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Abstract. Recently, a theory, developed by DeVore, Jawerth, and Popov, of nonlinear ap-

proximation by both orthogonal and nonorthogonal wavelets has been applied to problems in
surface and image compression by DeVore, Jawerth, and Lucier. This theory relates precisely the
norms in which the error is measured, the rate of decay in that error as the compression decreases,

and the smoothness of the data. In addition, one can interpret the error incurred by the quantiza-
tion of wavelet coefficients in terms of this theory. In this talk we give an overview of the previous
results, and expand our argument, made earlier for image compression, that frequency-amplitude
response curves that arise quite naturally in problems involving human visual and audio percep-

tion should be used to decide the quantization strategy for wavelet coefficients and the norm in
which to measure the error in compressed data.

1. Introduction

In this talk we present an overview of recent theoretical results about methods
of data compression based on wavelet decompositions. This theory, developed by
DeVore, Jawerth, and Popov [5], relates precisely a one-parameter family of norms
used to measure the error between the original and compressed data, the rate of
decrease in this error as more coefficients are included in the approximation, and the
smoothness of images in certain smoothness classes called Besov spaces. We recall
how this theory has been applied to surface compression [4] and image compres-
sion [3]. The paper on image compression emphasizes how coefficient quantization
strategies can be interpreted in this theory, and, alternately, how the theory can be
used to choose a quantization strategy. In addition, [3] introduces the notion that
the Contrast Sensitivity Threshold (CST) curve [7], which gives the relationship
between contrast and frequency at the limits of human perception, should be used
to choose the norm in which to measure the error in compressed images and to
choose the quantization strategy.

In this talk we explain further how the functional relationship between intensity
(or amplitude) and frequency at the limits of human perception in vision or hearing
can guide one to choose norms and coefficient quantization strategies to minimize
the human perception of error. Furthermore, we emphasize that this theory gives a
practical way to measure the smoothness of functions representing surfaces, images,
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or sound data, using a notion of error that is capable of measuring the smoothness
even of the discontinuous, almost fractal, functions that arise, e.g., as image inten-
sities. Finally, we give an explicit series of steps that can be followed to apply this
theory to any situation where the perception of a signal or function depends in a
known (and hopefully well-behaved) way on both intensity and frequency.

2. Mathematics

2.1. Wavelet decompositions. A wavelet decomposition of a function f
defined on R

d is (typically) an expression of the form

(2.1) f =
∑

k≥0, j=(j1,...,jd)∈Zd

cj,kφj,k,

where the coefficients cj,k depend on f and the functions φj,k(x) := φ(2k(x− j/2k))
are the dyadic dilates (by 2k) and translates (by j/2k) of a single function φ called a
wavelet. (Orthogonal expansions in R

d usually use 2d−1 functions φ.) We consider
a wavelet transform to consist of (1) the functions φj,k and (2) a particular method
of choosing the coefficients cj,k. (If the functions φj,k are redundant, or linearly
dependent, then there may be more than one way to calculate the coefficients cj,k.)

When wavelet decompositions are used as a basis for compressing digitized im-
age or sound data, or surface data that is sampled from a model, we must associate
a function f defined on R

d to discrete data that is defined only at the sample points.
While one could associate to each data set a function f that is independent of the
wavelet transform being applied, it is more amenable to our analysis to allow the
representation to depend on the transform; often a discrete transform is applied to
the discrete data to get coefficients cj,k, and we define f by (2.1). We then view
the data compression problem as one of approximating f by a second (compressed)
function f̃ . For a lossless algorithm, the original and compressed functions will
be the same and the error between them will be zero. We will generally consider
algorithms that introduce differences between the original and compressed data in
order to achieve higher compression levels.

Given the wavelet decomposition, which we consider to be determined by the
functions φj,k and the method of choosing the coefficients cj,k, the algorithm calcu-
lates quantized coefficients c̃j,k, and the compressed function takes the form

(2.2) f̃ =
∑

c̃j,kφj,k.

The method of quantizing coefficients involves applying a strategy, which we con-
sider fixed, that depends on one or more parameters, which are allowed to vary. We
store or transmit a coded representation of the coefficients c̃j,k, typically through
some type of entropy coding.

In the following sections we examine and discuss the mathematical issues
treated in the earlier paper [5] together with the applications and extensions to
the problems of image and surface compression found in [3], [4].



2.2. Error metrics. Based on the intended application, one must decide
how to measure the error between f and f̃ , which we assume to be defined on some
interval I in R

d. (For example, d = 1 for audio data and d = 2 for image or surface
data.) There are many possible choices of such a metric; we will use (somewhat
arbitrarily) the Lp(I) norms with 0 < p ≤ ∞ as error metrics. These norms, defined
by

‖f − f̃‖Lp(I) :=
(∫

I

|f(x) − f̃(x)|p dx

)1/p

,

include as special cases the mean square error

‖f − f̃‖L2(I) :=
(∫

I

|f(x) − f̃(x)|2 dx

)1/2

,

the mean absolute error

‖f − f̃‖L1(I) :=
∫

I

|f(x) − f̃(x)| dx,

and the maximum error

‖f − f̃‖L∞(I) := max
x∈I

|f(x) − f̃(x)|.

The parameter p gives added flexibility, in that the relative sizes of the component
functions cj,kφj,k with amplitude cj,k and frequency 2k, given by ‖cj,kφj,k‖Lp(I),
can be changed by varying the parameter p. In other words, varying p allows us to
change the relative importance of amplitude and frequency in measuring the size of
basic functions.

One error metric will not suffice for all applications. For surface compression
it is natural to choose the L∞(I) metric, because two parts that are to fit together
must be machined to a certain fixed tolerance. For image compression, one hopes
to choose an error metric that parallels the human visual system, so that image
differences judged to be large by the human eye are mathematically large and image
differences which, for whatever reason, are insignificant to the eye will have small size
in the error metric. There is a similar design issue for audio data. One important
property of both the human visual and auditory systems is that the lower threshold
of perceiving a signal depends on both the intensity and the spatial or temporal
frequency of that signal. We argue in §3.1 that these intensity-frequency curve at
the threshold of human perception can profitably be used to choose an error metric
for data compression.

2.3. Algorithm efficiency and smoothness of data. After deciding on a
space X whose metric ‖ · ‖X will be used to measure the error between f and f̃ , we
address the question of how to measure the efficiency of a given algorithm. Recall
that an algorithm depends on three things: the choice of representation functions
φj,k, the method of calculating the coefficients cj,k (which together we call the
transform), and the quantization strategy. A given algorithm generates different
compressed functions f̃ depending on the parameters of the quantization strategy.



We will compare algorithms on the basis of the error ‖f − f̃‖X and the number
of nonzero quantized coefficients c̃j,k. Suppose that a compression algorithm pro-
duces a family {f̃} of approximations corresponding to different parameters in the
quantization strategy. We introduce for this algorithm the error function

aN (f)X := inf
f̃ has ≤N coefficients

‖f − f̃‖X .

In other words, aN measures the compression error that is achieved if the number
of coefficients in the compressed function does not exceed N .

We ask the following fundamental question: If the φj,k are fixed, how smooth
are functions that can be approximated to O(N−α/d) with ≤ N coefficients by some
algorithm that uses the functions φj,k. For the spaces X = Lp and for many classes
of representation functions φj,k, DeVore, Jawerth, and Popov [5] have shown that,
roughly speaking,
(2.3)

σN (f)Lp(I) := inf
all algorithms using φj,k

aN (f)Lp(I) = O(N−α/d) ⇐⇒ f ∈ Bα
q (Lq(I)),

where q = 1/(α/d + 1/p) and the Besov space Bα
q (Lq(I)) consists of functions that

have α bounded “derivatives” in Lq(I). More precisely,
( ∞∑

N=1

[Nα/dσN (f)Lp(I)]q
1
N

)1/q

< ∞ ⇐⇒ f ∈ Bα
q (Lq(I)).

In particular, this is true for box splines [1] (with piecewise constant approximations
as a special case) when 0 < p < ∞ and orthogonal wavelets [9], [2] (of which the
Haar transform is a special case) when 1 < p < ∞. (Later, DeVore, Petrushev,
and Yu [6] extended the results for box splines to the case p = ∞.) So, if we
consider N , the number of coefficients in the representation of f̃ , to be a measure
of the amount of information one must use to represent the compressed data, one
can hope to achieve a particular rate of error decay in Lp(I) if and only if f is in
a specific Besov smoothness space Bα

q (Lq(I)). In proving this theorem, DeVore et
al. provide specific algorithms for each set of functions φj,k that give the optimal rate
of convergence. One should note that for a wide class of representation functions
φj,k, the optimal selection of coefficients for a given α results in the same smoothness
classes.

The equivalence (2.3) suggests that membership in Besov spaces Bα
q (Lq(I))

is an appropriate way of classifying the smoothness of data, in that we can check
the effectiveness of a given compression algorithm by seeing how it performs on
functions in Bα

q (Lq(I)). However, it is of practical interest to measure smoothness
in the spaces Bα

q (Lq(I)) only if common surfaces, images, or signals are in these
spaces. In [3] and [4] evidence is presented that this is indeed the case for surfaces
with various singularities and with images.

2.4. Algorithms for data compression. To say that a function f ∈
Bα

q (Lq(I)) has enough smoothness to be approximated to O(N−α/d) in Lp(I) by



functions of the form f̃ , does not, in and of itself, explain how to find an algorithm
to calculate a particular set of approximations f̃ . We briefly describe here a partic-
ular algorithm for orthogonal wavelets and indicate how similar algorithms can be
constructed for box splines and other wavelets.

We restrict our attention for the moment to one dimension. Given any positive
value of r, Daubechies [2] and Mallat [8] have shown how to construct a Cr function
φ such that φj,k(x) := φ(2kx − j), the dyadic dilates and translates of φ, form a
complete orthogonal set in L2(I). (In R

d, there is a set of 2d−1 such functions that
together satisfy this property.) Thus, any function f ∈ L2(I) can be written as

(2.4) f =
∑
k∈Z

∑
j∈Z

< f, φj,k >

< φj,k, φj,k >
φj,k =

∑
cj,kφj,k.

It is clear from the orthogonality of {φj,k} that when approximating f in L2(I) by
f̃ =

∑
c̃j,kφj,k with at most N nonzero terms, then the best choice consists of the

N largest values of ‖cj,kφj,k‖L2(I), i.e.,

c̃j,k =
{

cj,k, for the N largest values of ‖cj,kφj,k‖L2(I),
0, otherwise.

In this way we minimize

‖f − f̃‖2
L2(I) =

∑
k∈Z

∑
j∈Z

‖(cj,k − c̃j,k)φj,k‖2
L2(I).

This suggests that after fixing a positive ε, one can choose any numbers c̃j,k that
satisfy

(2.5) ‖(cj,k − c̃j,k)φj,k‖L2(I) ≤ ε

and we will obtain, if not the best approximation according to our criterion of
minimizing the error with a fixed number of nonzero c̃j,k, then at least a good
approximation. In fact, from a practical point of view, this flexibility is an asset,
for it allows us to choose values of c̃j,k that have a small number of significant bits.

The condition (2.5) can be generalized to approximation in Lp(I) in R
d. Under

some technical conditions on the wavelets φ and the on the range of α, the following
theorem can be proved; see [5], [3].

Theorem 2.1. Choose a positive integer N and numbers 1 < p < ∞ and
0 < α. Let q satisfy q−1 = p−1 + α/d. Write f as (2.4). Choose quantized
coefficients c̃j,k that satisfy

(2.6) ‖(cj,k − c̃j,k)φj,k‖q
Lp(I) ≤

1
N

.

(We assume that ‖cj,kφj,k‖q
Lp(I) ≤ 1/N implies c̃j,k = 0.) Our compressed function

is
f̃ :=

∑
k

∑
j

c̃j,kφj,k.



Then for each 0 < α and 0 < p < ∞ there exist constants C1 and C2 such that for
all f ∈ Bα

q (Lq(I)):
(1) The number, N , of nonzero coefficients c̃j,k satisfies

(2.7) N ≤ C1N‖f‖q
Bα

q (Lq(I)).

(2) The error f − f̃ satisfies

(2.8) ‖f − f̃‖Lp(I) ≤ C2N
−α/d‖f‖q/p

Bα
q (Lq(I))

and

(2.9) ‖f − f̃‖Lp(I) ≤ C
α/d
1 C2N−α/d‖f‖Bα

q (Lq(I)).

The paper by DeVore, Jawerth, and Popov [5] contains extensions of the above
theorem to 0 < p < ∞ in the case of box splines. DeVore, Jawerth, and Lucier [3]
examine in some detail integer transforms related to the Haar transform for image
compression in Lp(I). DeVore, Petrushev, and Yu [6] give a different way to choose
the coefficients c̃j,k for box splines so that (2.7), (2.8), and (2.9) hold in L∞(I). A
simpler algorithm for L∞(I), but which requires greater than optimal smoothness,
is contained in [4]. This short list is meant to emphasize that for any p there is an
algorithm that will give near-optimal approximation in Lp(I) using wavelets of some
kind; the choice of p, which is investigated in §3, depends solely on the application.

2.5. How to choose quantization levels. To transmit images or other
signal data along a communications channel, one sends integer codes that represent
the quantized coefficients of the transformed data. Here we discuss how to choose
quantization levels based on the criterion introduced in Theorem 2.1; this material
was also presented in [3].

Specifically, for some N > 0, and a given representation

f =
∑

cj,kφj,k,

one chooses quantized coefficients c̃j,k such that

‖(cj,k − c̃j,k)φj,k‖q
Lp(I) ≤

1
N

,

or, equivalently,

(2.10) ‖(cj,k − c̃j,k)φj,k‖Lp(I) ≤ 1
N1/q

.

Because ‖φj,k‖Lp(I) = 2−dk/p‖φ‖Lp(I) in R
d, (2.10) says that one should require

(2.11)
N1/q‖φ‖Lp(I)

21+dk/p
|cj,k − c̃j,k| ≤ 1

2
.

Inequality (2.11) implies that when approximating f in Lp(I), one should choose
a quantization separation for cj,k+1 that is 2d/p times the quantization separation



for cj,k. Therefore, we can take for coefficients c̃j,k and integer codes codej,k to
represent those coefficients,

codej,k := round
(

N1/q‖φ‖Lp(I)

21+dk/p
cj,k

)
and c̃j,k =

21+dk/p

N1/q‖φ‖Lp(I)

codej,k.

Thus, in two dimensions, as for images, one should reduce by one the number
of bits one sends of c̃j,k for each level k to approximate f in L2(I). To approximate
in L1(I), coefficients c̃j,k+1 should have two fewer significant bits than c̃j,k. In one
dimension, as for audio data, one should keep one fewer bit per increased level for
approximation in L1(I), and keep one-half fewer bit per level for approximation in
L2(I) (or at least one should increase the quantization interval by approximately√

2 for each level). In practice, we suggest setting c̃j,k = cj,k for k less than some
fixed level K, and then reducing the number of bits in c̃j,k for higher k according
to the formula (2.11).

3. Applications to Data Compression

Sometimes an error criterion is externally and unambiguously applied; for ex-
ample, we would like parts designed by a CAD system to fit together well, and so a
maximum tolerance in the design may be specified. For this application one would
use an L∞(I) error criterion. Several applications are given in [4] of wavelet-based
compression of surfaces while controlling the maximum error.

For other applications, it is the human perception of the compressed data
that is most important. DeVore, Jawerth, and Lucier [3] have suggested how to
use certain information about the sensitivity of people to visual stimuli at various
frequencies and intensities to choose an error metric for image compression that
would approximately model this response. Here we expand on this approach and
suggest how it can be applied to other situations, such as compressing audio data.

3.1. How human responses to stimuli can lead to the choice of error
metric. In §2.4 we gave a general framework for approximating functions f by
finite linear combinations f̃ =

∑
c̃j,kφj,k. This approximation process is nonlinear

because the choice of which φj,k to use depends on the function f that will be
approximated. The only free parameter in the theory is the parameter p, which
determines the error metric. In [3] it is claimed that for image processing one
should use the value p = 1. That claim, which is made assuming that the middle
frequency information of an image will be kept, is based on the precise way that
the threshold of human perception of an oscillating pattern depends on intensity
and frequency. Thus, we implicitly assume that the purpose of the images is to
“look the best” to a human observer. Here we expand upon that specific claim and
show how to choose an error metric in any situation where perception depends in a
well-behaved way on both intensity and frequency of sensation.

Let us stick with images for a while; at the end we will speculate somewhat on
compressing audio signals.

The problem of approximating an image f =
∑

cj,kφj,k by wavelets can be



thought of as choosing from among the set of “features” {cj,kφj,k} a finite number
{c̃j,kφj,k}, which, in the case of image compression, should most accurately reflect
the visual perception of the image. One quantization strategy that satisfies our
theory is simply to order the set {‖cj,kφj,k‖Lp(I)} and choose the N features with
the largest norm, so that if

‖cj,kφj,k‖Lp(I) ≥ ‖cl,mφl,m‖Lp(I)

then the “feature” cj,kφj,k will be chosen before cl,mφl,m. One would prefer to
choose features that the human eye will find most striking, in some sense, and to
leave behind those features that the human visual system does not perceive. Thus,
one would like to choose cj,kφj,k before cl,mφl,m if and only if

‖cj,kφj,k‖eye ≥ ‖cl,mφl,m‖eye,

if such a norm could be found.
Each feature cj,kφj,k has an intensity of about cj,k and a characteristic fre-

quency of about 2k, as can be seen by examining the Fourier transform of φj,k. It
is how people perceive a feature with a certain frequency and contrast that is of
primary interest. It is well known that a high frequency pattern superimposed on
a grey background will not be discernible from grey, even at high intensity. The
threshold of perception of an oscillating pattern of a particular frequency and inten-
sity is known as the Contrast Sensitivity Threshold (CST) curve; see, e.g., [7]. The
frequencies to which the human visual system is most sensitive are taken to be the
middle frequencies, and people are less able to discern either high frequency or low
frequency oscillations from grey. Let us assume that we will keep in our image all
mid- and low-frequency information, so our compression problem will be to decide
which high-frequency “features” to include in the compressed image. Let us pick a
“feature” cφj,k with (high) frequency 2k that is just barely discernible from a grey
background. In fact cφl,k+1 will not be discerned from grey; because of the higher
frequency, the value of c must be increased to some other value, c̄, to be at the
threshold of perception. Thus, in our previous imprecise language, we have

‖cφj,k‖eye = ‖c̄φl,k+1‖eye.

The question is, what is the relationship between c and c̄, and is there a value
of p such that the same relationship holds for the Lp(I) norm? In fact, for high
frequencies, c̄/c = 4, and the only value of p that has the same relationship is p = 1.
If c̄/c had been 2, then one could have said that the L2(I) norm would be better for
generating compressed images. But that is not the case. In Figure 1 we present two
pictures that have identical levels of compression, the same underlying functions
φj,k, the same methods of calculating the coefficients cj,k, and that differ only in
whether the L2 or the L1 criterion was used to choose the compressed coefficients
c̃j,k. We feel that this L1 picture, among many others, looks better than the L2

picture at the same level of compression.
There is a similar threshold curve for audio signals, although it is complicated

by the direction the signal is coming from. For high frequencies there is a similar



Figure 1. The left image is compressed using the L2(I) quantization strategy; it has 4545
nonzero coefficients c̃j,k and 3587 bytes in the compressed file, or 0.109 bits per pixel. The right

image uses L1(I) quantization; it has 4514 nonzero coefficients and the same number of bits per pixel.
Even though the images have the same compression rate, each strategy chooses different “features”
to keep.

relationship for sounds as for images: if you have a barely perceptible signal with
intensity c and frequency 2k, then one must increase the intensity to another value
c̄ to hear a signal of frequency 2k+1. The ratio c̄/c will now determine the norm in
which to measure the error in our approximation. Because these signals are one-
dimensional (d = 1), if c̄/c is 2, then we should approximate in L1(I); if it is about√

2 then we should approximate in L2(I).

3.2. The smoothness of data, and the choice of wavelets. After one
has decided on a norm ‖ · ‖Lp(I) for measuring the error in compressed data, one
should examine “typical” images or sounds to see which of the smoothness classes
Bα

q (Lq(I)), 1/q = α/d + 1/p contain these “typical” signals. Note that q depends
not only on α and p, but also on the dimension d of the signal, so that different
conclusions are possible for one- and two-dimensional signals. The smoothness of
the the data one would like to compress is important, because, typically, one must
have the rth derivatives of φ bounded for r = bαc if Theorem 2.1 is to hold. Thus,
the smoothness of the data determines the smoothness needed in the wavelet.

We report in Table 1 the estimated Besov space smoothness of various im-
ages compressed using a modified Haar wavelet transform and the L1(I) coefficient
quantization strategy. (See [3] for details.) The images are the green components
of color images of “lenna” (in Figure 1), an F-16 flying over mountains, a bridge
over a stream in a forest, and an aerial view of an airport and surrounding terrain.
If we observe that the error ‖f − f̃‖L1(I) ≈ CN−β , then we estimate α = 2β and
‖f‖Bα

q (Lq(I)) = C. (The correlation coefficient indicates the goodness of fit on a log-
log scale.) The first two images have a Besov space smoothness of α ≈ 0.6; α ≈ 0.35



for the other images. Because in all cases α < 1, these figures suggest that piece-
wise constant wavelet approximations achieves the highest rate of approximation
for image compression in the L1(I) metric. That the the latter two images have
significantly less smoothness than the first two images expresses mathematically
what may be concluded on a purely subjective basis simply by looking at them.

Table 1. Estimated Smoothness of Images.

Lenna F-16 Bridge Airport
Estimated α 0.599 0.597 0.370 0.306
Estimated ‖f‖Bα

q (Lq(I)) 0.677 0.676 0.571 0.516
Correlation Coefficient −0.999 −0.993 −0.994 −0.992
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