
Time-stepping for the Schroedinger Equation

Bradley J. Lucier

We’ll assume all the constants in the Schroedinger equation are one, so the differential equation
is

i
∂Ψ(x, t)

∂t
= −∆Ψ(x, t) + V (x)Ψ(x, t).

(See http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html.) We write Ψ(x, t) =
ψ(x, t) + iφ(x, t); V (x) is real , with ∆ the Laplacian operator.

Let’s think of

Ψ(x, t) =

(

ψ(x, t)
φ(x, t)

)

as a vector. Then multiplying by i in the original formulation is the same as multiplying by the
matrix

(

0 −1
1 0

)

in vector form, so we write

∂

∂t

(

0 −1
1 0

)

Ψ(x, t) =

(

−∆+ V (x) 0
0 −∆+ V (x)

)

Ψ(x, t).

Let’s consider the Crank–Nicolson method for time-stepping. Here we have
(

0 −1
1 0

)

[Ψ(x, tk)−Ψ(x, tk−1)]

∆t
=

(

−∆+ V (x) 0
0 −∆+ V (x)

)

[

Ψ(x, tk) + Ψ(x, tk−1)
]

2
.

Multiplying by ∆t and collecting all the Ψ(x, tk) terms together gives
(

∆t
2
(∆− V (x)) −1

1 ∆t
2
(∆− V (x))

)

Ψ(x, tk)

=

(

−∆t
2
(∆− V (x)) −1

1 −∆t
2
(∆− V (x))

)

Ψ(x, tk−1).

If we use finite differences for the spatial discretization, then ∆t
2
(∆−V (x)) will be replaced by a

finite-difference operator Ah and 1 will be replaced by the identity matrix I and you need to invert
the 2× 2 block matrix

(

Ah −I
I Ah

)

.

Because I commutes with Ah, simple matrix multiplication shows that the inverse of this matrix is

(I +A2

h)
−1

(

Ah I
−I Ah

)

.

Then the iteration is

Ψ(x, tk) = (I +A2

h)
−1

(

Ah I
−I Ah

)(

−Ah −I
+I −Ah

)

Ψ(x, tk−1)

= (I +A2

h)
−1

(

I −A2

h −2Ah

2Ah I −A2

h

)

Ψ(x, tk−1)

= (I +A2

h)
−1

(

I +A2

h − 2A2

h −2Ah

2Ah I +A2

h − 2A2

h

)

Ψ(x, tk−1)

= Ψ(x, tk−1) + 2(I +A2

h)
−1

(

−A2

h −Ah

Ah −A2
h

)

Ψ(x, tk−1).

1

2

The software in this class uses the finite element method with piecewise-linear elements. For a
totally discrete problem we replace Ψ with its finite element approximation and 1 and ∆t

2

(

∆−V (x)
)

with the matrices B and A with

Bij =

∫

Ω

ΦjΦi dx and Aij = −∆t

2

∫

Ω

∇Φj · ∇Φi + V ΦjΦi dx, respectively,

where {Φj} is a basis for the finite element space. Then we want to invert the 2× 2 block matrix

(1)

(

A −B
B A

)

.

But now A and B don’t commute (something that may not be obvious, but which can easily be
checked computationally), but we can compute

(2)

(

A −B
B A

)−1

=

[(

AB−1 −I
I AB−1

)

B

]−1

= B−1

(

AB−1 −I
I AB−1

)−1

= B−1(I +AB−1AB−1)−1

(

AB−1 I
−I AB−1

)

=
[

(I +AB−1AB−1)B]−1

(

AB−1 I
−I AB−1

)

= (B +AB−1A)−1

(

AB−1 I
−I AB−1

)

.

So to invert (1) we need to compute Az, B−1z, and (B +AB−1A)−1z for any z.

The complete iteration, after some simplification, is

Ψ(x, tk) = Ψ(x, tk−1) + 2(B +AB−1A)−1

(

−AB−1A −A
A −AB−1A

)

Ψ(x, tk−1).

In the course we covered the (preconditioned) conjugate-gradient (CG) method and the multigrid
(MG) method for solving linear systems Ay = z, or equivalently, to calculate y = A−1z for an
operator A. The important thing about both CG and MG is that one only multiplies by A; that’s
it. (The Richardson smoother for A multiplies by A and then applies a few vector operations to
finish.)

So let’s consider how to compute (2) using CG. We need to be able to compute y = B−1z for
any finite-element vector z, or equivalently to solve By = z. Now, κ(B), the condition number
of B, satisfies κ(B) = O(1), i.e., it doesn’t depend on h at all, so one can solve By = z with
un-preconditioned CG in a small number of steps that doesn’t depend on h. Each step requires
one multiplication by B and a few vector operations. As B is sparse, it has a bounded number
of nonzero elements in each row, so each multiplication by B takes O(N) operations, so CG takes
O(N) operations to compute B−1z for any z to within machine accuracy.

Then we need to compute (B+AB−1A)−1z for any z, or equivalently, solve (B+AB−1A)y = z.
Again, using CG, we just need to multiply by (B + AB−1A). Again, A and B are sparse, so
applying either A or B takes O(N) operations; the previous paragraph shows that applying B−1

takes O(N) operations; so multiplying by (B +AB−1A) takes O(N) operations.

3

The error bound for CG applied to Ay = z states that yk, the approximate solution after k steps
of CG, satisfies

‖y − yk‖A ≤
(

κ(A)1/2 − 1

κ(A)1/2 + 1

)k

‖y − y0‖A,

so in our case it’s important to get a reasonable bound for κ(B +AB−1A).
We have κ(A) = ‖A‖‖A−1‖ for whichever matrix norm ‖ · ‖ we’d like to choose, so

κ(AB) = ‖AB‖‖(AB)−1‖ = ‖AB‖‖B−1A−1‖ ≤ ‖A‖‖B‖ ‖B−1‖ ‖A−1‖ = κ(A)κ(B).
Because (B+AB−1A) = B1/2(I+B−1/2AB−1/2B−1/2AB−1/2)B1/2 and κ(B1/2) = O(1), the previ-
ous inequality shows that we just need to bound κ(C), where C = (I+B−1/2AB−1/2B−1/2AB−1/2).

The matrices A, B, C, and I are all symmetric, so we’ll use the matrix 2-norm. Every vector is
an eigenvector of the identity, so the eigenvectors of C are the eigenvectors of B−1/2AB−1/2, and
the eigenvalues of C are 1 + λ2i , where λi ranges over the eigenvalues of B−1/2AB−1/2.

Thus the smallest eigenvalue of C is O(1), while the absolute value of the largest eigenvalue of
B−1/2AB−1/2 is bounded by

sup
x

|xTB−1/2AB−1/2x|
xTx

= sup
y

|yTAy|
yTBy

= O(∆th−2).

Tracing things back, we get κ(B +AB−1A) = O(∆t2h−4).
For Crank-Nicolson we’d like to take ∆t = h (since the total error is likely to be O(∆t2 + h2)),

in which case κ(B + AB−1A) = O(h−2). (On a uniform 65 × 65 triangulation with one set of
diagonals on [0, 1]2, a simple power iteration estimates κ(B) = 14.65 and κ(B+AB−1A) = 204689
with V = 0. On a 33 × 33 grid the corresponding condition numbers were 14.62 and 52686, with
204689/52686 ≈ 3.89.)

The error bound for CG applied to Ay = (B + AB−1A)y = z states that yk, the approximate
solution after k steps of CG, satisfies

‖y − yk‖A ≤
(

κ(A)1/2 − 1

κ(A)1/2 + 1

)k

‖y − y0‖A =

(

1− 1/κ(A)1/2

1 + 1/κ(A)1/2

)k

‖y − y0‖A ≈
(

1− Ch

1 + Ch

)k

‖y − y0‖A

for some C.
For each time-step we’d like the error in solving the linear system to be O(∆t3) = O(h3) (so

after T/∆t time steps the error adds up to less than O(∆t2), assuming everything is stable), so
we’d like

k log

(

1− Ch

1 + Ch

)

≤ 3 log h,

or, using log(1− Ch) ≈ −Ch for h small enough,

k ≥ −C
h
log h.

Since N , the number of unknowns, is O(h−2) in two dimensions, we’ll need k ≥ C
√
N logN itera-

tions of CG to solve (B+AB−1A)y = z, for a total operation count per time step of O(N3/2 logN).
Since there will be O(∆t−1) = O(h−1) time steps, the total operation count will be O(N2 logN).

On a K × K grid, N ≈ K2, so the total operation count will be O(K4 logK). Ignoring the
logarithmic term, this will be on the order of 108 operations when K = 100 and 1012 operations
when K = 1,000.

Later we’ll think about how to apply MG to this problem.

