Gambit-C, version 3.0

A portable implementation of Scheme
Edition 3.0, May 1998

Marc Feeley

Copyright (©) 1994-1998 Marc Feeley.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: Gambit-C: a portable version of Gambit 1

1 Gambit-C: a portable version of Gambit

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS and IEEE Scheme standards. It consists of two programs: gsi, the
Gambit Scheme interpreter, and gsc, the Gambit Scheme compiler.

Gambit-C is a version of the Gambit system in which the compiler generates portable C
code, making the whole Gambit-C system and the programs compiled with it easily portable
to many computer architectures for which a C compiler is available.

For the most up to date information on Gambit please check the Gambit web page at
‘http://www.iro.umontreal.ca/ gambit’ or send mail to ‘gambit@iro.umontreal.ca’.

Bug reports should be sent to ‘gambit@iro.umontreal.ca’.

1.1 Accessing the Gambit system files

Unless the system was built with the command ‘make FORCE_STATIC_LINK=yes’, Gam-
bit’s runtime library is normally a shared-library which is installed in ‘/usr/local/l1ib’
under UNIX. This directory must be in the path searched by the system for shared-
libraries. This path is normally specified through an environment variable which is
‘LD_LIBRARY_PATH’ on most versions of UNIX, ‘LIBPATH’ on AIX, ‘SHLIB_PATH’ on HPUX,
and ‘PATH’ on Windows-NT/95. If the shell is of the ‘sh’ family, the setting of the path
can be made for a single execution by prefixing the program name with the environment
variable assignment, as in:

% LD_LIBRARY_PATH=/usr/local/lib gsi

A similar problem exists with the Gambit header file ‘gambit.h’, normally installed in
‘/usr/local/include’, which is needed for compiling Scheme programs with the Gambit-
C compiler. If the C compiler does not normally search ‘/usr/local/include’ it will be
necessary to place ‘gambit.h’ in ‘/usr/include’.

A simple solution to give access to both of these files is to create a link to them in the
appropriate directories, i.e.

1n -s /usr/local/lib/libgambc.so /usr/lib ; actual name of library may var
1n -s /usr/local/include/gambit.h /usr/include

Chapter 2: The Gambit Scheme interpreter 2

2 The Gambit Scheme interpreter

Synopsis:
gsi [-:runtimeoption,...] [-f] [-i] [-e expressions]| [file..]

The interpreter is executed in interactive mode when no command line argument is
given other than options and the input does not come from a pipe. Pipe mode is when no
command line argument is given and the input comes from a pipe. Finally, batch mode is
when command line arguments are present. The ‘=i’ option is ignored by the interpreter.
The ‘-e’ option may appear multiple times and must be after the ‘-f’ and ‘-i’ options. In
all modes the expressions specified after each ‘-e’ are evaluated from left to right in the
interaction environment.

2.1 Interactive mode

In this mode the interpreter starts a read-eval-print loop (REPL) to interact with the
user. The system prompts the user for a command, reads the command from standard
input and executes it, sending any output generated including error messages to standard
output.

The commands entered by the user are typically Scheme expressions that are to be
evaluated. These expressions are evaluated in the global interaction environment. The
REPL adds to this environment any definition entered using the define and define-macro
special forms.

Once the evaluation of an expression is completed, the result of evaluation is written
to standard output unless it is the special “void” object. This object is returned by most
procedures and special forms which the standard defines as returning an unspecified value
(e.g. write, set!, define).

The evaluation of an expression may stop before it is completed for the following reasons:

a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing (CC)).

c. A breakpoint has been reached or (step) was evaluated.

d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name of
the procedure where the evaluation was stopped and the source code location in the format
‘stream@line. column’, where stream is either ‘(stdin)’ if the expression was obtained from
standard input or a string naming a file.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. This allows the inspection of the
evaluation context, which is particularly useful to determine the location and cause of an
€rTor.

The prompt of nested REPLs includes the nesting level. An end of file (usually (D)
on UNIX and on MSDOS and Windows-NT/95) will cause the current REPL to be
aborted and the enclosing REPL (one nesting level less) to be resumed.

Chapter 2: The Gambit Scheme interpreter 3

At any time the user can examine the frames in the REPL’s continuation, which is useful
to determine which chain of procedure calls lead to an error. Expressions entered at a nested
REPL are evaluated in the environment of the continuation frame currently being examined
if that frame was created by interpreted Scheme code. If the frame was created by compiled
Scheme code then expressions get evaluated in the global interaction environment. This
feature may be used in interpreted code to fetch the value of a variable in the current frame
or to change its value with set!. Note that some special forms (define in particular) can
only be evaluated in the global interaction environment.

In addition to expressions, the REPL accepts the following special “comma” commands:

, (c expr)

Give a summary of the REPL commands.
Quit the program (i.e. terminate abruptly).
Return to the outermost REPL, also known as the “top-level REPL”.

Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command must only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if
the evaluation of the expression ‘(+ x 1)’ signaled an error because ‘x’
is not bound, then in the nested REPL a ¢, (¢ (¥ 2 3))’ will resume
the computation of ‘(+ x 1)’ as though the value of ‘x’ was 6. In the
top-level REPL this command terminates the program.

Leave the current REPL and continue the computation that initiated
the REPL. This command must only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by set-step-level!) and then stop, causing
a nested REPL to be entered. Just before the evaluation step is per-
formed, a line is displayed (in the same format as trace) which indicates
the expression that is being evaluated. If the evaluation step produces
a result, the result is also displayed on another line. A nested REPL is
then entered after displaying a message which describes the next step
of the computation. This command must only be used to continue a
computation that was stopped due to a user interrupt, breakpoint or a
single-step.

This command is similar to ‘,s’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

Move to frame number n of the continuation. Frames are numbered
with non-negative integers. Frame 0 is the most recently created frame

Chapter 2: The Gambit Scheme interpreter 4

>y

€

in the chain of continuation frames. Frame 1 is the next to most recent
and so on. When it is different from 0, the frame number appears in the
prompt after the REPL nesting level. After changing the current frame,
a one-line summary of the frame is displayed as if the ‘,y’ command was
entered.

Move to the next frame in the chain of continuation frames (i.e. towards
older continuation frames). After changing the current frame, a one-line
summary of the frame is displayed as if the ‘,y’ command was entered.

Move to the previous frame in the chain of continuation frames (i.e.
towards more recently created continuation frames). After changing
the current frame, a one-line summary of the frame is displayed as if
the ‘,y’ command was entered.

Display a one-line summary of the current frame. The information
is displayed in four fields. The first field is the frame number. The
second field is the procedure that created the frame or ‘(interaction)’
if the frame was created by an expression entered at the REPL. The
remaining fields describe the subproblem associated with the frame,
that is the expression whose value is being computed. The third field
is the location of the subproblem’s source code and the fourth field is a
reproduction of the source code (possibly truncated to fit on the line).
The last two fields may be missing if that information is not available.
In particular, the third field is missing when the frame was created by
a user call to the ‘eval’ procedure, and the last two fields are missing
when the frame was created by a compiled procedure not compiled with
the ‘-~debug’ option.

Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ‘,y’ command is displayed (except that location
information is displayed in the format ‘stream@line: column’). If there
are more that 15 frames in the chain of continuation frames, some of
the middle frames will be omitted.

Pretty print the procedure that created the current frame or ‘ (interaction)
if the frame was created by an expression entered at the REPL. Com-
piled procedures will only be pretty printed if compiled with the
‘~debug’ option.

Display the environment (local variables) which are accessible from the
current frame. This command only supports frames created by inter-
preted code.

Here is a sample interaction with gsi:

% gsi
Gambit Version 3.0

> (define (f x) (let* ((y 10) (z (x x y))) (- x 2)))

Chapter 2: The Gambit Scheme interpreter 5)

> (define (gn) (if > n 1) (+1 (g (/ n 2))) (£ ’oops)))
> (g 8)

x** ERROR IN (stdin)@1.32 -- NUMBER expected

(x ’oops 10)

1> ,i

#<procedure f> =

(lambda (x) (let ((y 10)) (let ((z (x x y))) (- x 2))))

1> ,b

0 f (stdin)@1:32 (*x x y)

1 g (stdin)@2:32 (g (/ n2)
2 g (stdin)@2:32 (g (/ n2)
3 g (stdin)@2:32 (g (/ n2)
4 (interaction) (stdin)@3:1 (g 8)

5 ##initial-continuation

1> e

y = 10

X = 00pSs

1> ,+

1 g (stdin)@2.32 (g (/ n2)
1-1> ,e

n=2

1-1> ,+

2 g (stdin)@2.32 (g (/ n2))
1-2> ,e

n=4

1-2> ,+

3 g (stdin)@2.32 (g (/ n2)
1-3> ,e

n =238

1-3> ,0

0 f (stdin)@1.32 (x x y)

1> (set! x 1)

1> e

y = 10

x=1

1> ,(c (x xy))

-6

> 59

2.2 Pipe mode

In pipe mode the interpreter evaluates the expressions read from standard input in the
global interaction environment and writes each result on a separate line on standard output.
Evaluation errors cause the interpreter to exit. Error messages are sent to standard error.

For example, under UNIX:

% echo "(sqrt (read)) 9 (expt 2 100)" | gsi
3
1267650600228229401496703205376

Chapter 2: The Gambit Scheme interpreter 6

2.3 Batch mode

In batch mode the command line arguments designate files to be loaded. The interpreter
loads these files in left-to-right order using the load procedure. The files can have no
extension, or the extension ‘.scm’ or ‘.on’ where n is a positive integer that acts as a
version number (the ‘.on’ extension is used for object files produced by gsc). When the file
name has no extension the load procedure first attempts to load the file with no extension
as a Scheme source file. If that file doesn’t exist it completes the file name with a ‘.on’
extension with the highest consecutive version number starting with 1, and loads that file
as an object file. If that file doesn’t exist the file name is completed with a ‘.scm’ extension
and the file is loaded as a Scheme source file.

A special case is the argument ‘-’ which designates the standard input. If the standard
input comes from a pipe, it is treated as a Scheme source file. Otherwise, a REPL is started
so that the user can interact with the interpreter. Note that ‘-’ can appear multiple times
on the command line, which is useful for debugging.

The interpreter exits after loading the files or as soon as an error occurs. Input is taken
from standard input and any output generated is sent to standard output except for error
messages which go to standard error.

For example, under UNIX:

% cat ml.scm

(display "hello") (newline)

% cat m2.scm

(display "world") (newline)

% gsi ml m2

hello

world

% gsiml - m2 -

hello

> (define display write)

> ,(c 0)

"world"

> (+12)

3

> ,q

% echo "(write 123) (newline)" | gsi -
123

% echo "(write 123) (newline)" | gsi
123#<void>

#<void>

2.4 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries
to execute a ‘(load "~~/gambc")’ (for an explanation of how file names are interpreted see
Chapter 5 [file names], page 18). An error is not signaled if the file does not exist. Interpreter

Chapter 2: The Gambit Scheme interpreter 7

extensions and patches that are meant to apply to all users and all modes should go in that
file.

Extensions which are meant to apply to a single user or to a specific directory are best
placed in the initialization file, which is a file containing Scheme code. In all modes, the
interpreter first tries to locate the initialization file by searching the following locations:
‘gambc.scm’ and ‘“/gambc.scm’. The first file that is found is examined as though the
expression (include initialization-file) had been entered at the read-eval-print loop where
initialization-file is the file that was found. Note that by using an include the macros
defined in the initialization file will be visible from the read-eval-print loop (this would not
have been the case if load had been used). The initialization file is not searched for or
examined if the ‘-=f’ option is specified.

2.5 Process exit status

Under UNIX, the status is 0 when the interpreter exits normally and is 1 when the
interpreter exits due to an error.
For example, if the shell is sh:

% echo "(/ 1 0)" | gsi
xx*% ERROR IN (stdin)@1l.1 -- Division by zero

(/10
% echo $7
1

2.6 Scheme scripts

Gambit’s load procedure treats specially any Scheme source file beginning with the
token ‘#!’. The load procedure discards the rest of the line and then loads the rest of
the file normally. If this file is being loaded because it is an argument on the interpreter’s
command line, then the interpreter is terminated after loading the file.

This feature can be used under UNIX to write Scheme scripts by simply prefixing a file
of Scheme code with a line containing ‘#! /usr/local/bin/gsi’ (note the space between
the ‘#!” and the ‘/usr/local/bin/gsi’ so that the ‘#!’ token is read properly by gsi).
When such a script is executed, the script’s file name followed by the script’s command
line arguments are added to the arguments passed to the interpreter. Thus, the interpreter
will be run in batch mode and the interpreter will call 1load with the script’s file name as
argument. The script’s arguments can be accessed by calling the procedure argv. This
nullary procedure returns the script’s file name and its arguments as a list of strings.

For example:

% cat upto
#! /usr/local/bin/gsi -f
(define (usage) (display "usage: upto n") (newline))
(if (not (= (length (argv)) 2))
(usage)
(let ((n (string->number (list-ref (argv) 1))))
(if (and n (exact? n) (integer? n))

Chapter 2: The Gambit Scheme interpreter 8

(let loop ((i 1))
(if (<= i n)
(begin (write i) (nmewline) (loop (+ i 1)))))

(usage))))
% upto 3
1
2
3

On some versions of UNIX it is necessary to prefix the Scheme source code in the following
way:
#! /bin/sh
":";exec gsi -f $0 $x*
(write (argv)) (nmewline)

An interesting application of Scheme scripts is to implement CGI scripts. Here is a

sample CGI script that maintains a counter that is incremented each time the CGI script
is accessed:

#! /usr/local/bin/gsi -f

(define n (+ 1 (with-input-from-file "counter" read)))
(with-output-to-file "counter" (lambda () (write n)))
(display "Content-type: text/html") (newline)
(newline)

(display "Access #") (display n) (newline)

Chapter 3: The Gambit Scheme compiler 9

3 The Gambit Scheme compiler

Synopsis:
gsc [-:runtimeoption,...] [-f] [-i] [~e expressions] [-prelude expressions]
[-postlude expressions| [-verbose| [-report] [-expansion| [-gvm| [-debug]
[-o output] [-c|] [-dynamic] [-flat] [-1 base] [file...]

3.1 Interactive and pipe modes

When no command line argument is present other than options the compiler behaves
like the interpreter. This means that interactive mode is selected if the input does not
come from a pipe, otherwise pipe mode is selected. In these modes, the only difference
with the interpreter is that some additional predefined procedures are available (notably
compile-file).

3.2 Customization

Just like the interpreter, the compiler will examine the initialization file unless the ‘-f’
option is specified.

3.3 Batch mode

)

In batch mode gsc takes a set of file names (either with ‘.scm’, ‘.c’, or no extension)
on the command line and compiles each Scheme source file into a C file. File names with
no extension are taken to be Scheme source files and a ‘.scm’ extension is automatically
appended to the file name. For each Scheme source file ‘file. scm’, the C file ‘file. ¢’ stripped
of its directory will be produced (i.e. the C file is created in the current working directory).

The C files produced by the compiler serve two purposes. They will have to be compiled
by a C compiler to generate object files, and also they contain information to be read by
Gambit’s linker to generate a link file. The link file is a C file that collects various linking
information for a group of modules, such as the set of all symbols and global variables used
by the modules. The linker is automatically invoked unless the ‘-c’ or ‘-~dynamic’ options
appear on the command line.

Compiler options must be specified before the first file name and after the ‘~:’ runtime
option (see Chapter 4 [runtime options|, page 16). If present, the ‘~f’ and ‘-i’ compiler
options must come first. The available options are:

-f Do not examine initialization file.
-i Force interpreter mode.
-e expressions Evaluate expressions in the interaction environment.

—-prelude expressions
Add expressions to the top of the source code being compiled.

-postlude expressions
Add expressions to the bottom of the source code being compiled.

Chapter 3: The Gambit Scheme compiler 10

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

-expansion Display the source code after expansion.

-gvm Generate a listing of the GVM code.

-debug Include debugging information in the code generated.

-o output Set name of output file.

-c Only compile Scheme source files to C (no link file generated).
—-dynamic Only compile Scheme source files to dynamically loadable object files

(no link file generated).
-flat Generate a flat link file instead of an incremental link file.
-1 base Specify the link file of the base library to use for the link.

The ‘=i’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘-e’ option evaluates the specified expressions in the interaction environment.

The ‘~prelude’ option adds the specified expressions to the top of the source code being
compiled. The main use of this option is to supply declarations on the command line. For
example the following invocation of the compiler will compile the file ‘bench.scm’ in unsafe
mode:

% gsc -prelude "(declare (not safe))" bench.scm

The ‘-postlude’ option adds the specified expressions to the bottom of the source code
being compiled. The main use of this option is to supply the expression that will start the
execution of the program. For example:

% gsc -postlude "(main)" bench.scm
The ‘-verbose’ option displays on standard output a trace of the compiler’s activity.

The ‘-report’ option displays on standard output a global variable usage report. Each
global variable used in the program is listed with 4 flags that indicate if the global variable
is defined, referenced, mutated and called.

The ‘-expansion’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘-gvm’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file. gvm’.

The ‘-debug’ option causes debugging information to be saved in the code generated.
With this option run time error messages indicate the source code and its location, the
backtraces are more precise, and pp will display the source code of compiled procedures.
The debugging information is large (the size of the object file is typically 4 times bigger).

The ‘-0’ option sets the name of the output file generated by the compiler. If a link file
is being generated the name specified is that of the link file. Otherwise the name specified is
that of the C file (this option is ignored if the compiler is generating more than one output
file or is generating a dynamically loadable object file).

Chapter 3: The Gambit Scheme compiler 11

If the ‘¢’ and ‘~dynamic’ options do not appear on the command line, the Gambit linker
is invoked to generate the link file from the set of C files specified on the command line
or produced by the Gambit compiler. Unless the name is specified explicitly with the ‘-0’
option, the link file is named ‘last_.c’, where ‘last.c’ is the last file in the set of C files.
When the ‘-c¢’ option is specified, the Scheme source files are compiled to C files. When the
‘~dynamic’ option is specified, the Scheme source files are compiled to dynamically loadable
object files (‘.on’ extension).

The ‘-flat’ option is only meaningful if a link file is being generated (i.e. the ‘-c’ and
‘~dynamic’ options are absent). The ‘~flat’ option directs the Gambit linker to generate a
flat link file. By default, the linker generates an incremental link file (see the next section
for a description of the two types of link files).

The ‘-1’ option is only meaningful if an incremental link file is being generated (i.e.
the ‘-¢’, ‘~dynamic’ and ‘-flat’ options are absent). The ‘-1’ option specifies the link file
(without the ‘.c’ extension) of the base library to use for the incremental link. By default
the link file of the Gambit runtime library is used (i.e. ‘~~/_gambc.c’).

3.4 Link files

Gambit can be used to create applications and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, an application is composed of a set of Scheme modules and C modules. Some
of the modules are part of the Gambit runtime library and the other modules are supplied
by the user. When the application is started it must setup various global tables (including
the symbol table and the global variable table) and then sequentially execute the Scheme
modules (more or less as if they were being loaded one after another). The information
required for this is contained in one or more link files generated by the Gambit linker from
the C files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because
most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus an application built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine if
the application is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
applications (this linking information typically takes 150 Kbytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the load procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, an application can be built by linking the user mod-
ules with the runtime library’s link file, producing an incremental link file. This allows the
creation of a shared-library which contains the modules of the runtime library and its flat

Chapter 3: The Gambit Scheme compiler 12

link file. The application is dynamically linked with this shared-library and only contains
the user modules and the incremental link file. For small applications this approach greatly
reduces the size of the application because the incremental link file is small. A “hello world”
program built this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an
incremental link file for statically linked programs (there is very little loss compared to a
single flat link file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to call up gsc to compile each
Scheme module into a C file and create an incremental link file. The C files and the link
file must then be compiled with a C compiler and linked (at the object file level) with
the Gambit runtime library and possibly other libraries (such as the math library and the
dynamic loading library). Here is for example how a program with three modules (one in
C and two in Scheme) can be built:

% uname -a

Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 1586
% cat ml.c

int power_of_2 (int x) { return 1<<x; }

% cat m2.scm

(c-declare "extern int power_of_2 ();")

(define pow2 (c-lambda (int) int "power_of_2"))

(define (twice x) (cons x x))

% cat m3.scm

(write (map twice (map pow2 ’(1 2 3 4)))) (newline)

% gsc -c m2.scm # create m2.c (note: .scm is optional)
% gsc -c m3.scm # create m3.c (note: .scm is optional)
% gsc m2.c m3.c # create the incremental link file m3_.c
% gcc ml.c m2.c m3.c m3_.c -lgambc

% a.out

(2.2 (4.4 (8.8 (16 . 16))

Alternatively, the three invocations of gsc can be replaced by a single invocation:
% gsc m2 m3

3.4.2 Building a loadable library

To bundle multiple modules into a single file that can be dynamically loaded with the
load procedure, a flat link file is needed. When compiling the C files and link file generated,
the flag ‘-D___DYNAMIC’ must be passed to the C compiler. The three modules of the
previous example can be bundled in this way:

% uname -a

Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 1586
% gsc -flat -o foo.c m2 m3

m2:

m3:

Chapter 3: The Gambit Scheme compiler 13

x% WARNING -- "cons" is not defined,

*okok referenced in: ("m2.c")

**x*x WARNING -- "map" is not defined,

*okok referenced in: ("m3.c")

**x WARNING -- "newline" is not defined,

*okok referenced in: ("m3.c")

**x WARNING -- "write" is not defined,

*kk referenced in: ("m3.c")

% gcc -shared -fPIC -D___DYNAMIC ml.c m2.c m3.c foo.c -o foo.ol

% gsi
Gambit Version 3.0

> (load "foo")
((2.2) (4.4 (8.8) (16 . 16))
"/users/feeley/foo.ol"
> 59
The warnings indicate that there are no definitions (defines or set!s) of the variables
cons, map, newline and write in the set of modules being linked. Before ‘foo.o01’ is loaded,
these variables will have to be bound; either implicitly (by the runtime library) or explicitly.
Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.ol’ composed of the files ‘ml.scm’, ‘m2.scm’ and ‘x.c’ that links to system
shared libraries (for X-windows):
% uname -a
Sun0S ungava 5.6 Generic_105181-05 sun4m sparc SUNW,SPARCstation-20
% gsc -flat -o mymod.c ml m2

ml:

m2:

x% WARNING -- "*" is not defined,

*okok referenced in: ("ml.c")

***x WARNING -- "+" is not defined,

*okok referenced in: ("m2.c")

*%*x WARNING -- "display" is not defined,

*okok referenced in: ("m2.c" "ml.c")
*%xx WARNING -- "newline" is not defined,

*ok ok referenced in: ("m2.c" "ml.c")
x% WARNING -- "write" is not defined,

*okok referenced in: ("m2.c")

% gcc —-fPIC -c -I../1ib -D___DYNAMIC mymod.c ml.c m2.c x.c

% /usr/ccs/bin/ld -G -o mymod.ol mymod.o ml.o m2.0 x.o0 -1X11 -lsocket
% gsi mymod.ol

hello from mil

hello from m2

(f1 10) = 22

% cat ml.scm

(define (f1 x) (*x 2 (f2 x)))

(display "hello from ml")

(newline)

Chapter 3: The Gambit Scheme compiler 14

(c-declare "#include \"x.h\"")

(define x-initialize (c-lambda (char-string) bool "x_initialize"))
(define x-display-name (c-lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))

% cat m2.scm

(define (£f2 x) (+ x 1))

(display "hello from m2")

(newline)

(display "(f1 10) = ")
(write (f1 10))
(newline)

(x-initialize (x-display-name))
(x-bell 50) ; sound the bell at 50%
% cat x.c

#include <X11/X1ib.h>

static Display *display;

int x_initialize (char *display_name)

{
display = XOpenDisplay (display_name);
return display != NULL;

}
char *x_display_name (void)
{
return XDisplayName (NULL);
}

void x_bell (int volume)

{
XBell (display, volume);
XFlush (display);
}
% cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incremen-
tal link file is normally used when the Gambit runtime library (or some other library) is to
be extended with new procedures. A flat link file is mainly useful when building a “primal”
runtime library, which is a library (such as the Gambit runtime library) that does not extend
another library. When compiling the C files and link file generated, the flags ‘~D___LIBRARY’

Chapter 3: The Gambit Scheme compiler 15

and ‘-D___SHARED’ must be passed to the C compiler. The flag ‘~D___PRIMAL’ must also

be passed to the C compiler when a primal library is being built.
A shared-library ‘mylib.so’ containing the two first modules of the previous example
can be built this way:
% uname -a
Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 1586
% gsc -o mylib.c m2
% gcc -shared -fPIC -D___LIBRARY -D___SHARED ml.c m2.c mylib.c -o mylib.sc
Note that this shared-library is built using an incremental link file (it extends the Gambit
runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

% gsc -1 mylib m3

% gcc m3.c m3_.c mylib.so -lgambc

% LD_LIBRARY_PATH=.:/usr/local/lib a.out
(2 .2) (4.4) (8.8 (16 . 16))

3.4.4 Other compilation options and flags

The performance of the code can be increased by passing the ‘-D___SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-0’ option can be
passed to the C compiler. For large modules, it will not be practical to specify both ‘-0’
and ‘-D___SINGLE_HOST’ for typical C compilers because the compile time will be high and
the C compiler might even fail to compile the program for lack of memory.

Some C compilers don’t automatically search ‘/usr/local/include’ for header files. In
this case the flag ‘-I/usr/local/include’ should be passed to the C compiler. Similarly,
some C compilers/linkers don’t automatically search ‘/usr/local/1ib’ for libraries. In this
case the flag ‘-L/usr/local/1ib’ should be passed to the C compiler/linker.

A variety of flags are needed by some C compilers when compiling a shared-library
or a dynamically loadable library. Some of these flags are: ‘-shared’, ‘-call_shared’,
‘-rdynamic’, ‘-fpic’, ‘-fPIC’, ‘-Kpic’, ‘-KPIC’, ‘-pic’, ‘“+z’. Check your compiler’s docu-
mentation to see which flag you need.

Under Digital UNIX, formerly DEC OSF/1, on DEC Alpha (a 64 bit processor) the
Gambit runtime library is linked using the ‘-taso’ C linker flag. This allows the use of
32 bit pointers instead of the usual 64 bit pointers, which roughly reduces the memory
usage for data by a factor of two. The ‘~taso’ flag must thus be passed to the C linker
when linking a program. Gambit can be compiled to use 64 bit pointers by removing the
definition ‘#define ___FORCE_32’ from the file ‘gambit.h’. The ‘-taso’ C linker flag can
then be omitted.

Chapter 4: Runtime options for all programs 16

4 Runtime options for all programs

Both gsi and gsc as well as executable programs compiled and linked using gsc take
a ‘=:7 option which supplies parameters to the runtime system. This option must appear
first on the command line. The colon is followed by a comma separated list of options with
no intervening spaces.

The available options are:

s Select standard Scheme mode.

d Display debugging information.

t Treat stdin, stdout and stderr as terminals.
u Use unbuffered I/0 for stdin, stdout and stderr.
kstackcachesize Set stack cache size in kilobytes.

mheapsize Set minimum heap size in kilobytes.

hheapsize Set maximum heap size in kilobytes.
llivepercent Set heap occupation after garbage collection.
c Select native character encoding for I/0.

1 Select ‘LATIN-1’ character encoding for I/0O.

8 Select ‘UTF-8’ character encoding for I/0.

The ‘s’ option selects standard Scheme mode. In this mode the reader is case insensitive
and keywords are not recognized. By default the reader is case sensitive and recognizes
keywords which end with a colon.

The ‘d” option selects debugging mode which displays a trace on standard error to
monitor the activity of the runtime system.

The ‘t’ option forces the standard input and output to be treated like a terminal (i.e. as
though isatty was true on stdin, stdout and stderr). This is useful in situations, such
as running emacs under Windows-NT /95, where running the interpreter as a subprocess
invokes pipe mode. By using the ‘t’ option in this situation, the interpreter will enter
interactive mode.

The ‘u’ option forces all I/O on the standard input and output (i.e. stdin, stdout and
stderr) to be unbuffered. This is useful to get prompt response when the program is run
as a subprocess (e.g. a pipe).

The ‘k’ option specifies the size of the stack cache. The ‘k’ is immediately followed
by an integer indicating the number of kilobytes of memory. The stack cache is used to
allocate continuation frames. When the stack cache overflows a GC is triggered and the
continuation frames are transfered from the stack cache to the heap. This makes it possible
for arbitrarily deep recursions to execute (up to a heap overflow). By default, the stack
cache contains 4096 words. Increasing the size of the stack cache will normally improve the
performance of programs with deep recursions.

Chapter 4: Runtime options for all programs 17

The ‘m’” option specifies the minimum size of the heap. The ‘m’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not shrink lower
than this size. By default, the minimum size is 0.

)

The ‘h’ option specifies the maximum size of the heap. The ‘h’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not grow larger
than this size. By default, there is no limit (i.e. the heap will grow until the virtual memory
is exhausted).

The ‘1’ option specifies the percentage of the heap that will be occupied with live objects
at the end of a garbage collection. The ‘1’ is immediately followed by an integer between 1
and 100 inclusively indicating the desired percentage. The garbage collector will resize the
heap to reach this percentage occupation. By default, the percentage is 50.

The ‘c’ option selects the native character encoding as the default character encoding
for I/O. This is used by default if no default encoding is specified.

The ‘1’ option selects ‘LATIN-1" as the default character encoding for I/0.

The ‘8’ option selects ‘UTF-8’ (variable length Unicode) as the default character encoding
for I/0.

Chapter 5: Handling of file names 18

5 Handling of file names

Gambit uses a naming convention for files that is compatible with the one used by the
underlying operating system but extended to allow referring to the home directory of the
current user or some specific user and the Gambit installation directory.

A file is designated using a path. Fach component of a path is separated by a ‘/’ under
UNIX, by a ¢/’ or ‘\” under MSDOS and Windows-NT/95, and by a ‘:” under MACOS. A
leading separator indicates an absolute path under UNIX, MSDOS and Windows-NT /95
but indicates a relative path under MACOS. A path which does not contain a path separator
is relative to the current working directory on all operating systems (including MACOS).
A drive specifier such as ‘C:’ may prefix a file name under MSDOS and Windows-NT /95.

Under MACOS the folder ‘Gambit-C’ must exist in the ‘Preferences’ folder and contain
the folder ‘gambc’ (the Gambit installation directory). The ‘Gambit-C’ and ‘gambc’ folders
must not be aliases.

In this document and the rest of this section in particular, ‘/’ has been used to represent
the path separator.

A path which starts with the characters ‘~/’ designates a file in the user’s home directory.
The user’s home directory is contained in the ‘HOME’ environment variable under UNIX,
MSDOS and Windows-NT/95. Under MACOS this designates the folder which contains
the application.

¢

A file name which starts with the characters ‘~“user/’ designates a file in the home
directory of the given user. Under UNIX this is found using the password file. There is no
equivalent under MSDOS, Windows-NT /95, and MACOS.

A file name which starts with the characters ‘*~/’ designates a file in the Gambit in-
stallation directory. This directory is normally ‘/usr/local/share/gambc/’ under UNIX,
‘C:\GAMBC\’ under MSDOS and Windows-NT /95, and under MACOS the folder ‘gambc’ in
the ‘Gambit-C’ folder. To override this binding under UNIX, MSDOS and Windows-NT /95,
define the ‘GAMBCDIR’ environment variable.

Chapter 6: Emacs interface 19

6 Emacs interface

Gambit comes with the Emacs package ‘gambit.el’ which provides a nice environment
for running Gambit fro