MA 442: Quiz 5

Name: _____

Question 1 (10 points): Show that every linear map $\phi: E^n \to E$ for any normed space E is continuous.

Answer: The continuous linear maps are the bounded linear maps, so we have with $x = (x_1, \ldots, x_n)$,

$$\begin{aligned} |\phi(x)| &= \left| \phi\left(\sum_{k=1}^{n} x_k \vec{e}_k\right) \right| \\ &= \left| \sum_{k=1}^{n} x_k \phi(\vec{e}_k) \right| \quad \text{by linearity} \\ &\leq \sum_{k=1}^{n} |x_k| |\phi(\vec{e}_k)| \quad \text{by the triangle inequality} \\ &\leq \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2} \left(\sum_{k=1}^{n} |\phi(\vec{e}_k)|^2\right)^{1/2} \quad \text{by Cauchy-Schwartz} \\ &= |x| \left(\sum_{k=1}^{n} |\phi(\vec{e}_k)|^2\right)^{1/2} \quad \text{by definition of } |x|. \end{aligned}$$

So $\|\phi\| \leq \left(\sum_{k=1}^{n} |\phi(\vec{e}_k)|^2\right)^{1/2}$ and ϕ is continuous.

Question 2 (10 points): Define $f: E^2 \to E^2$ by

$$f(\vec{x}) = \begin{pmatrix} x_2 \\ -\sin(x_1) - x_2 \end{pmatrix}, \quad \vec{x} = (x_1, x_2).$$

Determine the points \vec{x} where $df(\vec{x})$ is one-to-one.

Answer: We have

$$[df(\vec{x})] = \begin{pmatrix} 0 & 1\\ -\cos x_1 & -1 \end{pmatrix}.$$

The determinant of this matrix is $\cos x_1$, which is nonzero iff $x_1 \neq \pi/2 \pm n\pi$, n an integer, so $[df(\vec{x})]$ is one-to-one for these values.

Question 3 (10 points): Let E be the space of all real-valued polynomials on (0, 1) with norm $|f| = \sup_{x \in (0,1)} |f(x)|$, and let the linear mapping $\phi \colon E \to E$ be defined by $\phi(f) = f'$, the derivative of f.

Show that ϕ is not a bounded map.

Answer: If $f(x) = x^n$ then $f'(x) = nx^{n-1}$, $|f| = \sup_{x \in (0,1)} |x^n| = 1$ and $|\phi(f)| = \sup_{x \in (0,1)} |nx^{n-1}| = n$.

So $\|\phi\| \ge |\phi(f)|/|f| = n$ for all n, so $\|\phi\|$ is not finite.

Definitions

- (1) An *inner product space* is a vector space E over E^1 and a mapping $\cdot : E \times E \to E^1$ that satisfies: $x \cdot x \ge 0$ and $x \cdot x = 0$ iff x = 0; $x \cdot y = y \cdot x$; $(ax) \cdot y = a(x \cdot y)$; $(x + y) \cdot z = x \cdot z + y \cdot z$.
- (2) The Cauchy–Schwartz inequality states that in any inner product space $|x \cdot y| \le (x \cdot x)^{1/2} (y \cdot y)^{1/2}$.
- (3) A normed linear space is a vector space with scalar field E^1 and a function $|\cdot|: E \to E^1$ that satisfies: $|x| \ge 0$ and |x| = 0 iff x = 0; for all $a \in E^1$ and all $x \in E |ax| = |a| |x|$; for all $x, y \in E$, $|x + y| \le |x| + |y|$.
- (4) A metric space is a set S with a function $\rho: S \times S \to E^1$ such that for all $x, y, z \in S$:
 - (1) $\rho(x, y) \ge 0$, and $\rho(x, y) = 0$ iff x = y.
 - (2) $\rho(x, y) = \rho(y, x).$
 - (3) $\rho(x,z) \le \rho(x,y) + \rho(y,z).$
- (5) The usual metric on E^n is given by $\rho(x, y) = |x y|$ with the norm given by $|x| = \sqrt{x \cdot x}$ and the dot product $x \cdot y = \sum_{k=1}^n x_k y_k$.
- (6) A sequence in a metric space (S, ρ) is Cauchy iff $(\forall \epsilon > 0)$ $(\exists K > 0)$ $(\forall m, n > K)$ $\rho(x_m, x_n) < \epsilon.$
- (7) A metric space (S, ρ) is *complete* iff every Cauchy sequence converges.
- (8) A function $f: A \to (T, \rho')$ with $A \subset (S, \rho)$ is continuous at $p \in A$ iff $(\forall \epsilon > 0)$ $(\exists \delta > 0) \ (\forall x \in G_p(\delta)) \ f(x) \in G_{f(p)}(\epsilon).$
- (9) A function $f: A \to (T, \rho')$ with $A \subset (S, \rho)$ is uniformly continuous on $B \subseteq A$ iff $(\forall \epsilon > 0) \ (\exists \delta > 0) \ (\forall x, p \in B \mid \rho(x, p) < \delta) \ \rho'(f(x), f(p)) < \epsilon$.
- (10) A function $\phi: E' \to E$, with E' and E two vector spaces over E^1 , is *linear* iff $\phi(ax + by) = a\phi(x) + b\phi(y)$ for all $a, b \in E^1$ and $x, y \in E'$.
- (11) A linear mapping $\phi \colon E' \to E$ is bounded iff $\|\phi\| = \sup_{x \in E'} |\phi(x)|/|x| < \infty$.
- (12) A function $f: E' \to E$ is differentiable at $\vec{p} \in E'$ iff there is a bounded linear mapping $\phi: E' \to E$ such that $\lim_{|\vec{t}| \to \vec{0}} |f(\vec{p} + \vec{t}) f(\vec{p}) \phi(\vec{t})|/|\vec{t}| = 0.$
- (13) If $f: E^n \to E^m$ is differentiable at \vec{p} , the matrix $[df(\vec{p})]$ is given by $[D_j f_i(\vec{p})]_{i=1,\dots,m;j=1,\dots,n}$.