MA 442: Quiz 1

Note: Definitions are given on the last page.

Name: _

Question 1. (10 points) Assume that A and B are nonempty subsets of E^* .

Show that if $(\forall x \in A)$ $(\exists y \in B)$ $x \leq y$, then $\sup A \leq \sup B$.

Answers

First, it is not true that $(\exists y \in B)$ ($\forall x \in A$) $x \leq y$. This has the "exists" statement and the "for all" statement reversed. Consider A = B = (0, 1), for which this statement is false, but the assumptions of the Question are true. **Direct proof:** We have that ($\forall y \in B$) $y \leq \sup B$, by definition of supremum.

By the hypothesis, for each x in A, there is a y in B, such that $x \leq y$; combining with the previous statement, we have $x \leq y \leq \sup B$.

So, $(\forall x \in A) \ x \leq \sup B$. So $\sup B$ is an upper bound of A; so $\sup A$, the *least* upper bound of A, satisfies $\sup A \leq \sup B$.

Proof by contradiction: sup *A* is the *least* upper bound of *A*; so if sup $B < \sup A$, then sup *B* is *not* an upper bound of *A*, i.e., there exists an $x \in A$ such that sup B < x, which means that $(\exists x \in A) \ (\forall y \in B) \ y \le \sup B < x$, which contradicts our assumption.

Question 2. (10 points) Assume that (X, ρ') and (Y, ρ'') are metric spaces, and let $S = X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. Show that if $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ are in S, then $\rho: S \times S \to E^1$ defined by

$$\rho(z_1, z_2) = \rho'(x_1, x_2) + \rho''(y_1, y_2)$$

is a metric on S.

Answer: We have $\rho(z_1, z_2) = \rho'(x_1, x_2) + \rho''(y_1, y_2) \ge 0$ because $\rho'(x_1, x_2) \ge 0$ and $\rho''(y_1, y_2) \ge 0$. Furthermore, $\rho(z_1, z_2) = 0$ iff $\rho'(x_1, x_2) + \rho''(y_1, y_2) = 0$ iff $\rho'(x_1, x_2) = 0$ and $\rho''(y_1, y_2) = 0$ iff $x_1 = x_2$ and $y_1 = y_2$ iff $z_1 = z_2$. We have $\rho(z_1, z_2) = \rho'(x_1, x_2) + \rho''(y_1, y_2) = \rho'(x_2, x_1) + \rho''(y_2, y_1) = \rho(z_2, z_1)$. And for all z_1, z_2 , and $z_3 = (x_3, y_3)$ in S,

$$\rho(z_1, z_3) = \rho'(x_1, x_3) + \rho''(y_1, y_3)
\leq \rho'(x_1, x_2) + \rho'(x_2, x_3) + \rho''(y_1, y_2) + \rho''(y_2, y_3)
= \rho(z_1, z_2) + \rho(z_2, z_3).$$

So it's a metric.

Question 3. (10 points) Let $S = [0, 1] \subset E^1$ with the metric $\rho(x, y) = |x - y|$ for $x, y \in S$. Determine, with proof, whether the set A = [0, 1/2) is open or closed (or possibly both) in S.

Answer: The set is open.

If $p \in [0, 1/2)$, then $0 \le p < 1/2$.

Let $\epsilon < 1/2 - p$.

Then $G_p(\epsilon) = \{x \in S \mid |x - p| < \epsilon\}$ and each $x \in G_p(\epsilon)$ satisfies (1) $x \in S$, so $0 \le x \le 1$, and (2) $|x - p| < \epsilon$ so $p - \epsilon < x < p + \epsilon$. But by the choice of ϵ , $p + \epsilon < 1/2$, so $x \in [0, 1] \cap (p - \epsilon, 1/2) \subseteq A$.

So $G_p(\epsilon) \subset A$, so p is interior to A.

So A is open.

It is not closed, because $1/2 \in S - A$ and each $G_{1/2}(\epsilon)$ contains a number $\max(0, 1/2 - \epsilon) < x < 1/2$, so $x \in A$. So 1/2 is not interior to S - A, so S - A is not open, so A is not closed.

Axioms of the Real Numbers:

(1) (Closure) $(\forall x, y \in E^1) \ x + y \in E^1 \text{ and } x \cdot y \in E^1.$ (2) (Commutativity) $(\forall x, y \in E^1) \ x + y = y + x \text{ and } x \cdot y = y \cdot x.$ (3) (Associativity) $(\forall x, y, z \in E^1) x + (y+z) = (x+y) + z \text{ and } x \cdot (y \cdot z) = (x \cdot y) \cdot z.$ (4) (Neutral elements) $(\exists ! 0 \in E^1) \ (\forall x \in E^1) \ x + 0 = x.$ $(\exists ! 1 \in E^1) \ (\forall x \in E^1) \ x \cdot 1 = x.$ (5) (Inverses) $(\forall x \in E^1) \ (\exists ! (-x) \in E^1) \ x + (-x) = 0.$ $(\forall x \in E^1 \mid x \neq 0) \ (\exists ! x^{-1} \in E^1) \ x \cdot x^{-1} = 1.$ (6) (Distributivity) $(\forall x, y, z \in E^1) (x+y) \cdot z = x \cdot z + y \cdot z.$ (7) (Trichotomy) $(\forall x, y \in E^1)$ precisely one of x = y, x < y, or y < x is true. (8) (Transitivity) $(\forall x, y, z \in E^1)$ x < y and y < z implies x < z. (9) (Monotonicity) $(\forall x, y, z \in E^1) \ x < y \text{ implies } x + z < y + z.$ $(\forall x, y, z \in E^1 \mid z > 0) \ x < y \text{ implies } x \cdot z < y \cdot z.$

(10) (Completeness)

Every right-bounded set $A \subseteq E^1$ has a least upper bound denoted by sup A or l.u.b. A.

Any object F that satisfies (1)-(6) is a field; any object F that satisfies (1)-(9) is an ordered field.

Definitions

- (1) A metric space is a set $S \neq \emptyset$ with a function $\rho: S \times S \to E^1$ such that for all $x, y, z \in S$:
 - (1) $\rho(x, y) \ge 0$, and $\rho(x, y) = 0$ iff x = y.
 - (2) $\rho(x, y) = \rho(y, x).$
 - (3) $\rho(x, z) \le \rho(x, y) + \rho(y, z).$
- (2) The open ball of radius ϵ about $p \in (S, \rho)$ is $G_p(\epsilon) = \{x \in S \mid \rho(x, p) < \epsilon\}.$
- (3) A set $A \subseteq (S, \rho)$ is open iff $(\forall p \in A) \ (\exists \epsilon > 0) \ G_p(\epsilon) \subseteq A$.
- (4) A set $A \subseteq (S, \rho)$ is closed iff S A is open.