
Project 1: Part 1

Project 1 will be to calculate orthogonal polynomials. It will have several parts.
Note: The scheme code in this writeup is available in the file project1.scm, available from the course

web page.

Warmup: Solving quadratic equations

The quadratic formula says that the solutions of ax2 + bx+ c = 0 are given by

x =
−b±

√
b2 − 4ac

2a
.

If b2 − 4ac < 0 then
√
b2 − 4ac is imaginary, so there is no problem with round-off error.

If b2 − 4ac > 0 then cancellation can occur in −b +
√
b2 − 4ac if b > 0 and in −b −

√
b2 − 4ac if b < 0.

Thus, if b > 0 one would want to use the computations

x1 =
−b−

√
b2 − 4ac

2a
, x2 =

2c

−b−
√
b2 − 4ac

.

Similarly if b < 0.
Write a function (quadratic-solver a b c) that returns a list of the two roots of ax2 + bx+ c = 0 as

accurately as possible. Test your code on the following problems:
euler-126% gsi

Gambit v4.1.2

> (sqrt -1)

+i

> (sqrt +i)

.7071067811865476+.7071067811865475i

> (load "quadratic-solver")

"/export/users/lucier/programs/615project/2007/project-1/quadratic-solver.scm"

> (quadratic-solver 1 2 5)

(-1+2i -1-2i)

> (quadratic-solver 1 -1 1)

(1/2+.8660254037844386i 1/2-.8660254037844386i)

> (quadratic-solver 1 2 -1)

(-2.414213562373095 .4142135623730951)

> (quadratic-solver 4 1 1)

(-1/8+.4841229182759271i -1/8-.4841229182759271i)

> (quadratic-solver 4 4 1)

(-1/2 -1/2)

> (quadratic-solver 4 0 1)

(+1/2i -1/2i)

> (quadratic-solver 0 0 1)

*** ERROR IN (console)@11.1 -- not a quadratic: 0 0 1

1>

> (quadratic-solver 4 0 -1)

(-1/2 1/2)

> (quadratic-solver 1 3138428376721 1)

(-3.138428376721e12 -3.186308177103568e-13)

>

*** EOF again to exit

1

2

Meroon

Standard Scheme (so-called R5RS Scheme, which Gambit implements) does not have an object system.
We use an object system provided by the software package Meroon.

To use Gambit, you need to have /pkgs/Gambit-C/current/bin/ in your path. The Gambit interpreter
is called gsi and the Gambit compiler is called gsc.

To have Gambit load Meroon automatically, just call gsi++ or gsc++.
Our system has two differences with standard Meroon:

(1) In standard Meroon, keywords begin with a colon; in our Meroon keywords end with a colon:
(define-class Polynomial Object

((= variable immutable:)

(= terms immutable:)))

(2) In standard Meroon, so-called setters begin with set- and end with !. In our Meroon, setters end
with -set!:

euler-130% gsi++

[Meroon V3 Paques2001+1 $Revision: 1.5 $]

Gambit v4.1.2

> (define-class Point Object (x y))

Point

> (define p (make-Point 0 1))

> (unveil p)

(a Point <------------- [Id: 1]

x: 0

y: 1 end Point)

#t

> (Point-x-set! p 1)

#<meroon #2>

> (unveil p)

(a Point <------------- [Id: 1]

x: 1

y: 1 end Point)

#t

>

Numerical Integration

This first part will be about numerical integration (quadrature rules).
The Gauss-Lobatto quadrature rules with n points have the form

∫

1

−1

f(x) dx ≈
n−1
∑

ν=0

γnνf(xnν).

Here xn0 = −1, xn,n−1 = 1, and xn,ν , ν = 1, . . . , n − 2, are the zeros of the degree n − 2 orthogonal
polynomial over [−1, 1] with the weight

w(x) = 1− x2.

If we define

ℓnκ(x) =

n−1
∏

ν=0
ν 6=κ

x− xnν

xnκ − xnν

then ℓnκ has degree n− 1 and satisfies

ℓnκ(xnν) =

{

1, ν = κ,

0, ν 6= κ.

3

The weights γnν satisfy

γnν =

∫

1

−1

ℓn,ν(x) dx.

So, the first part of the project is to write code to manipulate polynomials. We’ll keep the code at
http://mitpress.mit.edu/sicp/full-text/sicp/book/node49.html

in the back of our heads as a model, while writing new code that uses Meroon’s framework of classes/objects
and generics/methods. We’ll refer to this web page as “the SICP web page.”

A good thing to keep in the back of your mind is that, generally speaking, code should not depend on the
implementation technique of terms or termlists. The code in SICP uses lists for both terms and termlists of
polynomials, but that can be confusing, especially for debugging.

So we’ll define a polynomial class:
(define-class Polynomial Object

((= variable immutable:) ; a symbol

(= terms immutable:))) ; a list of terms

and a way to check whether two Polynomial variables are the same:
(define (Polynomial-variable= var1 var2)

(eq? var1 var2))

The terms of a polynomial is just a list of nonzero terms, in decreasing order by degree (unfortunately called
“order” at the SICP web page), so we need some code to manipulate terms and lists of terms:

;;; a term is a pair (order coeff) (order should really be degree, but ...)

;;; We’re going to use a Meroon class for terms to aid debugging.

(define-class term Object

((= order)

(= coeff)))

The generic function initialize! is called on all Meroon objects after their construction, and for polyno-
mials we use initialize! to check that the invariants we assume about polynomials are satisfied whenever
we create one:

(define-method (initialize! (p Polynomial))

(let ((terms (Polynomial-terms p)))

;; check that

;; (a) termlists are in decreasing order

(let loop ((terms terms))

(cond ((or (empty-termlist? terms)

(empty-termlist? (rest-terms terms)))

;; We’re done checking the orders of terms

)

((> (term-order (first-term terms))

(term-order (first-term (rest-terms terms))))

(loop (rest-terms terms)))

(else

(error "initialize! for Polynomials: terms are not in decreasing order" p))))

;; (b) check that coeffs are not zero

(let loop ((terms terms))

(cond ((empty-termlist? terms)

;; We’re done checking that terms are nonzero

)

((not (=zero? (term-coeff (first-term terms))))

(loop (rest-terms terms)))

(else

(error "initialize! for Polynomials: some terms have zero coefficients" p))))

(call-next-method)))

You are asked to define the generic function =zero? in Problem 1.

4

It is not good form to use initialize! to enforce the invariants by, e.g., sorting the terms in decreasing
order or removing all terms with zero coefficients. Having initialize! check these invariants, and ensuring
all code that manipulates Polynomials preserves these invariants helps in debugging.

We will need some operations on lists. The functions map and for-each are built into Scheme (learn
them!) but we will need some more:

;;; See the Haskell Wiki page

;;; http://www.haskell.org/haskellwiki/Fold

;;; for a good explanation, together with pictures, for how

;;; fold-left and fold-right work.

(define (fold-left operator initial-value list)

(if (null? list)

initial-value

(fold-left operator

(operator initial-value (car list))

(cdr list))))

(define (fold-right operator initial-value list)

(if (null? list)

initial-value

(operator (car list)

(fold-right operator initial-value (cdr list)))))

;;; map is a builtin function that works on lists, but it could

;;; be defined as follows:

(define (my-map f list)

(fold-right (lambda (v l)

(cons (f v) l))

’()

list))

And one can use the usual functions car, cdr, cadr, null? and the usual empty list ’(), but we need a
better way to add a term to a list of terms, since we don’t want any zero terms in our termlists:

(define (adjoin-term term term-list)

(if (=zero? (term-coeff term))

term-list

(cons term term-list)))

(define (map-termlist f list)

(fold-right (lambda (v l)

(adjoin-term (f v) l))

’()

list)

In map-termlist, the function f must return a term and we let the initialize! method for Polynomials
check that the order of the terms is decreasing.

The SICP web page has code for adding two polynomials. Putting it into our terms we define a generic
function add that should work for everything, and we start with it working with numbers:

(define-generic (add (x) y)

(if (number? x)

(if (number? y)

;; We know how to add two numbers.

(+ x y)

;; We don’t know how to add a number to an arbitrary object,

;; but perhaps there is a method to add the object y to

;; a number, so we swap arguments and try again.

(add y x))

;; If x isn’t a number, we don’t have a method for it.

5

(error "add: This generic is not defined on these objects: " x y)))

and then we define a method for adding Polynomials:
(define-method (add (p_1 Polynomial) p_2)

(cond ((number? p_2)

(add p_1 (number->Polynomial p_2 (Polynomial-variable p_1))))

((and (Polynomial? p_2)

(Polynomial-variable= (Polynomial-variable p_1)

(Polynomial-variable p_2)))

(instantiate Polynomial

variable: (Polynomial-variable p_1)

terms: (add-terms (Polynomial-terms p_1)

(Polynomial-terms p_2))))

(else

(error "add: p_2 is neither a number nor a polynomial with the same variable as

p_1 " p_1 p_2))))

This method is called only when p_1 is a polynomial; if p_2 is a number, it converts p_2 to a Polynomial
with the same variable as p_1 and calls add again with both arguments now a Polynomial. So you need to
define number->Polynomial, which takes two arguments.

The SICP web page has code for add-terms:
(define (add-terms l1 l2)

(cond ((null? l1) l2)

((null? l2) l1)

(else

(let ((t1 (car l1))

(t2 (car l2)))

(cond ((> (term-order t1)

(term-order t2))

(adjoin-term t1

(add-terms (cdr l1) l2)))

((< (term-order t1)

(term-order t2))

(adjoin-term t2

(add-terms l1 (cdr l2))))

(else

(adjoin-term

(make-term (term-order t1)

(add (term-coeff t1)

(term-coeff t2)))

(add-terms (cdr l1)

(cdr l2)))))))))

You need to define a multiply generic that works with numbers by default, and a method for multiply
that works on Polynomials; follow ths same pattern as for add. The SICP web page has the guts of the code:

(define (multiply-terms l1 l2)

(if (null? l1)

l1

(add-terms (multiply-term-by-all-terms (car l1) l2)

(multiply-terms (cdr l1) l2))))

(define (multiply-term-by-all-terms t1 L)

(if (null? L)

L

(let ((t2 (car L)))

(adjoin-term

6

(make-term (+ (term-order t1)

(term-order t2))

(multiply (term-coeff t1)

(term-coeff t2)))

(multiply-term-by-all-terms t1 (cdr L))))))

So that’s pretty much the code that comes on the web page. Meroon defines a generic function show that
we can specialize for Polynomials as such:

(define-method (show (p Polynomial) . stream)

(let ((port (if (null? stream)

(current-output-port)

(car stream))))

(if (=zero? p)

(display 0)

(show-terms (Polynomial-variable p)

(Polynomial-terms p)

port))

(newline port)))

(define (show-terms variable terms port)

(show-first-term variable (car terms) port)

(for-each (lambda (term)

(show-term variable term port))

(cdr terms)))

(define (show-first-term variable term port)

(let ((coeff (term-coeff term))

(order (term-order term)))

(print port: port

(list (if (and (= coeff 1)

(positive? order))

’()

coeff)

(cond ((zero? order) ’())

((= order 1) variable)

(else

(list variable "^" order)))))))

(define (show-term variable term port)

(let ((coeff (term-coeff term))

(order (term-order term)))

(print port: port

(list (if (negative? coeff)

"-"

"+")

(let ((abs-coeff (abs coeff)))

(if (and (eq? coeff 1)

(< 0 order))

’()

(abs coeff)))

(cond ((zero? order) ’())

((= order 1) variable)

(else

(list variable "^" order)))))))

It will probably help your debugging.

7

So, here are some problems.

(1) The above code uses a function =zero?. Define a generic function =zero? that handles numbers.
Define a method that works with Polynomials. Why does the initialize! method for polynomials
use =zero? to check whether coefficients are zero rather than the built-in Scheme function zero?.

(2) Define a generic function (negate (x)) that handles numbers by default. Define a method for
negate that works with Polynomials. Use the generic negate to define a regular function (subtract

x y). (Remember that a polynomial in x may have coefficients that are polynomials in y, so write
negate so it works with these types of polynomials.)

(3) Define a function (exponentiate x n) that uses multiply to exponentiate anything that multiply
can multiply. Use the discussion of exponentiation on page

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2

as your model. You should be able to exponentiate a polynomial.
(4) Define a function (variable->Polynomial x) that takes a symbol x and returns a Polynomial

that represents the polynomial x, i.e., a single term with coefficient 1 and order 1. Define a function
(number->Polynomial n x) where n is a number and x is a symbol. (Hint: Use make-term, adjoin-
term, and the-empty-termlist to calculate the termlist in number->Polynomial.)

(5) Define a generic function (evaluate f x) that evaluates the function f at x. If f is a number,
assume that it means a function that constantly returns f (so the generic is supposed to work with
both numbers v and Scheme functions f). Define a method for Polynomials. If p is a polynomial,
then you should be able to say (evaluate p p), i.e., evaluate a polynomial with another polynomial
as an argument.

If you’ve done the exercises until now, something like the following should work.
;;; evaluation

(define-generic (evaluate (f) x)

(cond ((number? f) f)

((procedure? f) (f x))

(else (error "evaluate: unknown argument types " f x))))

(define-method (evaluate (p Polynomial) x)

(evaluate-terms (Polynomial-terms p) x))

(define (evaluate-terms terms x)

(if (null? terms)

0

(add (evaluate-term (car terms) x)

(evaluate-terms (cdr terms) x))))

(define (evaluate-term term x)

(multiply (exponentiate x (term-order term))

(term-coeff term)))

Can you write a method that uses Horner’s rule for evaluating Polynomials in our representation?

Changes make 2014/02/14

(1) Add a hint about how to write number->Polynomial.

Changes made 2012/02/27

(1) The project will just be about orthogonal polynomials.
(2) Corrected the formula for γnν .
(3) Changed the definition of add so it can add polynomials to numbers in either order.

I added some comments to the problems:

(1) Added map-termlist as an exercise.
(2) Made more explicit my expectations for negate, exponentiate, and evaluate.
(3) Redid the definition of the evaluate generic to match its specification.

Changes made 2012/03/07

(1) Make a term a Meroon object for easier debugging.

8

(2) (Polynomial-terms p) was a regular list, so I’m just going to use the regular list operations, except
for adjoin-term and map-termlist, which check that the term is nonzero before adding it to the
list. Got rid of first-term, rest-terms, empty-termlist?, etc., and changed their uses to regular
list operations.

(3) Since map-termlist is already defined, don’t have it as an exercise.
(4) Defined fold-left and fold-right earlier, so I could use them in map-termlist.

Changes made 2012/05/17

(1) Change the definition of the interpolation points to handle −1 and 1 in the same way as the other
interpolation points. Fix the upper limit of the product defining ℓnκ.

(2) Move the definition of initialize! for polynomials from the web page to here. Explain its use.
(3) Generally clean up the discussion.

