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Image Compression Through Wavelet
Transform Coding

Ronald A. DeVore, Bjorn Jawerth, and Bradley J. Lucier, Member, IEEE

Abstract—A new theory is introduced for analyzing image
compression methods that are based on compression of wavelet
decompositions. This theory precisely relates a) the rate of decay
in the error between the original image and the compressed
image (measured in one of a family of so-called L” norms) as
the size of the compressed image representation increases (i.e.,
as the amount of compression decreases) to b) the smoothness
of the image in certain smoothness classes called Besov spaces.
Within this theory, the error incurred by the quantization of
wavelet transform coefficients is explained. Several compression
algorithms based on piecewise constant approximations are ana-
lyzed in some detail. It is shown that if pictures can be charac-
terized by their membership in the smoothness classes consid-
ered here, then wavelet-based methods are near optimal within a
larger class of stable (in a particular mathematical sense) trans-
form-based, nonlinear methods of image compression. Based

on previous experimental research on the spatial-frequency-
intensity response of the human visual system, it is argued that
in most instances the error incurred in image compression should
be measured in the integral (L) sense instead of the mean-square
(L?) sense.

Index Terms—Image compression, wavelets, smoothness of
images, quantization.

I. INTRODUCTION

MAGE compression methods that employ pyramid encod-

ing, quadrature mirror filters, or so-called wavelet trans-
forms (see [11] for a somewhat mathematical overview) have
been successful in providing high rates of compression while
maintaining good image quality. In this paper, we present a
new mathematical theory for analyzing these wavelet-based
compression methods. Our theory precisely relates a) the rate
of decay in the error between the original image and the
compressed image (measured in one of a family of so-called
L” norms) as the size of the compressed image representa-
tion increases (i.e., as the amount of compression decreases)
to b) the smoothness of the image in certain smoothness
classes called Besov spaces. In particular, our theory bounds
the error incurred by quantizing wavelet transform coeffi-
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cients. We introduce and analyze several algorithms based on
piecewise-constant wavelet approximations; additionally, for
these algorithms, our theory bounds the errors introduced by
quantizing pixels and using fixed-point arithmetic. More gen-
erally, we suggest a unified mathematical framework that is
useful in analyzing any transform coding method for image
compression. We show that if images can be characterized by
their membership in the smoothness classes we consider, then
wavelet-based methods are near optimal within a general
class of stable, transform-based, nonlinear methods of image
compression. We argue that psychological data of the
spatial-frequency -amplitude response of the human visual
system, summarized by the Contrast Sensitivity Threshold
curve, can help to choose an image quality metric from the
class of L? metrics; in particular, we argue that the L!
(mean-absolute) error metric is more appropriate for measur-
ing the error of image compression than the 1.2 (mean-square)
error metric. Finally, our analysis, which is based on models
from nonlinear approximation theory and harmonic analysis
rather than from probability theory, provides a direct and
practical way to estimate the smoothness of images. In this
introduction, we shall put our work into mathematical and
practical perspective and give an overview of the remainder
of the paper.

By an image, we shall mean a digitized grey scale picture
that consists of 2™ by 2™ pixels (typically, 7 < m < 11),
each of which takes a value between 0 and 27 — 1 (typically,
n = 8). We shall denote the value of the pixel in row j, and
the column j, of the image by Py J = (Jy» Ja).

Whereas transform coding is most often described solely in
terms of the discrete pixel values p ;, our analysis is based on
interpreting the image as a function f defined on the unit
square I:= [0, 1]>. We view the image compression prob-
lem as one of approximating f by a second (compressed)
function f. The object of such a compression algorithm will
be to represent certain classes of pictures with less informa-
tion than was used to represent the original pictures. For a
lossless algorithm, the original and compressed images will
be the same, and the error between them will be zero. We
shall generally consider algorithms that introduce differences
between the original and compressed images in order to
achieve higher compression levels.

While one could associate to each image a function f that
is independent of the transform being applied, it seems more
natural (and amenable to our analysis) to allow the represen-
tation to depend on the transform. For example, when we
apply the Haar transform, or any transform whose terms can
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be interpreted as being constant on square subdomains of
pixels, we shall associate to the image the function f(x)
defined for x := (x,, x,) in I by

Ji L +1

f(x):=p;, for om S o
J Jr+ 1

and st2< o

Thus, the discrete Haar transform of the pixel data yields the
same coefficients as the continuous Haar transform of the
continuous function f. We shall follow the same principle
when analyzing other transform methods that are based on
mathematical expansions of functions (such as the discrete
cosine transform and wavelet transforms), and associate to
each set of pixel values the function

f= X

k=0, /=0, jp)

(1.1)

INLIND

whose coefficients c; , are the result of the discrete trans-
form applied to the pixel data. (For the discrete cosine
transform, for example, the functions ¢ ;. are the products
of cosines in x and y, and f is the trigonometric polynomial
that satisfies f(j/2™) = p;.) Therefore, a transform depends
both on the choice of representation functions ¢ ;. x and the
method of determining the coefficients ¢; x- If the functions
¢, « are redundant (or, equivalently, if they are linearly
dependent), then there may be more than one way to calcu-
late the coefficients c; ,, and so to represent the function f
by an expansion of the form (1.1). However, a given com-
pression algorithm begins by fixing such a representation,
i.e., by calculating the coefficients in a fixed specific way.
To repeat, the transform associates to the given pixel
values a new sequence of numbers ¢ ;. & that are interpreted,
by (1.1), as the coefficients of the expansion of a function f,
which we take to be the representation of the image. Given
the transform, the algorithm then calculates quantized coef-
ficients &; ,, and the compressed function takes the form

J;: ZEj,k¢j,k' (1~2)

The method of quantizing coefficients involves applying a
strategy, which we consider fixed, that depends on one or
more parameters (number of coefficients, global picture qual-
ity, local picture quality, etc.), which are allowed to vary.
We store or transmit a coded representation of the coeffi-
cients &; ., typically through some type of entropy coding.
Once we decide on an algorithm, we can apply it not only to
representations of images but to any function f for which the
continuous decomposition (1.1) can be calculated.

The description (1.2} is general enough to include discrete
cosine transform coding, pyramid encoding, multiresolution
schemes based on wavelets or box splines, etc. We shall
concentrate on the latter methods in which the representation
functions ¢; , typically have a characteristic frequency of
O(2%) and are supported in a square of side length OQ2~*);
J = (J, j») will be a multiindex indicating the location of the
support of ¢; ,. For many methods there is a single function
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¢ such that for all j and k, ¢, (x):=¢Q2*x —)) =
Q% (x — j/2%).

In providing a mathematical framework for image com-
pression algorithms, one confronts the following fundamental
questions.

1) In what metric should the error be measured?

2) How should one measure the efficiency of algorithms?

3) For which pictures does an algorithm give good results?

4) Is there an optimal level of compression that cannot be
exceeded within a given class of compression algo-
rithms and pictures?

5) What are near-optimal algorithms?

One must decide how to measure the error between f and

J. Some researchers have used the mean-square error

1/2

||f—f||Lzu>::(/Ilf(X)—f(X)lzdx ,

usually without a priori justification. In practice, one desires
a metric that parallels the human visual system, with the hope
that image differences judged to be large by the human eye
are mathematically large and image differences which, for
whatever reason, are insignificant to the eye will have small
size in the error metric. There are many possible choices of
such a metric; we shall investigate (somewhat arbitrarily) the
use of the L”(I) norms with 0 < p < o as error metrics.
These norms, defined by

1/p

Ilf—fllumr=(/Ilf(X)—f(X)l"dx ,

include as special cases the mean-square error and the mean-
absolute error

7= Flea:= [ 1703) = 7)) ax.

The parameter p gives added flexibility, in that the relative
sizes of the component functions c; ;; , with contrast c; ,
and frequency 2%, given by ||¢; ;¢ 4|l s, can be changed
by varying the parameter p. In other words, varying p
allows us to change the relative importance of contrast and
frequency in measuring the size of basic functions. We argue
in Section IV-A that 1) within the scale of L? spaces, 2) with
a compression scheme that keeps the low and middle fre-
quency information, and 3) to be consistent with data from
the contrast sensitivity threshold (CST) curve, the choice of
b that best matches the properties of the human visual system
is p = 1. We give examples in Section V-B which show that
attempting to minimize the error in L'(/) leads to more
pleasing pictures than in L*(I).

While we believe that the scaling given by the L'([I)
metric (namely, |6, [l =4l19; k4 1llrsy When ¢, (x) =
#(2%x — j) for some ¢) is the correct one for high-frequency
representation functions, the same scaling holds for spaces
other than L!'(T), such as the Sobolev space W~ 1 22(]y and
the Hardy space H'(I). Even though it may be true that for
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a given family of representation functions ¢, , we have
” ¢j.k|| Lty = ”¢j.k” w122y = ” d’j,k” HYI)»
it is not true for arbitrary f that
A1 vy = I/ w2y = ”f"H](I)’

because the different norms of f are calculated by combining
in different ways the norms of the representation functions
making up f. The CST curve by itself does not address how
the eye sees combinations of representation functions, so
other experiments will be needed to provide this new infor-
mation.

After deciding on a space X whose metric | - || , will be
used to measure the error between f and f , we address the
question of how to measure the efficiency of a given algo-
rithm. Recall that an algorithm depends on three things: the
choice of representation functions ¢ ;. «» the method of calcu-
lating the coefficients c¢; , (which together we call the trans-
form), and the quantization strategy. A given algorithm
generates different compressed functions f depending on the
parameters of the quantization strategy.

We shall evaluate algorithms by comparing the error || f
— S|l x to the number of nonzero quantized coefficients &; ,
(In practice, one is more interested in the number of bits
necessary to represent the quantized coefficients ¢, ,. The
two measures correlate well in practice; see Section V-B.)
Suppose that a compression algorithm produces a family { f}
of compressed images corresponding to different parameters
in the quantization strategy. We introduce for this algorithm
the error function

aN(f)Xzzf ”f‘f”x

inf
has < N coefficients

(1.3)

In other words, a, measures the compression error that is
achieved if the number of coefficients in the compressed
function does not exceed N.

Given two algorithms with their respective errors @, and
ay, one would obviously say that the first is better than the
second if

an(f)x = an(f) x

for each function f. It is very unlikely that such a relation-
ship would hold, since each reasonable algorithm is good for
some pictures and not so good for others. A more meaningful
comparison is to consider the class of functions f for which
an(f)x decays at a prescribed rate as N get large. For
example, we shall call the « class of an algorithm, « > 0,
the set of functions f that satisfy

an(f)x = O(N™°),

We say that one algorithm is better than another if its o class
contains the other’s for some range of «. One can describe,
within this framework, optimal compression algorithms.
Before doing so, we ask the following question: If the
é; « = 2% - — j) are fixed, how smooth are functions that
can be approximated to O(N~*) with = N coefficients by
algorithms that use the functions ¢ ;. x- For the spaces X =

L? and for many classes of representation functions D ks

as N tends to infinity.

DeVore, Jawerth, and Popov [13] have shown that, roughly
speaking,

inf  ay(f) e = O(N2) & feBE(L(1)),

all algorithms using ¢j‘ P
(1.4)

where g = 1/(a/2 + 1/ p) and the Besov space Bg(LI(1))
consists of functions that have « bounded ‘‘derivatives’” in
L9(I). (The previous statement is inaccurate; a complete
definition of Besov spaces is given in Section III-B, and a
precise statement of (1.4) is given in Section II.) In particu-
lar, this is true for box splines [3] (with piecewise constant
approximations as a special case) when 0 < p < oo (see [13}
for p < o and [14] for p = o) and orthogonal wavelets
[20] (of which the Haar transform is a special case) when
1 < p < o. So, if we consider N, the number of coefficients
in the representation of f, to be a measure of the amount of
information one must use to represent the compressed image,
one can hope to achieve a particular rate of error decay in
L#(I), if and only if f is in a specific Besov smoothness
space B (L9(I)). In proving this theorem, DeVore et al.
provide specific algorithms for each set of functions ¢; , that
give the optimal rate of convergence. One should note that
for a wide class of representation functions ¢, ,, the optimal
selection of coefficients results in the same o classes.
Nonetheless, there are various constants hidden in the big-O
notation that may determine whether one set of representation
functions is better in practice than others.

The equivalence (1.4) suggests that membership in Besov
spaces BJ(L9(I)) is an appropriate way of classifying im-
ages, in that we can check the effectiveness of a given
compression algorithm by seeing how it performs on func-
tions in BZ(L?(I)). However, it is of practical interest to
measure smoothness in the spaces B (L9(1)) only if com-
mon types of images are in these spaces. (For example, one
can easily show that linear wavelet approximations to f
converge in L*(I) at a rate O(N~%/?) if f is in a Sobolev
space W *2(I), but no image with a jump discontinuity in
intensity across a one-dimensional curve is in this space if
a = 1/2.) For approximations in L'(I), we show empiri-
cally in Section V-B that common head-and-shoulders and
outdoor images are in B, (LY(1)) for a = 0.5. This can be
interpreted in two ways: Our methods are of practical inter-
est, and the previous successes of pyramid schemes can be
explained by our analysis.

To say that a function fe B;(L%(1)) has enough smooth-
ness to be approximated to O(N~%/?) in L”(I) by functions
of the form f , does not, in and of itself, explain how to find
an algorithm to achieve this. The latter rests on two main
issues: finding a suitable representation (1.1) (i.e., correctly
calculating the coefficients for the given value of p) and the
method of quantizing the coefficients (which will also depend
on p). We shall discuss these issues in a general setting of
wavelet based transform methods in Section II. In Section III,
we consider in more detail transform methods based on
approximation by piecewise constant functions. This corre-
sponds to decompositions (1.1) where the ¢, , are Haar
functions or are characteristic functions of cubes.
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In Section II, we briefly describe how wavelet decomposi-
tions obtained by multiresolution can be incorporated into
compression algorithms. The issues we study in Section II
include: different basis functions &; ,, different methods of
choosing the coefficients c¢; ,, how to choose the coefficients
C; x in the compressed lmage F of (1.2) if the compression
error is to be measured in the L”(/) norm, and the relation-
ship between the compression error and the smoothness of
pictures. We present a general transform algorithm based on
wavelet decompositions that has (in a certain mathematical
sense) optimal compression. We also discuss a general way
to measure the optimality of compression algorithms by using
the mathematical concept of n-widths. In particular, we note
that our methods are optimal in a wider class of methods than
those in which f is represented by (1.2). DeVore and Yu
[16] have shown that if 1) the smoothness of f is measured
in a Besov space BS(L%([I)) with1/g = «/2 + 1/p, and 2)
f is derived from any approximation process that has a
certain ‘‘continuous selection’’ property (roughly speaking,
changing f a little changes the representation of f only a
little) then

sup inf
”f”B“(Lq(I))—l f has N parameters

IS = Fll ooy = CN722.

In other words, any approximation process satisfying the
continuous selection property can achieve at most an approxi-
mation rate of O(N~%/?). So if one believes that the Besov
space norm of an image completely characterizes the smooth-
ness of that image, and if one is willing to limit algorithmic
considerations to methods that satisfy the continuous selec-
tion property, the family of methods we describe has optimal
order accuracy.

As an application of the theory in Section II, we consider
approximation by piecewise constants in Section III. The
construction of compression methods, in this case, is related
to approximation by constants on cubes, which is discussed
in Section III-A. Among other things, we show that median
operator is a good method of constant approximation for all
L?, 0 < p =< o while averaging is good only for p > 1.
This helps us explain when Haar functions should be used in
(1.1) (namely, for p > 1) and the theoretical advantages of
clipping and median transforms in image compression. This
will be important for our image applications when approxi-
mating in L'(7).

In Section III-B, we introduce the function spaces contain-
ing the images that can be approximated well by wavelet
transform coding, and we relate previous results about equiv-
alent norms of functions in Bj(L7(I)) based on the size of
the coefficients ¢; , in the representation (1.1). In Section
III-C we analyze the effects of pixel quantization (spatial
averaging and rounding to discrete pixel values) in these
function spaces. In Section II-D, these results are used to
derive a family of algorithms that give optimal compression
in a certain mathematical sense. In particular, we derive
error bounds for these algorithms that give a compressed
function f with no more than O(A4") coefficients that satis-

fies

I = TN oy = O(A77),

whenever fe B;(L9(1)). Because of (1.4), the order of this
approximation is optimal within a large class of transform
algorithms. Further in Section III-D, we apply our theory to
the example of progressive transmission, and show that one
can achieve faster convergence for many images by using our
techniques rather than using previously suggested ones [7]. In
Section III-E we give several specific examples of piecewise
constant transforms that satisfy the theory of the previous
section. In Section II-F, we briefly mention high-order
wavelet approximations that satisfy the theory of Sections II
and III.

In Section IV-A, we discuss our interpretation of the
contrast sensitivity threshold curve that leads us to believe
that within the scale of LP([I) spaces one should measure the
error in L'(I) for image compression. In Section IV-B, we
show that because most images have spatial discontinuities in
intensity, one can expect o < 2/ p. Therefore, for p = 1 we
can, a priori, expect at most second order smoothness for
images. This section also discusses how to estimate empiri-
cally the smoothness of images; for the images we have
tested in Section V-B one has 0.3 < « < 0.6. Later, in
Section IV-C, we interpret coefficient quantization levels in
terms of approximation in L?(J). For example, our analysis
shows that if the interval between quantized coefficients
doubles when the frequency doubles, then the approximation
is effectively in L?(I); if the quantization interval quadruples
when the frequency doubles then the approximation is in
L\(I).

Section V contains computational results. In Section V-A
we describe the implementation of several compression algo-
rithms that satisfy the assumptions of the theory in Section
III. In Section V-B, we contrast the results of algorithms that
attempt to minimize the error in L?(I) and L'(I). Further,
we use (1.4) to estimate a posteriori whether various images
are in By(L7(I)) and, if so, to estimate their BJ(LI(I))
norm. Fmally, we report on the empirical relatlonshlp ob-
served between the number of nonzero coefficients ¢; , in 7
(our theoretical measure of compression) and the number of
bytes required to encode the representation of those coeffi-
cients.

The Appendix contains the proofs of theorems in Section
III.

II. WAVELET DECOMPOSITIONS AND COMPRESSION
A. Wavelet Decompositions

We shall describe in this section a generic method for
obtaining decompositions (1.1). Specifically, we give our
own perspective of multiresolution analysis as introduced by
Meyer [20], Mallat [19], and Daubechies [11] in their con-
struction of orthogonal wavelets. While the mathematical
framework for image compression developed in the following
sections is not limited to this case, it does form the primary
examples of our theory. It will be convenient to begin by
discussing infinite expansions (1.1) that hold for all functions
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in the space LP(RY), 0 < p < o (all uniformly continuous
functions f when p = o) where d = 1,2, - -+ . The expan-
sions we discuss will include as special cases the orthogonal
wavelets as developed by Meyer [20], Mallat [19], and
Daubechies [11], B-spline and box spline expansions (cf.
Chui [8]), and the more recent nonorthogonal wavelets
(sometimes called prewavelets) of Battle [1] and Chui-Wang
[9]. Techniques other than multiresolution can lead to func-
tion decompositions of the type considered here; for exam-
ple, Frazier and Jawerth [17] have derived function decom-
positions that are based on the Calderon reproducing for-
mula.

The starting point for our construction is the refinement
equation

#(x) = ¥ a;6(2x - ) 2.1)

jez?

where (a;) ;.5 is a finite sequence of real numbers. (Here Z
denotes the integers, and Z¢ denotes the set of multiindices
(Jy»**+, Jg) with j, € Z.) There are various sufficient condi-
tions [11] and [10] on the sequence (a ;) that guarantee that
there is a (unique) solution to (2.1). We shall assume that
such a function ¢ exists, has compact support, and that the
integer translates ¢(: — j), je 2, of ¢ are linearly indepen-
dent.

Let V:= span{e(- — j)| jeZ%}. By dilation, we obtain
a scale of spaces V, := span{¢(2¥- — j)| je 29}, keZ.
From (2.1), it follows that V,_, C V,, ke Z.

We fix p and look for expansions (1.1) that hold for all
feLP@®?). Let P be a bounded projector from LP(R%)
onto V. By dilation, we obtain uniformly bounded projec-
tors P, of LP(RY) onto V, for each keZ. That is,
P,:=D,PD_, with D, f(x):=f(2¥x) a dilation opera-
tor. For example, in the case p = 2, we could let P be the
orthogonal projector onto ¥, which is the best L*(R?)
approximation to f from V. We shall assume that |J V), is
dense in LP(RY). It then follows that P, f— f in LP(®RY)
for each fe L?(RY). Indeed, for any g€V,

If- Pkf”LP(fa”) = ”(1 - Pk)f”L"(?&d)
=||(1 - P)(f~ &)l LP(RY
= C|f - gkl Loga-

The right side of the last inequality tends to 0 with & — oo
because of the denseness of | V.

We shall also assume that || P f || rge, = 0 as k > —o0
for each fe L?(R?). For example, in the case p = 2, it is
easy to see that this follows if P, is the L? projection and
NV ={0}. Now P, f— P,_,f is an element of V, and
therefore can be expressed as a linear combination of the
$Q2*%x — j), je 2 Therefore, we have

f= Z(Pkf_Pk—lf)= > ¢ ()00 (2:2)
ke jez4, kez
which is the analogue of (1.1).
Examples of functions ¢ that satisfy a refinement equation

(2.1) are ¢ = xo with Q:= [0, 1]¢ and multivariate box
splines and B-splines, which are piecewise polynomial func-

tions with compact support (see for example the monograph
of Chui [8]).

We should emphasize that there is redundancy in (2.2)
since the set of ¢(2%x — j), jeZ?, keZ, are not linearly
independent. Orthogonal wavelets eliminate redundancy,
among their many other attractive properties. The univariate
orthogonal wavelets of Daubechies are obtained from a uni-
variate function ¢ (called a ‘‘mother wavelet’’) that satisfies
(2.1) for d = 1 and whose translates ¢(- — j), jeZ, form
an orthonormal system. The orthogonality condition is equiv-
alent to 3;.5a,a;,,, = 208o(k) where §, is the Kronecker
6, which is one for k& = 0 and O for all other integers k. The
existence of such functions ¢ with compact support and
arbitrary differentiability is the main result of Daubechies
[11]. For P we take the orthogonal projection of L?(R) onto
V. Then, for ke Z, P, ~ P,_, is the orthogonal projection
onto the space W, := V, e V,_,, which is the orthogonal
complement of V,_, in V,. The spaces W, are obtained
from W := V, e V¥, by dilation: W, := {fQ*-)| fe W},
keZ. We then have that ’(R) = @ ,.oW, with W, the
dilated spaces.

Mallat [19] has shown that there is a function y whose
translates Y (- — j), j€Z, form an orthonormal basis for W.
If ¥ is to have compact support, it is uniquely given (up to
translation) by

W(x)i= X (-0 a_e@x-j).  (23)
J
It follows that P,f - P,_,f, which is in W,, can be
expressed in terms of the L? mnormalized translates
V=245 — ), jeZ:

Pf—P f= ch,k i k>
JjeZ
where ¢; , 1= Jaf¥ /i k- In summary, we obtain the decom-
position, valid for all fe L*(R):

f= Zz <fo¥ k> ¥ k-

J, ke

(2.4)

The orthogonal wavelet decomposition (2.4) is also valid
for functions in LP(R) with convergence in || - || Lo, pro-
vided 1 < p < . Indeed, from the compactness of the
functions y; ,, it follows that P, is an L? bounded projec-
tor from LP(R) onto V,. The assumption on denseness of
U ¥y then gives that || f — Py f || Lo, = O for all fe L?(R),
1 < p < . Moreover, || Pf| 1r@m =0, k= —oo, if p
> 1. These results also hold for p = o if L” is replaced by
the space of uniformly continuous functions on R. However,
it is important to note that the decomposition (2.4) does not
hold for p = 1 since orthogonality gives [ P,f = [ f and
therefore || P, f|| 1z, does not tend to 0 as k = —oo. The
importance of these remarks is that orthogonal wavelet de-
compositions are not suitable when compression is desired in
the L' metric. We have more to say on this later. However,
orthogonal wavelet decompositions are valid for the Hardy
space H'(R), which is sometimes used as a substitute for
L'(R), and for the Hardy spaces H?(R), 0 < p < 1. Among
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other properties, functions in the Hardy space have mean
value zero, 5o || P, f || 5, tends to zero as k = — oo,

Nonorthogonal wavelet decompositions can be obtained by
beginning with other bases for the space W, such as with
B-splines.

Orthogonal wavelet decompositions in higher dimensions
d > 1 are usually obtained by taking tensor products. For
example, for d = 2 (the case of interest to us), if ¢ is a
univariate mother wavelet and ¥ is its corresponding orthog-
onal wavelet given by (2.3), then the three functions
VO, p) 1= (), ¥P(x, ¥) 1= Y(x)é(y), and
¥P(x, ¥):= ¢(x)¥(y) form by translation and dilation an
orthogonal basis for L*(R?). That is, each fe L*(R?) can be
represented as in (2.4) where ¥ is now any of the three
functions ¥, j =1, 2, 3.

We next discuss how one obtains decompositions (1.1) to
be used in conjunction with compression algorithms:; the
same idea applies to orthogonal wavelets. One chooses the
dyadic level m corresponding to the picture size and finds a
‘‘representation’’ of the picture

f= Zaj.m¢(2m' - J).

JjeZ

(2.5)

One possible choice for the coefficients a ' m» but certainly
not the only one, is to take a; ,, = p;. However, some
additional values of a; ,, are needed near the boundary of the
picture (i.e., near the boundary of ) corresponding to the
functions ¢; ,, with /27" not in I that nonetheless con-
tribute to the picture. We do not discuss this issue further
here but refer the interested reader to [12], where the analo-
gous question for surface compression is discussed.
Once (2.5) is found, the representation (1.1) is simply

fzpmf:POf_'-kZ:](Pkf—Pk—lf)
=

JEZ, k=0

INCICARE ) (2.6)

The coeflicients in (2.6) can be computed recursively by
using the refinement equation. For orthogonal wavelets, for
example, one uses a fast wavelet transform that is analogous
to the fast Haar transform. One never computes explicitly
(although ¢ is easy to recover numerically) because all
computations can be done in terms of the refinement coeffi-
cients (a;). Namely, one creates filters for the various opera-
tions needed for the decomposition (2.2). One filter, L,
computes the projection Py(f) of an element fe ¥, onto
Vo Its adjoint, L*, rewrites a function fe ¥V, C V, in terms
of the basis ¢, , of V,; corresponding filters H and H*
project an element fe V, onto W and rewrite elements in W
in terms of the y, |. In this way, the description of wavelet
transforms includes those for quadrature mirror filters when
there are such underlying functions ¢ and y for these filters.

B. Compression

To compress the representation of a digitized image, we
first choose a decomposition (1.1) with respect to some
wavelet basis of a function f representing the image. We

then choose new coefficients &, , for the compressed approx-
imation (1.2). We fix a value of p with 0 < p < o and
measure compression error in the L”(I) metric. In [13], a
method for choosing the coefficients &; , was given that is
optimal in a certain mathematical sense. We give a slightly
more general version of their algorithm that is more useful
for image compression.

Algorithm 1 (Generalized Transform Coding Algo-
rithm): Given a parameter value ¢ (which controls the error
of compression), and a representation (1.1) of the function f,
we choose quantized coefficients &; , that satisfy

”(Cj‘k - Ej.k)¢/\k”L"(1) <e.

We assume that | c; ,&; (|l 1r;, < € implies & , = 0. Our
transformed picture is

fi= X

k=0, jez?

G kP k-

To describe the sense in which the above algorithm is
optimal, we introduce the Besov smoothness spaces, which
are described in more detail in Section III-B. The Besov
space BJ(L7(1)) is a collection of functions with a common
smoothness in L9(J). For the time being, it is enough to
think of this space as functions with « derivatives in L([);
we emphasize, however, that « > 0 is not necessarily an
integer and that g may be less than one, so a function f in
BZ(L9(I)) may not have any true derivatives, even in the
distributional sense.

For a fixed value of «, there is one particular value of g
that is important for compression in L”([); it is given by
g ' =a«/2+ p", where the ““2°° arises because we are
dealing with compression in two dimensions. We quote the
following results from [13], which are valid under some
restrictions (described at the end of this section) on the
wavelet ¢, the value of p, and the decomposition (1.1).
(Even though the algorithm presented here is slightly more
general than that in [13], the proof presented there applies
without any alteration whatsoever to the following theorem.)

Theorem 1 (Error Bounds): For 0 < «, there exist con-
stants C, and C, such that for all SEeBZ(LYI)) with
1/g = a/2 + 1/p, for all N =1,2,---, and for
e:=N"Va Algorithm 1 gives a function f with the follow-
ing properties.

1) The number, .4, of nonzero coefficients & ' & satisfies

A= CN| Sl bocany - (2.7)
2) The error f — f satisfies
If = Flery <= GN"=2|| £ Yoy (2.8)

and

WS = Fl vy = CRPC NP £ pocracry- (2.9)
q

Thus, this theorem says that functions in B7(L(I)) can
be approximated by Algorithm 1 with an L”(I) error not
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exceeding CN~*/? with the approximating function f hav-

ing at most N coefficients. The error estimate of this theorem
can be improved slightly in the sense that functions in the
space Bg( L9(I)) can be characterized by their approxima-
tion error in Algorithm 1 (see [13]). If ay(f) n;, is defined
by (1.3) for Algorithm 1, then we have

1
[Na/zaN(f)Lpu)]qﬁ < e feBy(L(T)).

(2.10)

1

Thus, functions in BJ(L?(I)) have a little better approxi-
mation by Algorithm 1 than the heretofore mentioned
O(N™%/?) because of the convergence of the series in (2.10).
This is the precise statement of (1.4). In particular, from
(2.10) one can derive an equivalent norm for BZ(LU(D)):

had 1
1 W geascnm = 1 Vo + 32 [N*Pan() ] -
N=1
(2.11)

Algorithm 1 is optimal in the following sense: If a second
compression algorithm using the same wavelet spaces V,
gives a compression error @, (f) L7ny» then, for each fe
BZ(LY(I)), we have

1

1SN oy + 3 [N*Pan(£) o) <
N=1 N

E}

had 1
— q
= CO ”f”‘II‘q(l) + Z [Na/zaN(f)L"(I)] N
N=1

with C, independent of f.

We have mentioned that the above results hold under
certain conditions on ¢. For the error estimates (2.8), (2.9),
one needs in addition to the usual properties of the function ¢
and the projectors P,, that the space V contains all polyno-
mials of total degree < «. This latter condition can be
restated in terms of the Fourier transform of ¢: q§( w) should
have a zero of multiplicity > « at 2k=, k # 0 (see [5]).
The projectors P, are chosen to be bounded on L?(J) and
L9I). These projectors then lead to the decomposition (1.1).
For the characterization results (2.11) one needs additional
properties of ¢, the most important of which is that ¢ should
have slightly more smoothness than membership in
B (L(D) (see [13] for details). With this, (2.11) holds for
all 0 < p < oo,

In the case of orthogonal wavelets, (2.9) is valid for all
1 <p< oo (it fails for p <1 for the reasons mentioned
earlier) provided again that V contains all polynomials of
degree < «.

There is another way to measure the optimality of approxi-
mation processes, based on the mathematical concept of
n-widths, that we feel may have useful application in further
work on compression. Let .#, be an n-dimensional (nonlin-
ear) manifold of functions from L?([I). This means that each
function M € .#,, is determined by 7 real parameters, which
we denote by a:= (a," -, a,). We can, therefore, denote
the elements of .#, by M(a), aecR". If K is a set of

functions, we say that a mapping @ of K into .#, is a
continuous selection for K if @ is continuous with respect to
some topology on K. This means that whenever f and g are
close, the parameters a(f) and a@(g) are close. If @ is such a
selection, then one can think of M(&(f)) as an approxima-
tion to f. The error in approximating the class of functions
K by this procedure is

E(K,a, M,):= sup| f~ M@)o
JeK
The functions in K that are approximated most poorly by our

selection procedure into M determine this error.
The n-width of K is defined by

d,(K)rg:= inf E(K,a, .4,).
a..a,

In other words, the n-width measures the maximum error of
the best manifolds for the approximation of the elements
of K.

We take for K the unit ball of B;"(Lq(l)), i.e., the
collection of all functions in By (L9(1)) with || f|| Bo(Liy =
1. The n-width of K (in the univariate case d = 1) was
determined in {16]. An argument similar to that give in [16]
would show that

Con *? =d,(K) = Cn o

(2.12)

with C,, C, absolute constants.

We can view a compression algorithm based on a wave-
let decomposition (1.1) as a method of approximation from
the nonlinear manifold consisting of all functions S =
Y kead; (2% — ), where A is a set of at most n
indicies j, k. This is a manifold of dimension 3n with the
parameters j, kK and the coefficients a; ,. According to The-
orem 1, we can approximate the elements of K by using
Algorithm 1 and achieve the optimal error of (2.12). Al-
though the selection of indicies and coefficients given in this
algorithm does not have the continuous selection property (it
is probable that Algorithm I can be recast as a continuous
selection by considering continuous parameterizations), (2.12)
shows that no compression algorithm based on a continuous
selection from a nonlinear manifold can give a better approx-
imation order for all the functions in BZ(L9([)) than that
provided by Algorithm 1.

III. MATHEMATICS OF WAVELET APPROXIMATIONS

In this section, we discuss the simplest application of the
mathematical theory of the previous section to image com-
pression, namely wavelet transform coding methods based on
piecewise constants. In particular, we shall consider the
wavelet decompositions of the previous section for the case
when V is the space of all piecewise constants on dyadic
cubes of sidelength one with vertices at the integers. In this
case, the mother wavelet ¢ = x;, 7:=[0, 1]?, and the
Daubechies orthogonal wavelet is ¥ := Xy 172, = Xji/2.1)»
which gives the two-dimensional Haar functions.

If we fix a value of p and measure the error of compres-
sion in the L? metric, then we should begin with a decompo-
sition (2.2) that is valid for all feL”. Therefore, the
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projector P used in this decomposition should at a minimum
be bounded on L”P. Moreover, the construction [13] of
optimal algorithms for a given value of « requires that P
produce a piecewise constant approximation to f in the
metric L7, ¢~' = o/2 + p~!, with special approximation
properties. This leads us to discuss in Section III-A when
constant functions are ‘‘best’’ or ‘‘near best’’ approximations
in LY(I).

We have already pointed out the importance of Besov
spaces in our mathematical framework for compression. In
Section III-B, we give the definition of these spaces and
consider some of their properties important for compression.
In Section III-D, we recount Algorithm 1 for the special case

. . o !
of piecewise constant approximation. As an example, we’

study a version of the progressive transmission of coefficients
that satisfies the hypotheses of our algorithm. In Section
II-E, we discuss in detail the effect of choosing different
projectors and different basis functions for the wavelet
decompositions.

Finally, in Section III-F, we discuss high-order generaliza-
tions of the piecewise constant approximations analyzed in
the previous sections.

The proofs of the several theorems in this section are given
in the Appendix.

A. Near-Best Approximations

For the unit square interval I:= [0, 11 C R?, any expo-
nent 0 < p < oo, and any function feL?(I), we let Q,f
denote a best L?(I) constant approximation to f, that is

Ilf- Q,f |l Lory = inf || f— ¢l L2
ceR
For example, @, f is the average of f over I,

Supxslf(x) + infxelf(x)

and @, f is a median of f on I, where a median is defined
to be any number m for which

[{xel|f(x)=m}|=1/2 and
|[{xeI|f(x)=m}|=1)2.

For other values of p a best L?(I) approximation is not
always easy to find, so we consider instead near-best con-
stant approximations [P, f that satisfy, for some constant C,

1f = ®ofll Loy = CINSF = Qpf N sy (3.1)

Of course, if f is not constant on I, then the right side of
(3.1) is nonzero, and any approximation P,/ is near-best
for some constant C. However, we shall consider families of
near-best approximations for which the constant C is fixed in
advance. '

We note that if P,f is near-best in L?([), then it is
near-best in any L9([1), with g > p; cf. [15]. Furthermore,
the following theorem shows that @, is near-best, not only
for g = 1, but for all g.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

Theorem 2: For each g € (0, o] there exists a constant C,
such that for all fe L9(1),

If—@fl L = Cqu_ @qf" LiD)-

An examination of the proof shows that the theorem is true
for order parameters other than the median, such as the first
and third quartiles of f. (A first quartile of f is any number
£ that satisfies

[{xel|f(x)=¢&}]
|[{xell|f(x)=<E§&}|

while a third quartile of f is any number { that satisfies
[{xel|f(x)=¢}| =1/4 and
[{xel| f(x)=t}] = 3/4.

For bilevel images (halftones, for example), where black is
represented by 0 and white is represented by 1, the median of
f is particularly easy to evaluate — it is just the most
common pixel value in /. Note that the average @, f is not
a near-best approximation if g < 1: If we let f:= xo ,-ip2,
j>1,then@,f=2"2 on Iand

|f—@,fl L = 27%,

v

3/4 and
1/4,

I\

v

v

whereas
1/q
1= @l < W = [ [ 1o
0,277
—p-2i/a,
so that
”f‘ @2f”1_‘1(1)

> 22/1-9)/q 5

I f- @qf” L9(1)

as j— o. However, if we round @, f to the nearest of the
values O or 1 then for bilevel images we end up with the
median, which is a good approximation for any L(I),
0 < g < . This fact can be generalized in Theorem 3.

Theorem 3: Assume that N > 0 and mutually disjoint
(measurable) sets I, C I are given for j=0,---, N such
that I = (J)_o/; and for all x€l,

f(x) = jészj(X);

i.e., f takes only finitely many integer values on /. If we
define @, f to be @, f rounded to the nearest integer, then
for each 0 < g < 1, there exists a constant Cy, a such that

Ilf- @zf" n = CN,qu_ Qo f | oy

The previous theorem has the interesting consequence that
although the Haar transform using exact arithmetic does not
result in optimal order approximation in L'(I) of functions
in BJ(L(1)), 1/g =1+ «/2, that take on finitely many
integer values, the Haar transform using rounded integer
arithmetic does result in optimal order approximations in
L'(I); see Section III-E.
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We show by the following argument that the set of near-best
approximations is convex if we are willing to change the
parameter C. Assume that f;, i = 1, 2, are near-best L([])
approximations with constant C;, respectively. Then for any
ae(0,l)and g < 1,

If = (efi + (1 = @) £2) 190,

= lla(f=£1) + (1 = a)(f = f2) 1 four)
(s = Sl Eery + (1 = ) (f = £2) [l facry
0fq||(f—f1)||‘17f4(1) +(1- O‘)q”(f—fz)”%l(l)
(«7C7 + (1 = &) CHIf = Quf I acry-

Therefore, we can take the new constant C:= (a9C7 +
a- a)qca)l/q

For example, if we let f; and f, be the first and th1rd
quartiles, respectively, of f on I, then

P,f 1= max (f,, min (f3,@,f)),

which is a convex combination of f; and f;, is a near-best
L9(I) approximation to f for any g with a constant C that
depends only on q. We shall use this approximation in some
of our later examples.

These results are extended in an obvious way for square
intervals 7 in R? that are not the unit interval.

IA

IA

B. Equivalent Norms for Besov Spaces

In this section, we recount results of [15] that give equiva-
lent norms for Besov spaces. These results will be used in
Section III-D to bound the error in certain transform methods
of coding.

We are interested in functions f in Besov spaces
BJ(LP(I)), with @ > 0, 0 < p < o, 0 < g = %. Roughly
speaking, a function in BJ(L?(I)) has o “‘derivatives’ in
LP(I), while the parameter ¢ measures more subtle grada-
tions in smoothness. The usual Besov space norm is defined
as follows. Fix o > 0 and an integer r > 0. Define the rth
forward difference with parameter # € R? by

A% f(x):=

El

S(x), and for k = Looe,r

A'j,f(x):zA’j,"f(x+h)—A’;,"f(x). (3.2)

Next define the rth modulus of smoothness in L?,

1/p
o.(fr1), i w«(/, |A'hf(x>|ﬂdx) ,

sup

where I, := {xel|x + rhel}. (In other words, A/, W S(X)
is defined, if and only if xe7,,.) The space By (L*(1))
consists of all functions f for which

A1 BE (LA - SN 2oz

o 1/q

/ [t“"w
0

dt
+ r(f’ t)P]qT

727
when g < o and
A1 BEr(LP)) + = 11 ey T osup [t_"wr(f, t)p] < oo,
>0
Note that when g = o, we require w,(f,?), to decay at

least as fast as O(¢*) as ¢ — 0, whereas when g < oo, we
require w,(f, ), to decay at a slightly faster rate. When ¢
or p are less than one, | - | Ber(Lecry does not satlsfy the
triangle inequality, so it is not, stnctly speaking, a ‘‘norm,’
but only a quasi-norm, for which there exists a constant C
such that for all f, ge B2 "(L?(I)),

If+ gl Bgr(LAUy) = c(si sereay + & Bg"(Lp(l)))'

The spaces. By*"(L”(1I)) and B "(LP(I)) are related in
the following way. First note that because of (3.2),

20,(f, 1), 1=p,
wr+1(f, t)p = 1/ g (34)
P (f,t),, 0<p<l.
We can conclude from (3.3) and (3.4) that
feBy (L2(I)) = feBy ™! (LP(I));  (3.5)

by induction f will be in Bj" "(LP(I)) for any r’ > r. On
the other hand, it can be shown that if both r and r’ are
strictly greater than «, then B "(L?(I)) = By (L2,
furthermore | - || paur(Lrcry) and I Il B (ocryy are equiva-
lent norms. Thus, ‘Without confusion, we define the Besov
space BZ(L*(I)) to be B "(LP(I)) for any r > a.

As one particular application, we are interested in the
smoothness of bilevel (black-and-white) images. A bilevel
image can be represented as the characteristic function f of a
set S, with f(x) =1 where xe€S$ and f(x) = 0 where
x¢S. As a partial converse to (3.5), the following theorem
shows that if a characteristic function f is in B (L*(1) =
B 2(LP(I)) for 1 < <2, then f is also in the space
B o \(LP(I)).

Theorem 4: If f takes only the values 0 and 1 in 7,
1<a<2, and feBI(LP(I) = BX*(L?(])), then fe
By '(LP(I)) and || f|| BelLeay = 2° Hf" BEA(LP(I))

It is not true for all f that I 71 Be Loy =
2% £ Be2Lr(ry- A simple example is f(x, »):=x, for
which ”f|| se2rry = I1F | Loy We have with & = (¢,0),

o f.1), = (/ |Azf(x)|"dx)]/p

h

1/p
~ (/ltl”dx) s
I

substituting this into (3.3) shows that this f is not in
Bg’l(L"(I)) for any o > 1. Roughly speaking, only func-
tions that are linear combinations of characteristic functions
have any hope of being in Bg"(L”(I)) for a > 1; see
however, Section IV-B.

In the following sections, we shall consider approximations
in L?(I), 0 < p < oo, of functions in BZ (L)), with

1 o 1

a 2 p’
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DeVore and Popov [15] showed that By "(L9(1)) is continu-
ously embedded in L?(I), written By "(LU(D)) = LP(I).
This means that there exists a constant C such that for all
SeB (LT,

IS oy = ClLAY BE(LY(TY)

We remark that this embedding is not compact, in contrast to
the embedding of the Sobolev space W *2(I), & > 0, into
L*(I), for example.

DeVore and Popov have given equivalent norms for
B;' "(L9(I)) in terms of certain sequence spaces. For the rest
of this section we shall recount this theory for r = 1; there is
a similar theory, which we discuss in Section III-F, for any
r>0.

Let [; , be the square with sidelength 2~ % with lower-left
corner at the point j /2%, with the multiindex j = ( Jis Ja) €
Zi:={je2’|0 </, <2%0=j,<2%, and let ®;  be
its characteristic function (¢, +(x)=1if x elj‘ «» and
@; «(x) = 0, otherwise). Fix a constant C such that for each
k=z0and jeZ;, d; x9, « is a near-best LI(1; ) approxi-
mation to f with constant C from the set of all functions
do; ;. For each k = 0, let S*(f):= Yiezzd; ;b 4 be a
“‘level k’* approximation to f (S~ '(f):= 0), and define the
coefficients c; , by

S5(f) =8N f) = Z)Cj,kd)j‘k'

JEZy

(3.6)

Here we have used the fact that we can rewrite
P k=1 = B 20k F Pyt k

+ ¢(2j],2j2+1),k + ¢(2j]+l,2j2+l),k'
We can write

f= X

k=0, jez}

(3.7)

NI

where the sum converges in L4(I), because the functions

d; k.qu_ « are near-best approximations in LY )to f. A

particular result from [15] is that whenever g '= a2 +

P, as we assume, the quasi-norm I £ Nl geiracry, is equiva-
. a

lent to the sequence quasi-norm

171 = ¥

k=0, jez}

/q
I Ci kP k ”Z”(I) > (3>8)
when « < 2/ p; that is, there exist positive constants C, and
C, such that for all fe B '(LU(T))

ClSI, = |5l By = G 0.

Furthermore, in every case where J is written as a sum (3.7)
(even if the coefficients ¢ 'k are not calculated as the differ-
ence of near-best approximations (3.6)) the quasi-norm
LA Bg(z9.1y 1s bounded by a constant multiple of (3.8).

C. Pixel Quantization

In this section, we show that an image f formed by pixel
quantization of an intensity ficld F inherits the smoothness of
F in the Besov spaces By(LY), 1/qg=af2+1/p, p>

0and 0 < o < 2/p. We shall use this result in Section IV-B
to help justify our claim that images have little smoothness.
One can model the formation of the digitized image as
follows. One begins with a spatially varying intensity field F
defined on the square I = [0, 1}?, normalized to range be-
tween 0 and 1. On each dyadic square 7 . m Of size 27 x
27™, an average or other projection of the intensity F is
taken to give a value @ mF. Then, we round P, , F to the
nearest value of /2" to give a pixel value P - (In this
section, we shall consider pixels to take values in the set
{i27"]0 =i < 2"}.) We work with the digitized image

f= Z pj,m(bj,m'

jez},

(3.9)

If one uses smooth wavelets then some other method of
constructing f from the pixel values Pj m must be devised.
The following lemma bounds the norm in By '(LUD)) of
functions of the form (3.9) in terms of their L*(I) norm.
Lemma 1: Assume that p >0, 0 < a < 2/p, and 1/q
= /2 + 1/p. Then there exists a constant C such that for
each f of the form (3.9),

”f” BN (LI = C“f” L°’(I)2am' (3-10)

It follows immediately from Lemma 1 and (3.5) that
”f” BZ(LU1)) = C”f“ L““(l)zam~

It is shown in Section IV-B that if f is not constant then it is
not in BJ(LY(I)) for « = 2/p, so the lemma is in some
sense sharp. Also, this shows that aeny image is in
By '(L(I)), with a bound for its norm that increases expo-
nentially in m and o.

We can use the previous lemma to prove the following
theorem, which compares the Bg*'(L%(1)) norm of f to the
same norm of F.

Theorem 5: Assume that p >0, 0 < « < 2/p, and 1/q
=a/2+1/p. Then a) if 1 <p < o and P is the L2()
projection (i.e., the average of the intensity), or b) if 0 < p
< oo and P is a near-best projection operator in L7( ), there
exists a C such that for all F,

”fH B \(LI(T)) = C” F” BN (LI(1y) + C2m27,
q q

Thus, the norm of the image f is bounded by a constant
times the norm of the original intensity distribution F plus a
small amount caused by rounding the pixels to the values
27" Thus, our estimates in Section V of the Besov space
norm of our test images do nor grossly underestimate the
smoothness of these images. See Section IV-B for further
discussion of how we estimate the smoothness of images.

Theorem 5 also indicates how the number of grey-scale
levels should increase as one increases the spatial resolution
of a digital imaging device in order to keep | f| BEI(L9T
bounded when F is in B[]’"(Lq(l)). Roughly speakfng, we
would require # = am + C. In Section V, we estimate the
global smoothness of our images to range from 0.3 to 0.6,
while n = 8 and m = 9.



DE VORE et al.: IMAGE COMPRESSION THROUGH WAVELET TRANSFORM CODING 729

D. The Generalized Wavelet Transform Coding Algorithm
with Piecewise Constant Approximations

In this section, we present the piecewise constant version
of the generalized wavelet transform coding Algorithm 1 for
image compression. We then present an error analysis that is
based on the theory of Sections III-A and III-B. Finally, this
analysis is applied to the example of progressive transmission
of coefficients.

Given our previous mathematical framework, the algo-
rithm and error bounds are easy to state. We shall assume
that f is in the space By*'(L9(I)), « > 0 (which is equiva-
lent to the Besov space BX(LY(I) when0 < a<1),0<gq
<o, and ¢7' = p! + «/2 with 0 < p < oo. This corre-
sponds to approximating in L#([) pictures with smoothness
in Bg"(Lq(I)).

Algorithm 2 (Generalized Transform Coding Algo-
rithm).: Choose a positive integer N and numbers 0 < p < o
and 0 < a. Let g satisfy ¢ ' = p~ ! + /2. Write f as
(3.7), where the coefficients ¢ .« are calculated from differ-
ences of near-best approximations S*. Choose quantized
coefficients ¢; , that satisfy

(3.11)

We assume that | c¢; ¢, (||7r,, < 1/N implies & , = 0.
Our compressed picture is

Fi- %

k=0, jed}

1
H(esx =& k) il Ge < ¥

GNLINT

Theorem 6 (Error Bounds): For each 0 < « and 0 < P
< o there exist constants C, and C, such that for all
SeBI(LYD) with 1/g = a/2 + 1/p.

1) The number, .4, of nonzero coefficients & . x satisfies
A= CNN SN ooy (3.12)
2) The error f — f satisfies
WS~y < Csza/2||f”(§f;’*p‘(Lq(1)) (3.13)
and
”f— f” LP(I) = Cla/zcz 'A'ﬁaﬂ”f” B (L)) (3-14)

Example (Progressive Transmission): The important
point about the above theorem is that the method of choosing
approximate coefficients &; , affects most strongly the amount
of smoothness required in an image to achieve a rate of
convergence of 4~ */? The following example, which uses
a strategy of progressive transmission, should illustrate this
point.

We begin with a wavelet decomposition (3.7) of a function
S representing our image. (Either orthogonal wavelets or the
specific method using piecewise constant approximations
given above will suffice.) Progressive transmission, as put
forth, e.g., in [7], is a strategy of successively sending
coeflicients c; , of f to a receiver, who progressively recon-
structs the picture and who may decide when enough detail
has been achieved and the transmission can stop.

We consider two orders in which to transmit the coeffi-
cients. First, as has been suggested several times, one can
simply send the coefficients at the coarsest level first, in some
fixed lexicographical order, and when the store of coefficients
at one level is exhausted, one moves on to the next finer level
(or greater k). If we denote by f the picture reconstructed
using .4 coeflicients sent by this strategy, then it is not
difficult to show that for any 1 < p < o,

1 = Wl oy < €A f L ascorys  (3:15)

and this bound is essentially sharp (i.e., no numbers 8 < «
or g < p can be substituted in the norm of f on the right
side of (3.15)). The inequality (3.15) can be interpreted as
saying that in order for the error in the reconstructed image,
as measured in L?(I), to decay at a rate O(A~*/?), one
requires, roughly speaking, « derivatives in L?(T).

In contrast, we propose a different ordering that satisfies
(3.11). In our ordering, we transmit coefficients in decreasing
order of the values of {| ¢c; ¢, |l Lop}s i€, given A we
have that

&= ¢;x» forthe 4 biggest values of ||c; ;& ([l s)»
0, otherwise.

It is not difficult to show that this choice of & , satisfies

(3.11) and implicitly defines N. When, as usual, we denote

by f the reconstructed image using this order in which to

send coefficients, we have

” - f” Loy = cmar ”f“ B(LI(D))»

where now g = 1/(a«/2 +1/p) =p/d + ap/2). To
achieve an approximation order of .#~%/2 in L?(I) one
now needs only « derivatives in L9(J), and g is now less
than p. This can be interpreted in two ways. First, more
functions f can be approximated to order .+~ */> by the
second method, which requires f to have « derivatives in
L9(I), than the first, which requires f to have « derivatives
in L?([I). Second, if an image has at most 8 derivatives in
L9(I) and « derivatives in L#([I), then, because g < p, we
have 8 = «, and any difference between 8 and « is strictly
reflected in the rate of decay in the error in the reconstructed
images. Asymptotically, our ordering is better.

We conducted an experiment to test our theory at moderate
compression levels. Our experimental setup is as follows. We
write the image f in terms of a pure Haar transform; see
Section III-E. Since our images have 8 bits per pixel, the
highest-frequency coefficients can be represented using at
most 10 bits, the next highest frequency coefficients in 12
bits, etc. For the lexicographical ordering, we start transmit-
ting coefficients at the coarsest level, counting the number of
bits that are needed to send each coefficient without any
entropy coding. Therefore, it takes 26 bits to send each of the
first four coeflicients, 24 bits to send each of the next 12, etc.

In order to construct the approximate pictures according to
the new ordering, we first sorted the set {||¢; ,&; ¢ |l 12y} in
decreasing order, and transmitted the coefficients in this
order. For each coefficient, we transmitted an extra 18-bit
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number that indicated the location (and, incidentally, the
number of bits in the coefficient), and then the value of the
coefficient itself. Given a picture transmitted using the old
ordering in B bits, we transmitted just enough coefficients in
the new ordering to transmit at least B bits.

The results for the L? norm are indicated in Table I. For
the same number of bits we achieve a smaller L*(1) error
(measured in grey scales), and, more importantly, our pic-
tures look better, as the examples given in Fig. 1 shows.

E. Examples of Methods for Grey Scale and
Bilevel Images

We shall next analyze some methods for image compres-
sion in the framework of the mathematical analysis of the
previous sections.

Let ¢ denote the characteristic function of the unit interval
I=1[0,1*:¢(x) =1 for x in 1, and ¢(x) = 0 for x¢1.
By dilation and translation, we obtain the functions
¢ ()= ¢Q*x — j) for j=(j,,j,)eZ? and k= 0.
Thus, ¢; , is the characteristic function of the square I; ,
with sidelength 2% and lower-left corner at the point J/2k,
with the multiindex jeZ}:={jeZ?|0<j, <2% 0=,
< 2%}. We recall that we represent the i image by the functlon

fi= Z Pj¢j,m-

Jezz,
For each algorithm, we compute, for each & = 0 and
J €22, alocal projection
YA
which approximates f in the interval I; .. For each & = 0,

we let S¥:=% i k%) x> and define the coefficients
dj , by

= 5°(f) + i (S*(/)

dj vbj k=
je2}

=$1()) = E > d

0 jez3

kqu k-

Here we have used the refinement equation (2.1) to rewrite
B i k=1 = D@ 2ip.k F Paji+1.2j.k
+ @i 2+ 0k T Py, 2i4 1), k-

For computational reasons we shall examine also the Haar
transform of the representation for f. We let

0, —o<x<0,
-1, 0<x<1,
Y(x):= ) 2
1, 5<x<1,
0, l<x< oo,
0, —-<x<0,
and ®(x):= |1, 0<x<l1,
0, l1<x< oo,

The four basis functions for the local Haar representation of
functions are

v (x, y):= &(x)¥(y),
¥YO(x, y) 1= ¥ (x)¥(y),

¢(2)(x y)
¢(4)( )

Y(x)8(y),
&(x)2(y).

TABLE 1
ERROR IN PROGRESSIVE TRANSMISSION
Old Ordering New Ordering

Bits Coefficients || f — f1 12y Bits  Coefficients | f — 7l 120

19112 1364 25.58 19138 533 22.38

68264 5460 18.87 68272 2019 15.30
240296 21844 13.15 240314 7577 9.53
830120 87380 7.87 830144 27550 5.13

Again, by dilation and translation, we obtain 1//(’) =
vk —p,i=1,---,4, jeZ? and k = 0. Then we
can rewrite

[’ I’
225, k%), 200, 6 F 8w 1,25 kP2 41,20, &
7
Fdij, 25,40, k92, 2540, k

7
+dGj 120401, kPCi+ 1,270+ D k

(1) C(Z) (3)
lp“) l + Lkt J k=1 ¢(2) j k—1

3
8

(C]
c/ k-1

4
¢( ) 1
The coefficients cﬁf)k are determined by the identity

(1)

Cjk-1 @iy 20 k

J. k- @J1,2J42),

s -1 -1 1 1 & po

j k—1 _ -1 1 1 1 Qi+1,2)7), &

= ; ,
P, Lo=1 =1 LI dyja,en.
1 1 1 1 d
Wy @i+1.274 1),k

(3.16)

so that if all the d’; , are integers, then so are the c¢{’,. With
this transformation, we have

395 Zé%

=15 % V% + do,0%o,0-

20 jez? i=1
Since each of the four functions ¥” play a similar role, we
shall often omit the superscript where no confusion will
result.

Example 1: Haar transform for grey scale images. The
Haar transform of an image f can be described as follows.
The local approximations @Qf are taken to be @,f, the
averages of f on each interval I; ,. The coefficients

@i 2in. k> 2j 41,27, k> Ao 2jyn. 00 80 digj g 20k
in each 2 X 2 block satisfy

'’ '’ I
i)y 2in,k ¥ 8ojiv1,2j, 6+ Ao 2jan k

+ d(,2j,+1‘2j2+1),k =0, (3-17)
so we have that all the coefficients (") except c§’ (which is
four times the average intensity of the image over the entire
square) are zero. The basis elements {¢'}, ¥ %}, ¥*;} form
an orthogonal basis for L*(I), and if we ignore the super-
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b

©

Fig. 1. Example of progressive transmission with the Haar transform: (a)
Lenna compressed using the coarsest to finest lexicographical ordering and
240296 bits, (b) Lenna compressed using the best LZ([1) ordering and
240 314 bits, and (c) Lenna compressed by ordering the terms of the wavelet
decomposition in L!([), with 240 320 bits.

scripts we can write

f= > Sk T doobo0s

k=0, jez}

(3.18)

-Pl»—t

for any fe L*(I). Because the representation functions form
a basis, this representation is unique; furthermore, the repre-
sentation is not redundant, in that there are precisely as many
coefficients c; , as pixels p;.

If g:=1/(a/2 + 1/p) = 1 then @, is a bounded linear
projection on LY(I) (and is, therefore, near-best in L9(1))
and the theory of the previous section apphes to show that if
f=1 s X k»0, jez2C k¥, x With coefficients &; , quantized ac-
cording to (3. 11) then

1 = Fll oy <

1/’0‘/2

”f"B,",’"(L”(I))’ (3.19)
where 4/ is the number of nonzero coefficients ¢, ,. (The
fact that we used the representation (3.18) does not change
the theorem.) In fact, DeVore, Jawerth, and Popov [13]
show that for any 1 < p < o, (3.19) is true for the Haar
system, or any system of orthogonal wavelets. In their esti-
mates, C,, tends to infinity as p tends to 1, and in fact (3.19)
does not hold for p = 1, as the following example shows.
We let f be the characteristic function of the interval
[0,2771%. It is easy to show from the definition that fe
B"“I(L"(I)) g '=1+ a/2, forany a < 2, and from the
equlvalence of | f£Il B (L% ,)) and we can take

AN BRI LUD) = HfHL(,) . If we do the calculation
we find that
NS sl oy = I o, fori=1,2,3and k < J.

In addition, ¥§”, is nonzero on [0,27*]%. Therefore, if the
sum for f omits any of the 3J terms c{”, Y/, for i = 1,2,3
and k£ < J, we have
If=7l iy = C”fHU([) = C“f" Bg (L))"

Since J is arbitrary, (3.19) cannot hold for arbitrary .4
when p = 1. This argument signifies that if we decide to
measure the error of image compression in the L'(]) norm,
then the Haar transform does not lead to optimal algorithms
for the class BY(LYU(D)), ¢~' =1+ «/2.

For images, f takes values only from the set 0,+--,2" —
1, and one would not usually calculate the values of d; , to
infinite precision. We consider a new method where

= @2fj,ky

€., the coefficients d; , are now given the value of the
average rounded to the nearest integer value. A nontrivial
argument shows that the coefficients d’; , now satisfy

_ 4 3
3=djaj ket Aok
3 7
+dGj 2k T Qajithin.6 S 3

so we see from (3.16) that the coefficients C(4 % are no longer
zero but take values between —3 and 3. Agam, if we ignore
the superscripts we can write

j,k\&j,k
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for any f associated to an image. Now the représentation
functions {y'}, ¥k, ¥2%, ¥} are no longer linearly
independent, and there are 4/3 times as many coefficients
¢; i as there are pixels p;. However, the extra coefficients all
have |c; ;| =3, so they add little to the number of bytes
needed to represent a picture, and indeed, if the quantization
interval is greater than 8, then the extra quantized coefficients
are all zero. At any rate, the exact Haar transform generates
103 bits per pixel, whereas our redundant, modified Haar
transform using the projector @2 generates 11 bits per pixel.

By Theorem 3, our new functions S* are now locally
near-best approximations in L9(I) for any g < 1 with a
near-best bound that depends on ¢ and 2”. Thus, by our
theory, the new decomposition does satisfy for any 0 < p <
o]

’

”f*f“LD(I) = Cn,p'/ra/z ”fHBg‘l(Lq(”)’
I a 1

0<a, —=5+—.
q 2 b

It is interesting to note that the Haar transformation defined
using real arithmetic does not generate near-optimal approx-
imations in L'(7) to functions in BZ'(L9([)), whereas the
Haar transform as it is more likely to be implemented, with
rounded integer arithmetic, does generate near-optimal ap-
proximations.

We comment here about one final stability consideration
for the projections @2 JS: How many bits accuracy must one
maintain so that @, f is a near-best approximation in L9(I)
for 0 < g < 1? Theorem 3 assumes that the intermediate
averages are calculated perfectly, which for an image will
require that two bits of accuracy must be added for each level
k, k=1,-++, m. In the following theorem, we give an
upper bound on the number of bits that are needed to the
right of the binary point to maintain stability.

We shall work under the following assumptions. Let K
denote the number of bits to the right of the binary point. We
assume that the pixel values p,, j = (jj, j,) €[0,2™ — 1]°,
are integers between 0 and 2" — 1, inclusive. We set a; ,, =
p; for jeZ2, and for k = m,---, 1, we calculate

— !
Qi = roundK(Z(anl.Zjl),k t Q0 124k
Fagj 25400 F 424124, 4)) -
Here the summation and multiplication are assumed to be
computed exactly, and round - is the operator that takes any
real number x and rounds it to have K bits to the right of the
binary point, i.e.,

round ¢ (x) = round(2Xx)/2X.

(It does not matter whether round(1/2) = 0 or round(1/2) =
1.) We then set d;v=Qyf; 1= round(a; ,) for all j, k.

Theorem 7:1f m < 2X~! 4+ | K /2] then forall 0 < g < 1

such that for

and for all n > 0, there exists a constant 5,,’ a

all f: ijjd’j,m’
”@ij,k _f” L1, ) = En,q”@qu.k _f“ LT i)

for all 0 < k <m and jeZj. (Here, | x| is the largest
integer less than or equal to x.)

For example, if the a; , are rounded at each step to 5 bits
to the right of the binary point, then K =5 and @, f is a
near-best approximation if m < 18, which is sufficient for
any purpose. If the pixel data takes values between 0 and 255
then the numbers a; , can be calculated to this accuracy
using 16 bit, signed, integer arithmetic. If one assumes 4 bits
to the right of the binary point, then one requires m < 10,
and 10 bit pixel data can be processed using 16 bit, unsigned,
integer arithmetic.

Example 2: Clipped average transform for grey scale
images. The integer Haar transform of the previous section
achieves near-optimal approximation, but the constant C, ,
depends on the number of grey scale levels 2”. If we want a
transform that achieves near-optimal approximation to func-
tions in B '(L4(I)) where the constant does not depend on
the number of grey scales, we could approximate f on each
interval I, , by taking

d; ;:= max (f},,min (fﬁk,@zfj,k)),

where @, fj.x is the rounded average of f on I, , and f},
and ffk are the first and third quartiles, respectively, of f
on [; .. By Section IlI-A, $*:= %, 52 d; ¢, , is a locally
near-best approximation to f in L9([J) for any 0 < g < oo,
and the constant depends only on ¢ and not on the number of
possible grey scales. (Actually, we can make an arbitrarily
large error in calculating @, f; , because our final approxi-
mation is always between the two near-best approximations
'« and_f}’,.) Note that when k = m or when k = m — 1,
d; v = Q,f; ., because the average of four numbers is
always between the largest and smallest of these numbers. In
addition, if f is nearly affine (linear) on /; , with a nonzero
gradient, then the average of f will most likely be between
the first and third quartiles. Whenever d; , | = Q, Sik-1s
the coefficient ¢{¥) will still be between —3 and 3. If,
however, the average is outside the interval defined by the
quartiles, ¢ could be quite large, increasing the number of
bits necessary to represent f. In this instance we have again
introduced more redundancy, but have achieved a transform
that is more stable in L?(I) for p < 1. For the images we
use in Section V, there are very few times when @2 Jix*
d; x» and these occurrences have very little effect either on
the error or the compressed image.

Note that in Example 1 we could calculate the transform in
O(2%™) time, where there are 22™ pixels. However, to
calculate the first and third quartiles fj1 ¢ and ffk on all
dyadic intervals ; ,, one might simply sort the entire array
of pixels using mergesort, which takes O(m22™) time. Al-
ternately, we could exploit the fact that there are only 2"
different grey scale values to calculate the quartiles in
O(2"22™) time. (In fact, when an interval contains more than
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2" pixels, it is faster simply to compute a table which
contains, for each possible grey scale value, the number of
pixels that take on that value.) To make a fair comparison of
the different techniques one would need to know explicitly
the constants hidden in the various big-O estimates.

Example 3: Median transform for grey scale images. For
this transform one would choose

dj,k:=@1fj\k’

where @, f; , is the median value of f on [/ ,. This
transform is very much like the clipped average transform, in
that it results in near-optimal transforms in L#([) for 0 < p
< oo, with constants that depend on p but not on the number
of grey scale values 2"; furthermore, it takes somewhat more
time to calculate than the rounded Haar transform. For this
transform it is not clear if the rewriting rule (3.16) will result
in lower entropy of the coded coefficients, because most often
the median of f on an interval /; , will not be the average of
f on the same interval. Where f is smooth, however, and is
approximately an affine function on /; ,, then @, f; ;, and
Q, f; « should be close, so (3.16) may be of some benefit.

Example 4: Median transform for bilevel images. When
one compresses a bilevel image where each pixel takes one of
only two values, the median operator @, f; , on each interval
I; , is simple to calculate—it is the most common pixel value
in 1; ,. Assume for simplicity that the two pixel values are 0
and 1. Then the coefficients d; , will take on values 0 or 1,
and d) , will take values from the set { —1,0, 1}. If we are
interested in compressing facsimile images then we shall not
quantize these coefficients in any way, and we send the
coefficients d’ , in the order dj, o, {d} ,}, {d],}, etc., and
successively reconstruct S°, S', §2, etc. The coefficient d; ,
will be zero if the most common pixel in [; , is the same as
the most common pixel in the interval 7, , _; that contains
I; ., and it will be nonzero otherwise. So if we reconstruct
the picture as we receive the coefficients d; ,, we need send
only the absolute value of d;’ «» Wwhich, if nonzero, will
indicate that we must change the intensity of f on I; ; to the
opposite of f on the background interval I, , .

Bilevel images that are in BJ(L(I)) = B;"Z(Lq(l)) for
1 < @ <2 can be approximated to order (A~ of 2) with
O(A") piecewise linear pieces. (Approximation by piecewise
linear functions is discussed in the next section.) What is
interesting, however, is that they can be approximated to the
same order by piecewise constants, because any bilevel im-
age in Bg‘z(Lq(I)) is also in Bg’l(L"(l)) by Theorem 4.
This means that

||f—f~H e = C,r/V‘Dl/2 ||f||B:;(L‘I(1))’

for 0 < @ < 2 if f is a characteristic function.

This transform, which substitutes for 22™ bits representing
pixels p; four-thirds as many bits representing coefficients
dj ¢, will not succeed in compressing the image unless the
entropy of the coefficients is less than the entropy of the
original. Such a condition is equivalent, heuristically, to
there being spatial correlations among the pixels in f that are
removed by the transformation.
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F. Methods with a > 1

Wavelet approximation methods following the framework
of Section IT that use piecewise polynomials of degree < r
can be defined for all r > o > 0. The definitions and algo-
rithms are slightly more complicated than the piecewise
constant approximations. A summary of the methods and
results for r = 2 (piecewise linear approximations) are col-
lected in this section. This is not much of a practical restric-
tion, because it is easily shown that images that have a
discontinuity in intensity across a line must have o < 2 for
approximation in L?(I), p = 1; see Section IV-B.

We start with a linear hat function, which is a special
case of so-called box splines introduced by de Boor and
DeVore [3]. Let ¢ be the continuous, piecewise linear func-
tion with support in [ — 1, 1] whose derivative is discontinu-

ous along the lines x;, = —1,0,1, x, = - 1,0,1, x; — x,
= —1,0,1, and which takes the values one at x = 0 and
zero for x = j, jeZ% j#0. For k=0 define

6,(X):= ¢(2¥x) and for jeZ}:= {jeZ?|0 < j, =2%0
< j, = 2%} define ¢; ,(x):= ¢x(x — j/25).

One must now choose locally near-best, level k approxi-
mations

Pofi= . d; b«
J

'E’Zi

to f. This can be done by finding locally near-best, discontin-
uous, piecewise linear approximations in L9(1; ,) (again @,
will do the job for all g; see [6]), and then using quasi-inter-
polants (see [4]) to project the discontinuous approximations
onto the space spanned by ¢; ,, j€ 22 One again calculates
¢; i from

P f—Pe_ f= Z Ci kPj k

je2}

and chooses €; , as in Algorithm 1. By the results in Section
1I, Theorem 1 still holds, now for 0 < « <2 and 0 < p <
o,

Similar wavelet decompositions can be based on the
Daubechies wavelets of high order, D,, for example.

In a similar way, Algorithm 2 and Theorem 6 can be
extended to any finite « by considering approximation by
piecewise polynomials of higher and higher degree. As a
practical matter, we can prove that o < 2 for any image with
intensity discontinuous across a curve, and we don’t believe
that approximations of order higher than linear are warranted
globally.

IV. AppLICATIONS TO IMAGE COMPRESSION
A. Images should be Approximated in L'

One of the first issues to be decided when applying the
previous mathematical framework to image compression is,
““In which space L?(I) should one approximate an image
f?° In other fields, such as computer-aided design, the
answer is often simple: If one wishes to compress the repre-
sentation of a function f that defines a segment of the surface
of a mechanical part, then one must maintain accuracy in
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L>(I)y—for two parts to fit together, they must be machined
to a given maximum tolerance.

For image compression the answer is not so obvious, and
depends on the sensitivity of the human observer to details at
different frequencies and contrasts. One aspect of this rela-
tionship is summarized by the contrast sensitivity threshold
(CST) curve, which can be describe as follows. Using the
notation of the previous section, it is clear that the difference
N W j, k Tepresents the detail present at
a feature size of 27% or equivalently, at a frequency of 2%
(For simplicity we assume that the representation functions
satisfy ¢; ((x) = ¢(2*x — j) for some ¢.) Consider an
image grey + csin(2%x) of an oscillating high-frequency
pattern on a grey background in x — y space with the
contrast ¢ adjusted so that the pattern is just visible to a
human observer. Let us now increase the frequency and
consider the pattern grey + ¢ sin (2% *1x). Because the first
pattern was just barely visible, the second pattern will not be
distinguishable from grey, and we must increase the contrast
to a value ¢:= é(k, grey) before the second pattern becomes
visible. If our approximation-theory model of an efficient
compression algorithm is applied to the eye, then we can say
that for all 7/ and j,

” C¢i, k ” eye = H é¢j k+1 ” eye *

In other words, to the eye, the inclusion of ¢¢; ; in an
approximate image is equally noticeable as the inclusion of
CP; k41 (When both are at the threshold of what can be
distinguished by people). As indicated, the new contrast level
¢ depends on the background level of grey, and also on the
frequency. Now, if we wish to choose a value of D such that
measuring the error in L?(I) would be the same as the error
the eye ‘‘sees,”’ the following relationship should hold:

(4.1)

The function é(k, grey) is called the CST curve; see, for
example, [18]. Fig. 2 presents one representation of the data
in the CST curve. In this pattern, the frequency of oscillation
increases exponentially from left to right and the contrast
decreases exponentially (at the same rate) from bottom to
top. What concerns us here is the slope of the (purely
vision-system-generated) curve between the oscillatory pat-
tern in the lower middle and right of the figure and the grey
region in the upper right corner, which has low contrast and
high frequency. We are interested in the question of how
much we must increase ¢é

[ cod; 4|l o = | Cod; gl Loy

¢ from ¢ when we double the
frequency, and for which value of p does (4.1) hold? Well
beyond the middle frequency ranges where contrast sensitiv-
ity is highest (this property defines ‘‘middle frequency,”’ of
course!), the curve has slope about —2; definitely the slope is
steeper than —1. A slope of —2 is consistent with most
renderings of this curve. This means that if the frequency is
doubled, one must quadruple the contrast to still see the
oscillations. The only value of p for which (4.1) holds under
these assumptions on ¢ and ¢ is p = 1, because Dl 2ry
= 4|[é441 ]l 11s)- Thus we conclude that the high-frequency
sensitivity of the human visual system is consistent with our

Fig. 2. Oscillating pattern whose frequency increases exponentially from
left to right and whose contrast decreases exponentially (at the same rate)
from bottom to top. Contrast sensitivity threshold curve (for an individual) is
the imaginary curve between the grey regions in the upper left and right
regions and the oscillations in the middle and lower regions.

mathematical model when we choose approximations in
L'(D). If the slope of the curve had been approximately —1,
then the contrast would have doubled when the frequency
doubled, which indicates from (4.1) that the image error
should be measured in L?(7). But this is not the case.

The choice of the space LP(I) has implications in other
areas also. To get O(.A~*/?) approximation in L~?(I) with
O(A") nonzero coefficients, one needs o ‘‘derivatives’’ in
LIy with ¢ = 1/(a/2 + 1/p). Increasing p (from one to
two, say) increases ¢, which implies that one needs more
smoothness in the image for good approximation. In addition,
if one uses orthogonal wavelets as basis elements ®; &> then
one may be tempted to choose the best L2([) approximation
to f. However, if the [? and L' approximations with
identical levels of data compression are put side by side, it is
quickly clear that the features that are saved by the L?
approximation but are left out by the ' approximation are
far less noticed by the human eye than the features left out by
L? and included by L'. To put it briefly, the Z'(7 ) approxi-
mation looks better than the L2(7) approximation. Such
comparisons are made in the section on the computational
results.

B. Images have Little Smoothness in BZ(L1))

To apply the mathematical framework previously intro-
duced, one characterizes the smoothness of images by their
inclusion in Besov spaces BJ(L(I)). We now give a priori
bounds on the smoothness of any image with spatial disconti-
nuities in intensity (that is, almost any image), and in the
section on computation we calculate some g posteriori esti-
mates of the smoothness of certain images. The experimental
estimates, which are lower than the theoretical upper bounds,
indicate that globally, piecewise constant approximations give
as good a rate of approximation as piecewise polynomial
approximations of higher degree. In this section, we assume
a certain familiarity with the definitions and results of Section
I11-B.
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Let us assume for example that an image consists precisely
of darkness on the left (f(x,, x,) =0 for x, < 1/2) and
light on the right ( f(x,, x,) = 1 for x, = 1/2). Because

> (=1 ) S(x + kn),

k=0

we know that | A% f(x)| <2"sup | f(x)| =2". On the

other hand, if | x, — 1/2| > r| k| then |A}, f(x)| =0,

and if h:= (¢,0) then |A} f(x)| =1 for |x, — 1/2] <
sup

rt. Thus, for small ¢,
1/q
(/ |A’,,f(x)|"dx)
Al <t N\ Ly,

1/q
C(/ ldx)
| x,—1/2|<rt

~ Ctl/q

while for 7| k| > V2, I, is empty, so w,(f, 1), is con-
stant for t > V2 /r. So we have

(/ [t ‘w ft)q _)l/q
[ a0,
g
/ﬂ/'[t‘acﬂ/q]q—

+/;/r[z—

The second integral is always finite, whereas the first integral
is finite only for o < 1/g4.

To relate this now to approximation in L?(I), we recall
that

AL f(x) =

wr(f’ t)ﬂ

U

[f] BH(LAD) —

o d 1/q
ol 20

1

o d 1/q
o/, V2/r),] 7’) :

1 o 1 (42)
—=—+ —, .
qg 2 p
so that f is in BJ(L9(I)) subject to (4.2), if and only if
1 a 1
a< —=—+ —
g 2 p
or
2
a< —.
p

That is, if we wish to approximate f in L'(I), then fe
B7(L9(I)),1/q = a/2 + 1, at most for a = 2, and we can
achieve a rate of approximation by wavelets of any smooth-
ness of at most O(A4"'), where 4 is the number of
nonzero coefficients in the wavelet approximation. Similarly,
if we wish to approximate f in L2(]), then o < 1, and we

can achieve a rate of approximation by wavelets of at most
O(N~172).

We can use these estimates and the results of Section HI-C
on pixel quantization to estimate empirically the smoothness
of the intensity field F underlying the image f constructed
from the quantized pixels p; ,,. Let us assume, for example,
that F is in B3(L7(I)) for some 8 > 1, with 1/7 = 8/2 +
1/p. Then FeBJ (L)), 1/q=«/2 + 1/p, for every
a < 1, since BB(U(I)) is embedded in BJ(L9([)) when
B > a. Thus, Theorem 5 implies that the image f con-
tructed from F by pixel quantization will be in B (LY(1))

= By (L)), and | f] Bg(LI) = C”F”B“(Lq(l)) +
C2"""2 ". Thus, the image f is at least as smooth as the
underlymg intensity function F in Bg(L(I)).

Now, it was shown in Section III that f is in By (L(I))
= BZ'(LY(I)), if and only if (roughly speakmg) I|f-
Vil oy S CA” %/2 when approximated by a piecewise-
constant wavelet function f Thus, we can estimate the
smoothness of a image f by estimating the rate of decay of
I f=Fl Loy If, for example, on a log-log graph of error
versus number of nonzero coefficients ./, one observes that
the data lie on a straight line with slope —0.3, one could
reasonably assume that

If= £l L = cH %,

and that f and F are in Bj(LY(1)) for a = 0.6.

Perhaps more importantly, F and f are not in By (L(I))
for larger o if f were in B3(L9(1)), for example, then we
would have observed

”f_f"Lp(I) = CH %,

(4.3)

while in this example we are assuming that we observe only
(4.3), a slower rate of convergence. In other words, if the
observed rate of convergence of our piecewise-constant
wavelet approximation is approximately A4 “e/2 with « < 1,
then f and F can have smoothness at most «.

In Section V, we have carried out this computation for four
test images. In each case, we have observed convergence
rates ranging from O(.A4~%%) to O(A#~%'%), which strongly
suggests that the smoothness of the images ranges from 0.3 to
0.6. We find that these estimates of « correlate well with our
subjective estimate of how smooth each image is. We have
carried out these tests on other images, including a library of
fingerprints and some satellite images; in all cases the
smoothness of the images was between 0.3 and 0.6.

For large values of ./, the fact that f is, in fact,
piecewise constant will cause the error to decay very rapidly,
so one is interested in the decay rate for relatively small
values of 4, or equivalently, at relatively high compression
rates. Alternately, one could estimate the Besov space norm
£l Bz(L2ry from the sequence norm

1/q
£l = ( S e

q
7S ey |
k=0, jezi

as in Section III-B; we do not do this.
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C. How to Choose Quantization Levels

To transmit images along a communications channel, one
sends integer codes that represent the quantized coefficients
of the transformed image. Here we discuss how to choose
quantization levels based on the criterion introduced by the
generalized transform coding algorithm of Section ITI-D.

Specifically, for some N > 0, and a given representation

f= X

k=0, je2}

N LIS
one chooses quantized coefficients €; x such that

s

ek = k)b il Loy < ~N
or

”(cj,k - Cj.k)¢’j,k”LP(1) = (4.4)

1
NVa’

Because || ¢, (|| sy = 272477, (4.4) says that

22k/p
l¢ix=C il < N7 (4.5)
or
Nla
‘2H2k/p|cj‘k—cj,kj SE. (4.6)

Inequality (4.5) implies that when approximating f in L7(I),
one should choose a quantization separation for ¢ . k+1 that is
227 fimes the quantization separation for ¢ - Thus, to
approximate f in L?(I), one should reduce by one the
number of bits one sends of ¢; , for each level k. To
approximate in L'(I), coefficients €, k41 should have two
fewer significant bits than & ', k- (Conversely, if one follows
these quantization procedures, no matter how they were
arrived at, one is in fact approximating f in the appropriate
L?(I) class.) In practice, we suggest setting ¢; , = c¢; , for
k less than some fixed level K , and then reducing the
number of bits in &, , for higher k according to the formula
(4.5). Inequality (4.6) suggests that, equivalently, one could
use the integer code

N4
code; , := round (mcj’k)

to represent ¢; ., which is recovered by

o l+2k/p

= code; .

NUVa
The set {code; ,} is then compressed using some type of
entropy coding.

V. COMPUTATIONAL RESULTS

In this section, we discuss both the implementation (Sec-
tion V-A) and results (Section V-B) of our generalized wavelet
compression Algorithm 2 using piecewise constant approxi-
mations. We shall examine six algorithms discussed in Sec-
tion lII-E; each algorithm will use as a projection [P either the

rounded average of the pixels in an interval, the rounded
average clipped to the quartile values of the pixels in an
interval, or the median of the pixels in an interval. Three of
the algorithms will use the Haar rewrite rule (3.16), while
three will not. We shall report on their performance in L'(7I)
and L?*(I), and we shall estimate the smoothness of our test
images based on the rate of approximation that we achieve.

A. Implementing Algorithm 2

Here we briefly outline implementations of Algorithm 2
described in Section III-E. The theoretical aspects of the
algorithms are discussed at some length in Section III-E, so
we limit our discussion here to implementation questions.
The images to which we applied the algorithms generally had
512 X 512 pixels with 256 grey scales, so, to be specific, we
describe our implementations for this case.

We consider pixels to take integer values between 0 and
255. We first describe how we calculated (approximate)
averages needed for the first two projections (rounded aver-
ages and rounded averages clipped to quartiles). For each
square interval 7, , with sidelength 2°~% pixels, k =
9,-++,0, and lower-left corner pixel indexed by
2°7Kj:=2°7%(j,, j,), we calculate the (approximate) aver-
age value of the function f on L forall j, a; = p;, and
for k =9,---,1and J,

1

4y, jy, k-1 = roundg Z(“(zj,.zjzxk T 801,25k

(5.1)

a0 25+ 0.0 Y A 1.2540.0) | >

where round; rounds real numbers to the closest number of
the form K27 5. In effect, the averages are computed in
fixed-point arithmetic with 5 bits to the right of the binary
point. Because the data are represented using 8 bits, all the
intermediate calculations can be carried out using 16 bit,
signed, integer arithmetic.

For Example 1 of Section III-E, we set the coefficients
d; , = round(a ;. «)» which, like the pixels themselves, take
integer values between 0 and 255. By Theorem 7, we have
kept enough binary digits in our computation so that these
rounded averages are near-best approximations to f on each
interval I, ,. For each jeZ_,, k=9, -, 1, we then set

dfzj'lyzm,k = d<2j..2fz>,k —d;
Ch+1,20p,k = dojivr2i. 6 = 4 ks

df2j|.2jz+l),k = d(Zj\,212+l),k - dj,k—lv
and

’ —— —
d(2j,+l.2j2+]).k_d(2jl+l,2j2+l),k dj,k—l’

It is not very difficult to show that — 192 < dj x <192 and
that

4 7
=4 <dpj 0kt g2k

t e 2nen e Y dojsianen <4 (5.2)
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For the second and third algorithms, we sort the pixels in
each interval I; , into increasing order p,, 0 < i < 22074,
For the second algorithm, the first and third quartiles are
taken to be j; and p, , respectively, where i; = 122060 _
land iy = 322(9 “_For cach Jand k, d;  is calenlates as
max (J;, mm(p,}, round (; ,))). In this case, we have
—-256 < dj , < 256 and .

7 I’
=256 < dz;, 2.k + Aojr1.2)0 0k

+doj 250k T Bjir 24,6 < 256.

(5.3)

For the third algorithm, we take d; , to be the median B, ,
where i, = 222¢~®_and do not bother with the averages at
all. When taking medians we obtain the new coefficient
bounds —256 < d) , < 256 and

—1020 < diyj, 5j,) k + dioji1.27.k

+ A open ko124, 0 = 1020, (5.4)

The first three algorithms set ¢; , = d) , and write

f= X

k=0, jez?

Ci kP ks

where Pk is the characteristic function of Ij_k. The last
three algorithms use the rewrite rule (3.16) to write

3> Z o

4 (’) + d0 0%o.0-
k=0 jen?i=1

In order to apply some type of lossless entropy encoding to
the quantized coefficients, we need information about the
range of the coefficients c{”,. Whenever the range of the
projection Pf is 0,---,2" — 1 (the same as the range of the
pixels), then the range of the ¢!, for i = 1,2,3 does not
depend on the projection used. This is because (3.16) can be
written as

(1)
j/(]

-1 -1 11
(2)
Co=1) _ -1 1 o-1 1
ATl
\C;“)k—l

d(zjl’zllz).k

d(2j|+l.2j2),k

1
1
-d; ,_
Aaji2jy+ .k SRR
d 1
\

Qp+1,2/,+1), k

It is easily seen that the range of the first three coefficients is

—27*0 4 2,-.. 27*1 _ 2 independent of d =
Pf ., 1tis only for the fourth coefficient that the prOJec—
tion plays any part; for the three projections that we use, the
bounds (5.2), (5.3), and (5.4) hold for the fourth coefficient.

We have described our wavelets and the various methods
for calculating the coefficients ¢; > which together form the
transforms we use. For each algorithm we now choose a
quantization strategy that depends on the LP?(]) error metric

that we may wish to apply. The quantization strategy is
parametrized by the maximum quantization interval g. The
quantization intervals g, for the coefficients c; , are chosen
as q9 =g and g, = max(l, round(qu/22 7y, k=
8, -, 0. The quantized coefficients ¢; , are then taken to be
Gy % round (c; , /q,), where, to save a few more bits in the
final compressed data, we always round numbers of the form
K+ 5 sgn(K ) (which occur quite often in practice) to K.
We could very well have used truncation rather than round-
ing and set & , = g, X trunc(c; , /q,); since the results
are very similar we do not report the conclusions separately
here.

B. Computations

In Figs. 3-6, we present various images that have been
compressed using the projections d; , = round (q; ,) (i.e.,
the projector @, of Section III-E), the rewrite rule (3.16),
and the quantization strategy associated with approximation
in L'(I) (i.e., p = 1). We report the number of nonzero
coefficients ¢; , and the number of bytes used to represent
the coefﬁczents ¢,  after encoding by a 10 bit, conditional,
adaptive, binary, arithmetic coder derived from work in [21].
(We encode all the information needed to reconstruct f, i.e.,
the values and locations of the coefficients C; ,.) Each figure
presents for one commonly-used 512 by 512 image the
original and compressed images with g = 128, 256, and
512. (These images are the green components of RGB color
images, so in some cases, Fig. 3, for example, they are quite
dark.) The images can be grouped together, in that the first
and second images are rather easy to compress, while the last
two are more difficult, because of their lack of smoothness.

We have argued on the basis of the CST curve that images
should be compressed in L'(7) rather than L2([1) if we are to
minimize the human perception of the compressed image
error. In Figs. 7-10, we compare images compressed in
L'(I), with g = 1024, with images compressed in L*(D),
with g determined so that the final size of the encoded L>(])
coeflicients was as close as possible to the size of the encoded
L'(I) coefficients. We claim that at least for Figs. 7 and 8 the
LY(I) picture looks better; this effect is also seen at other
compression levels, but does not seem to be as marked for
the more complex pictures.

We now report on various systematic experiments to inves-
tigate the effects of the different projections and the rewrite
rule (3.16) on compression. The results for the four pictures
were similar; in Figs. 11 and 12 we compare the L'(7) and
L*(I) error to the number of nonzero coefficients ¢,y for
each of the six methods when applied to lenna. Three things
should be noticed. First, it seems to make little practical
difference which projection or rewrite rule we use. Second,
the results when the coefficients are not clipped or clipped to
quartiles are essentially the same; this type of clipping was
rarely invoked. This implies, very roughly, that for our test
images the rounded average projection was almost as stable
as the rounded average clipped to quartiles, despite the
different bounds of Theorem 2, which depends only on the
space L(I), and Theorem 7, which depends on both L7(I)
and the number of grey scales. Therefore, the extra computa-



738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992
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Fig. 3. Lenna, compressed using the L'(/) quantization strategy: (a) original; (b) compressed with ¢ = 128 (20236 coefficients,
14 604 bytes); (c) compressed with g = 256 (12068 coefficients, 8925 bytes); (d) compressed with g = 512 (7001 coefficients,

5404 bytes).

tion to compute the grey scale quartiles on each dyadic
subinterval of [0, 1]? in order to compute the more stable
clipped average projection operator does not seem to be
worch the trouble. Third, the advantage of having small
values of c}f"k when the rounded average is used as a
projection and the rewrite rule (3.16) is used (i.e., what is
closest *2 the classical Haar transform method) seems to
result in slightly fewer coefficients for a given error than the
other methods. Because of this, we shall use this combination
of projection and rewrite rule when comparing the differ-
ences in performance among the various images.

We next compare the error || f— Il Lo to A, the
number of nonzero coefficients in f. (We normalize f so that
black pixels are zero and white pixels are one.) Fig. 13
presents the case p = 1; i.e., the error was measured in
L'(I) and the L' quantization strategy was used. When there
are over 100000 coefficients (high image quality), the fact
that the image is in fact piecewise constant leads to a very
rapid decrease in the error with any increase in the number of
coefficients, so for the moment we concentrate on the part of
the graphs with between 100 and 30,000 coefficients. In this

range, the graphs for all the images are almost linear, so that
to a very good approximation || f — f|| s, = CA™* for
different values of C and B. Because of (1.4) and (3.14) we
can use this information to estimate the smoothness of the
images: we estimate fe BJ(LY(])), o =~28 and 1/q =
a/2+ 1,and | f| paczacry = C. The results (using the eight
leftmost data points for each image) are reported in Table II.
The first two images have a Besov space smoothness of
a = 0.6; o = 0.35 for the other images. (The correlation
coefficient indicates the goodness of linear fit on a log-log
scale.) Because in all cases « < 1, these figures suggest that
piecewise constant wavelet approximations achieve the high-
est rate of approximation for image compression in the
L'(1) metric. That the latter two images have significantly
less smoothness than the first two images expresses mathe-
matically what may be concluded on a purely subjective basis
simply by looking at them.

The corresponding graphs when approximating in L>([1)
are given in Fig. 14. Interpreting this data is more difficult.
On the one hand, it seems that the rate of error decay in
L*(I) is sometimes greater than that in L'(J). On the other
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Fig. 4. F-16, compressed using the L'() quantization strategy: (a) original; (b) compressed with ¢ = 128 (24 309 coefficients,
18420 bytes); (c) compressed with g = 256 (14 613 coeflicients, 11376 bytes); (d) compressed with g = 512 (8613 coefficients,
6736 bytes). (The left-most column of F-16 contains black pixels, with the value zero, thereby reducing the amount of compression
that we achieve.)

hand, this contradicts the fact that fe BJ(L(I)) with 1/g
= o /2 + 1/2 implies that fe BX(L(I)) with 1/s = a/2
+ 1, so that any convergence rate achievable in L?([) is also
achievable in L'(I). (Of course, it is possible that no higher
rate is achievable in L'(7).) It could happen that the fast
convergence rate for large numbers of coefficients observed
in the L'(7) approximation kicks in much earlier with L>([)
approximation, say around 1,000 coefficients. At any rate,
we present a summary of the data in Table III, which was
computed with the three leftmost data points in each graph.

Our theory bounds the number of nonzero coefficients
I ko when what is of practical interest is the number of bytes
needed to represent these coded coefficients. We compare
these two measures of compression in Fig. 15. We calculate
349525 = § x 2'® coefficients & ,; except when we used
median clipping together with the rewrite rule (3.16), all the
coefficients can be represented using 10 bits. To algebraically
encode these coefficients we used a 10 bit, conditional,
adaptive, binary, arithmetic coder derived from work in {21].
The coder as implemented achieves a compression rate of at
most 2,000 to one, even if all the coefficients are zero. (We

did not add information to the coder about the maximum
possible number of bits in the coefficients ¢; , given the
quantization level g, at level k. We did, however, reorder
the coefficients [in an image-independent way] to improve the
performance of the coder.) Because of this, the coder over-
head is relatively large when there are fewer than 1,000
nonzero ¢; ;, so we did not include these data points in Fig.
15. We also left out the data points with median filtering and
the Haar rewrite rule. A linear fitting to the log-log data
shows that N = 1.102.4# %%, where N is the number of
bytes in the encoded coefficients, with a correlation coeffi-
cient of 0.998. We postulate that the slight upward curve in
the graph when nearly all the C; , are nonzero arises because
there are then no small coefficients, as there usually are when
there are only few nonzero coefficients, so it takes more bits
to encode the larger C; ,.
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Fig. 5. Bridge, compressed using the L'(/) quantization strategy: (a) original; (b) compressed with ¢ = 128 (44 599 coefficients,

28917 bytes); (c) compressed with g = 256 (23 286 coefficients,
8069 bytes).

APPENDIX

PROOFS OF THEOREMS

Theorem 2: For each g € (0, o] there exists a constant C, such
that for all fe L9(1I),

I =@ oty = Coll £ = @S N ocay-

Proof: Because, by the previous remark, the theorem is true
for g = 1, we concentrate on 0 < q < 1. First, it is clear that Q,f
is defined for fe L9([I), because medians are defined for all mea-
surable functions, not just integrable ones. Next, we show that Q, is
a bounded (nonlinear) operator on L9(I). Assume, without loss of
generality, that @, f = m is greater than zero, where m denotes a
median of f on /. Then we have

S(x) dx

xy=m

/ m9 dx
S

(xX)=m

e /, | £(x) |9 dx = /f
’ (

v

v

1 1
qu = E”@]f” q]ﬂ(n-

15292 bytes); (d) compressed with ¢ = 512 (11928 coefficients,

Therefore, for any f,
QSN ocry = 2901 £ L9

Although @, is a nonlinear mapping, it is linear with respect to the
subtraction of constant functions, that is, for any v such that
v(x)=c for all xel, Q(f-v)=Q,f— Qu= Q,f — v for
some choice of @, f and @Q,(f — v). Therefore,

”@1f_f” (iq(l) ”@1f_ @qf“tzﬂ(l) + ”@qfff“ Z"(l)
H@](f"_@qf)”‘lflm + QS = S oy
20Qqf = S oy + 1Qqf = SN o)

= 3”@qf—f” Zﬂ(l)*
Therefore, |@,f - f] Ln = 3]/q|l@qf“f” L9n- o

We remark that a more delicate argument shows that we can take
t
C, =271 see [6].

A

IA

Theorem 3: Assume that N > 0 and mutually disjoint (measura-
ble) sets I; C I are given for j = 0, -+, N such that [ = U;VZOI,-
and for all xel,

Sf(x) = é/xlj(X);
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Fig. 6. Airport, compressed using the L'([) quantization strategy: (a) original; (b) compressed with g = 128 (47 548 coefficients,
30630 bytes); (c) compressed with ¢ = 256 (23 979 coefficients, 15529 bytes); (d) compressed with g = 512 (12 195 coefficients,

8134 bytes).

ie., f takes only finitely many evenly spaced values on 7. If we
define @, f to be @, f rounded to the nearest integer, then for each
0 < g > 1, there exists a constant C,,, ¢ Such that

1 = Quf oty < Cu gl S = Quf Il 1ocsy-
Proof: We know that
QS = Sl soen, = C QS = f 1 oy
so if we show
QS = Qo ety = Cn. QS ~ £ 1 o,
then
18 = Sl ey = 1@2f = Q1 Goy + Q1S = £ %,
= Cn, | Quf = 1| a0,

We can always take @, f to be integer valued.

If f)zf = Q, f then we are done. Otherwise, assume @2/‘ =Q,f
+ M, M > 0. (The argument is the same when M < 0.) Because
f)z S is @, f rounded to the nearest integer, we must have that
Q,f =2 Q,f+ M — 1/2. Therefore, because S <N and f takes
only integer values, the set Q:= {xelI|f(x)z@Q,f+ 1} has

measure
Q] = (M- 1/2)/N.
Thus,
“@zf“ Q.S n =M
and

1/q
>
”@1f‘f”1ﬂ(1) = (/ lqu) = [(M‘ 1/2)/N] 7
Ja

Consequently,

192/ = @il oery < M/(M = 1/2) INVQf = £ 1o,

< @N)"NQ S = ] 1oy- 0

Theorem 4: If f takes only the values O and 1in /, 1 < a < 2,
and feBJLP(D) = BY*(LP(I)), then feB'(LP(I)) and
”f”BgJ(LP(I)) = za“f“B,‘,"Z(L"(I))'

Proof: We claim

[82,f(x)| = [ F(x +2h) = f(x)]

< |85 = 1 f(x+2h) =2/ (x+ h) + f(x)].
(6.1)



742

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992
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Fig. 7. (a) Lenna compressed in L*(I) with q = 303 (4545 coefficients,
3587 bytes). (b) Lenna compressed in L'(I) with g = 1024 (4514 coeffi-
cients, 3587 bytes).

If f(x+ 2h) = f(x) then this is obvious. If S(x+2h) # f(x)
then regardless of the value of f(x + h), we have | AL, f(x) [ =1
= | 4% f(x)|. Since this is true for all x, w(f,20), < wy(f, 1),
Substituting this into (3.3) shows that (wal BeLP(y) S
24011 By H(LP(I)"

Lemma 1: Assume that p >0, 0 < o < 2/p, and 1/g=af2
+ 1/p. Then, there exists a constant C such that for each f of the
form (3.9),

I s 3czacy < CIL N 1mery227. (3.10)

Proof: We have
A1 vy = S 1=(I)-

This bounds the first term on the right of (3.3) in the correct way.
We next want to bound the gth power of the second term,

/:[t'%,(f, t)q]q?,

o FEEE .

Fig. 8. (a) F-16 compressed in L?(I) with q = 340 (5038 coefficients,
4042 bytes). (b) F-16 compressed in L'(]) with q = 1024 (4925 coeffi-
cients, 4026 bytes).

where

w,(f,t)3= sup [ f(x+R) - f(x)]9dx.

|al<t /1,

If x and x + A are in the same square I; . then | f(x + h) —
S(x) |9 = 0; otherwise, | f(x + h) — f(x)|9 < 29 S | §oo(1)- The
points x and x + A are in the same square unless the line joining x
and x + & crosses one of the 2”*! lines x = i2 " or y = 2™ ™,
0 < i< 2™, in which case the distance from x to that line must be

no greater than | & |. Therefore, the set where | f(x + k) — f(x) |9

is nonzero has measure at most 2”*!| &|; of course, I, is con-
tained in 7, so the measure of I, is also less than 1. Thus, the
measure of the set where | f(x + h) — f(x)|? is nonzero is no
greater than min (1,27 *'| 4|). Therefore,

/ | f(x+ B) = £(x) |7 dx < 27] £ ]| 4y min (1,274 | 1]).
Iy

We can conclude that

(/5 1) g = 290 f | dungpy min (1,27+17)
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(b

Fig. 9. (a) Bridge compressed in L*(I) with q = 330 (5674 coefficients,
4390 bytes). (b) Bridge compressed in L'(I) with g = 1024 (6258 coeffi-
cients, 4401 bytes).

and

/Om[t_a‘*’l(f’ t)q] q?

—m-t dt
= /2 [tiu“’l(f”)q]q_
0 t

dt
C q
+/ [t wl(f.t)q] —
Jo=m-1 t
5—m=1
=29 1| Zm(l)/ tmeapmEl gy
0

(=]
F2Y S N [
2-m—1

2(qu— 1)(m+l)2m+l

2aq(m+l)
= 2q|(‘f”2m(l)( +
1 - «agq ag

1 1
= 20 *t@agema) g %mm( 1 - ag * a‘q)

The first integral on the right is finite when ag<l,ie., a<2/p,
and the second is finite since g > 0. The lemma follows. 0

(b)

Fig. 10. (a) Airport compressed in L?(1) with ¢ = 318 (5848 coefficients,
4339 bytes). (b) Airport compressed in L'(I) with g = 1024 (6240 coeffi-
cients, 4294 bytes).

Theorem 5: Assume that p > 0,0 < o <2/p,and 1/q = o /2
+ 1/p. Thena) if 1 < p < o0 and P is the L2(J) projection (i.e.,
the average of the intensity), or b) if 0 < p < o and P is a
near-best projection operator in L9(1), there exists a C such that
for all F,

1S sgrccocy = CIFN paacracr, + C25m27".
Proof: We can set

SYF):= 3 (B kF)¢)

Pt
JEZR

and define c; , by

Cj.k¢j.k-

F= éo(sk(F) -SYF) = X

k=0, je2}

Then, one can conclude from [17] in case a) and [15] in case b) that
the sequence norm

1/q
“Cj, «®5 il Trn)

el X

k=0, je2}
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L' Error versus Number of Coefficients
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-1.0 - b
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é 20 [ ok ]
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g 3 :
5 -2.5 [ o©rewriitten, not clipped sk ]
- s rewritten, clipped to quartiles .
= rewritten, clipped to medians x
T30 Lhot rewritten, not clipped s ]
- not rewritten, clipped to quartiles
=3.5 &  =xnot rewritten, clipped to medians b
74.0 | 1 i 1 1 1 1 1
20 25 30 35 40 45 50 55 6.0

Number of Nonzero Coefficients (log scale)

Fig. 11. The L'(J) error versus the number of nonzero coefficients ¢, ok

for the six methods described in the text applied to Lenna. Here, we quantize
in Ll(I) with g =2/ i=1,-

L2 Error versus Number of Coefficients

0.0 Lenna
. E T = T T
-0.5 | ]
-1.0 - . ik ]
® e
a% c
§ -1.5 f o> b
o] a%
& -20F} ot —
s *
S _2.5 [ orewritten, not clipped :* b
«, s rewritten, clipped to quartiles ",
* rewritten, clipped to medians
30 Lhot rewritten, not clipped ]
« not rewritten, clipped to quartiles
=3.5 - =not rewritten, clipped to medians _i
—4.0 L ) L ' L I L 3
20 25 30 35 40 45 50 55 6.0

Number of Nonzero Coefficients (log scale)

Fig. 12.  L2(1) error versus the number of nonzero coefficients ¢; , for the
six methods described in the text applied to Lenna. Here, we quamize in
LX(Iywith g =2 i=1,-

is equivalent to the Besov space norm | F| Ba\(L9(ry- From the
comment at the end of Section III-B,

1/q

i kP, k"L"(l) 5

”S'"(F) ” Bq“"(L"(I)) = ( Z Z ”

=0 jex}
furthermore,

ZZII

1/q
i k9, k”LP(l)) <|F|,=CJ|F| B2(LITy -
k=0 jez}
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L' Error versus Number of Coefficients

0.0 T T T T T T T
_0'5 - 4
-1.0+ 3 B

-~ “ % : ooy
2 % ¥y
g -15F[ * o & ]
@ % &
o 2 a
& -20¢f DI ]
~ o 0%
5 a
ui ~2.5F clenna a o0k 4
- af—16 9
_30 [ obridge = ]
*airport
-35 L ¢ ]
o
_4.0 1 1 1 1 1 1 PR
20 25 30 35 40 45 50 55 6.0

Number of Nonzero Coefficients (log scale)

Fig. 13. Ll(I) error versus the number of nonzero coefficients C¢;  for the
projector Q, and the Haar rewrite rule (3.16) applied to the four images
Lenna, F-16, bridge, and airport. Here, we quantize in L'(J) with g = 2/,
i=1,---,15.

L? Error versus Number of Coefficients

0.0 T T T e Ty
-0.5 ]
-1.0 - *0y h

; §oR

) f aa 3
o ,1 5 |- Oa e -
& g
= o
& -20 r a0 0% b
s A of%
.
W -2.5}F olenna ok ]
4 af-16

—30 L ¢ bridge o b

* airport
-35F ]
_4.0 1 1 1 i 1 L 1
20 25 30 35 40 45 50 55 6.0

Number of Nonzero Coefficients (log scale)

Fig. 14. L2(1 ) error.versus the number of nonzero coefficients C;  for the
projector Qz and the Haar rewrite rule (3.16) applied to the four images
Lenna, F-16, bridge, and airport. Here, we quantize in L2(I) with ¢ = 2,
i=1,--+,10.

TABLE 1L
ESTIMATED SMOOTHNESS OF IMAGES: APPROXIMATION
i~ L'(1)
Lenna F-16 Bridge Airport
Estimated o 0.599 0.597 0.370 0.306
Estimated || f || BILID) 0.407 0.405 0.275 0.218
Correlation Coefficient ~0.999 -0.993 -0.994 -0.992
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File Size versus Number of Coefficients

6.0 T T T T T
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L
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T
.
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Fig. 15. Compressed file size, in bytes, versus the number of nonzero

coefficients. We have compared all the data with more than 1000 coefficients

except when median clipping and the Haar rewrite rule (3.16) were applied,
a case for which our entropy encoder was not set up.

TABLE Il
ESTIMATED SMOOTHNESS OF IMAGES: APPROXIMATION
N L2(])
Lenna F-16 Bridge Airport
Estimated o 0.618 0.626 0.337 0.287
Estimated || f| BELIUDY 0.690 0.807 0.330 0.275
Correlation Coefhicient —0.999 —-0.997 -0.998 -0.997

Therefore,
A1 B (LI
= c(Is"(F)| seiey + 1 = ST(F) E;‘"(L"(l)))
< C(JIF| BEI(LATY)

+2°%"| f = S™(F)| qu)) by Lemma 1
= C| F| Be oy + C297277,
because at each point x, | S™(F)(x) — f(x)| =2~"" .. O

Theorem 6 (Error Bounds): For each 0 < « and 0 < p< ™
there exist constants C; and C, such that for all fe B YLy
with 1/g = «/2 + 1/p.

1) The number, .4, of nonzero coefficients & 'k satisfies

N CONI 1 acsocy- (3.12)
2) The error f — f satisfies
1f =Sl ey = CzN_a/ZHf”%é’ﬁ(L"u)) (3.13)
and
If =l oy < CREC, A7 1| By (3.14)

Proof for 0 <p=<1and a < 2/p:

1) Because of the equivalence of the two norms |/, and
"-f“ B,‘;'l(L"(l))s we know

> , | ¢ k%l dry = CSL %g-‘(um)- (6.2)
k=0, jez2

Because ||c; x; (|l 77, must be greater than 1/N for &; ,
to be nonzero, there are no more than C\N| f|| %:,I(La(l))
nonzero coefficients ¢; ,.

2) Let v; 1= ¢; 4 — C; 4. By definition of &; ,,

H'Yj,kd)j,k” oy = N’
and either &, =0, in which case |v; 9, (% =
{ ¢ kb 9oy, or €; « * 0, in which case | ¢; ,&; 1 9r1)
= 1/N = ||v; x9; il £ 2(r,- Therefore, by (6.2), we have

> , v, k8, Loy = Collf 1 fecrocr)-
k=0, jez}

The coefficients v; , can be partitioned into sets %,,- -
M= C, ”quBg"(Lq(l))N’ such that

*y Fpy» with

2
> 1. ki alEeny = =

* M
N .
¥, k€ F N

n=1,-

(6.3)

This is accomplished simply by sorting ||y, @, x| 7+, in decreas-
ing order and adding v; , to %, until the sum in (6.3) is greater
than 1/N. The process is repeated with the remaining coefficients
added to #,, n = 2,---, M. Because each term is individually less
than 1/N, (6.3) follows. Because each sum is at least 1 /N, the
bound on M is immediate.

The functions f,, := Xy e Vi kP« satisfy

1/q
Wilsgrann = €[ 5 Ty alling) = N

V), k€T

(6:4)

So,

N M
lf- £l fﬁ(n = E_:‘fn“lljﬂu)

IA

M
DNl oy truefor0<p=<1,
n=1

A

M
c Zl | £l 53«‘@“(1))
because BZ'(L9(1)) « L?(1)

M
<C Z N-pla

n=1

from (6.4)

=C| sl %;;J(L‘I(I»Nlip/q
=C|fI| qu‘l(Lq(,»N’“”/z by definition of gq.
Taking pth roots of boths sides shows that

(| oy = Cl S qBé‘v"(Lq(I))N_a/z-
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Inequality (3.12) implies that N=¢/2 < Cp/24~272 || £ | 5457 Loy

Substituting this into (3.13) and using the relationship g /2 + q/p
= 1 gives (3.14).

A more sophisticated argument in [13] shows that Theorem 6
holds for all0 < p < ® and o > 0; in this case, however, C,— o
as p — o, This inconvenience can be gotten rid of by using a more
complicated algorithm; see [13].

Theorem 7: 1f m < 2%~1 4| K /2] then for all 0 < ¢ < 1 and
for all n > 0 there exists a constant C .q such that for all f=

n
Z',-pjd’j‘m,
”@zfj,k -7l L) = Cn,q”@qu,k =Sl Ldj )

forall0 < k < mand je 3. (Here | x| is the largest integer less
than or equal to x.)
Proof: Recall that
a4 om=p;, jeZ?,
and

a; .y = round .

J 1 (@), 276 + Q2+ 1,2)y). k

Y0 2+0,6 + ), 41,201, 4) |5

for jeZ% and k = m,- -+, 1.
If we can ensure that
1
[a, =@y f; ] = " (6.5)
for all j and |k, then we can use the following argument to prove the
theorem. If @, f, , = round (a; ) is equal to Q. S}, &, then we are
done because the median is near best in L9(I) forany 0 < g < oo.
If not, assume without loss of generality that @, Jie>Quf; 4, so
that Q, f; , = @, f; , + M for some positive integer M. Thus, we
can assume that a; , = @, f; , + M — 1, by the definition of
round, and by (6.5) we conclude that QS z2Q fj+ M- 3.
The existence of C,, , now follows in the same way as in the proof
of Theorem 3.
So we wish to prove (6.5). We first note that

ak— @2fj,k =0,
for k=m —|K /2|, -+, m, because each multiplication by 2
results in two more bits to the right of the binary point, which can
be represented exactly using K bits to the right of the binary point.
One can show by induction that for k < m — |K/2 | we have
la =~ @Qf; | < 275 (m - LK /2] - k),

because each application of round x Tesults in an additional error
of 271 The maximum of this quantity, 2-%~1(m — LK /2],
occurs when k = 0. Therefore, (6.5) holds if

275 Y m - |k )2]) =< %,

or
m=2%-14 LK/2],
as hypothesized. O
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