TIME-STEPPING FOR THE SCHROEDINGER EQUATION Bradley J. Lucier

We'll assume all the constants in the Schroedinger equation are one, so the differential equation is

$$i\frac{\partial\Psi(x,t)}{\partial t} = -\Delta\Psi(x,t) + V(x)\Psi(x,t).$$

(See http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html.) We write $\Psi(x,t) = \psi(x,t) + i\phi(x,t)$; V(x) is real, with Δ the Laplacian operator.

Let's think of

$$\Psi(x,t) = \begin{pmatrix} \psi(x,t) \\ \phi(x,t) \end{pmatrix}$$

as a vector. Then multiplying by i in the original formulation is the same as multiplying by the matrix

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

in vector form, so we write

$$\frac{\partial}{\partial t} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Psi(x, t) = \begin{pmatrix} -\Delta + V(x) & 0 \\ 0 & -\Delta + V(x) \end{pmatrix} \Psi(x, t)$$

Let's consider the Crank–Nicolson method for time-stepping. Here we have

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \frac{\left[\Psi(x, t^k) - \Psi(x, t^{k-1})\right]}{\Delta t} = \begin{pmatrix} -\Delta + V(x) & 0 \\ 0 & -\Delta + V(x) \end{pmatrix} \frac{\left[\Psi(x, t^k) + \Psi(x, t^{k-1})\right]}{2}$$

Multiplying by Δt and collecting all the $\Psi(x, t^k)$ terms together gives

$$\begin{pmatrix} \frac{\Delta t}{2} (\Delta - V(x)) & -1 \\ 1 & \frac{\Delta t}{2} (\Delta - V(x)) \end{pmatrix} \Psi(x, t^k)$$

$$= \begin{pmatrix} -\frac{\Delta t}{2} (\Delta - V(x)) & -1 \\ 1 & -\frac{\Delta t}{2} (\Delta - V(x)) \end{pmatrix} \Psi(x, t^{k-1}).$$

If we use finite differences for the spatial discretization, then $\frac{\Delta t}{2}(\Delta - V(x))$ will be replaced by a finite-difference operator A_h and 1 will be replaced by the identity matrix I and you need to invert the 2 × 2 block matrix

$$\begin{pmatrix} A_h & -I \\ I & A_h \end{pmatrix}.$$

Because I commutes with A_h , simple matrix multiplication shows that the inverse of this matrix is

$$(I+A_h^2)^{-1}\begin{pmatrix}A_h&I\\-I&A_h\end{pmatrix}.$$

Then the iteration is

$$\begin{split} \Psi(x,t^k) &= (I+A_h^2)^{-1} \begin{pmatrix} A_h & I \\ -I & A_h \end{pmatrix} \begin{pmatrix} -A_h & -I \\ +I & -A_h \end{pmatrix} \Psi(x,t^{k-1}) \\ &= (I+A_h^2)^{-1} \begin{pmatrix} I-A_h^2 & -2A_h \\ 2A_h & I-A_h^2 \end{pmatrix} \Psi(x,t^{k-1}) \\ &= (I+A_h^2)^{-1} \begin{pmatrix} I+A_h^2-2A_h^2 & -2A_h \\ 2A_h & I+A_h^2-2A_h^2 \end{pmatrix} \Psi(x,t^{k-1}) \\ &= \Psi(x,t^{k-1}) + 2(I+A_h^2)^{-1} \begin{pmatrix} -A_h^2 & -A_h \\ A_h & -A_h^2 \end{pmatrix} \Psi(x,t^{k-1}). \end{split}$$

The software in this class uses the finite element method with piecewise-linear elements. For a totally discrete problem we replace Ψ with its finite element approximation and 1 and $\frac{\Delta t}{2} (\Delta - V(x))$ with the matrices B and A with

$$B_{ij} = \int_{\Omega} \Phi_j \Phi_i \, dx \text{ and } A_{ij} = -\frac{\Delta t}{2} \int_{\Omega} \nabla \Phi_j \cdot \nabla \Phi_i + V \Phi_j \Phi_i \, dx, \text{ respectively,}$$

where $\{\Phi_i\}$ is a basis for the finite element space. Then we want to invert the 2 × 2 block matrix

(1)
$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}.$$

But now A and B don't commute (something that may not be obvious, but which can easily be checked computationally), but we can compute

2)

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}^{-1} = \left[\begin{pmatrix} AB^{-1} & -I \\ I & AB^{-1} \end{pmatrix} B \right]^{-1} = B^{-1} \begin{pmatrix} AB^{-1} & -I \\ I & AB^{-1} \end{pmatrix}^{-1}$$

$$= B^{-1}(I + AB^{-1}AB^{-1})^{-1} \begin{pmatrix} AB^{-1} & I \\ -I & AB^{-1} \end{pmatrix}$$

$$= \left[(I + AB^{-1}AB^{-1})B \right]^{-1} \begin{pmatrix} AB^{-1} & I \\ -I & AB^{-1} \end{pmatrix}$$

$$= (B + AB^{-1}A)^{-1} \begin{pmatrix} AB^{-1} & I \\ -I & AB^{-1} \end{pmatrix}.$$

So to invert (1) we need to compute Az, $B^{-1}z$, and $(B + AB^{-1}A)^{-1}z$ for any z.

The complete iteration, after some simplification, is

$$\Psi(x,t^k) = \Psi(x,t^{k-1}) + 2(B + AB^{-1}A)^{-1} \begin{pmatrix} -AB^{-1}A & -A \\ A & -AB^{-1}A \end{pmatrix} \Psi(x,t^{k-1}).$$

In the course we covered the (preconditioned) conjugate-gradient (CG) method and the multigrid (MG) method for solving linear systems Ay = z, or equivalently, to calculate $y = A^{-1}z$ for an operator A. The important thing about both CG and MG is that one only multiplies by A; that's it. (The Richardson smoother for A multiplies by A and then applies a few vector operations to finish.)

So let's consider how to compute (2) using CG. We need to be able to compute $y = B^{-1}z$ for any finite-element vector z, or equivalently to solve By = z. Now, $\kappa(B)$, the condition number of B, satisfies $\kappa(B) = O(1)$, i.e., it doesn't depend on h at all, so one can solve By = z with un-preconditioned CG in a small number of steps that doesn't depend on h. Each step requires one multiplication by B and a few vector operations. As B is sparse, it has a bounded number of nonzero elements in each row, so each multiplication by B takes O(N) operations, so CG takes O(N) operations to compute $B^{-1}z$ for any z to within machine accuracy.

Then we need to compute $(B + AB^{-1}A)^{-1}z$ for any z, or equivalently, solve $(B + AB^{-1}A)y = z$. Again, using CG, we just need to multiply by $(B + AB^{-1}A)$. Again, A and B are sparse, so applying either A or B takes O(N) operations; the previous paragraph shows that applying B^{-1} takes O(N) operations; so multiplying by $(B + AB^{-1}A)$ takes O(N) operations.

(

The error bound for CG applied to Ay = z states that y_k , the approximate solution after k steps of CG, satisfies

$$\|y-y_k\|_{\mathcal{A}} \leq \left(\frac{\kappa(\mathcal{A})^{1/2}-1}{\kappa(\mathcal{A})^{1/2}+1}\right)^{\kappa} \|y-y_0\|_{\mathcal{A}},$$

so in our case it's important to get a reasonable bound for $\kappa(B + AB^{-1}A)$.

We have $\kappa(\mathcal{A}) = \|\mathcal{A}\| \|\mathcal{A}^{-1}\|$ for whichever matrix norm $\|\cdot\|$ we'd like to choose, so

$$\kappa(\mathcal{AB}) = \|\mathcal{AB}\| \|(\mathcal{AB})^{-1}\| = \|\mathcal{AB}\| \|\mathcal{B}^{-1}\mathcal{A}^{-1}\| \le \|\mathcal{A}\| \|\mathcal{B}\| \|\mathcal{B}^{-1}\| \|\mathcal{A}^{-1}\| = \kappa(\mathcal{A})\kappa(\mathcal{B}).$$

Because $(B+AB^{-1}A) = B^{1/2}(I+B^{-1/2}AB^{-1/2}B^{-1/2}AB^{-1/2})B^{1/2}$ and $\kappa(B^{1/2}) = O(1)$, the previous inequality shows that we just need to bound $\kappa(\mathcal{C})$, where $\mathcal{C} = (I+B^{-1/2}AB^{-1/2}B^{-1/2}AB^{-1/2})$.

The matrices A, B, C, and I are all symmetric, so we'll use the matrix 2-norm. Every vector is an eigenvector of the identity, so the eigenvectors of C are the eigenvectors of $B^{-1/2}AB^{-1/2}$, and the eigenvalues of C are $1 + \lambda_i^2$, where λ_i ranges over the eigenvalues of $B^{-1/2}AB^{-1/2}$.

Thus the smallest eigenvalue of C is O(1), while the absolute value of the largest eigenvalue of $B^{-1/2}AB^{-1/2}$ is bounded by

$$\sup_{x} \frac{|x^{T}B^{-1/2}AB^{-1/2}x|}{x^{T}x} = \sup_{y} \frac{|y^{T}Ay|}{y^{T}By} = O(\Delta th^{-2}).$$

Tracing things back, we get $\kappa(B + AB^{-1}A) = O(\Delta t^2 h^{-4}).$

For Crank-Nicolson we'd like to take $\Delta t = h$ (since the total error is likely to be $O(\Delta t^2 + h^2)$), in which case $\kappa(B + AB^{-1}A) = O(h^{-2})$. (On a uniform 65 × 65 triangulation with one set of diagonals on $[0, 1]^2$, a simple power iteration estimates $\kappa(B) = 14.65$ and $\kappa(B + AB^{-1}A) = 204689$ with V = 0. On a 33 × 33 grid the corresponding condition numbers were 14.62 and 52686, with $204689/52686 \approx 3.89$.)

The error bound for CG applied to $Ay = (B + AB^{-1}A)y = z$ states that y_k , the approximate solution after k steps of CG, satisfies

$$\|y - y_k\|_{\mathcal{A}} \le \left(\frac{\kappa(\mathcal{A})^{1/2} - 1}{\kappa(\mathcal{A})^{1/2} + 1}\right)^k \|y - y_0\|_{\mathcal{A}} = \left(\frac{1 - 1/\kappa(\mathcal{A})^{1/2}}{1 + 1/\kappa(\mathcal{A})^{1/2}}\right)^k \|y - y_0\|_{\mathcal{A}} \approx \left(\frac{1 - Ch}{1 + Ch}\right)^k \|y - y_0\|_{\mathcal{A}}$$

for some C.

For each time-step we'd like the error in solving the linear system to be $O(\Delta t^3) = O(h^3)$ (so after $T/\Delta t$ time steps the error adds up to less than $O(\Delta t^2)$, assuming everything is stable), so we'd like

$$k \log\left(\frac{1-Ch}{1+Ch}\right) \le 3 \log h$$

or, using $\log(1 - Ch) \approx -Ch$ for h small enough,

$$k \ge -\frac{C}{h} \log h.$$

Since N, the number of unknowns, is $O(h^{-2})$ in two dimensions, we'll need $k \ge C\sqrt{N}\log N$ iterations of CG to solve $(B+AB^{-1}A)y = z$, for a total operation count per time step of $O(N^{3/2}\log N)$.

Since there will be $O(\Delta t^{-1}) = O(h^{-1})$ time steps, the total operation count will be $O(N^2 \log N)$. On a $K \times K$ grid, $N \approx K^2$, so the total operation count will be $O(K^4 \log K)$. Ignoring the logarithmic term, this will be on the order of 10^8 operations when K = 100 and 10^{12} operations when K = 1,000.

Later we'll think about how to apply MG to this problem.