Time-stepping for the Schroedinger Equation

Bradley J. Lucier
We'll assume all the constants in the Schroedinger equation are one, so the differential equation is

$$
i \frac{\partial \Psi(x, t)}{\partial t}=-\Delta \Psi(x, t)+V(x) \Psi(x, t)
$$

(See http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html.) We write $\Psi(x, t)=$ $\psi(x, t)+i \phi(x, t) ; V(x)$ is real, with Δ the Laplacian operator.

Let's think of

$$
\Psi(x, t)=\binom{\psi(x, t)}{\phi(x, t)}
$$

as a vector. Then multiplying by i in the original formulation is the same as multiplying by the matrix

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

in vector form, so we write

$$
\frac{\partial}{\partial t}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \Psi(x, t)=\left(\begin{array}{cc}
-\Delta+V(x) & 0 \\
0 & -\Delta+V(x)
\end{array}\right) \Psi(x, t) .
$$

Let's consider the Crank-Nicolson method for time-stepping. Here we have

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \frac{\left[\Psi\left(x, t^{k}\right)-\Psi\left(x, t^{k-1}\right)\right]}{\Delta t}=\left(\begin{array}{cc}
-\Delta+V(x) & 0 \\
0 & -\Delta+V(x)
\end{array}\right) \frac{\left[\Psi\left(x, t^{k}\right)+\Psi\left(x, t^{k-1}\right)\right]}{2} .
$$

Multiplying by Δt and collecting all the $\Psi\left(x, t^{k}\right)$ terms together gives

$$
\begin{aligned}
\left(\begin{array}{cc}
\frac{\Delta t}{2}(\Delta-V(x)) & -1 \\
1 & \frac{\Delta t}{2}(\Delta-V(x))
\end{array}\right) \Psi\left(x, t^{k}\right) & \\
& =\left(\begin{array}{cc}
-\frac{\Delta t}{2}(\Delta-V(x)) & -1 \\
1 & -\frac{\Delta t}{2}(\Delta-V(x))
\end{array}\right) \Psi\left(x, t^{k-1}\right) .
\end{aligned}
$$

If we use finite differences for the spatial discretization, then $\frac{\Delta t}{2}(\Delta-V(x))$ will be replaced by a finite-difference operator A_{h} and 1 will be replaced by the identity matrix I and you need to invert the 2×2 block matrix

$$
\left(\begin{array}{cc}
A_{h} & -I \\
I & A_{h}
\end{array}\right) .
$$

Because I commutes with A_{h}, simple matrix multiplication shows that the inverse of this matrix is

$$
\left(I+A_{h}^{2}\right)^{-1}\left(\begin{array}{cc}
A_{h} & I \\
-I & A_{h}
\end{array}\right) .
$$

Then the iteration is

$$
\begin{aligned}
\Psi\left(x, t^{k}\right) & =\left(I+A_{h}^{2}\right)^{-1}\left(\begin{array}{cc}
A_{h} & I \\
-I & A_{h}
\end{array}\right)\left(\begin{array}{cc}
-A_{h} & -I \\
+I & -A_{h}
\end{array}\right) \Psi\left(x, t^{k-1}\right) \\
& =\left(I+A_{h}^{2}\right)^{-1}\left(\begin{array}{cc}
I-A_{h}^{2} & -2 A_{h} \\
2 A_{h} & I-A_{h}^{2}
\end{array}\right) \Psi\left(x, t^{k-1}\right) \\
& =\left(I+A_{h}^{2}\right)^{-1}\left(\begin{array}{cc}
I+A_{h}^{2}-2 A_{h}^{2} & -2 A_{h} \\
2 A_{h} & I+A_{h}^{2}-2 A_{h}^{2}
\end{array}\right) \Psi\left(x, t^{k-1}\right) \\
& =\Psi\left(x, t^{k-1}\right)+2\left(I+A_{h}^{2}\right)^{-1}\left(\begin{array}{cc}
-A_{h}^{2} & -A_{h} \\
A_{h} & -A_{h}^{2}
\end{array}\right) \Psi\left(x, t^{k-1}\right) .
\end{aligned}
$$

The software in this class uses the finite element method with piecewise-linear elements. For a totally discrete problem we replace Ψ with its finite element approximation and 1 and $\frac{\Delta t}{2}(\Delta-V(x))$ with the matrices B and A with

$$
B_{i j}=\int_{\Omega} \Phi_{j} \Phi_{i} d x \text { and } A_{i j}=-\frac{\Delta t}{2} \int_{\Omega} \nabla \Phi_{j} \cdot \nabla \Phi_{i}+V \Phi_{j} \Phi_{i} d x, \text { respectively, }
$$

where $\left\{\Phi_{j}\right\}$ is a basis for the finite element space. Then we want to invert the 2×2 block matrix

$$
\left(\begin{array}{cc}
A & -B \tag{1}\\
B & A
\end{array}\right)
$$

But now A and B don't commute (something that may not be obvious, but which can easily be checked computationally), but we can compute

$$
\begin{align*}
\left(\begin{array}{cc}
A & -B \\
B & A
\end{array}\right)^{-1} & =\left[\left(\begin{array}{cc}
A B^{-1} & -I \\
I & A B^{-1}
\end{array}\right) B\right]^{-1}=B^{-1}\left(\begin{array}{cc}
A B^{-1} & -I \\
I & A B^{-1}
\end{array}\right)^{-1} \\
& =B^{-1}\left(I+A B^{-1} A B^{-1}\right)^{-1}\left(\begin{array}{cc}
A B^{-1} & I \\
-I & A B^{-1}
\end{array}\right) \\
& =\left[\left(I+A B^{-1} A B^{-1}\right) B\right]^{-1}\left(\begin{array}{cc}
A B^{-1} & I \\
-I & A B^{-1}
\end{array}\right) \tag{2}\\
& =\left(B+A B^{-1} A\right)^{-1}\left(\begin{array}{cc}
A B^{-1} & I \\
-I & A B^{-1}
\end{array}\right)
\end{align*}
$$

So to invert (1) we need to compute $A z, B^{-1} z$, and $\left(B+A B^{-1} A\right)^{-1} z$ for any z.
The complete iteration, after some simplification, is

$$
\Psi\left(x, t^{k}\right)=\Psi\left(x, t^{k-1}\right)+2\left(B+A B^{-1} A\right)^{-1}\left(\begin{array}{cc}
-A B^{-1} A & -A \\
A & -A B^{-1} A
\end{array}\right) \Psi\left(x, t^{k-1}\right)
$$

In the course we covered the (preconditioned) conjugate-gradient (CG) method and the multigrid (MG) method for solving linear systems $\mathcal{A} y=z$, or equivalently, to calculate $y=\mathcal{A}^{-1} z$ for an operator \mathcal{A}. The important thing about both CG and MG is that one only multiplies by \mathcal{A}; that's it. (The Richardson smoother for \mathcal{A} multiplies by \mathcal{A} and then applies a few vector operations to finish.)

So let's consider how to compute (2) using CG. We need to be able to compute $y=B^{-1} z$ for any finite-element vector z, or equivalently to solve $B y=z$. Now, $\kappa(B)$, the condition number of B, satisfies $\kappa(B)=O(1)$, i.e., it doesn't depend on h at all, so one can solve $B y=z$ with un-preconditioned CG in a small number of steps that doesn't depend on h. Each step requires one multiplication by B and a few vector operations. As B is sparse, it has a bounded number of nonzero elements in each row, so each multiplication by B takes $O(N)$ operations, so CG takes $O(N)$ operations to compute $B^{-1} z$ for any z to within machine accuracy.

Then we need to compute $\left(B+A B^{-1} A\right)^{-1} z$ for any z, or equivalently, solve $\left(B+A B^{-1} A\right) y=z$. Again, using CG, we just need to multiply by $\left(B+A B^{-1} A\right)$. Again, A and B are sparse, so applying either A or B takes $O(N)$ operations; the previous paragraph shows that applying B^{-1} takes $O(N)$ operations; so multiplying by $\left(B+A B^{-1} A\right)$ takes $O(N)$ operations.

The error bound for CG applied to $\mathcal{A} y=z$ states that y_{k}, the approximate solution after k steps of CG, satisfies

$$
\left\|y-y_{k}\right\|_{\mathcal{A}} \leq\left(\frac{\kappa(\mathcal{A})^{1 / 2}-1}{\kappa(\mathcal{A})^{1 / 2}+1}\right)^{k}\left\|y-y_{0}\right\|_{\mathcal{A}}
$$

so in our case it's important to get a reasonable bound for $\kappa\left(B+A B^{-1} A\right)$.
We have $\kappa(\mathcal{A})=\|\mathcal{A}\|\left\|\mathcal{A}^{-1}\right\|$ for whichever matrix norm $\|\cdot\|$ we'd like to choose, so

$$
\kappa(\mathcal{A B})=\|\mathcal{A B}\|\left\|(\mathcal{A B})^{-1}\right\|=\|\mathcal{A B}\|\left\|\mathcal{B}^{-1} \mathcal{A}^{-1}\right\| \leq\|\mathcal{A}\|\|\mathcal{B}\|\left\|\mathcal{B}^{-1}\right\|\left\|\mathcal{A}^{-1}\right\|=\kappa(\mathcal{A}) \kappa(\mathcal{B}) .
$$

Because $\left(B+A B^{-1} A\right)=B^{1 / 2}\left(I+B^{-1 / 2} A B^{-1 / 2} B^{-1 / 2} A B^{-1 / 2}\right) B^{1 / 2}$ and $\kappa\left(B^{1 / 2}\right)=O(1)$, the previous inequality shows that we just need to bound $\kappa(\mathcal{C})$, where $\mathcal{C}=\left(I+B^{-1 / 2} A B^{-1 / 2} B^{-1 / 2} A B^{-1 / 2}\right)$.

The matrices A, B, \mathcal{C}, and I are all symmetric, so we'll use the matrix 2-norm. Every vector is an eigenvector of the identity, so the eigenvectors of \mathcal{C} are the eigenvectors of $B^{-1 / 2} A B^{-1 / 2}$, and the eigenvalues of \mathcal{C} are $1+\lambda_{i}^{2}$, where λ_{i} ranges over the eigenvalues of $B^{-1 / 2} A B^{-1 / 2}$.

Thus the smallest eigenvalue of \mathcal{C} is $O(1)$, while the absolute value of the largest eigenvalue of $B^{-1 / 2} A B^{-1 / 2}$ is bounded by

$$
\sup _{x} \frac{\left|x^{T} B^{-1 / 2} A B^{-1 / 2} x\right|}{x^{T} x}=\sup _{y} \frac{\left|y^{T} A y\right|}{y^{T} B y}=O\left(\Delta t h^{-2}\right) .
$$

Tracing things back, we get $\kappa\left(B+A B^{-1} A\right)=O\left(\Delta t^{2} h^{-4}\right)$.
For Crank-Nicolson we'd like to take $\Delta t=h$ (since the total error is likely to be $O\left(\Delta t^{2}+h^{2}\right)$), in which case $\kappa\left(B+A B^{-1} A\right)=O\left(h^{-2}\right)$. (On a uniform 65×65 triangulation with one set of diagonals on $[0,1]^{2}$, a simple power iteration estimates $\kappa(B)=14.65$ and $\kappa\left(B+A B^{-1} A\right)=204689$ with $V=0$. On a 33×33 grid the corresponding condition numbers were 14.62 and 52686 , with 204689/52686 ≈ 3.89.)

The error bound for CG applied to $\mathcal{A} y=\left(B+A B^{-1} A\right) y=z$ states that y_{k}, the approximate solution after k steps of CG, satisfies
$\left\|y-y_{k}\right\|_{\mathcal{A}} \leq\left(\frac{\kappa(\mathcal{A})^{1 / 2}-1}{\kappa(\mathcal{A})^{1 / 2}+1}\right)^{k}\left\|y-y_{0}\right\|_{\mathcal{A}}=\left(\frac{1-1 / \kappa(\mathcal{A})^{1 / 2}}{1+1 / \kappa(\mathcal{A})^{1 / 2}}\right)^{k}\left\|y-y_{0}\right\|_{\mathcal{A}} \approx\left(\frac{1-C h}{1+C h}\right)^{k}\left\|y-y_{0}\right\|_{\mathcal{A}}$ for some C.

For each time-step we'd like the error in solving the linear system to be $O\left(\Delta t^{3}\right)=O\left(h^{3}\right)$ (so after $T / \Delta t$ time steps the error adds up to less than $O\left(\Delta t^{2}\right)$, assuming everything is stable), so we'd like

$$
k \log \left(\frac{1-C h}{1+C h}\right) \leq 3 \log h
$$

or, using $\log (1-C h) \approx-C h$ for h small enough,

$$
k \geq-\frac{C}{h} \log h .
$$

Since N, the number of unknowns, is $O\left(h^{-2}\right)$ in two dimensions, we'll need $k \geq C \sqrt{N} \log N$ iterations of CG to solve $\left(B+A B^{-1} A\right) y=z$, for a total operation count per time step of $O\left(N^{3 / 2} \log N\right)$.

Since there will be $O\left(\Delta t^{-1}\right)=O\left(h^{-1}\right)$ time steps, the total operation count will be $O\left(N^{2} \log N\right)$. On a $K \times K$ grid, $N \approx K^{2}$, so the total operation count will be $O\left(K^{4} \log K\right)$. Ignoring the logarithmic term, this will be on the order of 10^{8} operations when $K=100$ and 10^{12} operations when $K=1,000$.

Later we'll think about how to apply MG to this problem.

