
Project 1: Part 2

Here we continue the preliminary project.

Calculus on Polynomials

There’s a certain pattern in defining many generic functions:

(define-generic (do-something (f))

;; define it for appropriate non-Meroon objects, numbers perhaps

;; throw an error if do-something is not appropriate for f

)

(define-method (do-something (f Polynomial))

;; define do-something for Polynomials.

;; apply do-something-to-termlist to (Polynomial-terms f)

;; to implement do-something on Polynomials

)

(define (do-something-to-termlist terms)

;; go through the terms of the polynomial,

;; calling do-something-to-term on each term and

;; accumulating the result as appropriate

)

(define (do-something-to-term term)

;; basic operation of do-something on one polynomial term

)

Following this patterm, define generic functions

(define-generic (differentiate (f) variable)

(if (number? f)

0

(error "differentiate: argument not of correct type " f)))

(define-generic (integrate (f) variable #!optional (a #f) (b #f))

(if (number? f)

(if (and (number? a)

(number? b))

(multiply f (subtract b a))

(instantiate Polynomial

variable: variable

terms: (adjoin-term (make-term 1 f)

(the-empty-termlist))))

(error "integrate: unknown argument type " f variable)))

and then define appropriate methods for Polynomials. In integrate a and b are the optional two endpoints;

if they aren’t given return an indefinite integral, if they are given, return a definite integral, as such:

(define-method (integrate (p Polynomial) variable #!optional (a #f) (b #f))

1

(if (Polynomial-variable= (Polynomial-variable p)

variable)

(let ((indefinite-integral

(instantiate Polynomial

variable: variable

terms: (integrate-termlist (Polynomial-terms p)))))

(if (and (number? a)

(number? b))

(subtract (evaluate indefinite-integral b)

(evaluate indefinite-integral a))

indefinite-integral))

(error "integrate: The variable of integration is not the variable of the polyno-

mial " p variable)))

(At this point I’m wondering whether just carrying around all these variables; they just seem to get in the

way, and if we think of polynomials as symbolic expressions, they’re OK, but if we think of polynomials as

functions of a certain type, they just get in the way. SICP is treating them as symbolic expression.)

Orthogonal polynomials

Now we can define inner products:

(define (make-inner-product weight variable left right)

(lambda (p q)

(integrate (multiply p (multiply q weight)) ;; weight can be a constant

variable left right)))

This function takes four arguments and itself returns a function of two arguments:

∫ b

a

p(variable) q(variable) dvariable = 〈p, q〉.

Given an inner product, the recursion for orthogonal polynomials is

P−1(x) = 0; P0(x) = 1;

Si = 〈Pi(x), Pi(x)〉, Bi =
〈xPi(x), Pi(x)〉

Si

Ci =







arbitrary, i = 0,

Si

Si−1

, i > 0

Pi+1(x) = (x − Bi)Pi(x) − CiPi−1(x), i = 0, 1, 2,

See Conte and de Boor, Elementary Numerical Analysis, third edition, page 254. (We take Ai = 1 for all i.)

We define the Gauss-Lobatto weight and inner product on (-1,1):

;;; The Gauss-Lobatto weight on (-1, 1)

(define (G-L-weight variable)

;; 1-x^2=-(x^2-1) (we can only subtract constants on right)

(let ((X (variable->Polynomial variable)))

2

(negate (subtract (multiply X X) 1))))

(define (G-L-inner-product variable left right)

(make-inner-product (G-L-weight variable) variable left right))

See Hämmerlin and Hoffmann, Numerical Mathematics, page 302.

Write a function

(define (make-orthogonal-polynomials inner-product variable n)

;; fill in the blanks

)

that calculates P0, P1, . . . , Pn given an inner product and a variable. You should be able to do something

like this:

euler-6% gsi++

[Meroon V3 Paques2001+1 $Revision: 1.1 $]

Gambit v4.1.2

> (load "all")

"/export/users/lucier/programs/615project/2007/project-1/all.scm"

> (define weight (G-L-weight ’x))

> (define inner-product (G-L-inner-product ’x))

> (define ps (make-orthogonal-polynomials inner-product ’x 10))

> (for-each show ps)

x^10-15/7x^8+30/19x^6-150/323x^4+15/323x^2-3/4199

x^9-36/19x^7+378/323x^5-84/323x^3+63/4199x

x^8-28/17x^6+14/17x^4-28/221x^2+7/2431

x^7-7/5x^5+7/13x^3-7/143x

x^6-15/13x^4+45/143x^2-5/429

x^5-10/11x^3+5/33x

x^4-2/3x^2+1/21

x^3-3/7x

x^2-1/5

x

1

0

Now we need to find the zeros xnκ of Pn(x). One of the best (the stablest, the most accurate) ways to

find the zeros of a polynomial

P (x) = xn + pn−1x
n−1 + pn−2x

n−2 + · · · + p1x + p0

is to use dgeev.f from LAPACK to compute the eigenvalues of the matrix









0 1 0 . . . 0

0 0 1 . . . 0
...

. . .

−p0 −p1 −p2 . . . −pn−1









.

3

There’s no point to rewriting dgeev.f in Scheme, so we should use a so-called Foreign Function Interface

(FFI) to call Fortran functions from Scheme. FFIs aren’t standardized, but Gambit has one. (You run into

the same problem calling functions defined in one language from functions in another language.)

I thought I could compile dgeev.f and its dependencies and link them into Gambit, but I’ve run out

of time. Because of the special form of the Gauss-Lobatto orthogonal polynomials, you can use sqrt and

quadratic-solver to find (by hand) the zeros of P5, which, together with the two endpoints, gives you a

7-point integration rule that’s exact for all polynomials of degree 2 × 7 − 3 = 11. That’s good enough for

now.

To repeat what was written in the first part:

The Gauss-Lobatto quadrature rules with n points have the form

∫ 1

−1

f(x) dx ≈
2

n(n − 1)
[f(1) + f(−1)] +

n−3
∑

ν=0

γnνf(xnν).

Here xnν are the zeros of the degree n − 2 orthogonal polynomial over [−1, 1] with the weight

w(x) = 1 − x2.

If we define

ℓnκ(x) =
n

∏

ν=0
ν 6=κ

x − xnν

xnκ − xnν

then ℓnκ has degree n − 1 and satisfies

ℓnκ(xnν) =

{

1, ν = κ,

0, ν 6= κ.

The weights γnν satisfy

γnν =

∫ 1

−1

ℓn,ν(x)w(x) dx.

So now we have all the pieces to find the integration points and weights for a serious numerical integration

scheme, which we will use below.

4

