TIME-STEPPING FOR THE SCHROEDINGER EQUATION
Bradley J. Lucier

We’ll assume all the constants in the Schroedinger equation are one, so the differential equation
is
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ot
(See http://vergil.chemistry.gatech.edu/notes/quantrev/node9.html.) We write ¥(x,t) =
Y(x,t) +ip(z,t); V(x) is real, with A the Laplacian operator.

Let’s think of bt
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as a vector. Then multiplying by ¢ in the original formulation is the same as multiplying by the
matrix
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in vector form, so we write
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Let’s consider the Crank—Nicolson method for time-stepping. Here we have
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Multiplying by At and collecting all the W(z, t*) terms together gives
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If we use finite differences for the spatial discretization, then %(A —V(z)) will be replaced by a
finite-difference operator A, and 1 will be replaced by the identity matrix I and you need to invert

the 2 x 2 block matrix
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Because I commutes with A;,, simple matrix multiplication shows that the inverse of this matrix is
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Then the iteration is
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The software in this class uses the finite element method with piecewise-linear elements. For a
totally discrete problem we replace ¥ with its finite element approximation and 1 and % (A— V(m))
with the matrices B and A with
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where {®;} is a basis for the finite element space. Then we want to invert the 2 x 2 block matrix
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But now A and B don’t commute (something that may not be obvious, but which can easily be
checked computationally), but we can compute
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So to invert (1) we need to compute Az, B~'z, and (B + AB~tA)~12 for any z2.
The complete iteration, after some simplification, is
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In the course we covered the (preconditioned) conjugate-gradient (CG) method and the multigrid
(MG) method for solving linear systems Ay = z, or equivalently, to calculate y = A1z for an
operator A. The important thing about both CG and MG is that one only multiplies by A; that’s
it. (The Richardson smoother for A multiplies by .4 and then applies a few vector operations to
finish.)

So let’s consider how to compute (2) using CG. We need to be able to compute y = B~12 for
any finite-element vector z, or equivalently to solve By = z. Now, x(B), the condition number
of B, satisfies k(B) = O(1), i.e., it doesn’t depend on h at all, so one can solve By = z with
un-preconditioned CG in a small number of steps that doesn’t depend on h. Each step requires
one multiplication by B and a few vector operations. As B is sparse, it has a bounded number
of nonzero elements in each row, so each multiplication by B takes O(N) operations, so CG takes
O(N) operations to compute B~1z for any z to within machine accuracy.

Then we need to compute (B + AB~1A)™12 for any z, or equivalently, solve (B+AB~1A)y = z.
Again, using CG, we just need to multiply by (B + AB~'A). Again, A and B are sparse, so
applying either A or B takes O(N) operations; the previous paragraph shows that applying B~1
takes O(IN) operations; so multiplying by (B + AB~!A) takes O(N) operations.
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The error bound for CG applied to Ay = z states that y;, the approximate solution after k steps

so in our case it’s important to get a reasonable bound for k(B + AB~1A).
We have x(A) = || Al || A~ for whichever matrix norm || - || we’d like to choose, so

K(AB) = [|AB| [(AB) || = [ ABIHB=* AT < AL IBIHIBT AT = K(A)s(B).

Because (B+AB~'A) = BY2(I+B~'/2AB~Y/2B~1/2AB~Y/2)B'Y/? and r(B'/?) = O(1), the previ-
ous inequality shows that we just need to bound x(C), where C = (I4+B~Y/2AB~Y/2B~1/2AB~1/?),
The matrices A, B, C, and I are all symmetric, so we’ll use the matrix 2-norm. Every vector is
an eigenvector of the identity, so the eigenvectors of C are the eigenvectors of B~'/2AB~1/2, and
the eigenvalues of C are 1+ \?, where \; ranges over the eigenvalues of B —1/24B~1/2,
Thus the smallest eigenvalue of C is O(1), while the absolute value of the largest eigenvalue of
B~12AB~1/2 is bounded by
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Tracing things back, we get (B + AB71A) = O(At?h™%).

For Crank-Nicolson we’d like to take At = h (since the total error is likely to be O(At? + h?)),
in which case k(B + AB~'A) = O(h™2). (On a uniform 65 x 65 triangulation with one set of
diagonals on [0, 1]?, a simple power iteration estimates x(B) = 14.65 and x(B + AB~!A) = 204689
with V' = 0. On a 33 x 33 grid the corresponding condition numbers were 14.62 and 52686, with
204689/52686 = 3.89.)

The error bound for CG applied to Ay = (B + AB~1A)y = z states that y, the approximate
solution after k steps of CG, satisfies

k k k
by —wella < (P 2N = (A i~ (28 = ol
for some C.

For each time-step we’d like the error in solving the linear system to be O(At3) = O(h?) (so
after T'/At time steps the error adds up to less than O(At?), assuming everything is stable), so

we’d like
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or, using log(1 — Ch) ~ —Ch for h small enough,
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k> —%logh.

Since N, the number of unknowns, is O(h~2) in two dimensions, we’ll need k > Cv/Nlog N itera-
tions of CG to solve (B4+AB~'A)y = z, for a total operation count per time step of O(N3/2log N).
Since there will be O(At~!) = O(h™1!) time steps, the total operation count will be O(N?log N).
On a K x K grid, N ~ K2, so the total operation count will be O(K*log K). Ignoring the
logarithmic term, this will be on the order of 10% operations when K = 100 and 10'2 operations
when K = 1,000.
Later we’ll think about how to apply MG to this problem.



