
Gambit-C, version 3.0
A portable implementation of Scheme

Edition 3.0, May 1998

Marc Feeley

Copyright c© 1994-1998 Marc Feeley.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: Gambit-C: a portable version of Gambit 1

1 Gambit-C: a portable version of Gambit

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS and IEEE Scheme standards. It consists of two programs: gsi, the
Gambit Scheme interpreter, and gsc, the Gambit Scheme compiler.

Gambit-C is a version of the Gambit system in which the compiler generates portable C
code, making the whole Gambit-C system and the programs compiled with it easily portable
to many computer architectures for which a C compiler is available.

For the most up to date information on Gambit please check the Gambit web page at
‘http://www.iro.umontreal.ca/~gambit’ or send mail to ‘gambit@iro.umontreal.ca’.

Bug reports should be sent to ‘gambit@iro.umontreal.ca’.

1.1 Accessing the Gambit system files

Unless the system was built with the command ‘make FORCE_STATIC_LINK=yes’, Gam-
bit’s runtime library is normally a shared-library which is installed in ‘/usr/local/lib’
under UNIX. This directory must be in the path searched by the system for shared-
libraries. This path is normally specified through an environment variable which is
‘LD_LIBRARY_PATH’ on most versions of UNIX, ‘LIBPATH’ on AIX, ‘SHLIB_PATH’ on HPUX,
and ‘PATH’ on Windows-NT/95. If the shell is of the ‘sh’ family, the setting of the path
can be made for a single execution by prefixing the program name with the environment
variable assignment, as in:

% LD_LIBRARY_PATH=/usr/local/lib gsi

A similar problem exists with the Gambit header file ‘gambit.h’, normally installed in
‘/usr/local/include’, which is needed for compiling Scheme programs with the Gambit-
C compiler. If the C compiler does not normally search ‘/usr/local/include’ it will be
necessary to place ‘gambit.h’ in ‘/usr/include’.

A simple solution to give access to both of these files is to create a link to them in the
appropriate directories, i.e.

ln -s /usr/local/lib/libgambc.so /usr/lib ; actual name of library may vary
ln -s /usr/local/include/gambit.h /usr/include

Chapter 2: The Gambit Scheme interpreter 2

2 The Gambit Scheme interpreter

Synopsis:
gsi [-:runtimeoption,. . .] [-f] [-i] [-e expressions] [file. . .]

The interpreter is executed in interactive mode when no command line argument is
given other than options and the input does not come from a pipe. Pipe mode is when no
command line argument is given and the input comes from a pipe. Finally, batch mode is
when command line arguments are present. The ‘-i’ option is ignored by the interpreter.
The ‘-e’ option may appear multiple times and must be after the ‘-f’ and ‘-i’ options. In
all modes the expressions specified after each ‘-e’ are evaluated from left to right in the
interaction environment.

2.1 Interactive mode

In this mode the interpreter starts a read-eval-print loop (REPL) to interact with the
user. The system prompts the user for a command, reads the command from standard
input and executes it, sending any output generated including error messages to standard
output.

The commands entered by the user are typically Scheme expressions that are to be
evaluated. These expressions are evaluated in the global interaction environment. The
REPL adds to this environment any definition entered using the define and define-macro
special forms.

Once the evaluation of an expression is completed, the result of evaluation is written
to standard output unless it is the special “void” object. This object is returned by most
procedures and special forms which the standard defines as returning an unspecified value
(e.g. write, set!, define).

The evaluation of an expression may stop before it is completed for the following reasons:
a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing 〈̂ C〉).
c. A breakpoint has been reached or (step) was evaluated.
d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name of
the procedure where the evaluation was stopped and the source code location in the format
‘stream@line.column’, where stream is either ‘(stdin)’ if the expression was obtained from
standard input or a string naming a file.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. This allows the inspection of the
evaluation context, which is particularly useful to determine the location and cause of an
error.

The prompt of nested REPLs includes the nesting level. An end of file (usually 〈̂ D〉
on UNIX and 〈̂ Z〉 on MSDOS and Windows-NT/95) will cause the current REPL to be
aborted and the enclosing REPL (one nesting level less) to be resumed.

Chapter 2: The Gambit Scheme interpreter 3

At any time the user can examine the frames in the REPL’s continuation, which is useful
to determine which chain of procedure calls lead to an error. Expressions entered at a nested
REPL are evaluated in the environment of the continuation frame currently being examined
if that frame was created by interpreted Scheme code. If the frame was created by compiled
Scheme code then expressions get evaluated in the global interaction environment. This
feature may be used in interpreted code to fetch the value of a variable in the current frame
or to change its value with set!. Note that some special forms (define in particular) can
only be evaluated in the global interaction environment.

In addition to expressions, the REPL accepts the following special “comma” commands:

,? Give a summary of the REPL commands.

,q Quit the program (i.e. terminate abruptly).

,t Return to the outermost REPL, also known as the “top-level REPL”.

,d Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

,(c expr) Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command must only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if
the evaluation of the expression ‘(+ x 1)’ signaled an error because ‘x’
is not bound, then in the nested REPL a ‘,(c (* 2 3))’ will resume
the computation of ‘(+ x 1)’ as though the value of ‘x’ was 6. In the
top-level REPL this command terminates the program.

,c Leave the current REPL and continue the computation that initiated
the REPL. This command must only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

,s Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by set-step-level!) and then stop, causing
a nested REPL to be entered. Just before the evaluation step is per-
formed, a line is displayed (in the same format as trace) which indicates
the expression that is being evaluated. If the evaluation step produces
a result, the result is also displayed on another line. A nested REPL is
then entered after displaying a message which describes the next step
of the computation. This command must only be used to continue a
computation that was stopped due to a user interrupt, breakpoint or a
single-step.

,l This command is similar to ‘,s’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

,n Move to frame number n of the continuation. Frames are numbered
with non-negative integers. Frame 0 is the most recently created frame

Chapter 2: The Gambit Scheme interpreter 4

in the chain of continuation frames. Frame 1 is the next to most recent
and so on. When it is different from 0, the frame number appears in the
prompt after the REPL nesting level. After changing the current frame,
a one-line summary of the frame is displayed as if the ‘,y’ command was
entered.

,+ Move to the next frame in the chain of continuation frames (i.e. towards
older continuation frames). After changing the current frame, a one-line
summary of the frame is displayed as if the ‘,y’ command was entered.

,- Move to the previous frame in the chain of continuation frames (i.e.
towards more recently created continuation frames). After changing
the current frame, a one-line summary of the frame is displayed as if
the ‘,y’ command was entered.

,y Display a one-line summary of the current frame. The information
is displayed in four fields. The first field is the frame number. The
second field is the procedure that created the frame or ‘(interaction)’
if the frame was created by an expression entered at the REPL. The
remaining fields describe the subproblem associated with the frame,
that is the expression whose value is being computed. The third field
is the location of the subproblem’s source code and the fourth field is a
reproduction of the source code (possibly truncated to fit on the line).
The last two fields may be missing if that information is not available.
In particular, the third field is missing when the frame was created by
a user call to the ‘eval’ procedure, and the last two fields are missing
when the frame was created by a compiled procedure not compiled with
the ‘-debug’ option.

,b Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ‘,y’ command is displayed (except that location
information is displayed in the format ‘stream@line:column’). If there
are more that 15 frames in the chain of continuation frames, some of
the middle frames will be omitted.

,i Pretty print the procedure that created the current frame or ‘(interaction)’
if the frame was created by an expression entered at the REPL. Com-
piled procedures will only be pretty printed if compiled with the
‘-debug’ option.

,e Display the environment (local variables) which are accessible from the
current frame. This command only supports frames created by inter-
preted code.

Here is a sample interaction with gsi:
% gsi
Gambit Version 3.0

> (define (f x) (let* ((y 10) (z (* x y))) (- x z)))

Chapter 2: The Gambit Scheme interpreter 5

> (define (g n) (if (> n 1) (+ 1 (g (/ n 2))) (f ’oops)))
> (g 8)
*** ERROR IN (stdin)@1.32 -- NUMBER expected
(* ’oops 10)
1> ,i
#<procedure f> =
(lambda (x) (let ((y 10)) (let ((z (* x y))) (- x z))))
1> ,b
0 f (stdin)@1:32 (* x y)
1 g (stdin)@2:32 (g (/ n 2))
2 g (stdin)@2:32 (g (/ n 2))
3 g (stdin)@2:32 (g (/ n 2))
4 (interaction) (stdin)@3:1 (g 8)
5 ##initial-continuation
1> ,e
y = 10
x = oops
1> ,+
1 g (stdin)@2.32 (g (/ n 2))
1-1> ,e
n = 2
1-1> ,+
2 g (stdin)@2.32 (g (/ n 2))
1-2> ,e
n = 4
1-2> ,+
3 g (stdin)@2.32 (g (/ n 2))
1-3> ,e
n = 8
1-3> ,0
0 f (stdin)@1.32 (* x y)
1> (set! x 1)
1> ,e
y = 10
x = 1
1> ,(c (* x y))
-6
> ,q

2.2 Pipe mode

In pipe mode the interpreter evaluates the expressions read from standard input in the
global interaction environment and writes each result on a separate line on standard output.
Evaluation errors cause the interpreter to exit. Error messages are sent to standard error.

For example, under UNIX:
% echo "(sqrt (read)) 9 (expt 2 100)" | gsi
3
1267650600228229401496703205376

Chapter 2: The Gambit Scheme interpreter 6

2.3 Batch mode

In batch mode the command line arguments designate files to be loaded. The interpreter
loads these files in left-to-right order using the load procedure. The files can have no
extension, or the extension ‘.scm’ or ‘.on’ where n is a positive integer that acts as a
version number (the ‘.on’ extension is used for object files produced by gsc). When the file
name has no extension the load procedure first attempts to load the file with no extension
as a Scheme source file. If that file doesn’t exist it completes the file name with a ‘.on’
extension with the highest consecutive version number starting with 1, and loads that file
as an object file. If that file doesn’t exist the file name is completed with a ‘.scm’ extension
and the file is loaded as a Scheme source file.

A special case is the argument ‘-’ which designates the standard input. If the standard
input comes from a pipe, it is treated as a Scheme source file. Otherwise, a REPL is started
so that the user can interact with the interpreter. Note that ‘-’ can appear multiple times
on the command line, which is useful for debugging.

The interpreter exits after loading the files or as soon as an error occurs. Input is taken
from standard input and any output generated is sent to standard output except for error
messages which go to standard error.

For example, under UNIX:
% cat m1.scm
(display "hello") (newline)
% cat m2.scm
(display "world") (newline)
% gsi m1 m2
hello
world
% gsi m1 - m2 -
hello
> (define display write)
> ,(c 0)
"world"
> (+ 1 2)
3
> ,q
% echo "(write 123)(newline)" | gsi -
123
% echo "(write 123)(newline)" | gsi
123#<void>

#<void>

2.4 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries
to execute a ‘(load "~~/gambc")’ (for an explanation of how file names are interpreted see
Chapter 5 [file names], page 18). An error is not signaled if the file does not exist. Interpreter

Chapter 2: The Gambit Scheme interpreter 7

extensions and patches that are meant to apply to all users and all modes should go in that
file.

Extensions which are meant to apply to a single user or to a specific directory are best
placed in the initialization file, which is a file containing Scheme code. In all modes, the
interpreter first tries to locate the initialization file by searching the following locations:
‘gambc.scm’ and ‘~/gambc.scm’. The first file that is found is examined as though the
expression (include initialization-file) had been entered at the read-eval-print loop where
initialization-file is the file that was found. Note that by using an include the macros
defined in the initialization file will be visible from the read-eval-print loop (this would not
have been the case if load had been used). The initialization file is not searched for or
examined if the ‘-f’ option is specified.

2.5 Process exit status

Under UNIX, the status is 0 when the interpreter exits normally and is 1 when the
interpreter exits due to an error.

For example, if the shell is sh:
% echo "(/ 1 0)" | gsi
*** ERROR IN (stdin)@1.1 -- Division by zero
(/ 1 0)
% echo $?
1

2.6 Scheme scripts

Gambit’s load procedure treats specially any Scheme source file beginning with the
token ‘#!’. The load procedure discards the rest of the line and then loads the rest of
the file normally. If this file is being loaded because it is an argument on the interpreter’s
command line, then the interpreter is terminated after loading the file.

This feature can be used under UNIX to write Scheme scripts by simply prefixing a file
of Scheme code with a line containing ‘#! /usr/local/bin/gsi’ (note the space between
the ‘#!’ and the ‘/usr/local/bin/gsi’ so that the ‘#!’ token is read properly by gsi).
When such a script is executed, the script’s file name followed by the script’s command
line arguments are added to the arguments passed to the interpreter. Thus, the interpreter
will be run in batch mode and the interpreter will call load with the script’s file name as
argument. The script’s arguments can be accessed by calling the procedure argv. This
nullary procedure returns the script’s file name and its arguments as a list of strings.

For example:
% cat upto
#! /usr/local/bin/gsi -f
(define (usage) (display "usage: upto n") (newline))
(if (not (= (length (argv)) 2))
(usage)
(let ((n (string->number (list-ref (argv) 1))))

(if (and n (exact? n) (integer? n))

Chapter 2: The Gambit Scheme interpreter 8

(let loop ((i 1))
(if (<= i n)
(begin (write i) (newline) (loop (+ i 1)))))

(usage))))
% upto 3
1
2
3

On some versions of UNIX it is necessary to prefix the Scheme source code in the following
way:

#! /bin/sh
":";exec gsi -f $0 $*
(write (argv)) (newline)

An interesting application of Scheme scripts is to implement CGI scripts. Here is a
sample CGI script that maintains a counter that is incremented each time the CGI script
is accessed:

#! /usr/local/bin/gsi -f

(define n (+ 1 (with-input-from-file "counter" read)))
(with-output-to-file "counter" (lambda () (write n)))
(display "Content-type: text/html") (newline)
(newline)
(display "Access #") (display n) (newline)

Chapter 3: The Gambit Scheme compiler 9

3 The Gambit Scheme compiler

Synopsis:
gsc [-:runtimeoption,. . .] [-f] [-i] [-e expressions] [-prelude expressions]

[-postlude expressions] [-verbose] [-report] [-expansion] [-gvm] [-debug]
[-o output] [-c] [-dynamic] [-flat] [-l base] [file. . .]

3.1 Interactive and pipe modes

When no command line argument is present other than options the compiler behaves
like the interpreter. This means that interactive mode is selected if the input does not
come from a pipe, otherwise pipe mode is selected. In these modes, the only difference
with the interpreter is that some additional predefined procedures are available (notably
compile-file).

3.2 Customization

Just like the interpreter, the compiler will examine the initialization file unless the ‘-f’
option is specified.

3.3 Batch mode

In batch mode gsc takes a set of file names (either with ‘.scm’, ‘.c’, or no extension)
on the command line and compiles each Scheme source file into a C file. File names with
no extension are taken to be Scheme source files and a ‘.scm’ extension is automatically
appended to the file name. For each Scheme source file ‘file.scm’, the C file ‘file.c’ stripped
of its directory will be produced (i.e. the C file is created in the current working directory).

The C files produced by the compiler serve two purposes. They will have to be compiled
by a C compiler to generate object files, and also they contain information to be read by
Gambit’s linker to generate a link file. The link file is a C file that collects various linking
information for a group of modules, such as the set of all symbols and global variables used
by the modules. The linker is automatically invoked unless the ‘-c’ or ‘-dynamic’ options
appear on the command line.

Compiler options must be specified before the first file name and after the ‘-:’ runtime
option (see Chapter 4 [runtime options], page 16). If present, the ‘-f’ and ‘-i’ compiler
options must come first. The available options are:

-f Do not examine initialization file.

-i Force interpreter mode.

-e expressions Evaluate expressions in the interaction environment.

-prelude expressions
Add expressions to the top of the source code being compiled.

-postlude expressions
Add expressions to the bottom of the source code being compiled.

Chapter 3: The Gambit Scheme compiler 10

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

-expansion Display the source code after expansion.

-gvm Generate a listing of the GVM code.

-debug Include debugging information in the code generated.

-o output Set name of output file.

-c Only compile Scheme source files to C (no link file generated).

-dynamic Only compile Scheme source files to dynamically loadable object files
(no link file generated).

-flat Generate a flat link file instead of an incremental link file.

-l base Specify the link file of the base library to use for the link.

The ‘-i’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘-e’ option evaluates the specified expressions in the interaction environment.
The ‘-prelude’ option adds the specified expressions to the top of the source code being

compiled. The main use of this option is to supply declarations on the command line. For
example the following invocation of the compiler will compile the file ‘bench.scm’ in unsafe
mode:

% gsc -prelude "(declare (not safe))" bench.scm

The ‘-postlude’ option adds the specified expressions to the bottom of the source code
being compiled. The main use of this option is to supply the expression that will start the
execution of the program. For example:

% gsc -postlude "(main)" bench.scm

The ‘-verbose’ option displays on standard output a trace of the compiler’s activity.
The ‘-report’ option displays on standard output a global variable usage report. Each

global variable used in the program is listed with 4 flags that indicate if the global variable
is defined, referenced, mutated and called.

The ‘-expansion’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘-gvm’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file.gvm’.

The ‘-debug’ option causes debugging information to be saved in the code generated.
With this option run time error messages indicate the source code and its location, the
backtraces are more precise, and pp will display the source code of compiled procedures.
The debugging information is large (the size of the object file is typically 4 times bigger).

The ‘-o’ option sets the name of the output file generated by the compiler. If a link file
is being generated the name specified is that of the link file. Otherwise the name specified is
that of the C file (this option is ignored if the compiler is generating more than one output
file or is generating a dynamically loadable object file).

Chapter 3: The Gambit Scheme compiler 11

If the ‘-c’ and ‘-dynamic’ options do not appear on the command line, the Gambit linker
is invoked to generate the link file from the set of C files specified on the command line
or produced by the Gambit compiler. Unless the name is specified explicitly with the ‘-o’
option, the link file is named ‘last_.c’, where ‘last.c’ is the last file in the set of C files.
When the ‘-c’ option is specified, the Scheme source files are compiled to C files. When the
‘-dynamic’ option is specified, the Scheme source files are compiled to dynamically loadable
object files (‘.on’ extension).

The ‘-flat’ option is only meaningful if a link file is being generated (i.e. the ‘-c’ and
‘-dynamic’ options are absent). The ‘-flat’ option directs the Gambit linker to generate a
flat link file. By default, the linker generates an incremental link file (see the next section
for a description of the two types of link files).

The ‘-l’ option is only meaningful if an incremental link file is being generated (i.e.
the ‘-c’, ‘-dynamic’ and ‘-flat’ options are absent). The ‘-l’ option specifies the link file
(without the ‘.c’ extension) of the base library to use for the incremental link. By default
the link file of the Gambit runtime library is used (i.e. ‘~~/_gambc.c’).

3.4 Link files

Gambit can be used to create applications and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, an application is composed of a set of Scheme modules and C modules. Some
of the modules are part of the Gambit runtime library and the other modules are supplied
by the user. When the application is started it must setup various global tables (including
the symbol table and the global variable table) and then sequentially execute the Scheme
modules (more or less as if they were being loaded one after another). The information
required for this is contained in one or more link files generated by the Gambit linker from
the C files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because
most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus an application built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine if
the application is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
applications (this linking information typically takes 150 Kbytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the load procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, an application can be built by linking the user mod-
ules with the runtime library’s link file, producing an incremental link file. This allows the
creation of a shared-library which contains the modules of the runtime library and its flat

Chapter 3: The Gambit Scheme compiler 12

link file. The application is dynamically linked with this shared-library and only contains
the user modules and the incremental link file. For small applications this approach greatly
reduces the size of the application because the incremental link file is small. A “hello world”
program built this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an
incremental link file for statically linked programs (there is very little loss compared to a
single flat link file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to call up gsc to compile each
Scheme module into a C file and create an incremental link file. The C files and the link
file must then be compiled with a C compiler and linked (at the object file level) with
the Gambit runtime library and possibly other libraries (such as the math library and the
dynamic loading library). Here is for example how a program with three modules (one in
C and two in Scheme) can be built:

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.c
int power_of_2 (int x) { return 1<<x; }
% cat m2.scm
(c-declare "extern int power_of_2 ();")
(define pow2 (c-lambda (int) int "power_of_2"))
(define (twice x) (cons x x))
% cat m3.scm
(write (map twice (map pow2 ’(1 2 3 4)))) (newline)
% gsc -c m2.scm # create m2.c (note: .scm is optional)
% gsc -c m3.scm # create m3.c (note: .scm is optional)
% gsc m2.c m3.c # create the incremental link file m3_.c
% gcc m1.c m2.c m3.c m3_.c -lgambc
% a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Alternatively, the three invocations of gsc can be replaced by a single invocation:
% gsc m2 m3

3.4.2 Building a loadable library

To bundle multiple modules into a single file that can be dynamically loaded with the
load procedure, a flat link file is needed. When compiling the C files and link file generated,
the flag ‘-D___DYNAMIC’ must be passed to the C compiler. The three modules of the
previous example can be bundled in this way:

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% gsc -flat -o foo.c m2 m3
m2:
m3:

Chapter 3: The Gambit Scheme compiler 13

*** WARNING -- "cons" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "map" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m3.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m3.c")
% gcc -shared -fPIC -D___DYNAMIC m1.c m2.c m3.c foo.c -o foo.o1
% gsi
Gambit Version 3.0

> (load "foo")
((2 . 2) (4 . 4) (8 . 8) (16 . 16))
"/users/feeley/foo.o1"
> ,q

The warnings indicate that there are no definitions (defines or set!s) of the variables
cons, map, newline and write in the set of modules being linked. Before ‘foo.o1’ is loaded,
these variables will have to be bound; either implicitly (by the runtime library) or explicitly.

Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.o1’ composed of the files ‘m1.scm’, ‘m2.scm’ and ‘x.c’ that links to system
shared libraries (for X-windows):

% uname -a
SunOS ungava 5.6 Generic_105181-05 sun4m sparc SUNW,SPARCstation-20
% gsc -flat -o mymod.c m1 m2
m1:
m2:
*** WARNING -- "*" is not defined,
*** referenced in: ("m1.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m2.c")
*** WARNING -- "display" is not defined,
*** referenced in: ("m2.c" "m1.c")
*** WARNING -- "newline" is not defined,
*** referenced in: ("m2.c" "m1.c")
*** WARNING -- "write" is not defined,
*** referenced in: ("m2.c")
% gcc -fPIC -c -I../lib -D___DYNAMIC mymod.c m1.c m2.c x.c
% /usr/ccs/bin/ld -G -o mymod.o1 mymod.o m1.o m2.o x.o -lX11 -lsocket
% gsi mymod.o1
hello from m1
hello from m2
(f1 10) = 22
% cat m1.scm
(define (f1 x) (* 2 (f2 x)))
(display "hello from m1")
(newline)

Chapter 3: The Gambit Scheme compiler 14

(c-declare "#include \"x.h\"")
(define x-initialize (c-lambda (char-string) bool "x_initialize"))
(define x-display-name (c-lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))
% cat m2.scm
(define (f2 x) (+ x 1))
(display "hello from m2")
(newline)

(display "(f1 10) = ")
(write (f1 10))
(newline)

(x-initialize (x-display-name))
(x-bell 50) ; sound the bell at 50%
% cat x.c
#include <X11/Xlib.h>

static Display *display;

int x_initialize (char *display_name)
{
display = XOpenDisplay (display_name);
return display != NULL;

}

char *x_display_name (void)
{
return XDisplayName (NULL);

}

void x_bell (int volume)
{
XBell (display, volume);
XFlush (display);

}
% cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incremen-
tal link file is normally used when the Gambit runtime library (or some other library) is to
be extended with new procedures. A flat link file is mainly useful when building a “primal”
runtime library, which is a library (such as the Gambit runtime library) that does not extend
another library. When compiling the C files and link file generated, the flags ‘-D___LIBRARY’

Chapter 3: The Gambit Scheme compiler 15

and ‘-D___SHARED’ must be passed to the C compiler. The flag ‘-D___PRIMAL’ must also
be passed to the C compiler when a primal library is being built.

A shared-library ‘mylib.so’ containing the two first modules of the previous example
can be built this way:

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% gsc -o mylib.c m2
% gcc -shared -fPIC -D___LIBRARY -D___SHARED m1.c m2.c mylib.c -o mylib.so

Note that this shared-library is built using an incremental link file (it extends the Gambit
runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

% gsc -l mylib m3
% gcc m3.c m3_.c mylib.so -lgambc
% LD_LIBRARY_PATH=.:/usr/local/lib a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.4 Other compilation options and flags

The performance of the code can be increased by passing the ‘-D___SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-O’ option can be
passed to the C compiler. For large modules, it will not be practical to specify both ‘-O’
and ‘-D___SINGLE_HOST’ for typical C compilers because the compile time will be high and
the C compiler might even fail to compile the program for lack of memory.

Some C compilers don’t automatically search ‘/usr/local/include’ for header files. In
this case the flag ‘-I/usr/local/include’ should be passed to the C compiler. Similarly,
some C compilers/linkers don’t automatically search ‘/usr/local/lib’ for libraries. In this
case the flag ‘-L/usr/local/lib’ should be passed to the C compiler/linker.

A variety of flags are needed by some C compilers when compiling a shared-library
or a dynamically loadable library. Some of these flags are: ‘-shared’, ‘-call_shared’,
‘-rdynamic’, ‘-fpic’, ‘-fPIC’, ‘-Kpic’, ‘-KPIC’, ‘-pic’, ‘+z’. Check your compiler’s docu-
mentation to see which flag you need.

Under Digital UNIX, formerly DEC OSF/1, on DEC Alpha (a 64 bit processor) the
Gambit runtime library is linked using the ‘-taso’ C linker flag. This allows the use of
32 bit pointers instead of the usual 64 bit pointers, which roughly reduces the memory
usage for data by a factor of two. The ‘-taso’ flag must thus be passed to the C linker
when linking a program. Gambit can be compiled to use 64 bit pointers by removing the
definition ‘#define ___FORCE_32’ from the file ‘gambit.h’. The ‘-taso’ C linker flag can
then be omitted.

Chapter 4: Runtime options for all programs 16

4 Runtime options for all programs

Both gsi and gsc as well as executable programs compiled and linked using gsc take
a ‘-:’ option which supplies parameters to the runtime system. This option must appear
first on the command line. The colon is followed by a comma separated list of options with
no intervening spaces.

The available options are:

s Select standard Scheme mode.

d Display debugging information.

t Treat stdin, stdout and stderr as terminals.

u Use unbuffered I/O for stdin, stdout and stderr.

kstackcachesize Set stack cache size in kilobytes.

mheapsize Set minimum heap size in kilobytes.

hheapsize Set maximum heap size in kilobytes.

llivepercent Set heap occupation after garbage collection.

c Select native character encoding for I/O.

1 Select ‘LATIN-1’ character encoding for I/O.

8 Select ‘UTF-8’ character encoding for I/O.

The ‘s’ option selects standard Scheme mode. In this mode the reader is case insensitive
and keywords are not recognized. By default the reader is case sensitive and recognizes
keywords which end with a colon.

The ‘d’ option selects debugging mode which displays a trace on standard error to
monitor the activity of the runtime system.

The ‘t’ option forces the standard input and output to be treated like a terminal (i.e. as
though isatty was true on stdin, stdout and stderr). This is useful in situations, such
as running emacs under Windows-NT/95, where running the interpreter as a subprocess
invokes pipe mode. By using the ‘t’ option in this situation, the interpreter will enter
interactive mode.

The ‘u’ option forces all I/O on the standard input and output (i.e. stdin, stdout and
stderr) to be unbuffered. This is useful to get prompt response when the program is run
as a subprocess (e.g. a pipe).

The ‘k’ option specifies the size of the stack cache. The ‘k’ is immediately followed
by an integer indicating the number of kilobytes of memory. The stack cache is used to
allocate continuation frames. When the stack cache overflows a GC is triggered and the
continuation frames are transfered from the stack cache to the heap. This makes it possible
for arbitrarily deep recursions to execute (up to a heap overflow). By default, the stack
cache contains 4096 words. Increasing the size of the stack cache will normally improve the
performance of programs with deep recursions.

Chapter 4: Runtime options for all programs 17

The ‘m’ option specifies the minimum size of the heap. The ‘m’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not shrink lower
than this size. By default, the minimum size is 0.

The ‘h’ option specifies the maximum size of the heap. The ‘h’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not grow larger
than this size. By default, there is no limit (i.e. the heap will grow until the virtual memory
is exhausted).

The ‘l’ option specifies the percentage of the heap that will be occupied with live objects
at the end of a garbage collection. The ‘l’ is immediately followed by an integer between 1
and 100 inclusively indicating the desired percentage. The garbage collector will resize the
heap to reach this percentage occupation. By default, the percentage is 50.

The ‘c’ option selects the native character encoding as the default character encoding
for I/O. This is used by default if no default encoding is specified.

The ‘1’ option selects ‘LATIN-1’ as the default character encoding for I/O.
The ‘8’ option selects ‘UTF-8’ (variable length Unicode) as the default character encoding

for I/O.

Chapter 5: Handling of file names 18

5 Handling of file names

Gambit uses a naming convention for files that is compatible with the one used by the
underlying operating system but extended to allow referring to the home directory of the
current user or some specific user and the Gambit installation directory.

A file is designated using a path. Each component of a path is separated by a ‘/’ under
UNIX, by a ‘/’ or ‘\’ under MSDOS and Windows-NT/95, and by a ‘:’ under MACOS. A
leading separator indicates an absolute path under UNIX, MSDOS and Windows-NT/95
but indicates a relative path under MACOS. A path which does not contain a path separator
is relative to the current working directory on all operating systems (including MACOS).
A drive specifier such as ‘C:’ may prefix a file name under MSDOS and Windows-NT/95.

Under MACOS the folder ‘Gambit-C’ must exist in the ‘Preferences’ folder and contain
the folder ‘gambc’ (the Gambit installation directory). The ‘Gambit-C’ and ‘gambc’ folders
must not be aliases.

In this document and the rest of this section in particular, ‘/’ has been used to represent
the path separator.

A path which starts with the characters ‘~/’ designates a file in the user’s home directory.
The user’s home directory is contained in the ‘HOME’ environment variable under UNIX,
MSDOS and Windows-NT/95. Under MACOS this designates the folder which contains
the application.

A file name which starts with the characters ‘~user/’ designates a file in the home
directory of the given user. Under UNIX this is found using the password file. There is no
equivalent under MSDOS, Windows-NT/95, and MACOS.

A file name which starts with the characters ‘~~/’ designates a file in the Gambit in-
stallation directory. This directory is normally ‘/usr/local/share/gambc/’ under UNIX,
‘C:\GAMBC\’ under MSDOS and Windows-NT/95, and under MACOS the folder ‘gambc’ in
the ‘Gambit-C’ folder. To override this binding under UNIX, MSDOS and Windows-NT/95,
define the ‘GAMBCDIR’ environment variable.

Chapter 6: Emacs interface 19

6 Emacs interface

Gambit comes with the Emacs package ‘gambit.el’ which provides a nice environment
for running Gambit from within the Emacs editor. This package filters the standard out-
put of the Gambit process and when it intercepts a location information (in the format
‘stream@line.column’ where stream is either ‘(stdin)’ if the expression was obtained from
standard input or a string naming a file) it opens a window to highlight the corresponding
expression.

To use this package, make sure the file ‘gambit.el’ is accessible from your load-path
and that the following lines are in your ‘.emacs’ file:

(autoload ’gambit-inferior-mode "gambit" "Hook Gambit mode into cmuscheme.")
(autoload ’gambit-mode "gambit" "Hook Gambit mode into scheme.")
(add-hook ’inferior-scheme-mode-hook (function gambit-inferior-mode))
(add-hook ’scheme-mode-hook (function gambit-mode))
(setq scheme-program-name "gsi -:t")

Alternatively, if you don’t mind always loading this package, you can simply add this
line to your ‘.emacs’ file:

(require ’gambit)

You can then start an inferior Gambit process by typing ‘M-x run-scheme’. The com-
mands provided in ‘cmuscheme’ mode will be available in the Gambit interaction buffer (i.e.
‘*scheme*’) and in buffers attached to Scheme source files. Here is a list of the most useful
commands (for a complete list type ‘C-h m’ in the Gambit interaction buffer):

C-x C-e Evaluate the expression which is before the cursor (the expression will
be copied to the Gambit interaction buffer).

C-c C-z Switch to Gambit interaction buffer.

C-c C-l Load a file (file attached to current buffer is default) using (load file).

C-c C-k Compile a file (file attached to current buffer is default) using (compile-
file file).

The file ‘gambit.el’ provides these additional commands:

C-c c Continue the computation (same as typing ‘,c’ to the REPL).

C-c s Step the computation (same as typing ‘,s’ to the REPL).

C-c l Leap the computation (same as typing ‘,l’ to the REPL).

C-c [Move to older frame (same as typing ‘,+’ to the REPL).

C-c] Move to newer frame (same as typing ‘,-’ to the REPL).

C-c _ Removes the last window that was opened to highlight an expression.

These commands can be shortened to ‘M-c’, ‘M-s’, ‘M-l’, ‘M-[’, ‘M-]’, and ‘M-_’ respec-
tively by adding this line to your ‘.emacs’ file:

(setq gambit-repl-command-prefix "\e")

This is more convenient to type than the two keystroke ‘C-c’ based sequences but the
purist may not like this because it does not follow normal Emacs conventions.

Here is what a typical ‘.emacs’ file will look like:

Chapter 6: Emacs interface 20

(setq load-path
(cons "/usr/local/share/emacs/site-lisp" ; location of gambit.el

load-path))
(setq scheme-program-name "/tmp/gsi -:t") ; if gsi not in executable path
(setq gambit-highlight-color "gray") ; if you don’t like the default
(setq gambit-repl-command-prefix "\e") ; if you want M-c, M-s, etc
(require ’gambit)

Chapter 7: Extensions to Scheme 21

7 Extensions to Scheme

The Gambit Scheme system conforms to the R4RS and IEEE Scheme standards. Gambit
supports a number of extensions to these standards by extending the behavior of standard
special forms and procedures, and by adding special forms and procedures.

7.1 Standard special forms and procedures

The extensions given in this section are all compatible with the Scheme standards. This
means that the special forms and procedures behave as defined in the standards when they
are used according to the standards.

procedureopen-input-file file [char-encoding]
procedureopen-output-file file [char-encoding]
procedurecall-with-input-file file proc [char-encoding]
procedurecall-with-output-file file proc [char-encoding]
procedurewith-input-from-file file thunk [char-encoding]
procedurewith-output-to-file file thunk [char-encoding]
procedureload file [char-encoding]

These procedures take an optional argument which specifies the character en-
coding to use for I/O operations on the port. char-encoding must be one of the
following symbols:

char the file is opened in text mode and the native character
encoding is used

latin1 the file is opened in text mode and the ‘LATIN-1’ character
encoding is used

utf8 the file is opened in text mode and the ‘UTF-8’ character
encoding (1 to 6 bytes per character) is used

byte the file is opened in binary mode and the ‘LATIN-1’ charac-
ter encoding (1 byte per character) is used

ucs2 the file is opened in binary mode and the ‘UCS-2’ character
encoding (2 bytes per character) is used

ucs4 the file is opened in binary mode and the ‘UCS-4’ character
encoding (4 bytes per character) is used

If char-encoding is not specified, the default character encoding is used (see
Chapter 4 [runtime options], page 16).

proceduretranscript-on file
proceduretranscript-off

These procedures do nothing.

Chapter 7: Extensions to Scheme 22

procedureread [port [readtable]]
procedurewrite obj [port [readtable]]
proceduredisplay obj [port [readtable]]

The read, write and display procedures take an optional readtable argument
which specifies the readtable to use. If it is not specified, the readtable defaults
to the current readtable.
These procedures support the following features.
• Keyword objects (see Section 7.2 [procedure keyword?], page 24).
• Extended character names:

#\newline newline character

#\space space character

#\nul Unicode character 0

#\bel Unicode character 7

#\backspace Unicode character 8

#\tab Unicode character 9

#\linefeed Unicode character 10

#\vt Unicode character 11

#\page Unicode character 12

#\return Unicode character 13

#\rubout Unicode character 127

#\n Unicode character n (n must be at least two charac-
ters long and represent an exact integer, for example
#\#x20 is the space character)

• Escape sequences inside character strings:

\n newline character

\a Unicode character 7

\b Unicode character 8

\t Unicode character 9

\v Unicode character 11

\f Unicode character 12

\r Unicode character 13

\" "

\\ \

\ooo character encoded in octal (1 to 3 octal digits)

\xhh character encoded in hexadecimal (>= 1 hexadecimal
digit)

Chapter 7: Extensions to Scheme 23

• Symbols can be represented with a leading and trailing vertical bar (i.e.
‘|’). The symbol’s name corresponds verbatim to the characters between
the vertical bars except for escaped characters. The same escape sequences
as for strings are permitted except that ‘"’ does not need to be escaped
and ‘|’ needs to be escaped.

• Multiline comments are delimited by the tokens ‘#|’ and ‘|#’. These com-
ments can be nested.

• Special “#!” objects:

#! script object

#!eof end-of-file object

#!optional optional object

#!rest rest object

#!key key object

• Special inexact real numbers:

+inf. positive infinity

-inf. negative infinity

+nan. “not a number”

-0. negative zero (‘0.’ is the positive zero)

• Bytevectors are uniform vectors containing raw numbers (non-negative ex-
act integers or inexact reals). There are 5 types of bytevectors: ‘u8vector’
(vector of 8 bit unsigned integers), ‘u16vector’ (vector of 16 bit unsigned
integers), ‘u32vector’ (vector of 32 bit unsigned integers), ‘u64vector’
(vector of 64 bit unsigned integers), ‘f32vector’ (vector of 32 bit floating
point numbers), and ‘f64vector’ (vector of 64 bit floating point numbers).
The external representation of bytevectors is similar to normal vectors but
with the ‘#(’ prefix replaced respectively with ‘#u8(’, ‘#u16(’, ‘#u32(’,
‘#u64(’, ‘#f32(’, and ‘#f64(’. The elements of the integer bytevectors
must be unsigned integers fitting in the given precision. The elements of
the floating point bytevectors must be inexact reals.

Chapter 7: Extensions to Scheme 24

procedure= z1. . .
procedure< x1. . .
procedure> x1. . .
procedure<= x1. . .
procedure>= x1. . .
procedurechar=? char1. . .
procedurechar<? char1. . .
procedurechar>? char1. . .
procedurechar<=? char1. . .
procedurechar>=? char1. . .
procedurechar-ci=? char1. . .
procedurechar-ci<? char1. . .
procedurechar-ci>? char1. . .
procedurechar-ci<=? char1. . .
procedurechar-ci>=? char1. . .
procedurestring=? string1. . .
procedurestring<? string1. . .
procedurestring>? string1. . .
procedurestring<=? string1. . .
procedurestring>=? string1. . .
procedurestring-ci=? string1. . .
procedurestring-ci<? string1. . .
procedurestring-ci>? string1. . .
procedurestring-ci<=? string1. . .
procedurestring-ci>=? string1. . .

These procedures take any number of arguments including no argument. This
is useful to test if the elements of a list are sorted in a particular order. For
example, testing that the list of numbers lst is sorted in non-decreasing order
can be done with the call (apply < lst).

7.2 Additional special forms and procedures

special forminclude file
file must be a string naming an existing file containing Scheme source code.
The include special form splices the content of the specified source file. This
form can only appear where a define form is acceptable.
For example:

(include "macros.scm")

(define (f lst)
(include "sort.scm")
(map sqrt (sort lst)))

special formdefine-macro (name arg . . .) body
Define name as a macro special form which expands into body. This form can
only appear where a define form is acceptable. Macros are lexically scoped.

Chapter 7: Extensions to Scheme 25

The scope of a local macro definition extends from the definition to the end
of the body of the surrounding binding construct. Macros defined at the top
level of a Scheme module are only visible in that module. To have access to
the macro definitions contained in a file, that file must be included using the
include special form. Macros which are visible from the REPL are also visible
during the compilation of Scheme source files.
For example:

(define-macro (push val var)
‘(set! ,var (cons ,val ,var)))

(define-macro (unless test . body)
‘(if ,test #f (begin ,@body)))

special formdeclare declaration. . .
This form introduces declarations to be used by the compiler (currently the
interpreter ignores the declarations). This form can only appear where a define
form is acceptable. Declarations are lexically scoped in the same way as macros.
The following declarations are accepted by the compiler:

(dialect) Use the given dialect’s semantics. dialect can be: ‘ieee-scheme’
or ‘r4rs-scheme’.

(strategy) Select block compilation or separate compilation. In block
compilation, the compiler assumes that global variables de-
fined in the current file that are not mutated in the file will
never be mutated. strategy can be: ‘block’ or ‘separate’.

([not] inline) Allow (or disallow) inlining of user procedures.

(inlining-limit n)
Select the degree to which the compiler inlines user proce-
dures. n is the upper-bound, in percent, on code expansion
that will result from inlining. Thus, a value of 300 indicates
that the size of the program will not grow by more than 300
percent (i.e. it will be at most 4 times the size of the origi-
nal). A value of 0 disables inlining. The size of a program
is the total number of subexpressions it contains (i.e. the
size of an expression is one plus the size of its immediate
subexpressions). The following conditions must hold for a
procedure to be inlined: inlining the procedure must not
cause the size of the call site to grow more than specified
by the inlining limit, the site of definition (the define or
lambda) and the call site must be declared as (inline),
and the compiler must be able to find the definition of the
procedure referred to at the call site (if the procedure is
bound to a global variable, the definition site must have
a (block) declaration). Note that inlining usually causes
much less code expansion than specified by the inlining limit
(an expansion around 10% is common for n=300).

Chapter 7: Extensions to Scheme 26

([not] lambda-lift)
Lambda-lift (or don’t lambda-lift) locally defined proce-
dures.

([not] standard-bindings var. . .)
The given global variables are known (or not known) to
be equal to the value defined for them in the dialect (all
variables defined in the standard if none specified).

([not] extended-bindings var. . .)
The given global variables are known (or not known) to be
equal to the value defined for them in the runtime system
(all variables defined in the runtime if none specified).

([not] safe) Generate (or don’t generate) code that will prevent fatal er-
rors at run time. Note that in ‘safe’ mode certain semantic
errors will not be checked as long as they can’t crash the
system. For example the primitive char=? may disregard
the type of its arguments in ‘safe’ as well as ‘not safe’
mode.

([not] interrupts-enabled)
Generate (or don’t generate) interrupt checks. Interrupt
checks are used to detect user interrupts and also to check
for stack overflows. Interrupt checking should not be turned
off casually.

(number-type primitive. . .)
Numeric arguments and result of the specified primitives
are known to be of the given type (all primitives if none
specified). number-type can be: ‘generic’, ‘fixnum’, or
‘flonum’.

The default declarations used by the compiler are equivalent to:

(declare
(ieee-scheme)
(separate)
(inline)
(inlining-limit 300)
(lambda-lift)
(not standard-bindings)
(not extended-bindings)
(safe)
(interrupts-enabled)
(generic)

)

These declarations are compatible with the semantics of Scheme. Typically
used declarations that enhance performance, at the cost of violating the Scheme
semantics, are: (standard-bindings), (block), (not safe) and (fixnum).

Chapter 7: Extensions to Scheme 27

special formlambda lambda-formals body
special formdefine (variable define-formals) body

lambda-formals = (formal-argument-list) | r4rs-lambda-formals

define-formals = formal-argument-list | r4rs-define-formals

formal-argument-list = reqs opts rest keys

reqs = required-formal-argument*
required-formal-argument = variable

opts = #!optional optional-formal-argument* | empty

optional-formal-argument = variable | (variable initializer)

rest = #!rest rest-formal-argument | empty

rest-formal-argument = variable

keys = #!key keyword-formal-argument* | empty

keyword-formal-argument = variable | (variable initializer)

initializer = expression

r4rs-lambda-formals = (variable*) | (variable+ . variable) | variable

r4rs-define-formals = variable* | variable* . variable

These forms are extended versions of the lambda and define special forms of
standard Scheme. They allow the use of optional and keyword formal arguments
with the syntax and semantics of the DSSSL standard.
When the procedure introduced by a lambda (or define) is applied to a list of
actual arguments, the formal and actual arguments are processed as specified
in the R4RS if the lambda-formals (or define-formals) is a r4rs-lambda-formals
(or r4rs-define-formals), otherwise they are processed as specified in the DSSSL
language standard:
a. Variables in required-formal-arguments are bound to successive actual ar-

guments starting with the first actual argument. It shall be an error if
there are fewer actual arguments than required-formal-arguments.

b. Next variables in optional-formal-arguments are bound to remaining actual
arguments. If there are fewer remaining actual arguments than optional-
formal-arguments, then the variables are bound to the result of evaluating
initializer, if one was specified, and otherwise to #f. The initializer is
evaluated in an environment in which all previous formal arguments have
been bound.

c. If there is a rest-formal-argument, then it is bound to a list of all remaining
actual arguments. These remaining actual arguments are also eligible to be
bound to keyword-formal-arguments. If there is no rest-formal-argument
and there are no keyword-formal-arguments, then it shall be an error if
there are any remaining actual arguments.

d. If #!key was specified in the formal-argument-list, there shall be an even
number of remaining actual arguments. These are interpreted as a series
of pairs, where the first member of each pair is a keyword specifying the
argument name, and the second is the corresponding value. It shall be an

Chapter 7: Extensions to Scheme 28

error if the first member of a pair is not a keyword. It shall be an error
if the argument name is not the same as a variable in a keyword-formal-
argument, unless there is a rest-formal-argument. If the same argument
name occurs more than once in the list of actual arguments, then the first
value is used. If there is no actual argument for a particular keyword-
formal-argument, then the variable is bound to the result of evaluating
initializer if one was specified, and otherwise to #f. The initializer is
evaluated in an environment in which all previous formal arguments have
been bound.

It shall be an error for a variable to appear more than once in a formal-
argument-list.

It is unspecified whether variables receive their value by binding or by assign-
ment. Currently the compiler and interpreter use different methods, which can
lead to different semantics if call-with-current-continuation is used in an
initializer. Note that this is irrelevant for DSSSL programs because call-with-
current-continuation does not exist in DSSSL.

For example:

> ((lambda (#!rest x) x) 1 2 3)
(1 2 3)
> (define (f a #!optional b) (list a b))
> (define (g a #!optional (b a) #!key (c (* a b))) (list a b c))
> (define (h a #!rest b #!key c) (list a b c))
> (f 1)
(1 #f)
> (f 1 2)
(1 2)
> (g 3)
(3 3 9)
> (g 3 4)
(3 4 12)
> (g 3 4 c: 5)
(3 4 5)
> (g 3 4 c: 5 c: 6)
(3 4 5)
> (h 7)
(7 () #f)
> (h 7 c: 8)
(7 (c: 8) 8)
> (h 7 c: 8 z: 9)
(7 (c: 8 z: 9) 8)

Chapter 7: Extensions to Scheme 29

special formc-define-type name type
special formc-declare c-declaration
special formc-initialize c-code
special formc-lambda (type1. . .) result-type c-name-or-code
special formc-define (variable define-formals) (type1. . .) result-type c-name

scope body
These special forms are part of the “C-interface” which allows Scheme code
to interact with C code. For a complete description of the C-interface see
Chapter 8 [C-interface], page 47.

special formdefine-structure name field. . .
Record data types similar to Pascal records and C struct types can be defined
using the define-structure special form. The identifier name specifies the
name of the new data type. The structure name is followed by k identifiers
naming each field of the record. The define-structure expands into a set of
definitions of the following procedures:

• ‘make-name’ – A k argument procedure which constructs a new record
from the value of its k fields.

• ‘name?’ – A procedure which tests if its single argument is of the given
record type.

• ‘name-field’ – For each field, a procedure taking as its single argument a
value of the given record type and returning the content of the correspond-
ing field of the record.

• ‘name-field-set!’ – For each field, a two argument procedure taking as
its first argument a value of the given record type. The second argument
gets assigned to the corresponding field of the record and the void object
is returned.

Record data types are printed out as ‘#s(name (field value). . .)’, where the
field/value pair appears for each field and value is the value contained in the
corresponding field. Record data types can not be read by the read procedure.

For example:

> (define-structure point x y color)
> (define p (make-point 3 5 ’red))
> p
#s(point (x 3) (y 5) (color red))
> (point-x p)
3
> (point-color p)
red
> (point-color-set! p ’black)
> p
#s(point (x 3) (y 5) (color black))

Chapter 7: Extensions to Scheme 30

proceduretrace proc. . .
procedureuntrace proc. . .

trace starts tracing calls to the specified procedures. When a traced procedure
is called, a line containing the procedure and its arguments is displayed (using
the procedure call expression syntax). The line is indented with a sequence of
vertical bars which indicate the nesting depth of the procedure’s continuation.
After the vertical bars is a greater-than sign which indicates that the evaluation
of the call is starting.
When a traced procedure returns a result, it is displayed with the same indenta-
tion as the call but without the greater-than sign. This makes it easy to match
calls and results (the result of a given call is the value at the same indentation
as the greater-than sign). If a traced procedure P1 performs a tail call to a
traced procedure P2, then P2 will use the same indentation as P1. This makes
it easy to spot tail calls. The special handling for tail calls is needed to preserve
the space complexity of the program (i.e. tail calls are implemented as required
by Scheme even when they involve traced procedures).
untrace stops tracing calls to the specified procedures. With no argument,
trace returns the list of procedures currently being traced. The void object is
returned by trace if it is passed one or more arguments. With no argument
untrace stops all tracing and returns the void object. A compiled procedure
may be traced but only if it is bound to a global variable.
For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (trace fact)
> (fact 5)
| > (fact 5)
| | > (fact 4)
| | | > (fact 3)
| | | | > (fact 2)
| | | | | > (fact 1)
| | | | | 1
| | | | 2
| | | 6
| | 24
| 120
120
> (trace -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (define (fact-iter n r) (if (< n 2) r (fact-iter (- n 1) (* n r))))
> (trace fact-iter)
> (fact-iter 5 1)
| > (fact-iter 5 1)
| | > (- 5 1)
| | 4
| > (fact-iter 4 5)
| | > (- 4 1)
| | 3

Chapter 7: Extensions to Scheme 31

| > (fact-iter 3 20)
| | > (- 3 1)
| | 2
| > (fact-iter 2 60)
| | > (- 2 1)
| | 1
| > (fact-iter 1 120)
| 120
120
> (trace)
(#<procedure fact-iter> #<procedure -> #<procedure fact>)
> (untrace)
> (fact 5)
120

procedurestep
procedureset-step-level! level

The procedure step enables single-stepping mode. After the call to step the
computation will stop just before the interpreter executes the next evaluation
step (as defined by set-step-level!). A nested REPL is then started. Note
that because single-stepping is stopped by the REPL whenever the prompt is
displayed it is pointless to enter (step) by itself. On the other hand entering
(begin (step) expr) will evaluate expr in single-stepping mode.
The procedure set-step-level! sets the stepping level which determines the
granularity of the evaluation steps when single-stepping is enabled. The step-
ping level level must be an exact integer in the range 0 to 7. At a level of 0, the
interpreter ignores single-stepping mode. At higher levels the interpreter stops
the computation just before it performs the following operations, depending on
the stepping level:
1. procedure call
2. delay special form and operations at lower levels
3. lambda special form and operations at lower levels
4. define special form and operations at lower levels
5. set! special form and operations at lower levels
6. variable reference and operations at lower levels
7. constant reference and operations at lower levels

The default stepping level is 7.
For example:

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (set-step-level! 1)
> (begin (step) (fact 5))
*** STOPPED IN (stdin)@3.15
1> ,s
| > (fact 5)
*** STOPPED IN fact, (stdin)@1.22

Chapter 7: Extensions to Scheme 32

1> ,s
| | > (< n 2)
| | #f
*** STOPPED IN fact, (stdin)@1.43
1> ,s
| | > (- n 1)
| | 4
*** STOPPED IN fact, (stdin)@1.37
1> ,s
| | > (fact (- n 1))
*** STOPPED IN fact, (stdin)@1.22
1> ,s
| | | > (< n 2)
| | | #f
*** STOPPED IN fact, (stdin)@1.43
1> ,s
| | | > (- n 1)
| | | 3
*** STOPPED IN fact, (stdin)@1.37
1> ,l
| | | > (fact (- n 1))
| | | 6
*** STOPPED IN fact, (stdin)@1.32
1> ,l
| | > (* n (fact (- n 1)))
| | 24
*** STOPPED IN fact, (stdin)@1.32
1> ,l
| > (* n (fact (- n 1)))
| 120
120

procedurebreak proc. . .
procedureunbreak proc. . .

break places a breakpoint on each of the specified procedures. When a proce-
dure is called that has a breakpoint, the interpreter will enable single-stepping
mode (as if step had been called). This typically causes the computation to
stop soon inside the procedure if the stepping level is high enough.
unbreak removes the breakpoints on the specified procedures. With no argu-
ment, break returns the list of procedures currently containing breakpoints.
The void object is returned by break if it is passed one or more arguments.
With no argument unbreak removes all the breakpoints and returns the void
object. A breakpoint can be placed on a compiled procedure but only if it is
bound to a global variable.
For example:

> (define (double x) (+ x x))
> (define (triple y) (- (double (double y)) y))
> (define (f z) (* (triple z) 10))

Chapter 7: Extensions to Scheme 33

> (break double)
> (break -)
*** WARNING -- Rebinding global variable "-" to an interpreted procedure
> (f 5)
*** STOPPED IN double, (stdin)@1.21
1> ,b
0 double (stdin)@1:21 +
1 triple (stdin)@2:31 (double y)
2 f (stdin)@3:18 (triple z)
3 (interaction) (stdin)@6:1 (f 5)
4 ##initial-continuation
1> ,e
x = 5
1> ,c
*** STOPPED IN double, (stdin)@1.21
1> ,c
*** STOPPED IN f, (stdin)@3.29
1> ,c
150
> (break)
(#<procedure -> #<procedure double>)
> (unbreak)
> (f 5)
150

procedureset-proper-tail-calls! proper?
set-proper-tail-calls! sets a flag that controls how the interpreter handles
tail calls. When proper? is #f the interpreter will treat tail calls like non-tail
calls, that is a new continuation will be created for the call. This setting is
useful for debugging, because when a primitive signals an error the location
information will point to the call site of the primitive even if this primitive was
called with a tail call. The default setting of this flag is #t, which means that
a tail call will reuse the continuation of the calling function.
The setting of this flag only affects code that is subsequently processed by load
or eval, or entered at the REPL.

procedureset-display-environment! display?
set-display-environment! sets a flag that controls the automatic display of
the environment by the REPL. If display? is true, the environment is displayed
by the REPL before the prompt. The default setting is not to display the
environment.

procedurefile-exists? file
file must be a string. file-exists? returns #t if a file by that name exists and
can be opened for reading, and returns #f otherwise.

procedureflush-output [port]
flush-output causes all data buffered on the output port port to be written
out. If port is not specified, the current output port is used.

Chapter 7: Extensions to Scheme 34

procedurepretty-print obj [port [readtable]]
procedurepp obj [port [readtable]]

pretty-print and pp are similar to write except that the result is nicely for-
matted. If obj is a procedure created by the interpreter or a procedure created
by code compiled with the ‘-debug’ option, pp will display its source code. The
argument readtable specifies the readtable to use. If it is not specified, the
readtable defaults to the current readtable.

procedureopen-input-pipe command [char-encoding]
procedureopen-output-pipe command [char-encoding]

These procedures open a pipe for input or output, and return a port. Command
must be a string containing a shell command line. The command line is passed
to the underlying shell (/bin/sh on most versions of UNIX) and the command’s
output (in the case of an input pipe) or its input (in the case of an output pipe)
are available respectively for reading from the port and writing to the port.

The second argument, which is optional, specifies the character encoding to use
for I/O operations on the port (see open-input-file for possible encodings).

Under MACOS these procedures always fail because there is no direct equivalent
of pipes.

procedureopen-input-string string
procedureopen-output-string

These procedures implement string ports. String ports can be used like normal
ports. open-input-string returns an input string port which obtains char-
acters from the given string instead of a file. When the port is closed with
a call to close-input-port, a string containing the characters that were not
read is returned. open-output-string returns an output string port which
accumulates the characters written to it. When the port is closed with a call
to close-output-port, a string containing the characters accumulated is re-
turned.

For example:

> (let ((i (open-input-string "alice #(1 2)")))
(let* ((a (read i)) (b (read i)) (c (read i)))
(list a b c)))

(alice #(1 2) #!eof)
> (let ((o (open-output-string)))

(write "cloud" o)
(write (* 3 3) o)
(close-output-port o))

"\"cloud\"9"

procedurecall-with-input-string string proc
procedurecall-with-output-string proc

The procedure call-with-input-string is similar to call-with-input-file
except that the characters are obtained from the string string. The proce-
dure call-with-output-string calls the procedure proc with a freshly cre-

Chapter 7: Extensions to Scheme 35

ated string port and returns a string containing all characters output to that
port.
For example:

> (call-with-input-string
"(1 2)"
(lambda (p) (read-char p) (read p)))

1
> (call-with-output-string

(lambda (p) (write p p)))
"#<output-port (string)>"

procedurewith-input-from-string string thunk
procedurewith-output-to-string thunk

The procedure with-input-from-string is similar to with-input-from-file
except that the characters are obtained from the string string. The procedure
with-output-to-string calls the thunk and returns a string containing all
characters output to the current output port.
For example:

> (with-input-from-string
"(1 2) hello"
(lambda () (read) (read)))

hello
> (with-output-to-string

(lambda () (write car)))
"#<procedure car>"

procedurewith-input-from-port port thunk
procedurewith-output-to-port port thunk

These procedures are respectively similar to with-input-from-file and with-
output-to-file. The difference is that the first argument is a port instead of
a file name.

procedurecurrent-readtable
Returns the current readtable.
Readtables control the behavior of the reader (i.e. the read procedure and the
parser used by the load procedure and the interpreter and compiler) and the
printer (i.e. the procedures write, display, pretty-print, and pp, and the
procedure used by the REPL to print results). Both the reader and printer
need to know the readtable so that they can preserve write/read invariance.
For example a symbol which contains upper case letters will be printed with
special escapes if the readtable indicates that the reader is case insensitive.

procedureset-case-conversion! conversion? [readtable]
procedureset-keywords-allowed! allowed? [readtable]

These procedures configure readtables. The argument readtable specifies the
readtable to configure. If it is not specified, the readtable defaults to the current
readtable.

Chapter 7: Extensions to Scheme 36

For the procedure set-case-conversion!, if conversion? is #f, the reader will
preserve the case of the symbols that are read; if conversion? is the symbol
upcase, the reader will convert letters to upper case; otherwise the reader will
convert to lower case. The default is to preserve the case.

For the procedure set-keywords-allowed!, if allowed? is #f, the reader will
not recognize keyword objects; if allowed? is the symbol prefix, the reader
will recognize keyword objects that start with a colon (as in Common Lisp);
otherwise the reader will recognize keyword objects that end with a colon (as
in DSSSL). The default is to recognize keyword objects that end in a colon.

For example:

> (set-case-conversion! #f)
> ’TeX
TeX
> (set-case-conversion! #t)
> ’TeX
tex
> (set-keywords-allowed! #f)
> (symbol? ’foo:)
#t
> (set-keywords-allowed! #t)
> (keyword? ’foo:) ; quote not really needed
#t
> (set-keywords-allowed! ’prefix)
> (keyword? ’:foo) ; quote not really needed
#t

procedurekeyword? obj
procedurekeyword->string keyword
procedurestring->keyword string

These procedures implement the keyword data type. Keywords are similar to
symbols but are self evaluating and distinct from the symbol data type. A key-
word is an identifier immediately followed by a colon (or preceded by a colon if
(set-keywords-allowed! ’prefix) was called). The procedure keyword? re-
turns #t if obj is a keyword, and otherwise returns #f. The procedure keyword-
>string returns the name of keyword as a string, excluding the colon. The
procedure string->keyword returns the keyword whose name is string (the
name does not include the colon).

For example:

> (keyword? ’color)
#f
> (keyword? color:)
#t
> (keyword->string color:)
"color"
> (string->keyword "color")
color:

Chapter 7: Extensions to Scheme 37

procedureset-gc-report! report?
set-gc-report! controls the generation of reports during garbage collections.
If the argument is true, a brief report of memory usage is generated after every
garbage collection. It contains: the time taken for this garbage collection, the
amount of memory allocated in kilobytes since the program was started, the
size of the heap in kilobytes, the heap memory in kilobytes occupied by live
data, the proportion of the heap occupied by live data, and the number of
bytes occupied by movable and non-movable objects.

proceduremake-will testator [action]
procedurewill? obj
procedurewill-testator will

These procedures implement the will data type. Will objects provide support
for finalization. A will is an object that contains a reference to a testator object
(the object attached to the will), and an action procedure which is a nullary
procedure. If no action procedure is supplied when make-will is called, the
will has an action procedure that does nothing.

An object is finalizable if all paths to the object from the roots (i.e. current
continuation and global variables) pass through a will object. Note that by this
definition an object that is not reachable from the roots is finalizable. Some
objects, including symbols, small integers (fixnums), booleans and characters,
are considered to be always reachable and are therefore never finalizable.

When the runtime system detects that a will’s testator is finalizable the cur-
rent computation is interrupted, the will’s testator is set to #f and the will’s
action procedure is called. Currently only the garbage collector detects when
objects become finalizable but this may change in future versions of Gambit
(for example the compiler could perform an analysis to infer finalizability at
compile time). The garbage collector builds a list of all wills whose testators
are finalizable. Shortly after a garbage collection, the action procedures of these
wills will be called. The link from the will to the action procedure is severed
when the action procedure is called.

Note that the action procedure may be a closure which retains a reference to
the will’s testator object. In such a case or if the testator object is reachable
from another will object, the testator object will not be reclaimed during the
garbage collection that detected finalizability of the testator object. It is only
when an object is not reachable from the roots (even through will objects) that
it is reclaimed by the garbage collector.

A remarkable feature of wills is that an action procedure can “resurrect” an
object after it has become finalizable (by making it non-finalizable). An action
procedure could for example assign the testator object to a global variable.

For example:
> (define a (list 123))
> (set-cdr! a a) ; create a circular list
> (define b (vector a))
> (define c #f)

Chapter 7: Extensions to Scheme 38

> (define w
(let ((obj a))
(make-will obj

(lambda ()
(display "executing action procedure")
(newline)
(set! c obj)))))

> (will? w)
#t
> (car (will-testator w))
123
> (##gc)
> (set! a #f)
> (##gc)
> (set! b #f)
> (##gc)
executing action procedure
> (will-testator w)
#f
> (car c)
123

proceduregensym [prefix]
gensym returns a new uninterned symbol. Uninterned symbols are guaranteed
to be distinct from the symbols generated by the procedures read and string-
>symbol. The symbol prefix is the prefix used to generate the new symbol’s
name. If it is not specified, the prefix defaults to ‘g’.
For example:

> (gensym)
g0
> (gensym)
g1
> (eq? ’g2 (gensym))
#f
> (gensym ’star-trek-)
star-trek-3

procedurevoid
void returns the void object. The read-eval-print loop prints nothing when the
result is the void object.

procedureeval expr [env]
eval’s first argument is a datum representing an expression. eval evaluates
this expression in the global interaction environment and returns the result. If
present, the second argument is ignored (it is provided for compatibility with
R5RS).
For example:

> (eval ’(+ 1 2))

Chapter 7: Extensions to Scheme 39

3
> ((eval ’car) ’(1 2))
1
> (eval ’(define x 5))
> x
5

procedurecompile-file-to-c file [options [output]]
file must be a string naming an existing file containing Scheme source code. The
extension can be omitted from file if the Scheme file has a ‘.scm’ extension. This
procedure compiles the source file into a file containing C code. By default, this
file is named after file with the extension replaced with ‘.c’. However, if output
is supplied the file is named ‘output’.
Compilation options are given as a list of symbols after the file name. Any com-
bination of the following options can be used: ‘verbose’, ‘report’, ‘expansion’,
‘gvm’, and ‘debug’.
Note that this procedure is only available in gsc.

procedurecompile-file file [options]
The arguments of compile-file are the same as the first two arguments of
compile-file-to-c. The compile-file procedure compiles the source file
into an object file by first generating a C file and then compiling it with the
C compiler. The object file is named after file with the extension replaced
with ‘.on’, where n is a positive integer that acts as a version number. The
next available version number is generated automatically by compile-file.
Object files can be loaded dynamically by using the load procedure. The ‘.on’
extension can be specified (to select a particular version) or omitted (to load
the highest numbered version). Versions which are no longer needed must be
deleted manually and the remaining version(s) must be renamed to start with
extension ‘.o1’.
Note that this procedure is only available in gsc and that it is only useful on
operating systems that support dynamic loading.

procedurelink-incremental module-list [output [base]]
The first argument must be a non empty list of strings naming Scheme modules
to link (extensions must be omitted). The remaining optional arguments must
be strings. An incremental link file is generated for the modules specified in
module-list. By default the link file generated is named ‘last_.c’, where last
is the name of the last module. However, if output is supplied the link file
is named ‘output’. The base link file is specified by the base parameter. By
default the base link file is the Gambit runtime library link file ‘~~/_gambc.c’.
However, if base is supplied the base link file is named ‘base.c’.
Note that this procedure is only available in gsc.
The following example shows how to build the executable program ‘hello’
which contains the two Scheme modules ‘m1.scm’ and ‘m2.scm’.

% uname -a

Chapter 7: Extensions to Scheme 40

Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.scm
(display "hello") (newline)
% cat m2.scm
(display "world") (newline)
% gsc
Gambit Version 3.0

> (compile-file-to-c "m1")
#t
> (compile-file-to-c "m2")
#t
> (link-incremental ’("m1" "m2") "hello.c")
> ,q
% gcc m1.c m2.c hello.c -lgambc -o hello
% hello
hello
world

procedurelink-flat module-list [output]
The first argument must be a non empty list of strings. The first string must be
the name of a Scheme module or the name of a link file and the remaining strings
must name Scheme modules (in all cases extensions must be omitted). The
second argument must be a string, if it is supplied. A flat link file is generated
for the modules specified in module-list. By default the link file generated is
named ‘last_.c’, where last is the name of the last module. However, if output
is supplied the link file is named ‘output’.
Note that this procedure is only available in gsc.
The following example shows how to build the dynamically loadable Scheme
library ‘lib.o1’ which contains the two Scheme modules ‘m1.scm’ and ‘m2.scm’.

% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 i586
% cat m1.scm
(define (f x) (g (* x x)))
% cat m2.scm
(define (g y) (+ n y))
% gsc
Gambit Version 3.0

> (compile-file-to-c "m1")
#t
> (compile-file-to-c "m2")
#t
> (link-flat ’("m1" "m2") "lib.c")
*** WARNING -- "*" is not defined,
*** referenced in: ("m1.c")
*** WARNING -- "+" is not defined,
*** referenced in: ("m2.c")

Chapter 7: Extensions to Scheme 41

*** WARNING -- "n" is not defined,
*** referenced in: ("m2.c")
> ,q
% gcc -shared -fPIC -D___DYNAMIC m1.c m2.c lib.c -o lib.o1
% gsc
Gambit Version 3.0

> (load "lib")
*** WARNING -- Variable "n" used in module "m2" is undefined
"/users/feeley/lib.o1"
> (define n 10)
> (f 5)
35
> ,q

The warnings indicate that there are no definitions (defines or set!s) of the
variables *, + and n in the modules contained in the library. Before the library
is used, these variables will have to be bound; either implicitly (by the runtime
library) or explicitly.

procedureerror string obj. . .
error signals an error and causes a nested REPL to be started. The error mes-
sage displayed is string followed by the remaining arguments. The continuation
of the REPL is the same as the one passed to error. Thus, returning from the
REPL with the ‘,c’ or ‘,(c expr)’ command causes a return from the call to
error.
For example:

> (define (f x)
(let ((y (if (> x 0) (log x) (error "x must be positive"))))
(+ y 1)))

> (+ (f -4) 10)
*** ERROR IN (stdin)@2.34 -- x must be positive
1> ,(c 5)
16

procedureexit [status]
exit causes the program to terminate with the status status. If it is not speci-
fied, the status defaults to 0.

procedureargv
argv returns a list of strings corresponding to the command line arguments,
including the program file name as the first element of the list. When the
interpreter executes a Scheme script, the list returned by argv contains the
script’s file name followed by the remaining command line arguments.

proceduregetenv name
getenv returns the value of the environment variable name (a string) of the
current process. A string is returned if the environment variable is bound,
otherwise #f is returned. Under MACOS #f is always returned.

Chapter 7: Extensions to Scheme 42

procedurereal-time
procedurecpu-time
procedureruntime

real-time returns the amount of time in nanoseconds elapsed since the “epoch”
(which is 00:00:00 Coordinated Universal Time 01-01-1970).
cpu-time returns a two element vector containing the cpu time that has been
used by the program since it was started. The first element corresponds to
“user” time in nanoseconds and the second element corresponds to “system”
time in nanoseconds.
runtime returns the cpu time in seconds that has been used by the program
since it was started (user time plus system time).
The resolution of the real time and cpu time clock is platform dependent. Typ-
ically the resolution of the cpu time clock is rather coarse (measured in “ticks”
of 1/60th or 1/100th of a second). Time is computed internally using 64 bit
integer arithmetic which means that there will be a wraparound after 584 years.
Moreover, some operating systems report time in number of ticks using a 32 bit
integer so the time returned by the above procedures may wraparound much
before 584 years are over (for example 2.7 years if ticks are 1/50th of a second).

special formtime expr
time evaluates expr and returns the result. As a side effect it displays a message
which indicates how long the evaluation took (in real time and cpu time), how
much time was spent in the garbage collector, how much memory was allocated
during the evaluation and how many minor and major page faults occured (0
is reported if not running under UNIX).
For example:

> (define (f x)
(let loop ((x x) (lst ’()))
(if (= x 0)

lst
(loop (- x 1) (cons x lst)))))

> (length (time (f 100000)))
(time (f 100000))

1751 ms real time
1750 ms cpu time (1670 user, 80 system)
6 collections accounting for 200 ms cpu time (190 user, 10 system)
6400136 bytes allocated
1972 minor faults
no major faults

100000

7.3 Unstable additions

This section contains additional special forms and procedures which are documented only
in the interest of experimentation. They may be modified or removed in future releases of
Gambit. The procedures in this section do not check the type of their arguments so they
may cause the program to crash if called improperly.

Chapter 7: Extensions to Scheme 43

procedure##gc
The procedure ##gc forces a garbage collection of the heap.

procedure##add-gc-interrupt-job thunk
procedure##clear-gc-interrupt-jobs

Using the procedure ##add-gc-interrupt-job it is possible to add a thunk
that is called at the end of every garbage collection. The procedure ##clear-
gc-interrupt-jobs removes all the thunks added with ##add-gc-interrupt-
job.

procedure##add-timer-interrupt-job thunk
procedure##clear-timer-interrupt-jobs

The runtime system sets up a free running timer that raises an interrupt at ap-
proximately 10 Hz. Using the procedure ##add-timer-interrupt-job it is pos-
sible to add a thunk that is called every time a timer interrupt is received. The
procedure ##clear-timer-interrupt-jobs removes all the thunks added with
##add-timer-interrupt-job. It is relatively easy to implement threads by us-
ing these procedures in conjunction with call-with-current-continuation.

procedure##shell-command command
The procedure ##shell-command calls up the shell to execute command which
must be a string. ##shell-command returns the exit status of the shell in the
form that the C system command returns.

procedure##path-expand path format
procedure##path-absolute? path
procedure##path-extension path
procedure##path-strip-extension path
procedure##path-directory path
procedure##path-strip-directory path

These procedures manipulate file paths. ##path-expand takes the path of a
file or directory and returns an absolute or relative path of the file or directory,
depending on the value of format. An absolute path is returned if format is the
symbol absolute; a path relative to the current working directory is returned if
format is the symbol relative; the shorter of the two paths is returned if format
is the symbol shortest (ties break toward absolute path). The expanded path
of a directory will always end with a path separator (i.e. ‘/’, ‘\’, or ‘:’ depending
on the operating system). If the path is the empty string, the current working
directory is returned. #f is returned if the path is invalid.

The procedure ##path-absolute? tests if the given path is absolute.

The remaining procedures extract various parts of a path. ##path-extension
returns the file extension (including the period) or the empty string if there is
no extension. ##path-strip-extension returns the path with the extension
stripped off. ##path-directory returns the file’s directory (including the last
path separator) or the empty string if no directory is specified in the path.
##path-strip-directory returns the path with the directory stripped off.

Chapter 7: Extensions to Scheme 44

special formdynamic-define var val
special formdynamic-ref var
special formdynamic-set! var val
special formdynamic-let ((var val). . .) body

These special forms provide support for “dynamic variables” which have dy-
namic scope. Dynamic variables and normal (lexically scoped) variables are in
different namespaces so there is no possible naming conflict between them. In
all these special forms var is an identifier which names the dynamic variable.
dynamic-define defines the global dynamic variable var (if it doesn’t already
exist) and assigns to it the value of val. dynamic-let has a syntax similar to
let. It creates bindings of the given dynamic variables which are accessible for
the duration of the evaluation of body. dynamic-ref returns the value currently
bound to the dynamic variable var. dynamic-set! assigns the value of val to
the dynamic variable var. The dynamic environment that was in effect when
a continuation was created by call-with-current-continuation is restored
when that continuation is invoked.

For example:

> (dynamic-define radix 10)
> (define (f x) (number->string x (dynamic-ref radix)))
> (list (f 5) (f 15))
("5" "15")
> (dynamic-let ((radix 2))
(list (f 5) (f 15)))

("101" "1111")

procedureu8vector? obj
proceduremake-u8vector k [fill]
procedureu8vector exact-int8. . .
procedureu8vector-length u8vector
procedureu8vector-ref u8vector k
procedureu8vector-set! u8vector k exact-int8
procedureu8vector->list u8vector
procedurelist->u8vector list-of-exact-int8

procedureu16vector? obj
proceduremake-u16vector k [fill]
procedureu16vector exact-int16. . .
procedureu16vector-length u16vector
procedureu16vector-ref u16vector k
procedureu16vector-set! u16vector k exact-int16
procedureu16vector->list u16vector
procedurelist->u16vector list-of-exact-int16

Chapter 7: Extensions to Scheme 45

procedureu32vector? obj
proceduremake-u32vector k [fill]
procedureu32vector exact-int32. . .
procedureu32vector-length u32vector
procedureu32vector-ref u32vector k
procedureu32vector-set! u32vector k exact-int32
procedureu32vector->list u32vector
procedurelist->u32vector list-of-exact-int32

procedureu64vector? obj
proceduremake-u64vector k [fill]
procedureu64vector exact-int64. . .
procedureu64vector-length u64vector
procedureu64vector-ref u64vector k
procedureu64vector-set! u64vector k exact-int64
procedureu64vector->list u64vector
procedurelist->u64vector list-of-exact-int64

proceduref32vector? obj
proceduremake-f32vector k [fill]
proceduref32vector inexact-real. . .
proceduref32vector-length f32vector
proceduref32vector-ref f32vector k
proceduref32vector-set! f32vector k inexact-real
proceduref32vector->list f32vector
procedurelist->f32vector list-of-inexact-real

proceduref64vector? obj
proceduremake-f64vector k [fill]
proceduref64vector inexact-real. . .
proceduref64vector-length f64vector
proceduref64vector-ref f64vector k
proceduref64vector-set! f64vector k inexact-real
proceduref64vector->list f64vector
procedurelist->f64vector list-of-inexact-real

Bytevectors are uniform vectors containing raw numbers (non-negative exact
integers or inexact reals). There are 5 types of bytevectors: ‘u8vector’ (vector
of 8 bit unsigned integers), ‘u16vector’ (vector of 16 bit unsigned integers),
‘u32vector’ (vector of 32 bit unsigned integers), ‘u64vector’ (vector of 64 bit
unsigned integers), ‘f32vector’ (vector of 32 bit floating point numbers), and
‘f64vector’ (vector of 64 bit floating point numbers). These procedures are
the analog of the normal vector procedures for each of the bytevector types.
For example:

> (define v (u8vector 10 255 13))
> (u8vector-set! v 2 99)
> v
#u8(10 255 99)
> (u8vector-ref v 1)

Chapter 7: Extensions to Scheme 46

255
> (u8vector->list v)
(10 255 99)

7.4 Other extensions

Gambit supports the Unicode character encoding standard (ISO/IEC-10646-1). Scheme
characters can be any of the characters in the 16 bit subset of Unicode known as UCS-
2. Scheme strings can contain any character in UCS-2. Source code can also contain any
character in UCS-2. However, to read such source code properly gsi and gsc must be told
which character encoding to use for reading the source code (i.e. UTF-8, UCS-2, or UCS-4).
This can be done by passing a character encoding parameter to load or by specifying the
runtime option ‘-:8’ when gsi and gsc are started.

Chapter 8: Interface to C 47

8 Interface to C

The Gambit Scheme system offers a mechanism for interfacing Scheme code and C code
called the “C-interface”. A Scheme program indicates which C functions it needs to have
access to and which Scheme procedures can be called from C, and the C interface automat-
ically constructs the corresponding Scheme procedures and C functions. The conversions
needed to transform data from the Scheme representation to the C representation (and
back), are generated automatically in accordance with the argument and result types of the
C function or Scheme procedure.

The C-interface places some restrictions on the types of data that can be exchanged
between C and Scheme. The mapping of data types between C and Scheme is discussed in
the next section. The remaining sections of this chapter describe each special form of the
C-interface.

8.1 The mapping of types between C and Scheme

Scheme and C do not provide the same set of built-in data types so it is important to
understand which Scheme type is compatible with which C type and how values get mapped
from one environment to the other. For the sake of explaining the mapping, we assume that
Scheme and C have been augmented with some new data types. To Scheme is added the
data type ‘C-pointer’ to support the C concept of pointer. The following data types are
added to C:

scheme-object denotes the universal type of Scheme objects (type ___WORD defined in
‘gambit.h’)

bool denotes the C++ ‘bool’ type or the C ‘int’ type (type ___BOOL defined
in ‘gambit.h’)

latin1 denotes LATIN-1 encoded characters (8 bit unsigned integer, type ___
LATIN1 defined in ‘gambit.h’)

ucs2 denotes UCS-2 encoded characters (16 bit unsigned integer, type ___
UCS2 defined in ‘gambit.h’)

ucs4 denotes UCS-4 encoded characters (32 bit unsigned integer, type ___
UCS4 defined in ‘gambit.h’)

char-string denotes the C ‘char*’ type when used as a null terminated string

latin1-string denotes LATIN-1 encoded Unicode strings (null terminated string of 8
bit unsigned integers, i.e. ___LATIN1*)

ucs2-string denotes UCS-2 encoded Unicode strings (null terminated string of 16
bit unsigned integers, i.e. ___UCS2*)

ucs4-string denotes UCS-4 encoded Unicode strings (null terminated string of 32
bit unsigned integers, i.e. ___UCS4*)

utf8-string denotes UTF-8 encoded Unicode strings (null terminated string of char,
i.e. char*)

Chapter 8: Interface to C 48

To specify a particular C type inside the c-define-type, c-lambda and c-define forms,
the following “Scheme notation” is used:

Scheme notation C type

void void

bool bool

char char (may be signed or unsigned depending on the C compiler)

signed-char signed char

unsigned-char unsigned char

latin1 latin1

ucs2 ucs2

ucs4 ucs4

short short

unsigned-short unsigned short

int int

unsigned-int unsigned int

long long

unsigned-long unsigned long

float float

double double

(struct "name")
struct name

(union "name") union name

(pointer type) T* (where T is the C equivalent of type which must be the Scheme
notation of a C type)

(function (type1. . .) result-type)
function with the given argument types and result type

char-string char-string

latin1-string latin1-string

ucs2-string ucs2-string

ucs4-string ucs4-string

utf8-string utf8-string

scheme-object scheme-object

name appropriate translation of name (where name is a C type defined with
c-define-type)

Chapter 8: Interface to C 49

"c-type-id" c-type-id (where c-type-id is an identifier naming a C type, for example:
"FILE" and "time_t")

Note that not all of these types can be used in all contexts. In particular the argu-
ments and result of functions defined with c-lambda and c-define can not be (struct
"name") or (union "name") or "c-type-id". On the other hand, pointers to these types
are acceptable.

The following table gives the C types to which each Scheme type can be converted:

Scheme type Allowed target C types

boolean #f scheme-object; bool; any string, pointer or function type

boolean #t scheme-object; bool

character scheme-object; bool; [[un]signed] char; latin1; ucs2; ucs4

exact integer scheme-object; bool; [unsigned] short/int/long

inexact real scheme-object; bool; float; double

string scheme-object; bool; any string type

‘C-pointer’ scheme-object; bool; any pointer type

vector scheme-object; bool

symbol scheme-object; bool

procedure scheme-object; bool; any function type

other objects scheme-object; bool

The following table gives the Scheme types to which each C type will be converted:

C type Resulting Scheme type

scheme-object the Scheme object encoded

bool boolean

character types character

integer types exact integer

float/double inexact real

string types string or #f if it is equal to ‘NULL’

pointer types ‘C-pointer’ or #f if it is equal to ‘NULL’

function types procedure or #f if it is equal to ‘NULL’

void void object

All Scheme types are compatible with the C types scheme-object and bool. Conversion
to and from the C type scheme-object is the identity function on the object encoding. This
provides a low-level mechanism for accessing Scheme’s object representation from C (with
the help of the macros in the ‘gambit.h’ header file). When a C bool type is expected,

Chapter 8: Interface to C 50

an extended Scheme boolean can be passed (#f is converted to 0 and all other values are
converted to 1).

The Scheme boolean #f can be passed to the C environment where any C string type,
C pointer type, or C function type is expected. In this case, #f is converted to the ‘NULL’
pointer. C bools are extended booleans so any value different from 0 represents true. Thus,
a C bool passed to the Scheme environment is mapped as follows: 0 to #f and all other
values to #t.

A Scheme character passed to the C environment where any C character type is expected
is converted to the corresponding character in the C environment. An error is signaled if the
Scheme character does not fit in the C character. Any C character type passed to Scheme
is converted to the corresponding Scheme character. An error is signaled if the C character
does not fit in the Scheme character.

A Scheme exact integer passed to the C environment where the C types short, int, and
long are expected is converted to the corresponding integral value. An error is signaled
if the value falls outside of the range representable by that integral type. C short, int
and long values passed to the Scheme environment are mapped to the same Scheme exact
integer. If the value is outside the fixnum range, a bignum is created.

A Scheme inexact real passed to the C environment is converted to the corresponding
float or double value. C float and double values passed to the Scheme environment are
mapped to the closest Scheme inexact real.

Scheme’s rational numbers and complex numbers are not compatible with any C numeric
type.

A Scheme string passed to the C environment where any C string type is expected is
converted to a null terminated string using the appropriate encoding. The C string is a
fresh copy of the Scheme string. Any C string type passed to the Scheme environment
causes the creation of a fresh Scheme string containing a copy of the C string.

A C pointer passed to the Scheme environment causes the creation and initialization of
a new ‘C-pointer’ object. This object is simply a cell containing the pointer to a memory
location in the C environment. The pointer is ignored by the garbage collector. As a special
case, the ‘NULL’ C pointer is converted to #f. A Scheme ‘C-pointer’ and #f can be passed
to the C environment where a C pointer is expected. The conversion simply recreates the
original C pointer or ‘NULL’ pointer.

Only Scheme procedures defined with the c-define special form and #f can be passed
where a C function is expected. Conversion from C functions to Scheme procedures is not
currently implemented.

8.2 The c-define-type special form

Synopsis:
(c-define-type name type)

This form defines the type identifier name to be equivalent to the C type type. After this
definition, the use of name in a type specification is synonymous to type. The name must
not clash with predefined types (e.g. char-string, latin1, etc.) or with types previously
defined with c-define-type in the same file.

Chapter 8: Interface to C 51

The c-define-type special form does not return a value. It can only appear at top
level.

For example:
(c-define-type FILE "FILE")
(c-define-type FILE* (pointer FILE))
(c-define-type time-struct-ptr (pointer (struct "tms")))

Note that Scheme identifiers are not case sensitive. Nevertheless it is good programming
practice to use a name with the same case as in C.

8.3 The c-declare special form

Synopsis:
(c-declare c-declaration)

Initially, the C file produced by gsc contains only an ‘#include’ of ‘gambit.h’. This
header file provides a number of macro and procedure declarations to access the Scheme
object representation. The special form c-declare adds c-declaration (which must be a
string containing the C declarations) to the C file. This string is copied to the C file on
a new line so it can start with preprocessor directives. All types of C declarations are al-
lowed (including type declarations, variable declarations, function declarations, ‘#include’
directives, ‘#define’s, and so on). These declarations are visible to subsequent c-declares,
c-initializes, and c-lambdas, and c-defines in the same module. The most common
use of this special form is to declare the external functions that are referenced in c-lambda
special forms. Such functions must either be declared explicitly or by including a header
file which contains the appropriate C declarations.

The c-declare special form does not return a value. It can only appear at top level.

For example:
(c-declare
"
#include <stdio.h>

extern char *getlogin ();

#ifdef sparc
char *host = \"sparc\"; /* note backslashes */
#else
char *host = \"unknown\";
#endif

FILE *tfile;
")

8.4 The c-initialize special form

Synopsis:

Chapter 8: Interface to C 52

(c-initialize c-code)

Just after the program is loaded and before control is passed to the Scheme code, each C
file is initialized by calling its associated initialization function. The body of this function is
normally empty but it can be extended by using the c-initialize form. Each occurence
of the c-initialize form adds code to the body of the initialization function in the order
of appearance in the source file. c-code must be a string containing the C code to execute.
This string is copied to the C file on a new line so it can start with preprocessor directives.

The c-initialize special form does not return a value. It can only appear at top level.

For example:

(c-initialize "tfile = tmpfile ();")

8.5 The c-lambda special form

Synopsis:

(c-lambda (type1. . .) result-type c-name-or-code)

The c-lambda special form makes it possible to create a Scheme procedure that will
act as a representative of some C function or C code sequence. The first subform is a
list containing the type of each argument. The type of the function’s result is given next.
Finally, the last subform is a string that either contains the name of the C function to call or
some sequence of C code to execute. Variadic C functions are not supported. The resulting
Scheme procedure takes exactly the number of arguments specified and delivers them in
the same order to the C function. When the Scheme procedure is called, the arguments
will be converted to their C representation and then the C function will be called. The
result returned by the C function will be converted to its Scheme representation and this
value will be returned from the Scheme procedure call. An error will be signaled if some
conversion is not possible (see below for supported conversions).

When c-name-or-code is not a valid C identifier, it is treated as an arbitrary piece of
C code. Within the C code the variables ‘___arg1’, ‘___arg2’, etc. can be referenced to
access the converted arguments. Similarly, the result to be returned from the call should
be assigned to the variable ‘___result’. If no result needs to be returned, the result-type
should be void and no assignment to the variable ‘___result’ should take place. Note
that the C code should not contain return statements as this is meaningless. Control must
always fall off the end of the C code. The C code is copied to the C file on a new line
so it can start with preprocessor directives. Moreover the C code is always placed at the
head of a compound statement whose lifetime encloses the C to Scheme conversion of the
result. Consequently, temporary storage (strings in particular) declared at the head of the C
code can be returned by assigning them to ‘___result’. In the c-name-or-code, the macro
‘___AT_END’ may be defined as the piece of C code to execute before control is returned to
Scheme but after the ‘___result’ is converted to its Scheme representation. This is mainly
useful to deallocate temporary storage contained in ‘___result’.

When passed to the Scheme environment, the C void type is converted to the void
object.

For example:

Chapter 8: Interface to C 53

(define fopen
(c-lambda (char-string char-string) FILE* "fopen"))

(define fgetc
(c-lambda (FILE*) int "fgetc"))

(let ((f (fopen "datafile" "r")))
(if f (write (fgetc f))))

(define char-code (c-lambda (char) int "___result = ___arg1;"))

(define host ((c-lambda () char-string "___result = host;")))

(define stdin ((c-lambda () FILE* "___result = stdin;")))

((c-lambda () void
"printf(\"hello\\n\"); printf(\"world\\n\");"))

(define pack-1-char (c-lambda (char) char-string
"
___result = malloc (2);
if (___result != NULL) { ___result[0] = ___arg1; ___result[1] = 0; }
#define ___AT_END if (___result != NULL) free (___result);
"))

(define pack-2-chars (c-lambda (char char) char-string
"
char s[3]; s[0] = ___arg1; s[1] = ___arg2; s[2] = 0; ___result = s;
"))

8.6 The c-define special form

Synopsis:

(c-define (variable define-formals) (type1. . .) result-type c-name scope
body)

The c-define special form makes it possible to create a C function that will act as
a representative of some Scheme procedure. A C function named c-name as well as a
Scheme procedure bound to the variable variable are defined. The parameters of the Scheme
procedure are define-formals and its body is at the end of the form. The type of each
argument of the C function, its result type and c-name (which must be a string) are specified
after the parameter specification of the Scheme procedure. When the C function c-name
is called from C, its arguments are converted to their Scheme representation and passed
to the Scheme procedure. The result of the Scheme procedure is then converted to its C
representation and the C function c-name returns it to its caller.

The scope of the C function can be changed with the scope parameter, which must be
a string. This string is placed immediately before the declaration of the C function. So if

Chapter 8: Interface to C 54

scope is the string "static", the scope of c-name is local to the module it is in, whereas if
scope is the empty string, c-name is visible from other modules.

The c-define special form does not return a value. It can only appear at top level.
For example:

(c-define (proc x #!optional (y x) #!rest z) (int int char float) int "f" ""
(write (cons x (cons y z)))
(newline)
(+ x y))

(proc 1 2 #\x 1.5) => 3 and prints (1 2 #\x 1.5)
(proc 1) => 2 and prints (1 1)

; if f is called from C with the call f (1, 2, ’x’, 1.5)
; the value 3 is returned and (1 2 #\x 1.5) is printed.
; f has to be called with 4 arguments.

The c-define special form is particularly useful when the driving part of an application
is written in C and Scheme procedures are called directly from C. The Scheme part of the
application is in a sense a “server” that is providing services to the C part. The Scheme
procedures that are to be called from C need to be defined using the c-define special
form. Before it can be used, the Scheme part must be initialized with a call to the function
‘___setup’. Before the program terminates, it must call the function ‘___cleanup’ so
that the Scheme part may do final cleanup. A sample application is given in the file
‘check/server.scm’.

8.7 Continuations and the C-interface

The C-interface allows C to Scheme calls to be nested. This means that during a call
from C to Scheme another call from C to Scheme can be performed. This case occurs in
the following program:

(c-declare
"
int p (char *); /* forward declarations */
int q (void);

int a (char *x) { return 2 * p (x+1); }
int b (short y) { return y + q (); }
")

(define a (c-lambda (char-string) int "a"))
(define b (c-lambda (short) int "b"))

(c-define (p z) (char-string) int "p" ""
(+ (b 10) (string-length z)))

(c-define (q) () int "q" ""
123)

Chapter 8: Interface to C 55

(write (a "hello"))

In this example, the main Scheme program calls the C function ‘a’ which calls the Scheme
procedure ‘p’ which in turn calls the C function ‘b’ which finally calls the Scheme procedure
‘q’.

Gambit-C maintains the Scheme continuation separately from the C stack, thus allowing
the Scheme continuation to be unwound independently from the C stack. The C stack frame
created for the C function ‘f’ is only removed from the C stack when control returns from ‘f’
or when control returns to a C function “above” ‘f’. Special care is required for programs
which escape to Scheme (using first-class continuations) from a Scheme to C (to Scheme)
call because the C stack frame will remain on the stack. The C stack may overflow if this
happens in a loop with no intervening return to a C function. To avoid this problem make
sure the C stack gets cleaned up by executing a normal return from a Scheme to C call.

Chapter 9: Known limitations and deficiencies 56

9 Known limitations and deficiencies

• On some systems floating point overflows will cause the program to terminate with a
floating point exception.

• The compiler will not properly compile files with more than one definition (with define)
of the same procedure. Replace all but the first define with assignments (set!).

• Records (defined through define-structure) can be written with write but can not
be read by read.

• On MSDOS and Windows-NT/95, 〈̂ C〉 is sometimes interpreted as 〈̂ Z〉 (i.e. an end-
of-file).

• On some systems floating point operations involving ‘+nan.’ ‘+inf.’, ‘-inf.’, or ‘-0.’
do not return the value required by the IEEE 754 floating point standard.

Chapter 10: Bugs fixed 57

10 Bugs fixed

• The floor and ceiling procedures gave incorrect results for negative arguments.
• The round procedure did not obey the round to even rule. A value exactly in between

two consecutive integers is now correctly rounded to the closest even integer.
• Heap overflow was not tested properly when a non-null rest parameter was created.

This could corrupt the heap in certain situations.
• The procedure apply did not check that an implementation limit on the number of

arguments was not exceeded. This could corrupt the heap if too many arguments were
passed to apply.

• The algorithms used by the compiler did not scale well to the compilation of large
procedures and modules. Compilation is now faster and takes less memory.

• The compilation of nested and and or special forms was very slow for deep nestings.
This is now much faster. Note that the code generated has not changed.

• On the Macintosh, when compiled with CodeWarrior, floating point computations gave
random results.

• Improper allocation could occur when inlined floating point operations where combined
with inlined allocators (e.g. ‘list’, ‘vector’, ‘lambda’).

• Previously nested C to Scheme calls were prohibited. They are now allowed.
• A memory leak occuring when long output string ports were created has been fixed.
• equal? was not performed properly when the arguments were procedures. This could

cause the program to crash.
• Write/read invariance of inexact numbers is now obeyed. An inexact number written

out with display or write will be read back by read as the same number.
• The procedures display, write and number->string are more precise and much faster

than before (up to a factor of 50).
• The procedure exact->inexact convert exact rationals much more precisely than be-

fore, in particular when the denominator is more than 1e308.

Chapter 11: Copyright and distribution information 58

11 Copyright and distribution information

The Gambit system (including the Gambit-C version) is Copyright c© 1994-1998 by Marc
Feeley, all rights reserved.

The Gambit system and programs developed with it may be distributed only under
the following conditions: they must not be sold or transferred for compensation and they
must include this copyright and distribution notice. For a commercial license please contact
gambit@iro.umontreal.ca.

General Index 59

General Index

(Index is nonexistent)

i

Table of Contents

1 Gambit-C: a portable version of Gambit 1
1.1 Accessing the Gambit system files. 1

2 The Gambit Scheme interpreter 2
2.1 Interactive mode . 2
2.2 Pipe mode . 5
2.3 Batch mode . 6
2.4 Customization . 6
2.5 Process exit status . 7
2.6 Scheme scripts . 7

3 The Gambit Scheme compiler 9
3.1 Interactive and pipe modes . 9
3.2 Customization . 9
3.3 Batch mode . 9
3.4 Link files. 11

3.4.1 Building an executable program 12
3.4.2 Building a loadable library. 12
3.4.3 Building a shared-library . 14
3.4.4 Other compilation options and flags 15

4 Runtime options for all programs 16

5 Handling of file names. 18

6 Emacs interface . 19

7 Extensions to Scheme . 21
7.1 Standard special forms and procedures 21
7.2 Additional special forms and procedures 24
7.3 Unstable additions . 42
7.4 Other extensions . 46

8 Interface to C. 47
8.1 The mapping of types between C and Scheme 47
8.2 The c-define-type special form . 50
8.3 The c-declare special form . 51
8.4 The c-initialize special form . 51
8.5 The c-lambda special form . 52
8.6 The c-define special form . 53
8.7 Continuations and the C-interface . 54

ii

9 Known limitations and deficiencies 56

10 Bugs fixed . 57

11 Copyright and distribution information . . . 58

General Index. 59

	Gambit-C: a portable version of Gambit
	Accessing the Gambit system files

	The Gambit Scheme interpreter
	Interactive mode
	Pipe mode
	Batch mode
	Customization
	Process exit status
	Scheme scripts

	The Gambit Scheme compiler
	Interactive and pipe modes
	Customization
	Batch mode
	Link files
	Building an executable program
	Building a loadable library
	Building a shared-library
	Other compilation options and flags

	Runtime options for all programs
	Handling of file names
	Emacs interface
	Extensions to Scheme
	Standard special forms and procedures
	Additional special forms and procedures
	Unstable additions
	Other extensions

	Interface to C
	The mapping of types between C and Scheme
	The c-define-type special form
	The c-declare special form
	The c-initialize special form
	The c-lambda special form
	The c-define special form
	Continuations and the C-interface

	Known limitations and deficiencies
	Bugs fixed
	Copyright and distribution information
	General Index

