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Abstract. Several methods have been proposed to reduce boundary artifacts
in image deblurring. Some of those methods impose certain assumptions on

image pixels outside the field-of-view; the most important of these assume

reflective or anti-reflective boundary conditions. Boundary condition meth-
ods, including reflective and anti-reflective ones, however, often fail to reduce

boundary artifacts, and, in some cases, generate their own artifacts, especially

when the image to be deblurred does not accurately satisfy the imposed condi-
tion. To overcome these difficulties, we suggest using free boundary conditions,

which do not impose any restrictions on image pixels outside the field-of-view,

and preconditioned conjugate gradient methods, where preconditioners are de-
signed to compensate for the non-uniformity in contributions from image pixels

to the observation. Our simulation studies show that the proposed method out-
performs reflective and anti-reflective boundary condition methods in removing

boundary artifacts. The simulation studies also show that the proposed method

can be applicable to arbitrarily shaped images and has the benefit of recovering
damaged parts in blurred images.

1. Introduction.

1.1. The problem of deblurring. For an image f = (fj1,j2) defined for (j1, j2) in
some rectangular domain Ω, we assume that we can observe only a noisy, blurred
image

(1) g = T f + n.

Here T , sometimes called a projector, is a linear transform that determines the
blurring process acting on the image f . We assume that T can be expressed as a
truncated convolution with a point spread function (PSF) k = (kj1,j2),

(2) (T f)i1,i2 =
∑

(j1,j2)∈suppk

kj1,j2fi1−j1,i2−j2 .
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Here supp k, the support of k, is {(j1, j2) | kj1,j2 > 0}. The PSF k is nonnegative,
its components have sum 1, and the point (0, 0) ∈ supp k; T f is defined on Λ, where
(i1, i2) ∈ Λ if and only if (i1, i2)− supp k ⊆ Ω.

So T : L2(Ω) → L2(Λ); the notation L2(Ω) is the inner product space equipped
with the inner product defined by

〈p, p̃〉 =
∑

(j1,j2)∈Ω

pj1,j2 p̃j1,j2

for any images p and p̃ that are defined on Ω. We sometimes use a weighted inner
product on Ω; the notation L2(Ω,w) means the space equipped with the weighted
inner product defined by

(3) 〈p, p̃〉w =
∑

(j1,j2)∈Ω

pj1,j2 p̃j1,j2wj1,j2 ,

where the weight w = (wj1,j2) is defined on Ω.
The result T f is further contaminated by noise n, which we assume to be inde-

pendent and identically distributed mean zero Gaussian.
Note that T is not an invertible operator—there are more pixels in f than there

are in T f .
The deblurring problem is: Assuming that we have data g, observed from a true

image f by the observation model (1), determine an approximation f̂ to f . Because
T is not invertible, this problem is ill posed.

1.2. Previous work: Minimizing boundary artifacts. In many imaging envi-
ronments, the noise and the blurring are unavoidable phenomena, due to various
reasons such as intrinsic or malfunctioned imaging system, movements of objects
to be imaged, intrinsic limitation in measurement, etc. The task of image deblur-
ring is to recover a sharp original image from its noisy, blurred version. Examples
of image deblurring include motion deblurring for camera shake, satellite imaging,
astronomical telescope, microscopy, and medical imaging, etc [12].

Much attention has been given to the general deblurring problem, and researchers
have developed many techniques to approach this problem because there are a
number of obstacles to obtaining satisfactory solutions, see [19]. From among these
obstacles, we focus here mainly on the problem of boundary artifacts [12].

Some authors have used so-called boundary condition methods [15, 18, 7, 8]. In
these methods, it is assumed for computational purposes that fj1,j2 in Ω − Λ is
related to f in Λ via a fixed formula. Among boundary condition methods, we
shall compare our method with reflective and anti-reflective boundary condition
methods. To do so, we assume that the extension operator E : L2(Λ) → L2(Ω)
satisfies (Ef)j1,j2 = fj1,j2 for (j1, j2) ∈ Λ. Outside Λ, f is extended either symmet-
rically (these are reflective boundary conditions) or anti-symmetrically (these are
anti-reflective boundary conditions); precise definitions will be given later.

To deal with the ill-posed-ness of image deblurring problem, boundary condition

methods often use the Tikhonov regularization approach that finds f̂ that minimizes
over all q ∈ L2(Λ)

(4) ‖g − T Eq‖2L2(Λ) + λ‖q‖2L2(Λ),

where λ is a positive regularization parameter.
Some authors have suggested that not imposing a boundary condition may lead

to a better reconstruction f̂ [5, 20, 6, 2]. We call this a free boundary method;
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Calvetti et al. calls this an Aristotelian approach [6] and Almeida et al. calls this an
unknown boundary condition [2]. To deal with the ill-posed-ness of image deblurring
problem, we combine the free boundary condition with Tikhonov regularization to

find f̂ that minimizes over all p ∈ L2(Ω)

(5) ‖g − T p‖2L2(Λ) + λ‖p‖2L2(Ω).

Later, we shall propose to put a weight w on the domain Ω, and so consider the
space L2(Ω,w).

In all these cases, Tikhonov regularization leads to a linear problem, which can
be written in general in the form of normal equations

(6) Ax = y,

where A is a positive definite operator and x is the minimizer of either (4) or (5)
(with either L2(Ω) or L2(Ω,w)). In practice, it is important that these normal
equations are not solved exactly; most practitioners use iterative methods, often
Conjugate Gradient, with a small number of iterations.

In this paper we consider an incompletely-iterated Conjugate Gradient (CG)
method to find an approximate solution to these equations. Mathematically, if
there are N iterations of the CG method, then the image that approximately solves
(6) is

(7) x̂ = ΠAspan{y,Ay,...,ANy}A
−1y,

where ΠAXh is the projection of h onto the space X with the inner product defined
as 〈u,v〉A = 〈u,Av〉.

1.3. Our approach. We combine a number of previous approaches to this prob-
lem. In particular, we propose combining Tikhonov regularization, free boundary
conditions, and incomplete CG iterations. To be specific, we propose the Tikhonov

regularization to find f̂ that minimizes over all p ∈ L2(Ω,w)

(8) ‖g − T p‖2L2(Λ) + λ‖p‖2L2(Ω,w);

here w = T ∗IΛ, where T ∗ is the adjoint operator of T and IX is the image of all
1s on X . Thus, the suggested normal equation is

(9) (T ∗T + λW) p = T ∗g,

or

(10) Ax = y, where A = T ∗T + λW, y = T ∗g, and x = p;

here W is the diagonal operator defined by the the weight w, that is, Wp = w .∗p
for p ∈ L2(Ω,w), where .∗ is the pixel-by-pixel multiplication.

Additionally, we shall find that a better reconstruction occurs when we precon-
dition the CG iteration with W. Mathematically, this is equivalent to applying
un-preconditioned CG iterations to the modified problem

(11) [W−1/2 (T ∗T + λW)W−1/2](W1/2p) =W−1/2T ∗g

or

(12) Ãx̃ = ỹ,

where ỹ =W−1/2T ∗g, Ã =W−1/2 (T ∗T + λW)W−1/2, and x̃ =W1/2p.
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We have the relationship x = W−1/2x̃. However, after N iterations, precondi-
tioned CG computes the image

(13) W−1/2ΠÃ
span{W−1/2T ∗g,ÃW−1/2T ∗g,...,ÃNW−1/2T ∗g}Ã

−1W−1/2T ∗g,

which is in general different from the image computed without preconditioning

(14) ΠAspan{T ∗g,AT ∗g,...,ANy}A
−1T ∗g.

In this paper, the proposed preconditioner W is specifically designed for the
suppression of boundary artifacts, not for the acceleration of iterations. We shall
show that the combination of free boundary conditions and the preconditioner W
can suppress boundary artifacts more effectively than other boundary condition
methods, especially in CG iterations associated with the Tikhonov regularization.

1.4. Outline. This paper is outlined as follows. In Section 2 we review nota-
tion, terminology, and background material, including reflective and anti-reflective
boundary conditions. In Section 3 we suggest free boundary conditions and pre-
conditioned CG iteration as a method for boundary artifact removal. In Section 4
we present simulation results of the proposed method with comparison to meth-
ods using reflective and anti-reflective boundary conditions, and applications of the
proposed method. Finally, we present some discussion and conclusions in Section 5.

2. Background.

2.1. Notation and terminology. In this paper, we shall use following notations,
conventions, and terminology.

• g = T f + n: the observation model, where f is the true image to be recov-
ered, T is the projector that represents the space-invariant blurring of a given
problem, g is the observed image, and n is Gaussian noise.
• f = (fj1,j2): the image, f , will be denoted in a bold-faced alphabet, while

its image pixel value, fj1,j2 at (j1, j2), will be denoted in a normal alphabet
with subscripted indices. The same rule will hold for other images and PSFs
throughout this paper.
• Λ: the set of image pixels where g is defined.
• Ω: the set of image pixels where f is defined.
• Ω− Λ: the set of “unseen” image pixels across the boundary of Λ.
• L2(Λ): the set of images defined on Λ; for instance, g ∈ L2(Λ).
• L2(Ω): the set of images defined on Ω; for instance, f ∈ L2(Ω).
• IΛ: the identity map on the image space defined on Λ.
• IΩ: the identity map on the image space defined on Ω.
• IΘ: the all-one image on a pixel set Θ ⊆ Λ (or Ω),

(15) (IΘ)i1,i2 =

{
1, if (i1, i2) ∈ Θ,
0, if (i1, i2) /∈ Θ.

• k: the PSF that defines the projector T by (2).
• k̄: the reverse ordered PSF of k = (ki1,i2),

(16) k̄ = (k̄i1,i2) and k̄i1,i2 = k−i1,−i2 .

• supp k: the support of k, the set of (i1, i2) such that ki1,i2 6= 0.
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• Standard backprojector T ∗: the adjoint transform T ∗ : L2(Λ)→ L2(Ω) asso-
ciated with the projector T : L2(Ω) → L2(Λ), which is uniquely determined
by the relation

(17) (q, T p) = 〈T ∗q,p〉,

for all q ∈ L2(Λ) and p ∈ L2(Ω). Here (·, ·) and 〈·, ·〉 are the inner products
of two images in L2(Λ) and L2(Ω), respectively.

Throughout this paper, we assume that the PSF k is non-negative with positive
origin,

(18) ki1,i2 ≥ 0 and k0,0 > 0,

and normalized to 1, i.e.,

(19)
∑

(i1,i2)∈suppk

ki1,i2 = 1.

2.2. Projector and backprojector. The relation between the PSF k and the
projector T is defined by (2). In this paper, the right hand side of (2) will be
denoted by k ∗V f , i.e.,

(20) T p = k ∗V p for all p ∈ L2(Ω),

and called the valid convolution of k and f . For future use, let the full convolution
of k̄ and q in L2(Λ) be defined by

(21) (k̄ ∗F q)j1,j2 =
∑

(i1,i2)∈suppk∩((j1,j2)+Λ)

ki1,i2qi1−j1,i2−j2 .

Here (k̄ ∗F q)j1,j2 is defined for (j1, j2) if and only if supp k ∩ ((j1, j2) + Λ) 6= ∅.
In the previous section, we defined Ω to be the set of image pixels where the

true image f is defined. Since we cannot recover f on image pixels that do not give
any contribution to the observed image g, we can redefine Ω to be the set of image
pixels that actually contribute to the observed image g through the blurring by the
PSF k. Following this rule, we have

(22) Ω = {(j1, j2) | (k̄ ∗F IΛ)j1,j2 > 0}.

Here we note that this result implies Λ ⊂ Ω, since k0,0 > 0. The proof of (22)
immediately follows from the definition of the full convolution.

Previously, we defined the standard backprojector T ∗ abstractly by the basic
theory of linear algebra. When T is defined by the valid convolution by the PSF k,
a more practical definition of the standard backprojector T ∗ is based on following
result:

(23) (∀p ∈ L2(Ω)) T p = k ∗V p⇐⇒ (∀q ∈ L2(Λ)) T ∗q = k̄ ∗F q.

The proof of (23) also immediately follows from the definition of valid and full
convolutions.

The computation of T p (or k∗V p) and T ∗q (or k̄∗F q) can be performed either
by pixel-wise definitions (2) and (21) or by the fast Fourier transform (FFT) with
zero-paddings. Pixel-wise computations are preferred for PSFs with small support,
while FFT-based computations are needed for PSFs with large support.
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2.3. Boundary condition methods. In this section, we shall explain three bound-
ary conditions (reflective, anti-reflective, and free), which have been studied by
many researchers [5, 15, 18, 7, 8, 6].

To present reflective and anti-reflective boundary conditions, we assume that

(24) Λ = {(i1, i2) | 0 ≤ iν < Nν (ν = 1, 2)}

for some positive integers N1 and N2. To avoid some technical difficulty, we also
assume that

(25) supp k = {(i1, i2) | −Lν ≤ iν ≤Mν (ν = 1, 2)}

for some positive integers L1, L2, M1, and M2. In this case,

(26) Ω = {(j1, j2) | −Mν ≤ jν ≤ Nν + Lν − 1 (ν = 1, 2)}.

We divide the true image f into 9 parts as follows:

(27) f =

 fnw fn fne
fw fc fe
fsw fs fse

 ,

where fc = (fi1,i2), 0 ≤ iν < Nν (ν = 1, 2) represents the image part defined
on Λ; each of the other eight parts, fnw, fn, fne, fw, fe, fsw, fs, and fse in (27),
represents part of the image defined on Ω−Λ, the set of unseen image pixels across
the boundary of Λ.

Boundary condition methods impose certain restrictions on fnw, fn, fne, fw, fe,
fsw, fs, and fse in (27). For example, the i-th row of the reflective boundary condi-
tion imposed image is

(28)
(fi,M2−1, · · · , fi,1, fi,0,

fi,0, fi,1, · · · , fi,N2−2, fi,N2−1,
fi,N2−1, fi,N2−2, · · · , fi,N2−L2),

and similarly for the column, while the i-th row of the anti-reflective boundary
condition imposed image is

(29)
(2fi,0 − fi,M2

, · · · , 2fi,0 − fi,2, 2fi,0 − fi,1,
fi,0, fi,1, · · · , fi,N2−1, fi,N2−1,

2fi,N2−1 − fi,N2−2, · · · , 2fi,N2−1 − fi,N2−L2−1),

and similarly for the column. Figure 1 illustrates periodic (a), reflective (b), and
anti-reflective (c) boundary conditions that extend images across upper and left
boundaries.

Any set of boundary conditions introduces an extension operator E : L2(Λ) →
L2(Ω) such that

(30) Efc =

 f̃nw f̃n f̃ne
f̃w fc f̃e
f̃sw f̃s f̃se

 ,

where f̃nw, f̃n, f̃ne, f̃w, f̃e, f̃sw, f̃s, and f̃se represent parts of the image imposed by the
boundary condition. The operators E associated with reflective and anti-reflective
boundary conditions can be defined by (28) and (29), respectively.

In [15, 18, 7], reflective and anti-reflective boundary condition methods take the
form (4) as Tikhonov regularization [9]. In this work, to test the performance
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(a) Periodic BC (b) Reflective BC (c) Anti-reflective BC

Figure 1. Images that satisfy imposed boundary conditions. The
original images of size 256× 256 is extended across upper and left
boundaries to 44 pixel rows and columns periodically (a), reflec-
tively (b), and anti-reflectively (c).

of reflective and anti-reflective boundary condition methods, we shall apply CG
iterations to the normal equation

(31) (E∗T ∗T E + λIΛ) q = E∗T ∗g,
derived from (4). We denote by RBC reflective boundary condition–based CG
iterations, and we denote by ABC anti-reflective boundary condition–based CG
iterations.

For explanatory purpose, we use the term free boundary condition to refer to the
method suggested in [5, 6], even though the suggested method does not impose any
boundary conditions whatsoever.

In [6], Calvetti et al. claim that, “In an Aristotelian approach to knowledge,
when it is not known a priori which boundary conditions should be chosen, by
admitting our lack of information it is possible to let the data itself determine
them.” Thus, free boundary conditions do not need an extension operator to impose
boundary conditions, and hence, this approach can be applied to arbitrarily shaped
images. The proposed method in this paper will show that such flexibility in dealing
with boundary artifacts gives several advantages to free boundary conditions over
reflective and anti-reflective boundary conditions, which can be applied only to
rectangular shaped images.

To test the performance of free boundary conditions, we shall apply the CG
method to the linear system

(32) (T ∗T + λIΩ) p = T ∗g,
which is derived from the Tikhonov regularization (5). Form now on, we shall
denote the standard CG iterations applied to (32) by FBC.

Before we close this section, it is worth to mention some research works related
to direct deblurring methods. It is well known that that if the extension operator E
in (31) is associated with periodic, reflective, or anti-reflective boundary conditions
for symmetric PSFs (for a periodic boundary condition, the symmetry of PSF can
be omitted), then the exact solution of (31) can be directly computable by using
FFT for periodic boundary condition, discrete cosine transform (DCT) for reflective
boundary condition, and discrete sine transform (DST) for anti-reflective boundary
condition [12, 15, 3].
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These fast transform based direct deblurring methods, however, usually present
severe boundary artifacts. To reduce boundary artifacts, one can smooth the bound-
aries of the observed image to decay to 0 before those direct deblurring methods are
applied to. This approach can reduce boundary artifacts in some degree, but, at
the same time, makes it more difficult to recover near boundary image pixels. The
method in [13] is designed to reduce this difficulty by extrapolating the observed
image to smoothly decay to 0 in outside of Λ. Again, this approach can reduce
boundary artifacts in some degree, but not sufficiently.

The performance of direct deblurring methods depends heavily on the feasibility
of imposed boundary conditions. The difficulty of imposing correct boundary con-
ditions is the main reason why iterative deblurring approaches to (31) have been
considered, despite the fact that direct deblurring methods are available [15, 3, 7].

3. Proposed method.

3.1. Free boundary condition. The use of the free boundary conditions begins
with determining Ω from (22). We use Figure 2 to explain this process: Notice that
the observed image g in Figure 2(a) has a non-rectangular boundary, where the dark
background indicates the region where no observation is available. In Figure 2(a),
the blurring is performed by 17 × 17 Gaussian PSF with standard deviation the
width of 3 pixels. Figure 2(b) shows the pixel set Ω, which consists of two parts:
one is the observed region Λ, indicated in white, and the unseen region Ω − Λ,
indicated in gray. Note that the border line between the white and the gray colored
regions in Figure 2(b) is the boundary of the observed image g. This process clearly
shows that free boundary conditions can be applied to arbitrarily shaped images.

The free boundary condition alone, or equivalently FBC, does not remove bound-
ary artifacts, as we can see in Figure 3(a), which is the deblurred image by FBC (the
image is obtained by 100 CG iterations). Despite FBC failing to remove boundary
artifacts, we suggest using FBC as the first step to avoid boundary artifacts caused
by the use of inappropriate boundary conditions, by noting in the next section that
boundary artifacts in FBC can be suppressed by using CG preconditioning.

3.2. Preconditioned CG iterations. To deal with boundary artifacts, we pro-
pose a weight w defined by

(33) w = T ∗IΛ = k̄ ∗F IΛ,

on the domain Ω. The inner product defined by this weight as in (3) determines
L2(Ω,w). FBCW will denote CG iterations applied to the normal equation (9)
derived from the L2(Ω,w)–based Tikhonov regularization (8).

Notice that the pixel value wj1,j2 of w represents the degree of the contribution
of the image pixel at (j1, j2) to the observed image on Λ, through the blurring
transform T . For example, wj1,j2 = 1 (the maximum value wj1,j2 can have, by
(19)) implies that the information at the image pixel (j1, j2) is spread out (by the
blurring transform T ) to other image image pixels (i1, i2), all of which belong to Λ.
In other words, none of the information at (j1, j2) is lost by the blurring. On the
other hand, 0 < wj1,j2 < 1 implies that (1 − wj1,j2) × 100% of information at the
image pixel (j1, j2) is missing, or equivalently, not observed in the observed image
on Λ, due to the truncation in observation.

The suggestion of the w based inner product in FBCW is motivated by the
principle that the image pixel that gives less contribution to the observation should
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(a) Blurred image with a non-
rectangular boundary

(b) Images pixels on Λ (white) and Ω−Λ
(gray)

Figure 2. (a) A blurred image with a non-rectangular bound-
ary. Here the blurring is generated by a 17 × 17 Gaussian PSF
with standard deviation equal to the width of 3 pixels. The black
background represents the region where no observation is available.
(b) The set Ω of image pixels that can contribute to the observa-
tion through the 17× 17 Gaussian PSF. The set Ω consists of two
regions; observed image pixels, Λ, represented in white, and the
unseen image pixels across the boundary, Ω − Λ, represented in
gray. The border line between white and gray colored regions is
the boundary of the observed image.

be treated less importantly. FBCW, however, does not remove boundary artifacts.
See Figures 16(b) and 17(b).

The failure of FBCW in removing boundary artifacts is expected, as the reg-
ularization parameter λ in FBCW must be set very small (in our simulation,
λ = 0.0001), in order not to have over-smoothed results. In other words, the
use of the w-based inner product in FBCW cannot be effective since λ is very small
in FBCW. In fact, differences between the results of FBC and FBCW are hardly
noticeable for any practical choice of λ.

To make the use of the w-based inner product effective, we consider the precon-
ditioned CG iteration to (9) by a diagonal operator W defined by

(34) (Wp)j1,j2 = wj1,j2pj1,j2 for any image p defined on Ω.

Preconditioned conjugate gradient iterations of FBCW are equivalent to standard
conjugate gradient iterations applied to

(11′) [W−1/2 (T ∗T + λW)W−1/2](W1/2p) =W−1/2T ∗g, .

We shall denote by FBCWP conjugate gradient iterations applied to (11).
Figure 3(b) shows the deblurred image by FBCWP (the image is obtained by

100 CG iterations). The boundary artifacts in Figure 3(a) are completely removed
in Figure 3(b).

Inverse Problems and Imaging Volume 10, No. 1 (2016), 195–225
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(a) FBC (b) FBCWP

Figure 3. (a) The deblurred image by FBC from Figure 2(a).
Those ripples are propagating into the center area as the iteration
proceeds. (b) The deblurred image by FBCWP from Figure 2(a).
The deblurred image shows no boundary artifacts at all. This result
shows that FBCWP can deblur arbitrarily shaped images, without
causing boundary artifacts.

To make clear, the exact solutions of the two linear systems

W−1/2 (T ∗T + λW)W−1/2W1/2p =W−1/2T ∗g

and

(T ∗T + λW) p = T ∗g
are the same; nonetheless, the sequence of conjugate-gradient iterates for both
linear systems generally differ until they converge to the exact solution (assuming
exact arithmetic) at the final, dim(L2(Ω))th, iterate. Because the best results are
obtained after a relatively small number of iterates, our result images differ.

4. Simulation results. We conducted simulation studies to compare incomplete
CG iterations applied to the following normal equations in boundary artifact re-
moval in image deblurring:

• RBC: Reflective boundary conditions and incomplete CG iteration applied
to

(31′) (E∗T ∗T E + λIΛ) q = E∗T ∗g,

where E is the extension operator associated with the reflective boundary
condition.

• ABC: Anti-reflective boundary conditions and incomplete CG iteration ap-
plied to (31) with the extension operator E that is associated with the anti-
reflective boundary condition.

• FBC: Free boundary conditions and incomplete CG iteration applied to

(32′) (T ∗T + λIΩ) p = T ∗g.
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• FBCW: Free boundary conditions, L2(Ω,w)–weighted norm, and incomplete
CG iteration applied to

(9′) (T ∗T + λW) p = T ∗g.

• FBCWP: Free boundary conditions, L2(Ω,w)–weighted norm, and incom-
plete CG iteration applied to

(11′) [W−1/2 (T ∗T + λW)W−1/2](W1/2p) =W−1/2T ∗g.

• FBCP: Free boundary conditions and incomplete CG iteration applied to

(35) [W−1/2 (T ∗T + λIΩ)W−1/2](W1/2p) =W−1/2T ∗g.

In most case, we shall omit results by FBCW and FBCP, since they are almost
identical to results by FBC and FBCWP, respectively. Here we note that the
“incomplete CG iteration” is a necessary requirement to avoid noise amplification
that would be generated by “complete CG iteration”.

In simulation studies, we used the “Airfield” image in Figure 4(a), as the true
image f , and three different PSFs (uniform, Gaussian, and diagonal gradient) as
our image blurring models.

For noise model, we used a noise n such that such as

(36) n ∼ Normal(0, σ2I|Λ|),

where 0 is the all zero image defined on Λ and I|Λ| is the |Λ| × |Λ| identity matrix.
Throughout his paper, we assume that the standard deviation σ in (36) is set to
be 0.5% of the average value of T f . We use such little noise so that changes in
boundary artifacts will be visually noticeable.

We chose the deblurred image that had the smallest RSE (Relative Square Error)
in 200 iterations for each simulation. Here the RSE is defined by

(37) RSE =

∑
i1,i2
|f̃i1,i2 − fi1,i2 |2∑
i1,i2
|fi1,i2 |2

,

where f̃i1,i2 and fi1,i2 are pixel values of the deblurred image and the true image,
respectively, at the pixel (i1, i2) ∈ Λ. This restriction is made for fair comparison.
Notice that RBC and ABC recover images that are the same size as the observed
image, while FBC, FBCW, and FBCWP recover images with all pixels that give any
contributions to the observed image. For instance, in the simulation with the 11×11
uniform PSF and the true image of size 500× 500, the size of deblurred images by
FBC, FBCW, and FBCWP is 500×500, while the size of deblurred images by RBC
and ABC is 490 × 490. For fair visual comparison, however, our figures present
image results from FBC, FBCW, and FBCWP after removing unseen image pixels.

4.1. Summary of claims and supporting figures. In this section we give a list
of our claims with the figures that support them.

• The proposed method FBCWP removes boundary artifacts better than the
other methods (RBC, ABC, FBC) when images are blurred with a uniform
point spread function. Figures 5 and 6 support this claim.

• While FBCWP removes boundary artifacts better than the other methods
when images are blurred with a Gaussian point spread function, the differ-
ences, while noticeable, are not as large as with uniform blurring. Figures 8
and 9 support this claim.
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• Figures 11 and 12 show that FBCWP works significantly better than the
other methods when the point spread function is a one-dimensional diagonal
gradient blur.

• Boundary artifacts can occur even when there are no “unseen” pixels across
the boundary (pixels on Ω − Λ). The bottom and right boundaries of the
images in Figures 11 and 12, which are blurred with a diagonal gradient point
spread function, illustrate this claim.

• Our proposed method FBCWP removes boundary artifacts better than the
other methods over a wide range of regularization parameters λ. Figures 5,
13, 14, and 15 illustrate the truth of this claim for uniform blurring.

• Preconditioning by W is essential. Even though the use of the weighted norm
L2(Ω,w) alone is not enough to achieve good boundary artifact removal, com-
bined with preconditioning by W, it extends boundary artifact removal effect
by the preconditioner W to unseen image pixels. Figures 16 and 17 support
this claim.

• Our FBCWP method recovers certain blurred, damaged images better than
previous methods that use median filtering to recover missing data pixels
before deblurring. Figures 18 and 19 illustrate this point.

• The FBCWP method can recover blurred images with salt-and-pepper noise.
This is shown in Figures 20 and 21.

The following sections discuss these claims in more detail.

(a) True image (b) Blurred by uniform PSF

Figure 4. (a) The true “Airfield” image f of size 500 × 500. (b)
The observed image g = T f + n, where T is defined by the 11× 11
uniform PSF k as in (2) and n is Gaussian noise defined in (36).
The size of g is of 490× 490 pixels.

4.2. Reduction of boundary artifacts. In this simulation, we used λ = 0.001 as
the regularization parameter for all PSFs. We will discuss simulation results with
other regularization parameters in Section 4.3.

4.2.1. Uniform blurring. Figure 4(b) shows a noisy blurred image g = T f + n,
where T is the blurring transform defined by the 11×11 uniform PSF, f is the true
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(a) RBC, 1.16% (43) (b) ABC, 1.13% (89)

(c) FBC, 1.06% (57) (d) FBCWP, 0.98% (53)

Figure 5. Deblurred images by RBC (a), ABC (b), FBC (c),
and FBCWP (d) from Figure 4(b), which is blurred by 11 × 11
uniform PSF. For each method, the smallest RSE is shown with the
corresponding iteration number inside the parenthesis. All images
are of size 490× 490. RBC (a) suffered from boundary artifacts in
the region where the reflected boundary did not provide a sufficient
similarity in image pixels across the boundary. ABC (b) and FBC
(c) suffered from boundary artifacts at all regions near boundary.
FBCWP (d) did not show any noticeable boundary artifacts.

image in Figure 4(a), and n is the Gaussian noise in (36). Figure 5 shows deblurred
images by RBC, ABC, FBC, and FBCWP, using the image in Figure 4(b) as input.
In this simulation, RBC, ABC, FBC, and FBCWP attain their RSE minimums,
1.16%(43), 1.13%(89), 1.06%(57), and 0.98%(53), respectively. Here the number
in the parenthesis is the iteration number that attains the smallest RSE for each
method.

Figure 5 shows that all methods (RBC, ABC, FBC, and FBCWP) produce almost
identical results in the center part in deblurred images, but they are very different
in boundary artifact removal. The boundary artifacts in RBC (Figure 5(a)) are less
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(a) True image (b) Blurred by uniform PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP

Figure 6. The zoomed parts of the “Airfield” images. All images
are of size 120×120. In deblurred images by RBC, ABC, and FBC,
propagating boundary artifacts appear, while no boundary artifacts
appear in FBCWP. (a) A part of the true image in Figure 4(a).
(b) A part of the observed image in Figure 4(b). (c) A part of the
deblurred image by RBC in Figure 5(a). (d) A part of the deblurred
image by ABC in Figure 5(b). (e) A part of the deblurred image by
FBC in Figure 5(c). (f) A part of the deblurred image by FBCWP
in Figure 5(d).
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Figure 7. The observed image g, which is blurred by a 17 × 17
Gaussian PSF with standard deviation equal to the width of 3
pixels and corrupted by Gaussian noise n defined in (36). The size
of the observed image g is of 484× 484.

annoying than those in ABC (Figure 5(b)); they appear only in some parts, while
the boundary artifacts in ABC appear all over image pixels near boundaries. A
similar phenomenon also holds for FBC (Figure 5(c)). On the other hand, FBCWP
does not show any noticeable boundary artifacts. See zoomed images in Figure 6
for detailed comparison.

In our simulation, the trends described in this section also held for other test im-
ages; FBCWP outperformed RBC, ABC, and FBC objectively, by having smaller
RSE than RBC, ABC, and FBC, and subjectively, by not showing boundary arti-
facts for all test images.

4.2.2. Gaussian blurring. Figure 7 shows a noisy blurred image g, where the blur-
ring is computed by a 17× 17 Gaussian PSF with standard deviation equal to the
width of 3 pixels.

Figure 8 shows deblurred images by RBC, ABC, FBC, and FBCWP, from the im-
age in Figure 6. In this simulation, RBC, ABC, FBC, and FBCWP attain their RSE
minimums, 1.29%(82), 1.49%(99), 1.29%(90), and 1.22%(77), respectively. Here the
number in the parenthesis is, again, the iteration number that attains the smallest
RSE for each method.

In this simulation, all methods produce almost identical results in the center part
in deblurred images, and they show some difference in boundary artifact removal.
Again, FBCWP does not show any noticeable boundary artifacts, while RBC, ABC,
and FBC show mild boundary artifacts. Unlike the simulation with the uniform
blurring, however, the boundary artifacts in RBC, ABC, and FBC do not propagate
into center parts of deblurred images. Zoomed images in Figure 9 show detailed
comparison.

In our simulation, the trends described in this section also held for other test
images; RBC, ABC, and FBC do not severely suffer from boundary artifacts under
Gaussian blurring in the sense that those non-propagating boundary artifacts can
easily be removed by cropping out a few rows and columns of image pixels near the
boundary, while FBCWP does not show any sign of boundary artifacts.
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(a) RBC, 1.29% (82) (b) ABC, 1.49% (99)

(c) FBC, 1.29% (90) (d) FBCWP, 1.22% (77)

Figure 8. Deblurred images by RBC (a), ABC (b), FBC (c), and
FBCWP (d) from Figure 7, which is blurred by 11 × 17 Gauss-
ian PSF. For each method, the smallest RSE is shown with the
corresponding iteration number inside the parenthesis. All images
are of size 484 × 484. RBC (a) generated mild non-propagating
boundary artifacts in the region where the reflected boundary was
not similar to the true image pixels across the boundary. ABC (b)
and FBC (c) generated mild non-propagating boundary artifacts
in all regions near boundary. FBCWP (d) did not show boundary
artifacts.

We speculate that boundary artifacts do not propagate to the interior of the
image when using RBC and ABC in this example because of some special property
of Gaussian blurring, perhaps because the Gaussian PSF we use decays quickly away
from its center. We also note that FBC does not propagate boundary artifacts under
Gaussian blurring, even though it does not impose any boundary conditions.

4.2.3. Diagonal gradient blurring. Figure 10 shows a noisy blurred image g = T f +
n, where the blurring transform T is computed by the 11 × 11 diagonal gradient
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(a) True image (b) Blurred by Gaussian PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP

Figure 9. The zoomed parts of the “Airfield” images. All images
are of size 120 × 120. In deblurred images by RBC, ABC, and
FBC, non-propagating boundary artifacts appear, while no bound-
ary artifacts appear in FBCWP. (a) A part of the true image in
Figure 4(a). (b) A part of the observed image in Figure 7. (c) A
part of the deblurred image by RBC in Figure 8(a). (d) A part
of the deblurred image by ABC in Figure 8(b). (e) A part of the
deblurred image by FBC in Figure 8(c). (f) A part of the deblurred
image by FBCWP in Figure 8(d).
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Figure 10. The observed image g = T f + n, where T is de-
fined by an 11× 11 diagonal gradient PSF with diagonal elements
{ 30

275 ,
29
275 , . . . ,

20
275} as in (2), where the first diagonal element 30

275
is k0,0, and n is Gaussian noise defined in (36). The size of the
observed image g is of 490× 490.

PSF represented by a matrix whose main diagonal elements are { 30
275 ,

29
275 , . . . ,

20
275},

where the first diagonal element 30
275 is k0,0.

Figure 11 shows deblurred images by RBC, ABC, FBC, and FBCWP, from the
image in Figure 10. In this simulation, RBC, ABC, FBC, and FBCWP attain their
RSE minimums, 0.78%(20), 0.46%(155), 0.45%(38), and 0.31%(34), respectively.
Here the number in parentheses is, again, the iteration number that attains the
smallest RSE for each method.

RBC (Figure 11(a)) shows boundary artifacts in some regions near the left bound-
ary and at the whole region along the lower and right boundaries. Boundary arti-
facts near the lower and right boundaries in Figure 11(a) form straight lines that
are parallel to the boundary line. Similar pattern are also shown near the lower and
right boundaries in ABC (Figure 11(b)) and FBC (Figure 11(c)), but they are not
as severe as those in RBC (Figure 11(a)). On the other hand, FBCWP does not
show any sign of boundary artifacts. Zoomed images in Figure 12 show detailed
comparison.

The assumption that the first diagonal element of k is k0,0 indicates that Ω =
{(j1, j2) | −10 ≤ jν < 490, ν = 1, 2} and Λ = {(i1, i2) | 0 ≤ iν < 490, ν = 1, 2},
and hence there are no unseen image pixels across the lower and right boundaries in
Figure 10, while ten rows and ten columns of image pixels are across the upper and
left boundaries, respectively. Based on this observation, one might expect that RBC,
ABC, and FBC would not suffer from artifacts near the lower and right boundaries,
since there are no unseen image pixels across the lower and right boundaries. The
simulation results in this section, however, clearly show that such an expectation
would be wrong. In other words, the existence of unseen image pixels is not the
source of boundary artifacts.

Again, the trends described in this section held for other test images in our
simulation. In all test images, RBC, ABC, and FBC suffered from propagating
boundary artifacts, while FBCWP showed no sign of boundary artifacts. Moreover,
in all test images, FBCWP outperformed RBC, ABC, and FBC in the RSE criterion.
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(a) RBC, 0.78% (20) (b) ABC, 0.46% (155)

(c) FBC, 0.45% (38) (d) FBCWP, 0.31% (34)

Figure 11. Deblurred images by RBC (a), ABC (b), FBC (c),
and FBCWP (d) from Figure 10, which is blurred by 11 × 11 di-
agonal gradient PSF. For each method, the smallest RSE is shown
with the corresponding iteration number inside the parenthesis.
All images are of size 490 × 490. RBC (a) generated propagating
boundary artifacts at some part near the left boundary an prop-
agating boundary artifacts in all regions near the lower and right
boundaries. ABC (b) generated propagating boundary artifacts at
some part near the left boundary and propagating boundary arti-
facts in all regions near the lower and right boundaries, as RBC
did. The severity of boundary artifacts in ABC is weaker than
that of RBC, however. FBC (c) generated propagating boundary
artifacts in all regions near all boundaries. Boundary artifacts near
the upper and left boundaries look more severe than those near the
lower and right boundaries. FBCWP (d) did not show boundary
artifacts.

4.3. Selection of regularization parameter. The simulation results in Sec-
tion 4.2 showed that, when the fixed regularization parameter λ = 0.001 was used,
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(a) True image (b) Blurred by diagonal PSF

(c) RBC (d) ABC

(e) FBC (f) FBCWP

Figure 12. Figure 12. The zoomed parts of ‘Airfield’ images.
All images are of size 120 × 120. (a) A part of the true image in
Figure 4(a). (b) A part of the observed image in Figure 10. (c) A
part of the deblurred image by RBC in Figure 11(a). (d) A part
of the deblurred image by ABC in Figure 11(b). (e) A part of
the deblurred image by FBC in Figure 11(c). (f) A part of the
deblurred image by FBCWP in Figure 11(d).
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(a) RBC, 1.18%, λ = 0.0021875 (b) ABC, 1.12%, λ = 0.0009375

(c) FBC, 1.16%, λ = 0.0021875 (d) FBCWP, 1.02%, λ = 0.0015625

Figure 13. Deblurred images by RBC (a), ABC (b), FBC (c), and
FBCWP (d) with near-optimal regularization parameters from Fig-
ure 4(b), which is blurred by 11 × 11 uniform PSF and corrupted
by the Gaussian noise n in (36). Here near-optimal regulariza-
tion parameters were computed by the fifth approximates of the
bisection method starting from 0.0 and 0.01. For each method,
the RSE at the 100-th iteration was written. Results showed that
RBC (a), ABC (b), and FBC (c) exhibited boundary artifacts with
near-optimal regularization parameters, while FBCWP (d) did not.

FBCWP outperformed RBC, ABC, and FBC in deblurring of uniform, Gaussian,
and diagonal gradient PSFs in the presence of Gaussian noise n. In the previous
section, we used λ = 0.001 as the single regularization parameter for all methods
(RBC, ABC, FBC, and FBCWP), despite the difference in PSFs, test images, and
methods, by noting that λ = 0.001 produced the smallest RSE result among various
λ’s (0.1, 0.01, 0.001, 0.0001, 0.00001, 0.0) for RBC, ABC, FBC, and FBCWP, in
the simulation with the true image, “Airfield”(Figure 4(a)), the 11 × 11 uniform
PSF, and the Gaussian noise n in (36). Since the optimal regularization parameter
depends on the true image f , the PSF k, the method, and the noise n, one might
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(a) RBC, 1.20% (29) (b) ABC, 1.14% (62)

(c) FBC, 1.08% (39) (d) FBCWP, 0.99% (35)

Figure 14. Deblurred images by RBC (a), ABC (b), FBC (c),
and FBCWP (d) with λ = 0.0 as the regularization parameter from
Figure 4(b), which is blurred by 11×11 uniform PSF and corrupted
by the Gaussian noise n in (36). For each method, the smallest
RSE is shown with the corresponding iteration number inside the
parenthesis. Results showed that RBC (a), ABC (b), and FBC (c)
exhibited boundary artifacts with no Tikhonov regularization (i.e.,
λ = 0.0), while FBCWP (d) did not.

suspect that different λ’s would give a chance for RBC, ABC, or FBC to outperform
FBCWP. The simulation results, however, show that this does not happen.

In our simulation studies, for any reasonable choice for the regularization pa-
rameter λ, FBCWP outperformed RBC, ABC, and FBC without exceptions in test
images or blurring PSFs, by having the smallest RSE and not showing any sign of
boundary artifacts. Moreover, the regularization parameter λ did not give notice-
able differences in RBC, ABC, FBC, and FBCWP. These are well expected results,
since RBC, ABC, FBC, and FBCWP are virtually identical CG iterations; the only
differences are made on ways of treating image pixels near boundaries. Based on
this argument, we can conclude that the superior performance of FBCWP over
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(a) RBC, 1.46% (100) (b) ABC, 1.69% (100)

(c) FBC, 1.54% (100) (d) FBCWP, 1.42% (100)

Figure 15. Deblurred images by RBC (a), ABC (b), FBC (c), and
FBCWP (d) with λ = 0.01 as the regularization parameter from
Figure 4b, which is blurred by 11× 11 uniform PSF and corrupted
by the Gaussian noise n in (36). For each method, the RSE at the
100-th iteration was shown. Results showed that RBC (a), ABC
(b), and FBC (c) exhibited boundary artifacts with λ = 0.01 as
the regularization parameter, while FBCWP (d) did not.

RBC, ABC, and FBC, which was shown in simulations with λ = 0.001 as the regu-
larization parameter, also holds for any other reasonable regularization parameters.

To support this claim, we present Figures 13, 14, and 15 to show improved
suppression of boundary artifacts by FBCWP over RBC, ABC, and FBC in a
wide range of regularization parameters. Figures 13, 14, and 15 show deblurred
images with near-optimal regularization parameters, λ = 0.0 as an example of
under-estimated regularization parameters, and λ = 0.01 as an example of over-
estimated regularization parameters, respectively. Results in Figures 13, 14, and 15
show that any reasonable choices for regularization parameters or iteration numbers
do not give significant impact on boundary artifact removal; RBC, ABC, and FBC
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(a) FBC, 0.45% (38) (b) FBCW, 0.45% (38)

(c) FBCP, 0.34% (27) (d) FBCWP, 0.31% (34)

Figure 16. Deblurred images by FBC (a), FBCW (b), FBCP
(c), and FBCWP (d) from the image in Figure 10, which is blurred
by 11 × 11 diagonal gradient PSF and corrupted by the Gaussian
noise n in (36). For each method, the smallest RSE is shown with
the corresponding iteration number inside the parenthesis. Here
deblurred images on Ω, not on Λ, are shown (in this paper, only
Figures 16 and 17 show recovered pixels on Ω−Λ). Thus, images in
this figure are of size 500×500. The comparison of FBCP (c) with
FBC (a) and that of FBCWP (d) with FBCW (b) show that the use
of the preconditioner W removes boundary artifacts. Even though
the difference is not very noticeable, the comparison of FBCWP
(d) with FBCP (c) shows some improvement made by the use of
the regularization by L2(Ω,w) in recovering image pixels on Ω−Λ.

suffers from boundary artifacts for any reasonable pairs of regularization parameters
and iteration numbers, while FBCWP does not.

By noticing the effective suppression of boundary artifacts by FBCWP, we can
easily estimate regularization parameters for FBCWP by considering the special
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(a) FBC, from Figure 16(a) (b) FBCW, from Figure 16(b)

(c) FBCP, from Figure 16(c) (d) FBCWP, from Figure 16(d)

Figure 17. The zoomed parts of ‘Airfield’ images in Figure 16.
All images are of size 120 × 120. Images in this figure show that
FBCWP (d) removes boundary artifacts not only in Λ but also in
Ω − Λ, while FBCP (c) suffers from boundary artifacts in Ω − Λ,
and FBC (a) and FBCW (b) suffer from boundary artifacts not
only in Ω− Λ, but also in near boundary pixels in Λ.

cases at which the true image f in image deblurring problem g = T f + n (1)
satisfy periodic boundary conditions. In such cases the blurring transform T can
be regarded as a circular convolution and the preconditionerW becomes the identity
matrix IΛ. Moreover, the resulting image p of complete CG iterations of FBCWP
can be directly computable by

(38) p = IFFT

(
FFT(k̄). ∗ FFT(g)

FFT(k̄). ∗ FFT(k) + λIΛ

)
,

where IFFT stands for the two-dimensional inverse FFT.
Various methods can be applied for the estimation of the optimal parameter λ in

(38). For details, see [10]. We suggest λ that are obtained from the optimization of
(38) for periodic boundary condition satisfying images as regularization parameters
for FBCWP for general images. This suggestion produced λ = 0.00098, 0.00069,
and 0.00139 for uniform, Gaussian, and diagonal gradient deblurring simulations in
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(a) Damaged image (b) FBCWP

(c) Median filtering (d) Median filtering + FBCWP

Figure 18. (a) The damaged version of the observed image in
Figure 4(b). (b) The deblurred image by FBCWP from the dam-
aged image, by regarding the damaged part, represented by black
colored pixels in (a), as part of unseen image pixels across the
boundary, i.e., the damaged image in (a) has non-rectangular in-
ner boundaries. (c) The image obtained by applying three-round
3× 3 median filtering on the damaged image in (a). Here the me-
dian filtering is applied to the image pixel that is not determined in
the previous round due to the absence of determined image pixels
in 3 × 3 neighborhood. The median filtered image looks almost
identical to the image in Figure 4(b). (d) The deblurred image
by FBCWP from the median filtered image in (c). The compari-
son with the image in (b) shows that a small difference made by
mis-filling in median filtering causes severe artifacts in deblurring.

Sections 4.2.1, 4.2.2, and 4.2.3, respectively. These parameters were slightly smaller
than near-optimal regularization parameters that were computed by the bisection
method. See Figure 13.
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(a) FBCWP (b) Median filtering + FBCWP

Figure 19. (a) A part of Figure 18(b). (b) A part of Figure 18(d).

(a) Corrupted by salt-and-pepper noise (b) FBCWP

Figure 20. (a) The observed image g, which is blurred by a 11×11
uniform PSF, and corrupted by “salt and pepper” noise, where
60% of pixels change to the darkest or brightest pixels. In other
words, the Gaussian noise in Figure 4(b) is replaced by salt and
pepper noise here. (b) The deblurred image by FBCWP from the
heavily noised image in (a), by ignoring heavily noised image pix-
els. FBCWP deblurred the image with RSE = 1.0% at the 99-th
iteration. The deblurred image is compatible with the image in
Figure 5(d), even though the former only use 40% of the pixel data
that is used in the latter.

4.4. Effect of preconditioning. In this section we will conduct deblurring by
free boundary condition based methods, FBC, FBCW, FBCP, and FBCWP. The
purpose of this simulation is to compare the contribution of the preconditioner W
with that of the regularization by the weighted norm L2(Ω,w) in removing boundary
artifacts. For this purpose, in Figure 16, we present deblurred images on Ω, not on
Λ.
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(a) FBCWP (to be compared with
Figure 6)

(b) FBCWP (to be compared with
Figure 19)

Figure 21. Parts of Figure 20(b), which is deblurred by FBCWP
from the “salt-and-pepper” noised image in Figure 20(a). (a) The
comparison with images in Figure 6 shows that FBCWP can deblur
the images using only 40% of the observed pixels. (b) The compar-
ison with images in Figure 18 shows that FBCWP can deblur the
images using only 40% of the observed pixels.

Figure 16 shows deblurred images by FBC, FBCW, FBCP, and FBCWP with
λ = 0.001, from Figure 10 (blurred by the 11 × 11 diagonal gradient PSF). Here
note that the deblurred images in Figure 16 have ‘black colored pixels’ in lower-left
and upper-right corners. Those black colored pixels do not give any contribution
to the observation through the 11× 11 diagonal gradient PSF, and hence they are
not included in Ω.

In Figure 16, the comparison of FBCW with FBC shows that the use of the
weighted norm L2(Ω,w) does not make noticeable difference in removing boundary
artifacts. The comparison of FBCWP with FBCW supports our earlier claim that
FBCW and FBCWP produce different results, even though they are based on two
equivalent linear systems (9) and (11), due to incomplete CG iterations in FBCW
and FBCWP.

Notice that FBCP and FBCWP are preconditioned versions of FBC and FBCW,
respectively, by W. In Figure 16, the comparisons between FBC and FBCP, and
FBCW and FBCWP show that the use of the preconditioner W removes boundary
artifacts. The visual comparison between FBCP and FBCWP (for better visual
comparison, see Figure 17) shows that, even though the effect is not very notice-
able in recovering image pixels on Λ, the use of the weighted norm L2(Ω,w) helps
FBCWP to remove boundary artifacts on Ω− Λ more efficiently than FBCP.

4.5. Applications of free boundary conditions. As mentioned in Section 3.1,
the proposed method, FBCWP, can be used for arbitrarily-shaped images and it can
recover unseen image pixels across the boundary. Combining these two advantages,
we can apply FBCWP to other interesting applications in image deblurring.

In this paper, we consider the recovery of damaged parts in noisy blurred images
as an application of FBCWP. Let g be a damaged version, as seen in Figure 18(a), of
the noisy blurred image in Figure 4(b), i.e., the true image is sequentially corrupted
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by 11 × 11 uniform blurring, Gaussian noise n in (36), and damage. With the
assumption that the damaged parts in Figure 18(a) are relatively small so that
every image pixel in the damaged parts gives some contribution to our observation,
we can use FBCWP to recover image pixels in the damaged parts by treating them
as unseen image pixels across the boundary. Figure 18(b) shows the recovered image
by FBCWP.

This approach is different from methods that are commonly used in so called
inpainting applications, in which image pixels in damaged parts are filled up possibly
by applying a smoothing transform that resembles a diffusion process [4]. On the
other hand, FBCWP treats damaged parts as unseen image parts and recovers
them, as a result of deblurring, by using the hidden information (of damaged parts)
in undamaged image pixels through blurring.

RBC and ABC cannot be applied to this problem, since RBC and ABC are
virtually limited to rectangular images only, and they do not attempt to recover
unseen image pixels across the boundary. Another possible approach might take the
process of recovering damaged image pixels first and the processing of deblurring
after that. Figure 18(c) shows the result of recovering damaged image pixels by ap-
plying three-round 3× 3 median filtering on Figure 18(a), and Figure 18(d) shows
the result of deblurring by FBCWP from Figure 18(c). Even though Figure 18(c)
is almost identical to Figure 4(b), Figure 18(d), deblurred from Figure 18(c), suf-
fers from artifacts all over the image, while Figure 18(b), directly deblurred from
Figure 18(a), does not show any noticeable artifacts. Zoomed images in Figure 19
show detailed comparisons.

The success of FBCWP in the recovery of damaged pixels can be extended to
image recovery in the presence of ‘salt and pepper’ noise. Figure 20(a) shows the
observed image, which is blurred by 11 × 11 uniform PSF, and corrupted by salt
and pepper noise, where randomly selected 60% of the image pixels change to black
or white pixels. In other words, the Gaussian noise in Figure 4(b) is replaced by
salt and pepper noise in Figure 17(a). Figure 20(b) shows the deblurred image
by FBCWP from Figure 20(a), by regarding salt and pepper noised image pixels,
which can be easily detectable by checking intensities at image pixels, as unseen
image pixels across the boundary. Figure 20(b) was obtained at the iteration 99
with RSE = 1.0%. This result is compatible with the result in Figure 5(d), which
is obtained at iteration 53 with RSE = 0.98%, even though Figure 20(b) used only
40% of of the pixels in the observed image. Zoomed images in Figure 21 show
detailed comparisons.

5. Conclusion and discussion. In this paper we propose using free boundary
conditions, which do not impose any restrictions on unseen image pixels, and the
preconditioned CG method, where the preconditioner is designed to compensate for
the non-uniformity in contributions from image pixels to the observation, in image
deblurring. In simulation studies with uniform, Gaussian, and diagonal gradient
PSFs, the proposed method, FBCWP, outperforms RBC (the reflective boundary
condition–based CG method) and ABC (the anti-reflective boundary condition–
based CG method) in all test images objectively, by having smaller RSE, and sub-
jectively, by not showing boundary artifacts. Simulation results in Section 4.5 show
that FBCWP can be used for the recovery of damaged regions in noisy blurred
images by treating damaged regions as unseen image pixels across the boundary.
Based on these simulation results, we can conclude that FBCWP is more efficient
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in removing boundary artifacts, more flexible in dealing with boundaries, and more
applicable in image deblurring than RBC and ABC.

As mentioned earlier, methods in [6, 2] also use free boundary conditions. To be
specific, the method proposed in [6] has the form of FBCW (incomplete CG iteration
applied to (T ∗T +λW)p = T ∗g) ifW is replaced with the Laplacian operator. Thus,
the main difference between the proposed method FBCWP and the method in [6]
lies in the use of preconditionerW and the choice of the Tikhonov regularization. On
the other hand, the method in [2] applies the free boundary condition in alternating
direction method of multipliers (ADMM) for image deblurring. Therefore, the main
difference between the method in [2] and the proposed method FBCWP lies iterative
methods; the former uses ADMM and the latter uses preconditioned CG iterations.

Simulation results in this paper show that the non-uniformity in contributions
from image pixels to the observation, instead of the existence of unseen image pixels
across the boundary, is the main source of boundary artifacts in image deblurring.
Therefore, the use of the preconditioner W (34) exactly as suggested in FBCWP is
an essential step in removing boundary artifacts.

The non-negativity of the PSF is an essential requirement for the success of
FBPWP. For example, if the PSF is not non-negative, then the preconditioner W
(34) may not be defined, since the weight (T ∗IΛ)i1,i2 in (33) could be zero for some
image pixel (i1, i2). This would violate the invertibility of the preconditioner W in
(34).
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