 is an irreducible unitary
cuspidal automorphic representation of GL2(A) of symplectic type, and τi’s are distinct irreducible
unitary cuspidal automorphic representations of GLni(A) such that

∑t
i=1 ni = m. We assume that

each τi is of orthogonal type, i.e. the symmetric square L-function L(s, τi, Sym2) has a pole at
s = 1. Moreover, we assume that

Lψ(
1

2
, τ × σ̃) 6= 0,

which is the starting point of the whole construction.
Recall that H is the global double cover of G = Sp(V ), with a maximal parabolic subgroup

P̃ = M̃ · U . For s ∈ C and an automorphic function

Φτ⊗σ̃ ∈ A(M̃(F )U(A)\H(A))µψ(τ⊗σ̃) ,

following [56, §II.1], one defines λsΦτ⊗σ̃ to be (λs ◦mP )Φτ⊗σ̃, where λs ∈ XG
M ' C (see [56, §I.1]

for the definition of XG
M and the map mP ), and defines the corresponding Eisenstein series

(2.11) Ẽ(s, h̃,Φτ⊗σ̃) =
∑

γ∈P (F )\G(F )

λsΦτ⊗σ̃(γh̃)
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on H(A), which converges absolutely for Re(s) � 0 and has a meromorphic continuation to the
whole complex plane ([56, §IV]). Here µψ =

∏
v µψv is a (global) genuine character, where the

definition of µψv will be given in §3.1 below.
We have assumed that L(s, τi, Sym2) has a pole at s = 1 for all i = 1, . . . , t and Lψ(1/2, τ×σ̃) 6= 0.

Then by calculating the constant term as in [56] (see also the arguments in [20, §3.2] and [33, §2.5

– §2.9]), the Eisenstein series Ẽ(s, h̃,Φτ⊗σ̃) has a pole at s = 1/2 of order t. We note here that to

show the existence of the pole at s = 1/2, we just need to use partial L-functions. Let Ẽτ⊗σ̃ denote

the automorphic representation of H(A) generated by the iterated residues Ress= 1
2
Ẽ(s, h̃,Φτ⊗σ̃)

for all

Φτ⊗σ̃ ∈ A(M̃(F )U(A)\H(A))µψ(τ⊗σ̃) .

It is square integrable by the L2-criterion in [56]. We mention that the residual representation

Ẽτ⊗σ̃ depends on the additive character ψ, and we do not include ψ in the notation for simplicity.

Taking Π̃ = Ẽτ⊗σ̃ in the above descent construction (2.9), we have a family of automorphic
Gm−`(A)-modules:

(2.12)
{
π`,β = DFJ

ψ`,β
(Ẽτ⊗σ̃)

}
`
.

It is expected that the tower {π`,β}` satisfies certain tower property when the depth 0 < ` < m+ 1
varies, i.e., there exists 0 < `∗ < m+ 1 such that π`∗,β 6= 0 for some β ∈ F×, and π`,β = 0 for any

`∗ < ` < m + 1 and any β ∈ F×. In particular, at the first occurrence index `∗ = `∗(Ẽτ⊗σ̃), the
Gm−`∗(A)-module

π`∗,β = DFJ
ψ`∗ ,β

(Ẽτ⊗σ̃)

is expected to consist of cuspidal automorphic functions FJ ϕ
ψ`∗ ,β

(f)(·). We call π`∗,β the Fourier-
Jacobi type automorphic descent of τ , twisted by σ̃, or, σ̃-twisted Fourier-Jacobi type automorphic
descent of τ , and call Gm−`∗ the target group of this descent construction.

The affect of β ∈ F× in the module

DFJ
ψ`,β

(Ẽτ⊗σ̃)

can also be interpreted in another way. As in [20, §6], for β ∈ F×, let

d(β) =

(
β · Im+1

Im+1

)
∈ GSp2m+2(F )

be a diagonal similitude element. The conjugation hβ = d(β) · h · d(β)−1 ∈ Sp2m+2(F ) gives an
outer automorphism of Sp2m+2(A), which has a unique lift to Mp2m+2(A) (see [58, Page 36]). We

also denote the lift by h̃ 7−→ h̃β. Define the twist by d(β) representation Π̃β of Π̃ by

Π̃β(h̃) = Π̃
(
h̃β
)
.

Then one has

Ẽβτ⊗σ̃ = Ẽτ⊗σ̃β ,

where σ̃β is a similar twist of σ̃ by

(
β

1

)
. Note that (see [24, §3], [13, §8] and [76]) if the

representation σ̃ lies in the packet Π̃ψ
φτ0

[Mp2(A)], then we have

σ̃β ∈ Π̃ψβ

φτ0
[Mp2(A)] = Π̃ψ

φτ0⊗ηβ
[Mp2(A)],
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and also the relation of L-functions

Lψ(s, σ̃β) = Lψβ(s, σ̃) = L(s, τ0 ⊗ ηβ).

In particular, if σ̃ is ψ-generic, then σ̃β is ψβ-generic. Now by the construction of Fourier-Jacobi
coefficients (2.8), after changing of variables, we have the following equivalence ofGm−`(A)-modules

(2.13) DFJ
ψ`,β

(Ẽτ⊗σ̃) ' DFJ
ψ`

(Ẽβτ⊗σ̃) ' DFJ
ψ`

(Ẽτ⊗σ̃β) .

In this article, we will consider both the cases m = 2n (Case I) and m = 2n + 1 (Case II).
Moreover, in (Case II) we will restrict ourselves to the pair (τ, σ̃) that satisfies Assumption 1.2.
We will show that in both cases the first occurrence index `∗ = n (see §4–§5), and the target group
is Gn(A) = Sp2n(A) in (Case I), and is Gn+1(A) = Sp2n+2(A) in (Case II), as stated in Theorem
1.3.

2.3. Twisted automorphic descent and Fourier-Jacobi periods. As indicated in [20] and
[48], the twisted automorphic descent construction is naturally related to GGP periods (which are
Fourier-Jacobi periods in our case).

For completeness, we introduce the Fourier-Jacobi periods of automorphic forms in symplectic-
metaplectic cases. We set some more general notation at first. Let κ be a positive integer. As in
§2.2, for the group Gκ = Sp2κ with 0 < r < κ, we have a series of parabolic subgroups{

P (κ)
r = M (κ)

r N (κ)
r

}
0<r<κ

with M
(κ)
r ' GLr1 ×Gκ−r, and also a canonical character

ψ(κ)
r : N (κ)

r (F )\N (κ)
r (A) −→ C×.

In §2.2, we have taken κ = m+ 1 and use the notation Mr and Nr without upper-scripts.
Recall that we have defined the Fourier-Jacobi coefficients of automorphic forms on Hm+1(A) =

Mp2m+2(A) in §2.2. When f̃ is an automorphic form on Hκ(A) = Mp2κ(A), the definition of

its Fourier-Jacobi coefficients is the same as (2.8), and we will use notation FJ ϕ

ψ
(κ)
r ,α

(f̃)(·) (here

ϕ ∈ S(Aκ−r−1)) to indicate the size of the group we are considering. It is an automorphic form on
Gκ−r−1(A) = Sp2(κ−r−1)(A). On the other hand, for an automorphic form f on Gκ(F )\Gκ(A) and

α ∈ F×, similarly one can define the Fourier-Jacobi coefficient

(2.14) FJ ϕ

ψ
(κ)
r ,α

(f)(h̃) =

∫
N

(κ)
r+1(F )\N(κ)

r+1(A)
f(uh)ψ(κ)

r

−1
(v)θϕψ−α(j(κ)r (u) · h̃) du .

Here j
(κ)
r denotes the isomorphism N

(κ)
r \N (κ)

r+1 ' H2(κ−r)−1 similar to (2.6), ϕ ∈ S(Aκ−r−1) is

the Schwartz function in the Schrödinger model of the global Weil representation ω
(κ−r−1)
ψ−α of

H2(κ−r)−1(A) o Mp2(κ−r−1)(A), θϕψ−α is the corresponding theta series, and h is the projection

image of h̃ in Mp2(κ−r−1)(A). By construction, FJ ϕ

ψ
(κ)
r ,α

(f)(·) is an automorphic function on

Hκ−r−1(A) = Mp2(κ−r−1)(A).
Let π be an irreducible automorphic representation of Gκ(A), and σ̃ be an irreducible automor-

phic representation of Ht(A). For φπ ∈ π and φσ̃ ∈ σ̃, we define the Fourier-Jacobi period to be
the inner product

(2.15) P̃FJ
ψ,α,ϕt(φπ,φσ̃) =

∫
Gt(F )\Gt(A)

FJ ϕt

ψ
(κ)
κ−t−1,α

(φπ)(g̃)φσ̃(g̃) dg̃, (ϕt ∈ S(At))
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if t < κ; and

(2.16) PFJ
ψ,α,ϕκ(φσ̃,φπ) =

∫
Gκ(F )\Gκ(A)

FJ ϕκ

ψ
(t)
t−κ−1,α

(φσ̃)(g)φπ(g) dg, (ϕκ ∈ S(Aκ))

if κ < t. There will be no Fourier-Jacobi coefficient involved if κ = t. Note that in (2.15), same as
before, g̃ denotes any pre-image of g ∈ Gt(A) in Ht(A). The convergence of the above integrals can
be guaranteed if one of the automorphic forms involved is cuspidal. We say that two automorphic
representations π and σ̃ have a non-zero Fourier-Jacobi period if (2.15) is non-zero for some choice

of data. If α = 1, we also denote (2.15) and (2.16) by P̃FJ
ψ,ϕt

(φπ,φσ̃) and PFJ
ψ,ϕκ

(φσ̃,φπ), respectively.
In our case, let π be an irreducible cuspidal automorphic representation of Gm−`(A) (0 < ` < m).

For φπ ∈ π, we consider the Fourier-Jacobi period

(2.17) PFJ
ψ,α,ϕm−`

(Ẽ(s, ·,Φτ⊗σ̃),φπ) =

∫
Gm−`(F )\Gm−`(A)

FJ ϕm−`

ψ
(m+1)
` ,α

(Ẽ(s, ·,Φτ⊗σ̃))(g)φπ(g) dg,

where Ẽ(s, ·,Φτ⊗σ̃) is the Eisenstein series on H(A) defined in (2.11). Unfolding the Eisenstein
series as in [20] and [23], one can see that the Fourier-Jacobi period

P̃FJ
ψ,α,ϕ1

(φπ,φσ̃) =

∫
G1(F )\G1(A)

FJ ϕ1

ψ
(m−`)
m−`−2,α

(φπ)(g̃)φσ̃(g̃) dg̃ .

occurs as an inner integral of (2.17), where φσ̃ is an automorphic form on H1(A) which comes from
the section Φτ⊗σ̃, and ϕ1 ∈ S(A) is a Schwartz function which comes from ϕm−` in (2.17) (see, for
example, [20, Proposition 6.6]). Moreover, if we let s = 1/2 and take residues of the Eisenstein
series, one can go further to get a reciprocity formula (see [48, Theorem 3.2])

(2.18) PFJ
ψ,α,ϕm−`

(Ress= 1
2
Ẽ(s, ·,Φτ⊗σ̃),φπ) = Cτ,σ̃,π · P̃FJ

ψ,α,ϕ1
(φπ,φσ̃)

relating the two Fourier-Jacobi periods, where Cτ,σ̃,π is a constant determined by certain local
integrals and residues of certain L-functions. In particular, one obtains:

Proposition 2.1. Suppose that π`,β = DFJ
ψ`,β

(Ẽτ⊗σ̃) is non-vanishing and cuspidal, and let π be
any of its irreducible summand. Then (π, σ̃) has a non-zero Fourier-Jacobi period.

Proof. The proof is a direct application of (2.18). Let π be any irreducible summand of π`,β,
which is assumed to be non-vanishing and cuspidal. By construction, there exists φπ ∈ π, Φτ⊗σ̃ ∈
A(M̃(F )U(A)\H(A))µψ(τ⊗σ̃), and ϕm−` ∈ S(Am−`), such that the Fourier-Jacobi period

PFJ
ψ,β,ϕm−`

(Ress= 1
2
Ẽ(s, ·,Φτ⊗σ̃),φπ) 6= 0.

Then the right hand side of (2.18) must also be non-zero, which implies that

P̃FJ
ψ,β,ϕ1

(φπ,φσ̃) 6= 0

for some choice of data, as desired. �

3. Local aspects of the descent

In this section, we study the local counterparts of the automorphic descent discussed in §2.2,
which are certain twisted Jacquet modules. We will calculate these Jacquet modules at unramified
places. These local results will be used in the study of the global properties of the automorphic
descents.
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3.1. The twisted Jacquet modules. In this section, we let k be a p-adic field of characteristic
0, and fix a non-trivial additive character ψ : k −→ C×. For 1 ≤ ` ≤ m, we define the character
ψ` on N`(k) similar to (2.5) in the global setting.

We describe the twisted Jacquet modules we are considering. Let α ∈ k×. For an irreducible

admissible genuine representation Π̃ of H(k), one defines the Jacquet module of Fourier-Jacobi
type (of depth `) to be

(3.1) DFJ,loc
ψ`,α

(Π̃) := JN`+1,ψ`

(
Π̃⊗ ω(m−`)

ψ−α

)
,

the twisted Jacquet module of Π̃⊗ω(m−`)
ψ−α with respect to the unipotent subgroup N`+1(k) and the

character ψ` (which is extended trivially to N`+1(k)). Here ω
(m−`)
ψ−α is the local Weil representation

of HV (`+1)(k) o Mp(V (`+1))(k) corresponding to the additive character ψ−α with α ∈ k× (see §2.1

and [33, §1.2]), and N`+1(k) acts on the local Weil representation ω
(m−`)
ψ−α via the isomorphism

j` : N`(k)\N`+1(k) ' HV (`+1)(k). It is clear that DFJ,loc
ψ`,α

(Π̃) is a Gm−`(k)-module.

One may also write the twisted Jacquet module JN`+1,ψ`(Π̃ ⊗ ω
(m−`)
ψ−α ) in another form (see [33,

Chapter 6]). Recall that we have defined the subgroup (see §2.2)

C` = {c`(t) := j`
−1((0; t)) | t ∈ k} ⊂ N`+1,

i.e. the pre-image of the center of the Heisenberg groupHV (`+1) under j`. We denote N0
`+1 = N` ·C`.

We define a character ψ0
`,α : N0

`+1(k) −→ C× by

(3.2) ψ0
`,α(u` · c`(t)) = ψ`(u`) · ψ(αt) .

Note that N0
`+1 is the unipotent subgroup V2(O`) corresponding to the nilpotent orbit O` in the

Lie algebra of H attached to the symplectic partition [(2` + 2)12m−2`] in the sense of [18]. Then
we have

(3.3) JN`+1,ψ`

(
Π̃⊗ ω(m−`)

ψ−α

)
' JH

V (`+1)/C`

(
JN0

`+1,ψ
0
`,α

(Π̃)⊗ ω(m−`)
ψ−α

)
.

We note that c`(t) ∈ C`(k) acts through ω
(m−`)
ψ−α by ψ(−αt).

As in [42] and [41], we will calculate the above twisted Jacquet module using formulae in [33]
in unramified situation. Generally, we will consider the parabolically induced representation

Ind
H(k)

P̃ (k)
µψ(τ |·|1/2 ⊗ σ̃) ,

where τ is an irreducible generic unramified unitary representation of GLm(k) of orthogonal type,
σ̃ is an irreducible generic unramified unitary genuine representation of Mp2(k), and ψ is also
unramified. Our restriction on τ will give some symmetry to its unramified data. Here, for
a ∈ GLm(k) and g ∈ SL2(k),

(3.4) µψ(τ ⊗ σ̃)

a g
a∗

 , ε

 = ε (det(a), x(g))k γψ(det(a))τ(a)⊗ σ̃(g, ε) ,

where ( , )k is the Hilbert symbol over k, x(·) ∈ k×/(k×)2 is the x-function (on SL2(k)), which
comes from the definition of the Rao cocycle on Mp2(k) (see [65]), and γψ is the Weil index
associated with ψ.

We will fix
σ̃ = Ind

Mp2(k)

B̃SL2
(k)
µψξ
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in our calculations, where ξ is an unramified character of k×, and µψ is defined similarly to (3.4).
In the remaining parts of this section, we also keep some other notation which are used in [33,
Chapter 6].

3.2. The local unramified calculation of Jacquet modules: m = 2n. We first consider
the case that m = 2n. We treat the cases that the central character ωτ is trivial or non-trivial
separately.
(1) The trivial central character case. We can write τ as a fully induced representation from
the Borel subgroup:

(3.5) τ = Ind
GL2n(k)
BGL2n

(k)µ1 ⊗ · · · ⊗ µn ⊗ µ−1n ⊗ · · · ⊗ µ−11 =: µ1 × · · · × µn × µ−1n × · · · × µ−11 ,

where µi’s are unramified characters of k×. Let π̃τ⊗σ̃ be the unramified constituent of the induced

representation Ind
H(k)

P̃ (k)
µψ(τ |·|1/2 ⊗ σ̃), and we want to study the unramified constituents of the

twisted Jacquet module

JN`+1,ψ`

(
π̃τ⊗σ̃ ⊗ ω(2n−`)

ψ−α

)
' JH

V (`+1)/C`

(
JN0

`+1,ψ
0
`,α

(π̃τ⊗σ̃)⊗ ω(2n−`)
ψ−α

)
.

Proposition 3.1. Let τ be as in (3.5), then the twisted Jacquet module JN`+1,ψ`(π̃τ⊗σ̃⊗ω
(2n−`)
ψ−α ) = 0

for all n+1 ≤ ` ≤ 2n. And when ` = n, JN`+1,ψ`(π̃τ⊗σ̃⊗ω
(2n−`)
ψ−α ) has a unique unramified constituent

which is a subquotient of

(3.6) Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn) .

Proof. We apply [33, Theorem 6.1] to calculate JN0
`+1,ψ

0
`,α

(π̃τ⊗σ̃) first, and we also follow the same

notation there. Note that the result in [33, Theorem 6.1] also holds with slight modification for the
character ψ0

`,α (which can be checked directly from the proofs of [33, Proposition 6.1, Proposition
6.2 and Proposition 6.3]), whereas [33, Theorem 6.1] is stated for α = 1.

By conjugation of certain Weyl element, it suffices to consider the unramified constituent of the

induced representation Ind
H(k)

P̃ (k)
µψ(τ ′ ⊗ σ̃) instead of π̃τ⊗σ̃, here

τ ′ = Ind
GL2n(k)
P2,...,2(k)

µ1(detGL2)⊗ · · · ⊗ µn(detGL2) .

Note that the derivative (see [6] and [33, §5] for definition) τ ′(`) of τ ′ vanishes for ` ≥ n+1, and τ ′(`)
vanishes for ` ≥ n. Now applying [33, Theorem 6.1 (i)] with j = 2n (and hence one has t = ` in [33,

(6.9)]), one can see that the corresponding twisted Jacquet module JN0
`+1,ψ

0
`,α

(Ind
H(k)

P̃ (k)
µψ(τ ′ ⊗ σ̃))

vanishes for all n+ 1 ≤ ` ≤ 2n.
When ` = n, by [33, (6.9)] we have

JN0
n+1,ψ

0
n,α

(
Ind

H(k)

P̃ (k)
µψ(τ ′ ⊗ σ̃)

)
' ind

Mp(V (n+1))(k)nH
V (n+1) (k)

P̃ ′n(k)
µψ|det(·)|

1−n
2 τ ′

(n) ⊗ JN0
1 ,ψ

0
0,α

(σ̃) ,

here P ′n is the same as being defined in [33, (6.4)]. Note that JN0
1 ,ψ

0
0,α

(σ̃) ' 1 since σ̃ is generic,

then we have

JN0
n+1,ψ

0
n,α

(
Ind

H(k)

P̃ (k)
µψ(τ ′ ⊗ σ̃)

)
' ind

Mp(V (n+1))(k)nH
V (n+1) (k)

P̃ ′n(k)
µψ|det(·)|

1−n
2 τ ′

(n)
.
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To get (3.6), we will use [33, Proposition 6.6] in our situation. By [33, (6.11)] and also the
calculations in [33, Page 130], we see that

JH
V (`+1)/C`

(
ind

Mp(V (n+1))(k)nH
V (n+1) (k)

P̃ ′n(k)
µψ|det(·)|

1−n
2 τ ′

(n) ⊗ ω(2n−`)
ψ−α

)
' Ind

Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn) .

Note that we have used the fact that |det(·)| 1−n2 τ ′(n) ' Ind
GLn(k)
BGLn (k)

µ1 ⊗ · · · ⊗ µn (see [33, (5.34)]),

and the quadratic character ηα comes from the Weil representation ω
(2n−`)
ψ−α . This finishes the proof

of this proposition. �

(2) The non-trivial central character case. In this case, we let λ0 be the unique non-trivial
unramified quadratic character of k×, and let

(3.7) τ = µ1 × · · · × µn−1 × 1× λ0 × µ−1n−1 × · · · × µ−11 ,

where µi’s are unramified characters of k× (recall that τ is of orthogonal type). We assume that
the residue characteristic of k is odd, this will not interfere the global results we want to obtain
in §4 later. Following the notation in [33], we write λ0(x) = (x, ε)k with ( , )k being the Hilbert

symbol over k, and ε ∈ k× being a non-square. Then we denote ω
(1),+
ψε the unramified piece of

the Weil representation of Mp2(k) with respect to ψε, which is a subrepresentation of the induced

representation Ind
Mp2(k)

B̃SL2
(k)
µψ(λ0|·|1/2).

Proposition 3.2. Let τ be as in (3.7), and take ` = n, then each unramified constituent of

JNn+1,ψn(π̃τ⊗σ̃ ⊗ ω(n)

ψ−α) is a subquotient of

(3.8)

Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn−1 ⊗ λ0)

⊕ δ[ε],[α] · Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn−1 ⊗ ξ)

⊕ δ[ε],[α] · Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn−1 ⊗ |·|
1
2 )

⊕ δ[ε],[α] ·

(
n−1⊕
i=1

Ind
Sp2n(k)

P
Sp2n
1,··· ,1,2,1···1(k)

ηα(µ1 ⊗ · · · ⊗ µi−1 ⊗ µi(detGL2)⊗ µi+1 · · · ⊗ µn−1)

)
.

Here δ[ε],[α] = 1 if [ε] = [α] ∈ k×/(k×)2, and δ[ε],[α] = 0 otherwise.

Proof. By conjugation of certain Weyl element, and note that we are considering the unrami-
fied constituents, it suffices to consider the unramified constituent of the induced representation

Ind
H(k)

Q̃2n−2(k)
µψ(τ ′1 ⊗ σ̃1), here

τ ′1 = Ind
GL2n−2(k)
P2,...,2(k)

µ1(detGL2)⊗ · · · ⊗ µn−1(detGL2) ,

and σ̃1 = Ind
Mp6(k)

Q̃
Sp6
2 (k)

µψ(τ2⊗ω(1),+
ψε ), with τ2 = ξ× |·|1/2 being an induced representation of GL2(k).

Note that τ ′1
(`) = 0 for ` ≥ n.
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When ` = n, applying [33, Theorem 6.1 (1)] with j = 2n − 2 (hence t = n, n − 1, n − 2 in [33,
(6.9)]), we have

(3.9)

JN0
n+1,ψ

0
n,α

(
Ind

H(k)

Q̃2n−2(k)
µψ(τ ′1 ⊗ σ̃1)

)
' ind

Mp(V (n+1))(k)nH
V (n+1) (k)

P̃ ′n−1(k)
µψ|det(·)|

2−n
2 τ ′

(n−1) ⊗ JN ′20,ψ0
1,α

(σ̃1)

⊕ ind
Mp(V (n+1))(k)nH

V (n+1) (k)

P̃ ′n(k)
µψ|det(·)|

3−n
2 τ ′

(n−2) ⊗ JN ′30,ψ0
2,α

(σ̃1) .

To calculate the first summand in (3.9), we apply [33, Theorem 6.1] again to calculate the
Jacquet module JN ′2

0,ψ0
1,α

(σ̃1), here ` = 1 and j = 2 in [33, (6.9)] (hence t = 1 in [33, (6.9)]). It

follows that

JN ′2
0,ψ0

1,α
(σ̃1) ' ind

Mp(V
(2)
6 )(k)nH

V
(2)
6

(k)

P̃ ′1(k)
µψτ

(1)
2 ⊗ JN ′10,ψ0

0,α

(
ω
(1),+
ψε

)
⊕ JC1,ψα

(
ind

Mp(V
(2)
6 )(k)nH

V
(2)
6

(k)

P̃ ′′1 (k)
ω
(1),+
ψε

)
,

here V6 is a symplectic space of dimension 6 (hence V
(2)
6 is a subspace of dimension 2), and P ′′1 is

the same as defined in [33, (6.8)]. Note also that JN ′1
0,ψ0

0,α
(ω

(1),+
ψε ) = 1 if [α] = [ε] ∈ k×/(k×)2, and

is zero otherwise. Then by [33, Proposition 6.6 and Proposition 6.7] one sees that each unramified

constituent of JNn+1,ψn(π̃τ⊗σ̃ ⊗ ω(n)

ψ−α) is a subquotient of

δ[ε],[α] · Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn−1 ⊗ 1)⊕ δ[ε],[α] · Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn−1 ⊗ ξ)

⊕ Ind
Sp2n(k)
BSp2n

(k)ηα

(
µ1 ⊗ · · · ⊗ µn−1 ⊗

(
ω
(1),+
ψε ⊗ ω(1)

ψ−1

))
,

where ω
(1)

ψ−1 is the Weil representation of Mp2(k)nH3(k) with respect to ψ−1. To get the final result

of this proposition, we compute the Jacquet module of ω
(1),+
ψε ⊗ ω(1)

ψ−1 along the upper-triangular

maximal unipotent subgroup of SL2(k) as in the proof of [33, Theorem 6.4], which is λ0|·|.
To calculate the second summand in (3.9), we also apply [33, Theorem 6.1] to calculate the

Jacquet module JN ′3
0,ψ0

2,α
(σ̃1), here ` = 2 and j = 2 in [33, (6.9)] (hence t = 2 in [33, (6.9)]). It

follows that

JN ′3
0,ψ0

2,α
(σ̃1) ' JN ′1

0,ψ0
0,α

(
ω
(1),+
ψε

)
.

Then as explained in the previous paragraph, we get the last part of (3.8).
This finishes the proof of the proposition. �

3.3. The local unramified calculation of Jacquet modules: m = 2n + 1. Now we consider
the case that m = 2n+ 1. In this case, we take

(3.10) τ = µ1 × · · · × µn × λ0 × µ−1n × · · · × µ−11 ,

with µi’s and λ0 being unramified characters of k× and in addition λ0 being quadratic. We also

denote π̃τ⊗σ̃ to be the unramified constituent of the induced representation Ind
H(k)

P̃ (k)
µψ(τ |·|1/2⊗ σ̃).

As before, we write λ0(x) = (x, ε)k with ( , )k being the Hilbert symbol over k, and ε ∈ k×. Note
that we have ε = 1 if λ0 = 1. We also assume that the residue characteristic of k is odd.
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Proposition 3.3. Let τ be as in (3.10), then the twisted Jacquet module

JN`+1,ψ`(π̃τ⊗σ̃ ⊗ ω
(2n+1−`)
ψ−α ) = 0

for all n+2 ≤ ` ≤ 2n+1. When ` = n+1, each unramified constituent of JNn+2,ψn+1(π̃τ⊗σ̃⊗ω
(n)

ψ−α)
is a subquotient of

(3.11) δ[ε],[α] · Ind
Sp2n(k)
BSp2n

(k)ηα(µ1 ⊗ · · · ⊗ µn) .

And when ` = n, each unramified constituent of JNn+1,ψn(π̃τ⊗σ̃ ⊗ ω(n+1)

ψ−α ) is a subquotient of

(3.12)

Ind
Sp2n+2(k)

BSp2n+2
(k)ηα(µ1 ⊗ · · · ⊗ µn ⊗ λ0)

⊕ δ[ε],[α] · Ind
Sp2n+2(k)

BSp2n+2
(k)ηα(µ1 ⊗ · · · ⊗ µn ⊗ ξ)

⊕ δ[ε],[α] ·

(
n⊕
i=1

Ind
Sp2n+2(k)

P
Sp2n+2
1,··· ,1,2,1···1(k)

ηα(µ1 ⊗ · · · ⊗ µi−1 ⊗ µi(detGL2)⊗ µi+1 · · · ⊗ µn)

)
.

Here δ[ε],[α] is the same as in Proposition 3.2.

Proof. By conjugation of certain Weyl element, it suffices to consider the unramified constituent

of the induced representation Ind
H(k)

Q̃2n(k)
µψ(τ ′1 ⊗ σ̃′1), here

τ ′1 = Ind
GL2n(k)
P2,...,2(k)

µ1(detGL2)⊗ · · · ⊗ µn(detGL2) ,

and

σ̃′1 = Ind
Mp4(k)

Q̃
Sp4
1 (k)

µψ(ξ ⊗ ω(1),+
ψε ) .

Applying [33, Theorem 6.1 (1)] with j = 2n and m = 2n+ 2 (hence t = `, `− 1 in [33, (6.9)]), we
see that if n+ 2 ≤ ` ≤ 2n, this twisted Jacquet module is always zero.

When ` = n+1, again by [33, (6.9)] we have (here only t = n gives possible non-zero contribution)

JN0
n+2,ψ

0
n+1,α

(
Ind

H(k)

Q̃2n(k)
µψ(τ ′1 ⊗ σ̃′1)

)
' ind

Mp(V (n+2))(k)nH
V (n+2) (k)

P̃ ′n+1(k)
µψ|det(·)|

1−n
2 τ ′1

(n) ⊗ JN ′20,ψ0
1,α

(σ̃′1) .

We apply [33, Theorem 6.1] to calculate JN ′2
0,ψ0

1,α
(σ̃′1), here ` = 1 and j = 1 in [33, (6.9)] (hence

t = 1 in [33, (6.9)]). It follows that

JN ′2
0,ψ0

1,α
(σ̃′1) ' JN ′1

0,ψ0
0,α

(
ω
(1),+
ψε

)
.

Note that JN ′1
0,ψ0

0,α
(ω

(1),+
ψε ) = 1 if [α] = [ε] ∈ k×/(k×)2, and is zero otherwise. This proves the first

part of the proposition.
Suppose that ` = n. By [33, (6.9)] (with j = 2n and m = 2n+ 2) we have

(3.13)

JN0
n+1,ψ

0
n,α

(
Ind

H(k)

Q̃2n(k)
µψ(τ ′1 ⊗ σ̃′1)

)
' ind

Mp(V (n+1))(k)nH
V (n+1) (k)

P̃ ′n(k)
µψ|det(·)|

1−n
2 τ ′1

(n) ⊗ JN ′10,ψ0
0,α

(σ̃′1)

⊕ ind
Mp(V (n+1))(k)nH

V (n+1) (k)

P̃ ′n+1(k)
µψ|det(·)|

2−n
2 τ ′1

(n−1) ⊗ JN ′20,ψ0
1,α

(σ̃′1).
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To calculate the first summand in (3.13), we apply [33, Theorem 6.1] again to calculate the
Jacquet module JN ′1

0,ψ0
0,α

(σ̃′1), here ` = 0 and j = 1 in [33, (6.9)] (hence t = 0 in [33, (6.9)]). It

follows that

JN ′1
0,ψ0

0,α
(σ̃′1) ' ind

Mp(V
(1)
4 )(k)nH

V
(1)
4

(k)

P̃ ′1(k)
µψ(ξ|·|

1
2 )⊗ JN ′10,ψ0

0,α

(
ω
(1),+
ψε

)
⊕ JC0,ψα

(
ind

Mp(V
(1)
4 )(k)nH

V
(1)
4

(k)

P̃ ′′1 (k)
ω
(1),+
ψε

)
,

here V4 is a symplectic space of dimension 4 (hence V
(1)
4 is a subspace of dimension 2). Then one

gets the first two summands in (3.12) by arguments similar to those in the proof of Proposition
3.2.

To calculate the second summand in (3.13), we use the calculation of JN ′2
0,ψ0

1,α
(σ̃′1) above again.

Then one can also gets the third summand in (3.12) by similar arguments to those in the proof of
Proposition 3.2. �

Remark 3.4. In this section, we calculate the Jacquet modules corresponding to the automorphic

descent module DFJ
ψ`,α

(Ẽτ⊗σ̃). Note that we have the equivalence (2.13), and if we consider the

automorphic descent DFJ
ψ`

(Ẽτ⊗σ̃α), the corresponding Jacquet modules at unramified places will be

JN`+1,ψ`,v

(
π̃τv⊗σ̃αv ⊗ ω

(2n−`)
ψ−1
v

)
,

where

σ̃αv = Ind
Mp2(Fv)

B̃SL2
(Fv)

µψαv ξ,

for some unramified character ξ : F×v −→ C×. Then we will get the same results by similar
calculations, and the twist by the quadratic character ηα,v in the above results will come from the
genuine character µψαv .

4. Cuspidality and parameters

In this section, we return to the global setting and study the basic properties of the descent
tower

(4.1)
{
π`,β = DFJ

ψ`,β
(Ẽτ⊗σ̃)

}
`

introduced in §2, using the local results obtained in §3. Recall that we have taken an isobaric sum
automorphic representation

(4.2) τ = τ1 � τ2 � · · ·� τt

of GLm(A), where τi’s are distinct irreducible unitary cuspidal automorphic representations of
GLni(A) of orthogonal type, and

∑t
i=1 ni = m.

The following proposition is known as the tower property, which suggests the possible first
occurrence in the descent tower (4.1).

Proposition 4.1. The representation π`,β = DFJ
ψ`,β

(Ẽτ⊗σ̃) in the descent tower vanishes identically
for any n + 1 ≤ ` ≤ m, here m = 2n in (Case I), m = 2n + 1 in (Case II), and we presume
Assumption 1.2 in (Case II).
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Proof. Write the residual representation as Ẽτ⊗σ̃ = ⊗′vΠv. Let v be a finite place such that τv,
σv, Πv and ψv are all unramified. In (Case I) we can require moreover that ωτv = 1. By the
conditions on τ , τv is of the form (3.5) in (Case I), and is of the form (3.10) in (Case II). Then
if m = 2n, the result follows from Proposition 3.1.

If m = 2n + 1, then we are in (Case II), and Proposition 3.3 implies that π`,β = DFJ
ψ`,β

(Ẽτ⊗σ̃)

in the descent tower vanishes identically for all n + 2 ≤ ` ≤ 2n + 1. It remains to show that

DFJ
ψn+1,β

(Ẽτ⊗σ̃) = 0 for all choice of data. Recall that we pressume Assumption 1.2 for (Case II).

Suppose that DFJ
ψn+1,β

(Ẽτ⊗σ̃) 6= 0 for some choice of data. Let π be an irreducible component of

DFJ
ψn+1,β

(Ẽτ⊗σ̃). Then we have:

(1) the representation π is cuspidal, by Proposition 3.3 and a similar argument as in the proof
of Proposition 4.2 below (using vanishing of π`,β for n+ 2 ≤ ` ≤ 2n+ 1);

(2) the pair of representations (π, σ̃) has a non-zero Fourier-Jacobi period P̃FJ
ψ,β,ϕ1

(φπ,φσ̃), by
Proposition 2.1;

(3) the representation π lifts almost everywhere to τv ⊗ ωτ,v, by (3.11) in Proposition 3.3 (see
also the argument in the proof of Proposition 4.3 below).

Granting (1) – (3) above, we see that (π, σ̃) is a GGP pair in the given global Vogan packet

Π̃ψβ

φτ⊗ωτ×φτ0
[Gn(A)×H1(A)],

which contradicts to Assumption 1.2. Then we have DFJ
ψn+1,β

(Ẽτ⊗σ̃) = 0, and this finishes the proof
of the proposition. �

Now we show the cuspidality of the possible first occurrence (at ` = n) in the descent tower.
The following proposition is a generalization of [33, Theorem 7.11].

Proposition 4.2. Let τ = τ1 � · · ·� τt be the same as (4.2) with ni > 1, and we allow ni = 1 if τ

is an automorphic representation of GL2(A). Then if the representation DFJ
ψn,β

(Ẽτ⊗σ̃) is non-zero,
it is cuspidal.

Proof. Let f ∈ Ẽτ⊗σ̃ and consider the Fourier-Jacobi coefficient FJ ϕ
ψn,β

(f), here ϕ ∈ S(Am−n).

For 1 ≤ p ≤ m − n, let U
(m−n)
p be the unipotent radical of the maximal parabolic subgroup

Q
(m−n)
p ⊂ Gm−n = Sp2(m−n) whose Levi subgroup is isomorphic to GLp × Gm−n−p. We will show

that

(4.3) cp(FJ ϕ
ψn,β

(f)) = 0

for all 1 ≤ p ≤ m− n, where cp(FJ ϕ
ψn,β

(f)) is the constant term of FJ ϕ
ψn,β

(f) along U
(m−n)
p .

On the other hand, for f ∈ Ẽτ⊗σ̃ and 1 ≤ q ≤ m + 1, let fUq be the constant term along Uq,
here Uq is the unipotent radical of the parabolic subgroup Qq ⊂ Sp2m+2 whose Levi subgroup is
isomorphic to GLq ×Gm+1−q (see §2.1). Then, to show (4.3), it suffices to show that

(4.4) FJ ϕ1

ψn+k,β
(fUp−k) = 0

for all f ∈ Ẽτ⊗σ̃, ϕ1 ∈ S(Am−n−p), 1 ≤ p ≤ m − n, and 0 ≤ k ≤ p − 1. In fact, granting (4.4),
[33, Theorem 7.9] implies that cp(FJ ϕ

ψn,β
(f)) can be expressed by the Fourier-Jacobi coefficients

FJ ϕ
ψn+p,β

(f) of depth (n+ p), which are zero by Proposition 4.1.

To show (4.4), we only need to consider the case that fUp−k is not identically zero, which implies
that fUp−k

∣∣
Hm−(p−k+1)(A)

is a residual of Eisenstein series supported on τ ′ ⊗ σ̃, where τ ′ is of the
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same form as τ = τ1� · · ·� τt, but has less summands (one may refer to the proof of [33, Theorem
7.6]). Moreover, by Proposition 3.1, Proposition 3.2, Proposition 3.3, and the assumption that
τ = τ1 � · · ·� τt with ni > 1, we see that (n+ k) is large enough for the vanishing of the Fourier-
Jacobi coefficient FJ ϕ1

ψn+k,β
(fUp−k) with fUp−k

∣∣
Hm−(p−k+1)(A)

being supported on τ ′⊗ σ̃ (see also the

proof of Proposition 4.1 above). Then (4.4) holds for all 1 ≤ p ≤ m − n and 0 ≤ k ≤ p − 1, and
we have done. �

In the end of this section, we study the global Arthur parameter of the possible first occurrence

DFJ
ψn,β

(Ẽτ⊗σ̃) in the descent tower.

Proposition 4.3. Let π be an irreducible component of DFJ
ψn,β

(Ẽτ⊗σ̃). We have the followings

(1) Consider in (Case I), and assume that ωτ = 1. Then π lifts almost everywhere to

Ind
GL2n+1(Fv)
Pn1,...,nt (Fv)

ηβ(τ1,v ⊗ · · · ⊗ τt,v)⊗ 1 .

(2) Suppose that ηβ 6= ωτ in (Case II), and make no more assumptions in (Case I). Then π
has a generic global Arthur parameter.

Proof. Looking at the places v of F where τv, σ̃v and ψv are all unramified, then τv is of the form
(3.5) or (3.7) in (Case I), and of the form (3.10) in (Case II).

We consider (Case II) at first. Since ηβ 6= ωτ , there exists infinitely many places v such that
ηβ,v 6= ωτ,v. Then there exist infinitely many places v such that τv, σ̃v and ψv are all unramified, and
ηβ,v 6= ωτ,v. At these places, πv is a subquotient of a representation fully induced from unramified
characters, which is given by the first summand of (3.12) in Proposition 3.3. Then by Arthur’s
endoscopic classification theory (see [4]), the representation π must have a generic global Arthur
parameter, otherwise πv will have a non-generic local parameter at almost all places v.

Now we turn to (Case I). Note that ωτ is quadratic, hence is trivial at infinitely many places
v. By (3.6) in Proposition 3.1 and (3.8) in Proposition 3.2, one sees that, πv is a subquotient of a
representation fully induced from unramified characters at the local places v such that τv, σ̃v and
ψv are all unramified, and ωτ,v = 1. Again, π has a generic global Arthur parameter since there
are infinitely many such places. Moreover, if ωτ = 1, by (3.6) we see that πv is a subquotient of

Ind
Sp2n(Fv)
BSp2n

(Fv)
ηβ(µ1,v ⊗ · · · ⊗ µn,v)

with

τv = µ1,v × · · · × µn,v × µ−1n,v × · · · × µ−11,v

at almost all places v. This shows that for almost all v, πv lifts to

Ind
GL2n+1(Fv)

Pn1,...,nt (Fv)
ηβ(τ1,v ⊗ · · · ⊗ τt,v)⊗ 1 .

�

5. The non-vanishing of the descent construction

In this section, we show that the descent DFJ
ψn,β

(Ẽτ⊗σ̃) is non-vanishing for some choice of data.
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5.1. Generalized and degenerate Whittaker-Fourier coefficients. First, we recall the gen-
eralized and degenerate Whittaker-Fourier coefficients attached to nilpotent orbits, following the
formulation in [34]. Let G be a reductive group defined over a number field F . Let g be the
Lie algebra of G(F ), and u be a nilpotent element in g. Given any semisimple element s ∈ g,
under the adjoint action, g is decomposed into a direct sum of eigenspaces gsi corresponding to
eigenvalues i. The element s is called rational semisimple if all its eigenvalues are in Q. Given a
nilpotent element u and a semisimple element s in g, the pair (s, u) is called a Whittaker pair if s
is a rational semisimple element, and u ∈ gs−2. The element s in a Whittaker pair (s, u) is called
a neutral element for u if there is a nilpotent element v ∈ g such that (v, s, u) is an sl2-triple. A
Whittaker pair (s, u) with s being a neutral element is called a neutral pair.

Given any Whittaker pair (s, u), define an anti-symmetric form ωu on g× g by

ωu(X, Y ) := κ(u, [X, Y ]) ,

where κ is the Killing form on g × g. For any rational number r ∈ Q, let gs≥r = ⊕r′≥rgsr′ . Let
us = gs≥1 and let ns,u be the radical of ωu|us , then [us, us] ⊂ gs≥2 ⊂ ns,u. For any X ∈ g, let gX be
the centralizer of X in g. By [34, Lemma 3.2.6], one has ns,u = gs≥2 + gs1 ∩ gu. Note that if the
Whittaker pair (s, u) comes from an sl2-triple (v, s, u), then ns,u = gs≥2. Let Ns,u = exp(ns,u) be
the corresponding unipotent subgroups of G, we define a character of Ns,u by

ψu(n) = ψ(κ(u, log(n))).

Here ψ : F\A→ C× is a fixed non-trivial additive character, and we extend the killing form κ to
g(A)×g(A). Let N ′s,u = Ns,u∩ker(ψu). Then Us/N

′
s,u is a Heisenberg group with center Ns,u/N

′
s,u,

here Us = exp(us).
Let π be an irreducible automorphic representation of G(A). For any φ ∈ π, the degenerate

Whittaker-Fourier coefficient of φ attached to a Whittaker pair (s, u) is defined to be

(5.1) Fs,u(φ)(g) :=

∫
[Ns,u]

φ(ng)ψ−1u (n) dn .

If (s, u) is a neutral pair, then Fs,u(φ) is also called a generalized Whittaker-Fourier coefficient of
φ. Let

Fs,u(π) = {Fs,u(φ) | φ ∈ π} .
The wave-front set n(π) of π is defined to be the set of nilpotent orbits O such that Fs,u(π)
is non-zero for some neutral pair (s, u) with u ∈ O. Note that if Fs,u(π) is non-zero for some
neutral pair (s, u) with u ∈ O, then it is non-zero for any such neutral pair (s, u), since the non-
vanishing property of such Fourier coefficients does not depend on the choices of representatives
of O. Moreover, we let nm(π) be the set of maximal elements in n(π) under the natural ordering
of nilpotent orbits (i.e., the dominance ordering). We recall [34, Theorem C] as follows.

Proposition 5.1. Let π be an automorphic representation of G(A). Given a neutral pair (s, u)
and a Whittaker pair (s′, u), if Fs′,u(π) is non-zero, then Fs,u(π) is non-zero.

When G is a quasi-split classical group, it is known that the nilpotent orbits are parametrized
by pairs (p, q), where p is a partition and q is a set of non-degenerate quadratic forms (see [77,
Section I.6]). When G = Sp2N , p is a symplectic partition, namely, odd parts occur with even
multiplicities. Suppose that p = [pe11 p

e2
2 · · · perr ] is a symplectic partition with p1 > p2 > · · · > pr,

and {pei1i1 , p
ei2
i2
, . . . , p

eit
it
} are all its even parts. Then the pairs parametrizing the nilpotent orbits
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associated to p have the form (p, q), where

(5.2) q = {qi1 , qi2 , . . . , qit}
with each qij being a non-degenerate quadratic form of dimension eij . Given an automorphic
representation π of G(A), the set of partitions corresponding to nilpotent orbits in nm(π) is denoted
by pm(π), which is expected to be a singleton (see [19, §4]). In this section, for any symplectic
partition p, by a generalized Whittaker-Fourier coefficient of π attached to p, we mean a generalized
Whittaker-Fourier coefficient Fs,u(φ) attached to a nilpotent orbit O parametrized by a pair (p, q)
for some q, with φ ∈ π, u ∈ O and (s, u) being a neutral pair.

For G = Sp2N , a symplectic partition p is called symplectic special if it has an even number of
even parts between two consecutive odd parts, and an even number of even parts greater than the
largest odd part (see [11, Section 6.3]). For H(A) = Mp2N(A), a symplectic partition p is called
metaplectic special if it has an even number of even parts between two consecutive odd parts, and
an odd number of even parts greater than the largest odd part (see [11, Section 6.3]). By the
main results of [40], any p ∈ pm(π) is special. This will play an important role in the proof of
Proposition 5.9.

The non-vanishing of the generalized Whittaker-Fourier coefficients of automorphic forms is
related to the non-vanishing of the Fourier-Jacobi coefficients we have defined in §2.2. Such
relationship has been studied in [32] and [38]. For simplicity, we recall the result for representations
of Mp2N(A) that we are considering in this article, which can be deduced from [32, Lemma 2.6]
(or [38, Lemma 3.1]) and [32, Lemma 1.1].

Lemma 5.2. Let Π̃ be an automorphic representation of Mp2N(A). Suppose that φ ∈ Π̃ has a
non-zero generalized Whittaker-Fourier coefficient attached to the nilpotent orbit corresponding to
a partition [(2k)p2 · · · pr](2k ≥ p2 ≥ · · · ≥ pr) and a set of quadratic forms q = {β}∪q′ (see (5.2)),
where

• the square class [β] ∈ F×/(F×)2 determining a quadratic form of dimension one corre-
sponding to the part (2k) in the partition above;
• the set of quadratic forms q′ is associated to the partition [p2 · · · pr].

Then the Fourier-Jacobi coefficient (2.8) is non-zero for φ at depth ` = k − 1 with respect to
β ∈ F× and some ϕ ∈ S(AN−k).

5.2. Non-vanishing of the descent: Case I. Now we come back to the global situation where
the groups and representations are the same as in §2. First we prove the following proposition.

Proposition 5.3. The residual representation Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier
coefficient attached to the partition [(2n)212].

Proof. By [77, I.6] (see also the discussion after Proposition 5.1), the F -rational nilpotent orbits in
each F -stable nilpotent orbit in the Lie algebra sp4n+2(F ) attached to the partition [(2n)212] are
parametrized by square classes (dimension one quadratic forms) {α, β}. Let {αi = ei − ei+1, 1 ≤
i ≤ 2n, α2n+1 = 2e2n+1} be the set of simple roots of sp4n+2. For any root γ for sp4n+2, we denote
by xγ the one-dimensional root subgroup in sp4n+2 corresponding to γ, and let Xγ = exp(xγ). We
consider one such F -rational nilpotent orbit O parametrized by square classes {1,−1} and choose
the following representative

u =
1

4n+ 4

(
2n−2∑
i=1

xei+2−ei

(
1

2

)
+ x−2e2n−1(1) + x−2e2n(−1)

)
.
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Here the multiplication of
1

4n+ 4
is due to the difference between the Killing form and the trace

form for symplectic Lie algebras. Let

s = diag(2n− 1, 2n− 1, 2n− 3, 2n− 3, . . . , 1, 1, 0, 0,−1,−1, . . . , 1− 2n, 1− 2n).

Then it is clear that (s, u) is a neutral pair, and

(5.3) Fs,u(φ)(g̃) =

∫
[Ns,u]

φ(ng̃)ψ−1u (n) dn

is a generalized Whittaker-Fourier coefficient of φ ∈ Ẽτ⊗σ̃ attached to the nilpotent orbit O. Here
we mean n = (n, 1) ∈ Mp4n+2(A). In the following we will show that Fs,u(φ) is not identically
zero.

Remark 5.4. Note that any unipotent subgroup of Mp4n+2(A) has a unique splitting. If no
more explanation is needed, we will identify each unipotent subgroup with its unique splitting in
Mp4n+2(A), and just use the notation for the linear group. We also note that a character on the
elements of metaplectic cover is always defined to be its restriction on the linear group.

Let A =

(
1 −1
1 1

)
and let

% = diag(A, . . . , A; I2;A
∗, . . . , A∗).

Conjugating the integral in (5.3) from left by %, it becomes

(5.4)

∫
[V1]

φ(v g̃)ψ−1u,%(v) dv,

where V1 = %Ns,u%
−1 = Ns,u, and ψu,%(v) = ψu(%

−1v%). Note that

ψu,%(v) = ψ

(
2n−2∑
i=1

vi,i+2 + v2n−1,2n+3 + v2n,2n+4

)
.

Let ω be the Weyl element sending the following torus element

diag
(
t
(1)
1 , t

(2)
1 , t

(1)
2 , t

(2)
2 , . . . , t(1)n , t(2)n , t2n+1, t2n+2, (t

(2)
n )−1, (t(1)n )−1, . . . , (t

(2)
1 )−1, (t

(1)
1 )−1

)
to

diag

(
t
(1)
1 , t

(1)
2 , . . . , t(1)n , (t(2)n )−1,(t

(2)
n−1)

−1, . . . , (t
(2)
1 )−1, t2n+1, t2n+2,

t
(2)
1 , t

(2)
2 , . . . , t(2)n , (t(1)n )−1, . . . , (t

(1)
2 )−1, (t

(1)
1 )−1

)
.

Conjugating the integral (5.4) from left by ω which is identified with (ω, 1), it becomes

(5.5)

∫
[V2]

φ(v g̃)ψ−1u,%,ω(v) dv,

where V2 = ωV1ω
−1, and ψu,%,ω(v) = ψu,%(ω

−1vω). Note that

ψu,%,ω(v) = ψ

(
n∑
i=1

vi,i+1 −
2n−1∑
j=n+1

vj,j+1

)
.
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Remark 5.5. Here we are using the convention that if n + 1 > 2n − 1, then there are no such
terms indexed by j. We will follow this convention in the rest of this section.

Let

u1 =
n∑
i=1

x−αi

(
1

2(4n+ 4)

)
+

2n−1∑
i=n+1

x−αi

(
− 1

2(4n+ 4)

)
,

and let s1 be the following semisimple element

s1 = diag(2n− 1, 2n− 3, . . . , 1− 2n, 0, 0, 2n− 1, 2n− 3, . . . , 1− 2n) .

Then (s1, u1) is also a neutral pair, and one can check directly that V2 = Ns1,u1 and the integral
(5.5) is exactly the generalized Whittaker-Fourier coefficient Fs1,u1(φ).

Take another semisimple element

s′1 = diag(4n+ 1, 4n− 1, . . . , 1,−1, . . . ,−4n+ 1,−4n− 1) .

It is clear that (s′1, u1) is a Whittaker pair. We consider Fs′1,u1(φ) for φ ∈ Ẽτ⊗σ̃. Recall that Q̃2n(A)
is the parabolic subgroup of Mp4n+2(A) with Levi subgroup isomorphic to GL2n(A)×Mp2(A) and

unipotent radical subgroup U2n(A). Then, by definition, for any φ ∈ Ẽτ⊗σ̃, Fs′1,u1(φ) is the constant
term integral over U2n(F )\U2n(A) combined with a non-degenerate Whittaker-Fourier coefficient of

τ . Since Ẽτ⊗σ̃ is constructed from data τ⊗ σ̃ on the Levi subgroup GL2n(A)×Mp2(A) with τ being
generic, the constant term integral over U2n(F )\U2n(A), and also the non-degenerate Whittaker-

Fourier coefficient of τ are both non-zero. Then Fs′1,u1(φ) is not identically zero for φ ∈ Ẽτ⊗σ̃, and

by Proposition 5.1 Fs1,u1(φ) is also not identically zero for φ ∈ Ẽτ⊗σ̃. Hence Fs,u(φ) is also not

identically zero for φ ∈ Ẽτ⊗σ̃. This completes the proof of the proposition. �

Proposition 5.6. The residual representation Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier
coefficient attached to the partition [(2n+ 2)12n].

Proof. We prove this proposition by contradiction. Assume that the residual representation Ẽτ⊗σ̃
has no non-zero Fourier coefficients attached to the partition [(2n + 2)12n]. In the following, we
inherit the notation used in the proof of Proposition 5.3 and follow the conventions in Remark 5.4
and Remark 5.5.

Note that in Proposition 5.3, we have already shown that the integral (5.5)∫
[V2]

φ(v g̃)ψ−1u,%,ω(v) dv

is non-zero. Recall that it is exactly the generalized Whittaker-Fourier coefficient Fs1,u1(φ) where

u1 =
n∑
i=1

x−αi

(
1

2(4n+ 4)

)
+

2n−1∑
i=n+1

x−αi

(
− 1

2(4n+ 4)

)
,

and

s1 = diag(2n− 1, 2n− 3, . . . , 1− 2n, 0, 0, 2n− 1, 2n− 3, . . . , 1− 2n) .

Recall also that V2 = Ns1,u1 .
Let Y = Xen+e2n+1Xe2n+1−en+1 , and V3 = V2Y . Recall that for a root γ, the unipotent element

Xγ = exp(xγ), where xγ is the one-dimensional root subgroup in sp4n+2 corresponding to γ. By
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[34, Lemma 6.0.2] or [32, Lemma 1.1], Fs1,u1(φ) is non-vanishing if and only if the integral

(5.6) f(g̃) :=

∫
[V3]

φ(v g̃)ψ−1u1 (v) dv

is non-vanishing. Let

(5.7) ω0 =

 0 0 −I2n
0 I2 0
I2n 0 0

 .

Note that V3 is stable under the conjugation of ω−10 , then it is easy to see that f(g̃) = f(ω0g̃).
Here we identify ω0 with (ω0, 1).

Let V ′3 be the subgroup of V3 consisting of elements v with v2n+1,n+1 = 0. Then one can see that
the quadruple

(5.8) (V ′3 , ψu1 , Xen−e2n+1 , Xe2n+1−en+1)

satisfies all the conditions for [33, Lemma 7.1]. Applying [33, Lemma 7.1], one has

(5.9) f(g̃) =

∫
Xe2n+1−en+1 (A)

∫
[V ′3Xen−e2n+1 ]

φ(vxg̃)ψ−1u1 (v) dvdx.

Let W = V ′3Xen−e2n+1 , the elements in W are of the following form

(5.10) w =

z z · q1 q2
0 I2 q′1
0 0 z∗

I2n 0 0
p′1 I2 0
p2 p1 I2n

 ∈ Sp4n+2,

where z ∈ Z2n, the standard maximal unipotent subgroup of GL2n; q1 ∈ Mat2n×2 with q1(i, j) = 0
for n + 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2; q2 ∈ Mat2n×2n with q2(i, j) = 0 for i ≥ j (and certain
additional properties which we do not specify here); p1 ∈ Mat2n×2 with p1(i, j) = 0 for n ≤ i ≤ 2n
and 1 ≤ j ≤ 2; and p2 ∈ Mat2n×2n with p2(i, j) = 0 for i ≥ j (similarly, with certain additional
properties which we do not specify here). Define a character ψW (w) := ψu1(v) for w = vy ∈ W ,
where v ∈ V ′3 and y ∈ Xen−e2n+1 . For w ∈ W of form in (5.10), one has

ψW (w) = ψ

(
n∑
i=1

wi,i+1 −
2n−1∑
j=n+1

wj,j+1

)
.

To continue, we define a sequence of unipotent subgroups as follows. For 1 ≤ i ≤ n and
1 ≤ j ≤ i, define X i

j = Xei+e2n−i+j and also Y i
j = X−e2n−i+j−ei+1

. For n + 1 ≤ i ≤ 2n − 1 and

1 ≤ j ≤ 2n−i, defineX i
j = Xei+ei+j+1

and also Y i
j = X−ei+j+1−ei+1

. Moreover, for n+1 ≤ i ≤ 2n−1,
define Xi = Xei−e2n+1Xei+e2n+1 and also Yi = Xe2n+1−ei+1

X−e2n+1−ei+1
.

Let W be the subgroup of W with elements of the form being as in (5.10), but with the p1
and p2 parts being zero. We will apply [33, Lemma 7.1] (exchanging unipotent subgroups) to a
sequence of quadruples. For i going from 1 to n, the following sequence of quadruples satisfy all
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the conditions for [33, Lemma 7.1]:(
Wi

i∏
j=2

Y i
j , ψW , X

i
1, Y

i
1

)
,(

X i
1Wi

i∏
j=3

Y i
j , ψW , X

i
2, Y

i
2

)
,

...(
k−1∏
j=1

X i
jWi

i∏
j=k+1

Y i
j , ψW , X

i
k, Y

i
k

)
,

...(
i−1∏
j=1

X i
jWi, ψW , X

i
i , Y

i
i

)
,

(5.11)

where

Wi =
i−1∏
s=1

s∏
j=1

Xs
jW

2n−1∏
t=n+1

Yt

2n−t∏
j=1

Y t
j

n∏
k=i+1

k∏
j=1

Y k
j ,

and ψW denotes the character on the first entry of each quadruple in (5.11), which is extended from
the character ψW |W on W trivially. Here we note that during the verification of the conditions
of [33, Lemma 7.1], we need to use the properties of Rao cocycle (for example, (2.2) and (2.3)),
as in the proof of [33, Lemma 8.3]. In particular, since Wi’s and X i

j’s are contained in the Siegel
parabolic subgroup P0 (see §2.1), the (unique) splittings of the first entries of the quadruples in
(5.11) in the metaplectic cover are determined by the splittings of Y i

j -parts. Applying [33, Lemma
7.1] repeatedly to the above sequence of quadruples, with i going from 1 to n, one obtains that

(5.12) f(g̃) =

∫
(
∏n
s=1

∏s
j=1 Y

s
j Xe2n+1−en+1)(A)

∫
[W ′n]

φ(wxg̃)ψ−1W ′n(w) dwdx,

where

(5.13) W ′n =
n∏
s=1

s∏
j=1

Xs
jW

2n−1∏
t=n+1

Yt

2n−t∏
j=1

Y t
j ,

and ψW ′n is extended from ψW trivially.
Next, we take the Fourier expansion of f along X2en+1 . Under the action of GL1, we get two

kinds of Fourier coefficients corresponding to the two orbits of the dual of [X2en+1 ] ' F\A: the

trivial one and the non-trivial one. Since we have assumed that Ẽτ⊗σ̃ has no non-zero Fourier
coefficients attached to the partition [(2n+ 2)12n], by Lemma 5.7 below (which will be stated and
proved right after the proof of Proposition 5.6), all the Fourier coefficients corresponding to the
non-trivial orbit are identically zero. Hence, we obtain that

(5.14) f(g̃) =

∫
(
∏n
s=1

∏s
j=1 Y

s
j Xe2n+1−en+1)(A)

∫
[X2en+1 ]

∫
[W ′n]

φ(wxyg̃)ψ−1W ′n(w) dwdxdy.
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To continue, note that the following sequence of quadruples satisfy all the conditions for [33,
Lemma 7.1]: (

X2en+1Wn+1

n−1∏
j=2

Y n+1
j , ψW , X

n+1
1 , Y n+1

1

)
,(

Xn
1X2en+1Wn+1

n−1∏
j=3

Y n+1
j , ψW , X

n+1
2 , Y n+1

2

)
,

...(
k−1∏
j=1

Xn+1
j X2en+1Wn+1

n−1∏
j=k+1

Y n+1
j , ψW , X

n+1
k , Y n+1

k

)
,

...(
n−2∏
j=1

Xn+1
j X2en+1Wn+1, ψW , X

n+1
n−1 , Y

n+1
n−1

)
(
n−1∏
j=1

Xn+1
j X2en+1Wn+1, ψW , Xn+1, Yn+1

)
,

(5.15)

where

Wn+1 =
n∏
t=1

t∏
j=1

X t
jW

2n−1∏
k=n+2

Yk

2n−k∏
j=1

Y k
j ,

and ψW has a similar definition to that in (5.11). Applying [33, Lemma 7.1] repeatedly to the
above sequence of quadruples, one can see that

(5.16) f(g̃) =

∫
(Yn+1

∏n−1
j=1 Y

n+1
j

∏n
s=1

∏s
j=1 Y

s
j Xe2n+1−en+1)(A)

∫
[W ′n+1]

φ(wxg̃)ψ−1W ′n+1
(w) dwdx,

where

(5.17) W ′n+1 = Xn+1X2en+1

n−1∏
j=1

Xn+1
j

n∏
t=1

t∏
j=1

X t
jW

2n−1∏
k=n+2

Yk

2n−k∏
j=1

Y k
j ,

and ψW ′n+1
is extended from ψW trivially.

For i going from n+ 2 to 2n− 1, define

(5.18) W ′i =
i∏

s=n+1

Xs

2n−s∏
j=1

Xs
j

i∏
`=n+1

X2e`

n∏
t=1

t∏
j=1

X t
jW

2n−1∏
k=i+1

Yk

2n−k∏
j=1

Y k
j ,

and also a character ψW ′i which is extended from ψW trivially. We claim that the integral

(5.19)

∫
[W ′i−1]

φ(wg̃)ψ−1W ′i−1
(w) dw
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is equal to the integral

(5.20)

∫
(Yi

∏2n−i
j=2 Y ij )(A)

∫
[W ′i]

φ(wxg̃)ψ−1W ′i
(w) dwdx.

To show the above equality, we first take the Fourier expansion of the integral in (5.19) along
X2ei . Note that [X2ei ] ' F\A, we again consider the trivial and the non-trivial orbits separately.
By Lemma 5.7 below, all the Fourier coefficients corresponding to the non-trivial orbit are iden-
tically zero. Therefore only the Fourier coefficient attached to the trivial orbit survives. When
i = 2n − 1, the Fourier coefficient attached to the trivial orbit is exactly the integral in (5.20).
When n + 2 ≤ i ≤ 2n − 2, one can see that the following sequence of quadruples satisfy all the
conditions for [33, Lemma 7.1]:(

X2eiWiYi

2n−i∏
j=2

Y i
j , ψW , X

i
1, Y

i
1

)
,(

X i
1X2eiWiYi

2n−i∏
j=3

Y i
j , ψW , X

i
2, Y

i
2

)
,

...(
k−1∏
j=1

X i
jX2eiWiYi

2n−i∏
j=k+1

Y i
j , ψW , X

i
k, Y

i
k

)
,

...(
2n−i−1∏
j=1

X i
jX2eiWiYi, ψW , X

i
2n−i, Y

i
2n−i

)
,(

2n−i∏
j=1

X i
jX2eiWi, ψW , Xi, Yi

)
,

where

Wi =
i−1∏

s=n+1

Xs

2n−s∏
j=1

Xs
j

i−1∏
`=n+1

X2e`

n∏
t=1

t∏
j=1

X t
jW

2n−1∏
k=i+1

Yk

2n−k∏
j=1

Y k
j ,

and ψW has a similar definition to that in (5.11). Applying [33, Lemma 7.1] repeatedly to the
above sequence of quadruples, we deduce that the Fourier coefficient attached to the trivial orbit
above is equal to the integral (5.20). This proves the claim.

One can see that elements of W ′2n−1 have the following form:

(5.21) w =

z z · q1 q2
0 I2 q′1
0 0 z∗

 ,

where z ∈ Z2n; q1 ∈ Mat2n×2 with q1(2n, j) = 0 for 1 ≤ j ≤ 2; and q2 ∈ Mat2n×2n. As before, q1
and q2 also have certain additional properties on symmetry we do not specify here. We also define
a character ψW ′2n−1

by ψW ′2n−1
(w) = ψ

(∑2n−1
i=1 zi,i+1

)
for w ∈ W ′2n−1 being of the form in (5.21).



AUTOMORPHIC DESCENT FOR SYMPLECTIC GROUPS 31

Now we need to take the Fourier expansion of the integral over W ′2n−1 in (5.20) along

Xe2n−e2n+1Xe2n+e2n+1 .

In this situation, the Fourier coefficients corresponding to the non-trivial orbit are generic Fourier

coefficients. Since Ẽτ⊗σ̃ is not generic, only the Fourier coefficient corresponding to the trivial orbit
survives. Therefore, the integral over W ′2n−1 in (5.20) becomes∫

[Xe2n−e2n+1Xe2n+e2n+1 ]

∫
[W ′2n−1]

φ(wxg̃)ψ−1W ′2n−1
(w) dwdx

=

∫
[N2n]

φ(ng̃)ψ−1N2n
(n) dn,

(5.22)

where N2n is the unipotent radical of the parabolic subgroup with Levi subgroup isomorphic to
GL2n

1 ×Mp2 as defined in §2.1, and ψN2n(n) = ψ(
∑2n−1

i=1 ni,i+1).

Recall that we have defined the parabolic subgroup P̃ (A) = M̃(A)U(A) with Levi subgroup

M̃(A) isomorphic to GL2n(A) ×Mp2(A). Write N2n(A) = U(A)N ′2n(A) with N ′2n(A) = M̃(A) ∩
N2n(A). Based on the above discussion, we obtain that

(5.23) f(g̃) =

∫
(
∏2n−1
s=n+1 Ys

∏2n−s
j=1 Y sj

∏n
k=1

∏k
`=1 Y

k
` Xe2n+1−en+1)(A)

∫
[N ′2n]

φU(nxg̃)ψ−1N ′2n
(n) dndx,

where φU is the constant term of φ along U , and ψN ′2n = ψN2n|N ′2n . Note that in (5.23),∏2n−1
s=n+1 Ys

∏2n−s
j=1 Y s

j

∏n
k=1

∏k
`=1 Y

k
` Xe2n+1−en+1 is equal to V2 ∩ U−, where U− is the unipotent

radical of the parabolic subgroup opposite to P̃ . By a similar calculation as in [43, Lemma 2,2],
we deduce that

(5.24) φU ∈ A(U(A)M̃(F )\Mp4n+2(A))
µψ(τ |·|−

1
2⊗σ̃)

.

For t ∈ A×, let

D(t) =

tI2n 0 0
0 I2 0
0 0 t−1I2n

 ∈ Sp4n+2(A).

Then it is easy to see that ω0D(t)ω−10 = D(t−1), where ω0 is the Weyl element defined in (5.7).
Consider f(D(t)g̃) = f((D(t), 1)g̃). Note that f(g̃) has the form in (5.23). Conjugating D(t) to
the left, by changing of variables on(

2n−1∏
s=n+1

Ys

2n−s∏
j=1

Y s
j

n∏
k=1

k∏
`=1

Y k
` Xe2n+1−en+1

)
(A),

we get a factor |t|−(2n
2+2n)+1

A . By (5.24), we have

φU(D(t)nxg̃) = δP (D(t))
1
2 |D(t)|−

1
2ωτ (t)γψ(t2n)φU(nxg̃) = |t|2n2+2n

A ωτ (t)φ
U(nxg̃),

here γψ(t2n) = 1 by the properties of γψ (see, for example, [52, Lemma 4.1]). Therefore, one can
get f(D(t)g̃) = |t|Aωτ (t)f(g̃). On the other hand,

f(D(t)g̃) = f(ω0D(t)g̃) = f((D(t−1), ε)ω0g̃) = ε|t−1|Aωτ (t−1)f(ω0g̃) = ε|t|−1A ωτ (t
−1)f(g̃),
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here ε = ±1 comes from the conjugation ω0D(t)ω−10 in the metaplectic group. Hence, we have
|t|Aωτ (t)f(g̃) = ε|t|−1A ωτ (t

−1)f(g̃), and |t|Af(g̃) = ε|t|−1A f(g̃) since ωτ is quadratic. Since t ∈ A×
can be arbitrary, we get that f(g̃) is identically zero, which is a contradiction.

It follows that the assumption in the beginning of the proof is false, i.e., the residual represen-

tation Ẽτ⊗σ̃ must have a non-zero Fourier coefficient attached to the partition [(2n+ 2)12n]. This
completes the proof of the proposition. �

Now we prove the following lemma used in the proof of the above proposition.

Lemma 5.7. Assume that the residual representation Ẽτ⊗σ̃ has no non-zero Fourier coefficients
attached to the partition [(2n + 2)12n], which is the assumption in the beginning of the proof of

Proposition 5.6. Then for any φ ∈ Ẽτ⊗σ̃, the following integral

(5.25)

∫
[X2ei+1

]

∫
[W ′i]

φ(wxg̃)ψ−1W ′i
(w)ψ−1(ax) dwdx

is zero, where a ∈ F×, n ≤ i ≤ 2n − 2, W ′i is as in (5.13) when i = n, W ′i is as in (5.17) when
i = n+ 1, and W ′i is as in (5.18) when n+ 2 ≤ i ≤ 2n− 2.

Proof. We continue using the notation introduced in Proposition 5.3. Note that elements in W ′i
have the following form

(5.26) w =

z z · q1 q2
0 I2 q′1
0 0 z∗

I2n 0 0
p′1 I2 0
p2 p1 I2n

 ∈ Sp4n+2,

where z ∈ Z2n, the standard maximal unipotent subgroup of GL2n; q1 ∈ Mat2n×2 with q1(k, j) = 0
for i + 1 ≤ k ≤ 2n and 1 ≤ j ≤ 2; q2 ∈ Mat2n×2n with q2(k, j) = 0 for i + 1 ≤ k ≤ 2n and
1 ≤ j ≤ 2n− i; p1 ∈ Mat2n×2 with p1(k, j) = 0 for 2n− i ≤ k ≤ 2n and 1 ≤ j ≤ 2; p2 ∈ Mat2n×2n
with p2(k, j) = 0 for 2n− i ≤ k ≤ 2n or 1 ≤ j ≤ i + 1. We also have a character ψW ′i defined by

ψW ′i(w) = ψ
(∑2n−1

i=1 zi,i+1

)
for w ∈ W ′i being of the form in (5.26).

In the rest of this proof, we setW(1)
i :=W ′i, and denote byW(2)

i the subgroup ofW(1)
i consisting

of the elements of the following form
Ii+1 0 0 0 0

0 z 0 0 0
0 0 I2 0 0
0 0 0 z∗ 0
0 0 0 0 Ii+1

 ,

where z ∈ Z2n−i−1, the standard maximal unipotent subgroup of GL2n−i−1. Write

W(1)
i =W(2)

i W
(3)
i ,

where W(3)
i is a subgroup of W(1)

i consisting of elements with W(2)
i -part being trivial. Let ψW(2)

i
=

ψW(1)
i
|W(2)

i
and ψW(3)

i
= ψW(1)

i
|W(3)

i
. Then the integral in (5.25) can be written as

(5.27)

∫
[W(2)

i ]

∫
[X2ei+1

]

∫
[W(3)

i ]

φ(w1xw2g̃)ψ−1
W(2)
i

(w2)ψ
−1(ax)ψ−1

W(3)
i

(w1) dw1dxdw2.
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Therefore, to show the integral in (5.25) is identically zero, it is suffices to show the following
integral is identically zero

(5.28)

∫
[X2ei+1

]

∫
[W(3)

i ]

φ(wxg̃)ψ−1(ax)ψ−1
W(3)
i

(w) dwdx.

It is straightforward to see that the integral in (5.28) contains an inner integral which is exactly

a Fourier coefficient of φ ∈ Ẽτ⊗σ̃ attached to the partition [(2i + 2)14n−2i]. When i = n, by
assumption, any Fourier coefficient attached to the partition [(2n+ 2)12n] will be identically zero.
And when n+ 1 ≤ i ≤ 2n− 2, by Proposition 4.1, any Fourier coefficient attached to the partition
[(2i + 2)14n−2i] will be identically zero. Therefore, the integral in (5.28) is identically zero, and
hence the integral in (5.25) is identically zero. This completes the proof of the lemma. �

5.3. Non-vanishing of the descent: Case II. We turn to the case m = 2n+ 1. As in §5.2, we
prove the following proposition at first.

Proposition 5.8. The residual representation Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier
coefficient attached to the partition [(2n+ 1)212].

Proof. As in Proposition 5.3, let {αi = ei − ei+1, α2n+2 = 2e2n+2 | 1 ≤ i ≤ 2n+ 1} be the set of
simple roots for sp4n+4. By [77, Section I.6], there is only one nilpotent orbit O corresponding to
the partition [(2n+ 1)212]. A representative of the nilpotent orbit O can be taken to be

u =
2n∑
i=1

x−αi

(
1

2(4n+ 6)

)
.

Let s be the following semisimple element

s = diag(2n, 2n− 2, . . . ,−2n, 0, 0, 2n, 2n− 2, . . . ,−2n) .

Then it is clear that (s, u) is a neutral pair.

We want to show that Fs,u(φ) is not identically zero for φ ∈ Ẽτ⊗σ̃. To this end, we take another
semisimple element

s′ = diag(4n+ 3, 4n+ 1, . . . , 1,−1, . . . ,−4n− 1,−4n− 3) .

It is clear that (s′, u) is a Whittaker pair. We consider Fs′,u(φ) for φ ∈ Ẽτ⊗σ̃. Recall that Q̃2n+1(A)
is the parabolic subgroup of Mp4n+4(A) with Levi subgroup isomorphic to GL2n+1(A) ×Mp2(A)

and unipotent radical subgroup U2n+1(A). Then, for any φ ∈ Ẽτ⊗σ̃, Fs′,u(φ) is the constant term
integral over U2n+1(F )\U2n+1(A) combined with a non-degenerate Whittaker-Fourier coefficient

of τ . Since Ẽτ⊗σ̃ is constructed from data τ ⊗ σ̃ on the Levi subgroup GL2n+1(A) × Mp2(A)
with τ being generic, the constant term integral over U2n+1(F )\U2n+1(A), and the non-degenerate
Whittaker-Fourier coefficients of τ are both non-zero. Then Fs′,u(φ) is not identically zero for

φ ∈ Ẽτ⊗σ̃, and by Proposition 5.1 Fs,u(φ) is also not identically zero for φ ∈ Ẽτ⊗σ̃. This completes
the proof of the proposition. �

Proposition 5.9. The residual representation Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier
coefficient attached to a nilpotent orbit parametrized by the pair ([(2n+2)(2n)12], {β, α}), for some
square classes [β], [α] ∈ F×/(F×)2.
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Proof. By Proposition 5.8, we know that Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier coef-
ficient attached to the partition [(2n+ 1)212]. As a symplectic partition, [(2n+ 1)212] is not meta-
plectic special, and the smallest metaplectic special partition which is greater than [(2n + 1)212]
is [(2n+ 2)(2n)12], which is called the metaplectic special expansion of the partition [(2n+ 1)212].

Then by [40, Theorem 11.2], we have that Ẽτ⊗σ̃ has a non-zero generalized Whittaker-Fourier co-
efficient attached to a nilpotent orbit parametrized by the pair ([(2n+ 2)(2n)12], {β, α}), for some
square classes [β], [α] ∈ F×/(F×)2. �

Remark 5.10. The arguments in this subsection also work if we take σ̃ to be an irreducible
representation of a general size metaplectic group. More precisely, Let τ = τ1 � · · · � τt be an
isobaric sum automorphic representation of GL2n+1(A) with τi’s being distinct irreducible unitary
cuspidal automorphic representations of GLni(A) of orthogonal type such that

∑t
i=1 ni = m. Let

σ̃ be an irreducible unitary genuine cuspidal automorphic representation of Hr(A) = Mp2r(A)
(1 ≤ r ≤ n) with generic global Arthur parameter φ0 (see [16] and [14, §11]) such that

Lψ(
1

2
, φτ × φ0) 6= 0.

Then the residual representation Ẽτ⊗σ̃ of Mp4n+2r+2(A) has a non-zero generalized Whittaker-
Fourier coefficient attached to the partition [(2n+ 2)(2n)12r].

To conclude this section, we apply Lemma 5.2 to the above results (Proposition 5.6 and Propo-
sition 5.9), and obtain the first Part of Theorem 1.3.

Theorem 5.11. In both (Case I) and (Case II), there exists β ∈ F×, such that the automorphic

descent space DFJ
ψn,β

(Ẽτ⊗σ̃) is non-zero.

Proof. The theorem follows immediately from Proposition 5.6, Proposition 5.9 and Lemma 5.2. �

6. Applications

We have constructed non-zero cuspidal automorphic representations

πβ = DFJ
ψn,β(Ẽτ⊗σ̃) (β ∈ F×)

in both (Case I) and (Case II). Recall that we have m = 2n or m = 2n + 1 in the two cases
respectively (see the notation in §2), and πβ is an automorphic representation of Gm−n(A) =
Sp2(m−n)(A). In this section, we give some applications of these descent constructions.

Recall that in both cases, we begin with representations (τ, σ̃), where:

• τ is an isobaric sum automorphic representation

(6.1) τ = τ1 � · · ·� τt

of GLm(A) such that the τi’s are distinct irreducible unitary cuspidal automorphic repre-
sentations of GLni(A) of orthogonal type, and

∑t
i=1 ni = m;

• σ̃ is an irreducible unitary genuine cuspidal automorphic representation of Mp2(A) with a
generic Arthur parameter φ0 (which is of symplectic type), such that

Lψ(1/2, τ × σ̃) 6= 0.

The important thing is that, under suitable conditions, these descent constructions produce rep-
resentations in certain global Vogan packets parametrized by generic Arthur parameters. As a
result, they provide some answers to the questions we have mentioned in §1.
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6.1. On the global GGP conjecture and quadratic twists of L-function. We consider the
(Case I), where m = 2n. In this case, the descent πβ is an automorphic representation of Sp2n(A),
and this construction is related to the global GGP conjecture for the groups Sp2n(A)×Mp2(A).

We state the global GGP conjecture for the pair (Sp2n(A),Mp2(A)) here. Let φ ∈ Φ̃2(Sp2n) and

φ0 ∈ Φ̃2(Mp2) be global generic Arthur parameters. Note that the parameter φ is of dimension
(2n+ 1), and the parameter φ0 is of dimension 2. Recall also that both the global Vogan packets
and L-functions associated to φ0 depend on choices of additive characters ψ : F\A −→ C×, and
we have presumed the identification (1.8) of L-functions.

Conjecture 6.1. The central value of the L-function

Lψ(s, φ× φ0)

is non-zero if and only if there exists a pair (π0, σ̃0) in the global Vogan packet Π̃ψ
φ×φ0 [Sp2n(A) ×

Mp2(A)] such that the Fourier-Jacobi period

PFJ
ψ,ϕ1

(φπ,φσ̃)

is non-zero for some φπ ∈ π, φσ̃ ∈ σ̃ and ϕ1 ∈ S(A).

In [48], using their approach in [47], Jiang and Zhang showed that if the period PFJ
ψ,ϕ1

(φπ,φσ̃) 6= 0
for some choice of data, then Lψ(1/2, φ × φ0) 6= 0. For the other direction of Conjecture 6.1, in
the framework of the constructive approach introduced in §1.2, one needs to guarantee an explicit
construction exactly at certain depth. See the paragraph right before Assumption 1.2. However,
as discussed in §1.2, this seems not easy in general, which makes this direction a harder problem.
It is also worthwhile to mention that in [73], Xue proves a refined version of the above conjecture
for n = 1 and n = 2 (under certain conditions) via theta correspondence.

On the other hand, if we start from a generic automorphic representation τ of GL2n(A) above

(see (6.1)), twisting by an automorphic member σ̃ ∈ Πψ
φ0

[Mp2(A)], we obtain a non-zero cuspidal

descent construction πβ = DFJ
ψn,β

(Ẽτ⊗σ̃) on Sp2n(A), which has a non-zero Fourier-Jacobi period
with respect to σ̃. Note that the global Arthur parameter for irreducible components of πβ have
dimension (2n + 1), which is given by the descent construction from φτ (which is of dimension
2n). Moreover, from the local calculations in §3.2, under an additional assumption that ωτ = 1,
the global Arthur parameter for irreducible components of πβ can be determined, hence leads to
a result related to global GGP conjecture in this direction.

More precisely, for β ∈ F×, we form the global Arthur parameter

(6.2) φβ = φτ⊗ηβ � 1GL1 ,

which is of dimension (2n+1). Note that if the central character of τ is trivial, the central character
of τ ⊗ ηβ is also trivial. Then we have the following result related to the global GGP conjecture:

Theorem 6.2. Let τ be an isobaric sum automorphic representation τ = τ1 � · · ·� τt of GL2n(A)
such that the τi’s are distinct irreducible unitary cuspidal automorphic representations of GLni(A)
of orthogonal type with ni > 1, and assume that ωτ = 1. We also allow ni = 1 if n = 1. Let
φ0 = (τ0, 1) be a generic global Arthur parameter of symplectic type of dimension 2 corresponding
to a unitary cuspidal automorphic representation τ0 of GL2(A), and assume that

L(
1

2
, τ × τ0) 6= 0.
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Then for any automorphic member σ̃ ∈ Π̃ψ
φ0

[Mp2(A)], there exist a [β] ∈ F×/(F×)2 and a repre-

sentation π ∈ Π̃φβ [Sp2n(A)] such that the Fourier-Jacobi period

PFJ
ψ,ϕ1

(φπ,φσ̃β) 6= 0 (φπ ∈ π, φσ̃β ∈ σ̃β)

for some choice of data. Here the notation of Fourier-Jacobi periods are introduced in §2.3, and
the twist σ̃β is introduced in §2.2.

Proof. By assumption, Lψ(1/2, φτ × φ0) = L(1/2, τ × τ0) 6= 0. We take an automorphic represen-

tation σ̃ ∈ Π̃ψ
φ0

[Mp2(A)], and consider the pair (τ, σ̃), this is under the situation of (Case I) with

the additional condition ωτ = 1. In this case, we have a non-zero residual representation Ẽτ⊗σ̃,
and hence get a non-zero cuspidal automorphic representation

πβ = DFJ
ψn,β(Ẽτ⊗σ̃) ' DFJ

ψn(Ẽτ⊗σ̃β)

of Sp2n(A) for some choice of [β] ∈ F×/(F×)2 (see (2.13)). Let π be any irreducible component

of πβ, then π ∈ Π̃φβ [Sp2n(A)] by Proposition 4.3, and it has a non-zero Fourier-Jacobi period

PFJ
ψ,ϕ1

(φπ,φσ̃β) for some choice of data by Proposition 2.1. This proves the theorem. �

Moreover, if we do not twist σ̃ by β ∈ F× as above and just use the descent module DFJ
ψn,β

(Ẽτ⊗σ̃),
we will get a non-zero Fourier-Jacobi period

PFJ
ψ,β,ϕ1

(φπ,φσ̃) (φπ ∈ π,φσ̃ ∈ σ̃)

by Proposition 2.1. Then we get Theorem 1.4 in §1.3, which asserts that (π, σ̃) gives a GGP pair

in global Vogan packet Π̃ψβ

φ×φ0 [Sp2n(A)×Mp2(A)] for any irreducible component π of πβ.

We remark also that the choice of [β] ∈ F×/(F×)2 in the above theorem depends on the choice of

σ̃ ∈ Π̃ψ
φ0

[Mp2(A)], and may not be unique. Furthermore, in this case, if we assume the uniqueness
part of the local GGP conjecture (which is known for non-Archimedean cases, see the statements
below), we can also show that πβ is irreducible, and hence the pair (πβ, σ̃) gives the GGP pair in

the global Vogan packet Π̃ψβ

φβ×φ0 [Sp2n(A)×Mp2(A)].

We introduce the local GGP conjecture in our particular case briefly, one may refer to [14] for
more details. Let k be a local field of characteristic 0, and fix a non-trivial additive character

ψ : k −→ C×. Let φ′ ∈ Φ̃(Sp2n(k)) be a generic local L-parameter of orthogonal type of dimension

(2n + 1), and φ′0 ∈ Φ̃(Mp2(k)) be a generic local L-parameter of symplectic type of dimension 2.
The local GGP conjecture in this case asserts:

Conjecture 6.3. There exists a unique pair (π′, σ̃′) in the local Vogan L-packet

Π̃ψ
φ′×φ′0

[Sp2n(k)×Mp2(k)]

such that the Hom-space

(6.3) Hom
N

(n)
n−1(k)oMp2(k)

(π′ ⊗ σ̃′ ⊗ ψ(n)
n−2 ⊗ ω

(1)
ψ ,C)

is non-zero. Here ω
(1)
ψ is the local Weil representation of H3(k) o Mp2(k) with respect to ψ, and

the other notation is the same as in §2.3 and §3.1.

The above conjecture is known (in general) if k is non-Archimedean (see [5]). For later use, we
give a remark on the uniqueness part of Conjecture 6.3 in the case of n = 1.
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Remark 6.4. Let k be an Archimedean local field, and ψ : k −→ C× be a fixed non-trivial
additive character. Based on the knowledge of local theta correspondence in this low-rank case,
the uniqueness part of local GGP conjecture for the pair (SL2(k),Mp2(k)) can be deduced from
the see-saw identity and the uniqueness in the orthogonal case for the pair (SO3(k), SO2(k)) (see
Lemma 6.5 below).

Lemma 6.5. Let k be an Archimedean local field. Let φ = φ1�η ∈ Φ̃(SL2(k)) and φ0 ∈ Φ̃(Mp2(k))
be generic local parameters, where η is a quadratic character. Then there exists at most one pair

(π, σ̃) ∈ Π̃ψ
φ×φ0 [SL2(k)×Mp2(k)] such that the Hom-space

(6.4) HomMp2(k)(π ⊗ σ̃ ⊗ ω
(1)
ψ ,C)

is non-zero.

Proof. Consider the see-saw diagram

SL2(k)×Mp2(k) O(V•3)

Mp2(k)

OO

O(V•2)×O(〈1〉).

OO

Here V•2 is a quadratic space over k of dimension 2, and V•3 is a relevant quadratic space over k
of dimension 3.

Let (π, σ̃) ∈ Π̃ψ
φ×φ0 [SL2(k)×Mp2(k)] such that the Hom-space (6.4) is non-zero. By [61, Corollary

23], [71, §7] and [2], there exist a quadratic space V•2 with ηV•2 = η, and an irreducible admissible
representation σ′ of O(V•2) such that π = θψ(σ′). Here ηV•2 is the quadratic character associated
to the quadratic space V•2. Then the see-saw identity implies

(6.5)
0 6= HomMp2(k)(π ⊗ σ̃ ⊗ ω

(1)
ψ ,C) ' HomMp2(k)(π ⊗ ω

(1)
ψ , σ̃∨)

' HomO(V•2)
(θψ(σ̃∨), σ′) ⊂ HomSO(V•2)

(θψ(σ̃∨), σ′).

Moreover, we have (θψ(σ̃∨)|SO(V•3)
, σ′|SO(V•2)

) ∈ Π̃φ0×φ1 [SO3(k) × SO2(k)] (see [1], [76] and [62]).

Suppose that there exist distinct pairs (πi, σ̃i) ∈ Π̃ψ
φ×φ0 [SL2(k)×Mp2(k)] (i = 1, 2) such that (6.4)

is non-zero. By (6.5), there exist different pairs (θψ(σ̃∨i ), σ′i) ∈ Π̃φ0×φ1 [SO3(k)× SO2(k)] (i = 1, 2)
such that

HomSO(V•2)
(θψ(σ̃∨i ), σ′i) 6= 0.

Here we have used the injectivity of the local theta correspondence (see [36, Theorem 1]). But
this contradicts to the uniqueness of GGP pair for (SO3(k), SO2(k)), which is known by the work
of Waldspurger [75] (see also [64, Theorem 4]). �

In general, if the uniqueness part of Conjecture 6.3 is known for Archimedaen cases, then one
obtains the uniqueness of the global GGP pair (for fixed parameters).

Proposition 6.6. Let (τ, σ̃) be as in (Case I) with ωτ = 1. Assume the uniqueness part of
Conjecture 6.3 is true for Archimedean cases. Then the descent πβ is irreducible, and lies in the

global Vogan packet Π̃φβ [Sp2n(A)].

Proof. By Proposition 4.3, we know that all irreducible components of πβ are parametrized by
the global Arthur parameter φβ = φτ⊗ηβ � 1. It remains to show that πβ is irreducible. We
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already know that πβ is cuspidal by Proposition 4.2. By multiplicity one theorems for Fourier-
Jacobi models (see [3, 69, 70]), we have a multiplicity free direct sum decomposition of irreducible
representations:

(6.6) πβ = π1 ⊕ π2 ⊕ · · · ,

with πi ∈ Π̃φβ [Sp2n(A)]. Moreover, each πi has a non-zero Fourier-Jacobi period with σ̃. Then at
each place v of F , (πi,v, σ̃v) gives a pair in the local Vagan packet

Π̃ψv
φβ,v×φ0,v [Sp2n(Fv)×Mp2(Fv)]

such that the Hom-space (6.3) is non-zero. By the uniqueness part of the local GGP conjecture,
we must have πi,v ' πj,v for all indices i, j and all places v. This implies that all πi’s are equivalent,
and hence the multiplicity free property shows that there would be only one summand in the direct
sum decomposition (6.6), i.e. πβ is irreducible. �

Remark 6.7. We remark here that the above results are based on the complete determination of
the global Arthur parameter of the descent. However, if ωτ 6= 1 (in (Case I)), the unramified
calculations in §3 can not provide enough information to determine the global parameters, and the
irreducibility may not be guaranteed since there might be more possibilities of global parameters.

Another application to our construction is the non-vanishing of quadratic twists of L-functions.
Let

(6.7) φ0,β = φτ0⊗ηβ

be the twist of the global Arthur parameter φ0 by the quadratic character ηβ. Then one has

σ̃β ∈ Π̃ψ
φ0,β

[Mp2(A)]. Since we have shown that

(π, σ̃β) ∈ Π̃ψ
φβ×φ0,β [Sp2n(A)×Mp2(A)]

has a non-zero Fourier-Jacobi period, then by the main result of [73] (for the case n = 1) (or [48,
Theorem 5.4]) and also (2.18)) one also have

(6.8) Lψ(
1

2
, φβ × φ0,β) = Lψ(

1

2
, (τ ⊗ ηβ)× σ̃β)Lψ(

1

2
, σ̃β) 6= 0.

Moreover, by [26, §3.1, Page 198], we have

Lψ(
1

2
, (τ ⊗ ηβ)× σ̃β)Lψ(

1

2
, σ̃β) = L(

1

2
, τ × τ0)Lψβ(

1

2
, σ̃) 6= 0.

Note that the above non-vanishing properties of L-functions show that σ̃ must be ψβ-generic.
Recall that we have taken φ0 = φτ0 , where τ0 is an irreducible unitary cuspidal automorphic

representation of GL2(A) of symplectic type. We can obtain the following:

Theorem 6.8. Let τ0 be an irreducible unitary cuspidal automorphic representation of GL2(A) of
symplectic type, such that

(6.9) ε(
1

2
, τ0 ⊗ η0) = 1

for some quadratic character η0 : F×\A× −→ C×. Then there exist ]Π̃ψ
φτ0

[Mp2(A)] different

quadratic characters η such that

L(
1

2
, τ0 ⊗ η) 6= 0.
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Proof. The proof has two steps. First, we take a quadratic extension Eδ = F (
√
δ) (δ ∈ F×−(F×)2)

over F , and consider the restriction of τ0 to E1
δ (A) which is isomorphic to the anisotropic SOδ

2(A).
By construction and the spectral decomposition, there exists an irreducible component χ of τ0|E1

δ (A)
such that the global Bessel period ∫

E1
δ\E

1
δ (A)

φτ0(t)χ
−1(t) dt

is non-zero for some φτ0 ∈ τ0. Then Waldspurger’s work [75] (see also [42, Theorem 5.3] or [48,
Theorem 6.9]) gives that L(1/2, τ0×χ) 6= 0. Moreover, χ lifts to an irreducible generic automorphic
representation τδ of GL2(A) (see [10]), which is of orthogonal type, and we have L(1/2, τδ×τ0) 6= 0.
Here ωτδ = ηδ is non-trivial.

Let σ̃ be an irreducible cuspidal automorphic representation in Π̃ψ
φτ0

[Mp2(A)], whose existence

is guaranteed by (6.9). Starting from the data (τδ, σ̃), one construct the descent DFJ
ψ1,α

(Ẽτδ⊗σ̃) for
some α ∈ F×, which is cuspidal by Proposition 4.2. By Proposition 3.2 (for n = 1) and apply
Arthur’s classification theory as in the proof of Proposition 4.3, any irreducible component π′ of

DFJ
ψ1,α

(Ẽτδ⊗σ̃) has a generic Arthur parameter φ′α. Note that φ′α has the form φτ ′ � ηγ for some
generic automorphic representation τ ′ of GL2(A) with ωτ ′ = ηγ (γ ∈ F×). Moreover, we have

Lψ(
1

2
, φ′α × φ0,α) 6= 0

by the main result of [73] or [48]. Here φ0,α is similar to (6.7). Then it follows from the identities
in (6.8) that there exists a quadratic character η0, possibly trivial, such that

(6.10) L(
1

2
, τ0 ⊗ η0) 6= 0.

The second step is to show the statement in the theorem granting that there is a quadratic
character η0 : F×\A× −→ C× (possibly trivial) such that (6.10) holds. Under this condition, we
can find an irreducible generic automorphic representation τ of GL2(A) of orthogonal type with
trivial central character, such that

L(
1

2
, τ × τ0) 6= 0.

In fact, we can view η0 as a representation of F -split SO2(A), and lift η0 to an irreducible generic
automorphic representation τ of GL2(A) (see [8, 10]), which is of orthogonal type and has trivial
central character. Moreover, the condition L(1/2, τ ⊗ η0) 6= 0 implies that L(1/2, τ × τ0) 6= 0.

For any irreducible cuspidal automorphic representation σ̃ ∈ Π̃ψ
φτ0

[Mp2(A)], by Theorem 5.11

and Proposition 6.6, one can construct an element πβ ∈ Π̃φβ [SL2(A)] for some β ∈ F×/(F×)2 via

automorphic descent, such that (πβ, σ̃
β) gives the unique GGP pair in the packet Π̃ψ

φβ×φ0,β [SL2(A)×
Mp2(A)]. Then (6.8) tells that there exists a quadratic character ηβ such that

(6.11) L(
1

2
, τ0 ⊗ ηβ) 6= 0.

Recall that for any σ̃ ∈ Πψ
φτ0

[Mp2(A)], one has Lψ(s, σ̃β) = L(s, τ0 ⊗ ηβ).

It suffices to show that there are ]Π̃ψ
φτ0

[Mp2(A)] different such quadratic twists. If we take

σ̃1, σ̃2 ∈ Π̃ψ
φ0

[Mp2(A)] with σ̃1 6' σ̃2, we get πβ1 ∈ Π̃φβ1
[SL2(A)] and πβ2 ∈ Π̃φβ2

[SL2(A)] for some

[β1], [β2] ∈ F×/(F×)2. Since we have σ̃1 6' σ̃2, we must have [β1] 6= [β2], otherwise we will
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have φβ1 = φβ2 and φ0,β1 = φ0,β2 , and this contradicts to the uniqueness of global GGP pairs (see
Remark 6.4 and Lemma 6.5). Then it follows from (6.8) that different elements in the global Vogan

packet Π̃ψ
φτ0

[Mp2(A)] give different ηβ’s such that (6.11) holds, and hence there are ]Π̃ψ
φτ0

[Mp2(A)]

different twists. �

The above proof gives a new approach to show the existence of different quadratic twists of
automorphic L-functions of PGL2 such that their special values at s = 1/2 are non-zero. This

approach makes use of the information of the global packet Π̃ψ
φτ0

[Mp2(A)], and decodes the non-

vanishing of L-values from non-vanishing of automorphic descent constructions. We expect that
it could shed some light on the higher rank cases.

6.2. On the reciprocal branching problem. In this last section, as another application, we
record the result that the automorphic descent πβ provides answers to the reciprocal branching
problem for automorphic representations of symplectic groups introduced in §1.2.

Theorem 6.9. Let τ be an isobaric sum automorphic representation τ = τ1 � · · ·� τt of GLm(A)
such that the τi’s are distinct irreducible unitary cuspidal automorphic representations of GLni(A)

of orthogonal type with ni > 1; and σ̃ ∈ Π̃ψ
φ0

[Mp2(A)] be an irreducible unitary genuine cuspidal
automorphic representation with a generic Arthur parameter φ0, such that

Lψ(
1

2
, τ × σ̃) 6= 0.

We assume in addition that ηβ 6= ωτ if m = 2n+1, here β ∈ F× is the one occurring in Proposition

5.11. Then any irreducible component π of the automorphic descent πβ = DFJ
ψn,β

(Ẽτ⊗σ̃) has a generic
global Arthur parameter, and has a non-zero Fourier-Jacobi period with σ̃. In particular, π gives
an answer to the reciprocal branching problem for the pair (Sp2(m−n)(A),Mp2(A)).

Proof. The theorem is a direct corollary of the results we have obtained in §2 – §5. More precisely,
we know that π is cuspidal by Proposition 4.2, π has a generic global Arthur parameter by
Proposition 4.3, and π has a non-zero Fourier-Jacobi period with respect to σ̃ by Proposition
2.1. �
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