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ABSTRACT

Wang, Jingyue Ph.D., Purdue University, August, 2008. Error Bound for Numerical
Methods for the ROF Image Smoothing Model . Major Professor: Bradley J. Lucier.

The Rudin-Osher-Fatemi variational model has been extensively studied and used

in image analysis. There have been several very successful numerical algorithms

developed to compute the minimizer of the discrete version of the ROF energy. We

study the convergence of numerical solutions of discrete total variation models to the

solution of the continuous model. We use the discrete ROF energy with a symmetric

discrete TV operator and obtain an error bound between the minimizer for the discrete

ROF model with a symmetric TV operator and the minimizer for the continuous ROF

model. Partial results are also obtained on error bounds of some non-symmetric

discrete TV minimizers.
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1. INTRODUCTION

1.1 Notation

One of the most influential variational models for image reconstruction is the total

variation–based model developed by Rudin, Osher and Fatemi [1]. This model studies

the minimizer of the following energy

E(u) =

∫
Ω

|Du|+ 1

2λ

∫
Ω

(u− g)2 dx , (1.1)

where ∫
Ω

|Du| := sup
|φ|≤1; φ∈C∞0 (Ω)

∫
Ω

u divφ,

is the total variation of u, Ω is a bounded region in R2 with Lipschitz boundary.

For more details on functions of bounded variation, we refer the reader to [2]. This

functional is to be minimized over all u ∈ L2(Ω). The function g represents the

observed image, which is treated as a L2 function. The existence and uniqueness

of the minimizer have been studied by Acar and Vogel [3]. We study the case of

Ω = [0, 1]2 := I, the unit square.

On the computing side, the most fundamental discrete model is based on the

discrete energy

Ek(u) =
k−1∑
i,j=0

h2|(∇u)i,j|+
1

2λ

k−1∑
i,j=0

h2(ui,j − gi,j)2 , (1.2)

where u is defined by a 2-dimensional matrix of size k × k, h is the scale factor. The

space of all such discrete images is denoted by Xk = Rk×k. There are several possible

choices for the discrete gradient operator ∇u ([4], [5]); one common choice is

(∇u)i,j = ((∇xu)i,j, (∇yu)i,j) ,
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with

(∇xu)i,j =
ui+1,j − ui,j

h
, (∇yu)i,j =

ui,j+1 − ui,j
h

.

On the boundary, u is assumed to satisfy the discrete Neumann boundary conditions:

u−1,j = u0,j, uk,j = uk−1,j, (1.3)

ui,−1 = ui,0, ui,k = ui,k−1. (1.4)

The discrete function gi,j is the input image.

It is not hard to show that minimizers of En Γ-converge to the minimizer of E,

therefore, the sequence {un} of minimizers of J converges to u in L1(I) and En(un)

converges to E(u) as n tends to ∞.

In this paper, we study a slightly different version of the discrete energy, (1.2).

Before we go into details, we explain the notation used throughout this paper.

We use superscripts to indicate a discrete image, for example uk is a k× k image.

When there is no ambiguity, the scale factor h in (1.2) equals 1/k.

For a k by k discrete image uk, we sometimes need to extend it over all indexes

−∞ ≤ i, j ≤ +∞. We apply the following process: first reflect uk along the boundary

i = k − 1/2,

ukk+i,j = ukk−i−1,j for 0 ≤ i, j ≤ k − 1; (1.5)

then reflect the whole image along the boundary j = k − 1/2,

uki,k+j = uki,k−j−1 for 0 ≤ i ≤ 2k − 1, 0 ≤ j ≤ k − 1; (1.6)

last, periodize it over all indexes (i, j). Notice that the extension of uk satisfies the

discrete Neumann boundary conditions (1.3) and (1.4).

Define

∇+
x u

k
i,j =

uki+1,j − uki,j
h

, ∇+
y u

k
i,j =

uki,j+1 − uki,j
h

,

∇−x uki,j =
uki,j − uki−1,j

h
, ∇−y uki,j =

uki,j − uki,j−1

h
,
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and

∇++uki,j =

 ∇+
x u

k
i,j

∇+
y u

k
i,j

 , ∇+−uki,j =

 ∇+
x u

k
i,j

∇−y uki,j

 ,

∇−+uki,j =

 ∇−x uki,j
∇+
y u

k
i,j

 , ∇−−uki,j =

 ∇−x uki,j
∇−y uki,j

 .

We use Ek(u
k) to denote the discrete energy of uk,

Ek(u
k) = Jk(u

k) +
1

2λ

k−1∑
i,j=0

h2|uki,j − gki,j|2,

where Jk is a discrete TV operator to be chosen later.

In this paper, we study the error bound for operator Jk that can be written as a

convex linear combination of J++, J−+, J+− and J−−, where

J++(uk) =
k−1∑
i,j=0

h2
√

(∇+
x u

k
i,j)

2 + (∇+
y u

k
i,j)

2,

J+−(uk) =
k−1∑
i,j=0

h2
√

(∇+
x u

k
i,j)

2 + (∇−y uki,j)2,

J−+(uk) =
k−1∑
i,j=0

h2
√

(∇−x uki,j)2 + (∇+
y u

k
i,j)

2,

J−−(uk) =
k−1∑
i,j=0

h2
√

(∇−x uki,j)2 + (∇−y uki,j)2.

A special discrete TV operator is J?,

J?(u
k) =

1

4
(J++(uk) + J+−(uk) + J−+(uk) + J−−(uk)) ;

this operator is invariant under horizontal or vertical reflection. In the following

context we call J? the symmetric TV operator and any other convex combination of

J++, J−+, J+− and J−− a non-symmetric TV operator.

The discrete input data gki,j in Ek is the discretized input image g, with

gki,j =
1

|Ii,j|

∫
Ii,j

g .
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Finally, we denote the discretization of the anisotropic TV,
∫
I
|Dxu|+ |Dyu|, as

Ja(u
k) =

k−1∑
i,j=0

h2(|∇+
x u

k
i,j|+ |∇+

y u
k
i,j|) . (1.7)

1.2 Properties of the Minimizer of Continuous Energy

In this section, we assume

E(v) =

∫
I

|Dv|+ 1

2λ
‖v − g‖2 .

We present some fundamental properties of the minimizer of E.

Lemma 1 is well known.

Lemma 1 (Contraction)

‖u− v‖ ≤ ‖f − g‖ .

Proof By definition of minimizer, for any w

(
g − u
λ

,w − u) ≤ J(w)− J(u), (1.8)

(
f − v
λ

, w − v) ≤ J(w)− J(v), (1.9)

put v, u for w in these inequalities respectively, and add them to get

(
f − g + u− v

λ
, u− v) ≤ 0,

then

‖u− v‖2 ≤ (f − g, u− v) ≤ ‖f − g‖‖u− v‖,

the result follows.

In the next lemma, we need the concept of modulus of continuity. For any function

f ∈ L2(I), the modulus of continuity of f is defined by:

ω1(f, t)L2(I) := sup
0<|h|≤t

‖f(x+ h)− f(x)‖L2(Ih), (1.10)
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where

Ih := {x : x ∈ I, x+ h ∈ I}.

For more details on modulus of continuity and Lipschitz space, we refer the reader

to [6].

Lemma 2 (Continuity of translation)

Assume u is the minimizer of E. Extend u to ū over R2 by mirroring along each

side and iterating, then

‖ū(x+ h)− ū(x)‖I ≤ Cω1(g, |h|)L2(I).

Proof Define ū on the torus M := (R/2Z)2. It is easy to see, by this way of

extending u,

|Dū|(M) = 4|Du|(I).

We do not introduce new extra total variation on the extension boundary.

The minimization problem on the torus M ,

min
v∈BV(M)

|Dv|(T ) +
1

2λ

∫
M

|v − ḡ|2

is equivalent to the following minimization problem

min
v∈BV(2I)

|Dv|(2I) +

∫
γ1

|Dv|+
∫
γ2

|Dv|+ 1

2λ

∫
2I

|v − ḡ|2, (1.11)

where

γ1 = {0} × (0, 2),

γ2 = (0, 2)× {0}.

The function ḡ is the extension of g the same way as extending u.

Simple calculation shows that ū is the minimizer of (1.11).

Let

J(v) = |Dv|(2I) +

∫
γ1

|Dv|+
∫
γ2

|Dv|.
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We can easily verify that J is also convex and lower semi-continuous. Therefore,

the Euler-Lagrange equation for (1.11) is also

g − u
λ
∈ ∂J(u),

thus we also have Lemma 1

‖v1 − v2‖ ≤ ‖f1 − f2‖,

where v1 is the minimizer for initial data f1 in (1.11), v2 is the minimizer for initial

data f2 in (1.11).

It is also easy to see that J is invariant under translation for any periodic function

v with period (2, 2), thus

J(v) +
1

2λ
‖v − ḡ(x+ h)‖2

L2(2I)

= J(v(x− h)) +
1

2λ
‖v(x− h)− ḡ‖2

L2(2I)

≥ J(ū) +
1

2λ
‖ū− ḡ‖2

L2(2I)

= J(ū(x+ h)) +
1

2λ
‖ū(x+ h)− ḡ(x+ h)‖2

L2(2I).

We conclude that for any initial data ḡ(x + h), ū(x + h) is the minimizer for (1.11).

By Lemma 1,

‖ū(x+ h)− ū(x)‖L2(I) ≤ ‖ū(x+ h)− ū(x)‖L2(2I)

≤ ‖ḡ(x+ h)− ḡ(x)‖L2(2I)

≤ ω1(ḡ, |h|)L2(I′).

where I ′ is the square [−3, 3] × [3, 3]. Because our extension satisfies Whitney’s

extension theorem [6],

ω1(ḡ, |h|)L2(I′) ≤ Cω1(g, |h|)L2(I).

Thus

‖ū(x+ h)− ū(x)‖I ≤ Cω1(g, |h|)L2(I).
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Remark One can conclude from Lemma 2 that

ω1(u, |h|)L2(I) ≤ Cω1(g, |h|)L2(I). (1.12)

Remark Similar techniques allow one to show that this result also holds for the

discrete case of uk and gk where uk is the minimizer of the discrete energy Ek with

the symmetric discrete TV operator J?, and uk is extended on Z2 as in (1.5), (1.6).

In fact, the corresponding discrete version is.

‖Tm1,m2u
k − uk‖l2(A) ≤ Cω1(gk, |m1|+ |m2|)l2(A), (1.13)

where A is the index set {(i, j) : 0 ≤ i, j ≤ k − 1}. For any discrete image vk, the

discrete modulus of continuity is

ω1(vk,m)l2(A) := sup
0<|n1|+|n2|≤m

‖Tn1,n2v
k − vk‖l2(An1,n2 ) (1.14)

with Tn1,n2 being the shift operator:(
Tn1,n2v

k
)
i,j

:= vki+n1,j+n2
,

and

An1,n2 := {(i, j) : (i, j) ∈ A, (i+ n1, j + n2) ∈ A}.

Remark The proof of the continuity of translation depends on the symmetry of the

discrete TV operator J?. In Chapter 3, we use a different technique to obtain error

bounds for some non-symmetric operators, for example (J++ + J−−)/2 with input g

satisfying

g ∈ L∞ ∩ Lip(β, L1(I)) ,

where Lip(β, L1(I)) is a Lipschitz space. We will give the definition in Chapter 2.

Lemma 3 (Maximum principle)

Suppose uk is the minimizer of Ek where Ek is the discrete energy with either

symmetric TV operator or non-symmetric TV operator that we have considered. If

gk ∈ L∞, then

‖uk‖∞ ≤ ‖gk‖∞.
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Proof Let

m = min
i,j

gk, M = max
i,j

gk.

Define Tuki,j to be the truncation of uki,j, with

Tuki,j :=


m uki,j < m,

uki,j m ≤ uki,j ≤M,

M uki,j > M.

We have the following property:

|Ta− Tb| ≤ |a− b|. (1.15)

In deed, it is easy to verify that

|a ∧M − b ∧M | ≤ |a− b|,

|a ∨m− b ∨m| ≤ |a− b|.

Therefore,

|Ta− Tb| = |(a ∧M) ∨m− (b ∧M) ∨m| ≤ |a− b|.

Thus,

|Tuki+1,j − Tuki,j| ≤ |uki+1,j − uki,j|,

|Tuki,j+1 − Tuki,j| ≤ |uki,j+1 − uki,j|,

Hence √
(Tuki+1,j − Tuki,j)2 + (Tuki,j+1 − Tuki,j)2

≤
√

(uki+1,j − uki,j)2 + (uki,j+1 − uki,j)2.

Add the inequality over all indexes (i, j)’s, we obtain

J++(Tuk) ≤ J++(uk).
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In fact, we have proved that for any linear combination of J++, J+−, J−+ and J−−,

Jk = λ1J++ + λ2J+− + λ3J−+ + λ4J−−

with λ1, λ2, λ3, λ4 ≥ 0,

Jk(Tu
k) ≤ Jk(u

k).

For the L2 term, again using (1.15)

|Tuki,j − gki,j| = |Tuki,j − Tgki,j| ≤ |uki,j − gki,j|,

so ∫
|Tuk − gk|2 ≤

∫
|uk − gk|2,

collecting all these results, we have, for any wk,

Ek(Tw
k) ≤ Ek(w

k),

that implies, if uk is a minimizer, Tuk = uk, i.e.

‖uk‖∞ ≤ ‖gk‖∞.

1.3 Plan of Proof of the Main Result

In this section, we assume

Ek(v
k) = Jk(v

k) +
1

2λ
‖vk − gk‖2,

where Jk may be a symmetric or non-symmetric discrete TV operator. Ek is a discrete

approximation to the continuous functional E.

To study the difference between Ek(u
k) and E(u), it should first be noticed that

Ek and E are two different functionals defined on different spaces. E is defined on

the general BV(I) space while Ek is a discrete operator defined on k by k arrays.
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Therefore, some connection between these two operators should be built. We use two

energy bounds to bridge them.

First, given a discrete minimizer uk of functional Ek, we construct a “smoothed”

function ū ∈ L2 with E(ū) less than Ek(u
k) plus some error. The construction of ū is

done by first “smoothing” uk, then injecting it into L2. We shall explain the details

later. Assuming u is the minimizer of E, we have

E(u) ≤ E(ū) ≤ Ek(u
k) + eg,h, (?)

where eg,h is the error between Ek(u
k) and E(ū), which depends on initial g and mesh

size h, and tends to zero as h tends to zero.

The second energy bound is similar but taken in the opposite direction. Based

on u, we construct a “smoothed” discrete function ũk by first “smoothing” it, then

projecting it onto space Xk, with Ek(ũ
k) less than E(u) plus an error term e′g,h similar

to eg,h. By the definition of uk, we have

Ek(u
k) ≤ Ek(ũ

k) ≤ E(u) + e′g,h. (??)

From (?) we see

E(u)− Ek(uk) ≤ eg,h ;

from (??)

Ek(u
k)− E(u) ≤ e′g,h ;

then we conclude that

|Ek(uk)− E(u)| ≤ max{eg,h, e′g,h} .

This will complete our error bound.

To relate a discrete image in Xk to a continuous image in L2, we restrict our

bounded region in (1.1) to the unit square I = [0, 1]× [0, 1]. In discrete settings, we

divide I into k by k grids, each grid

Ii,j =

[
i

k
,
i+ 1

k

]
×
[
j

k
,
j + 1

k

]
, 0 ≤ i, j ≤ k − 1;
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then assign to the center of each grid Ii,j a pixel value uki,j.

The “smoothing and projecting” process for a continuous function v is straight-

forward. The final projected function ṽk is

ṽk = Ph(φε ∗ v),

where φε is a mollifier with smoothing parameter ε and Ph is the projection L2 → Xk,

(Phf)i,j =

∫
Ii,j

f.

The “smoothing and injecting” process for a discrete function vk is a discrete

analogue to the above case. We first average vk at each pixel (i, j) over a small

square with side length (2L+ 1) and center (i, j), then inject it into L2 by piecewise

linear interpolation with grid size 1/k to obtain the final function v̄L.
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Fig. 1.1. Averaging vk on a square with center (i, j) and L = 2

In our proof, the bound of the errors eg,h and e′g,h requires the following impor-

tant consistency property relating the discrete TV operator Jk(u
k) to the continuous

operator J(u):

J(u) =

∫
I

|Du|.
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Consistency Property: For any vk ∈ Xk and v ∈ BV(I)

J(v̄L) ≤ Jk(v
k) +

Ch

ε
Jk(v

k); (consistency w.r.t injection)

Jk(ṽ
k) ≤ J(v) +

Ch

ε
J(v); (consistency w.r.t projection).

where v̄L and ṽk are the injected and projected functions respectively and ε = Lh.

The consistency property is used in bounding the total variation terms in Ek(ũ
k)

and E(ū) respectively. We shall show in the following chapters that our lemma both

holds for the symmetric and a special class of non-symmetric discrete TV operators.
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2. ERROR BOUND FOR THE SYMMETRIC DISCRETE

TV OPERATOR

In this chapter, we study the error bound for the discrete energy Ek:

Ek(u
k) = J?(u

k) +
1

2λ
‖uk − gk‖2,

where J? is the symmetric discrete TV operator

J?(u
k) =

1

4
(J++(uk) + J+−(uk) + J−+(uk) + J−−(uk)) .

We assume throughout this paper that u is the minimizer of the continuous energy

E and uk is the minimizer of the discrete energy Ek when there is no ambiguity. The

value of uk at pixel (i, j) is denoted by uki,j, with 0 ≤ i, j ≤ k − 1.

In section 2.1, we introduce the notion of injected smoothed minimizer and esti-

mate its energy. Section 2.2 introduces the notion of projected smoothed minimizer

and estimate its energy. We give the main results in section 2.3 on the bound of the

energy difference |Ek(uk)− E(u)| and the error bound of ‖uk − u‖.

2.1 Estimate of the energy of the injected smoothed minimizer

The following Proposition is the main result of this section.

Proposition 1 If g ∈ Lip(α,L2(I)) and uk is the minimizer of Ek, then

E(u) ≤ Ek(u
k) +

C

λ
‖g‖2

Lip(α,L2)h
α/(α+1) .

Section 2.1.1 discusses the notion of injected discrete function and calculates its

total variation, then gives the definition of the injected smoothed minimizer. Sec-

tion 2.1.2 and section 2.1.3 are devoted to bounding the BV term and the L2 term in

the energy of this injected smoothed minimizer respectively. In section 2.1.4, we give

the proof for Proposition 1.
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2.1.1 Injected discrete function and its TV

x6

-1 1

1

-1

x1

x2x3

x4

x5

Fig. 2.1. Ω, the support of φ

We start by introducing some notation in discrete settings. Let ∆i be the triangle

{x0, xi, xi+1} as shown in figure 2.1, where 1 ≤ i ≤ 6, x7 = x1, x0 = 0.

Define Ω :=
⋃
i ∆i as shown in figure 2.1.

Let φ be a continuous function on R2, suppφ ∈ Ω, φ|∆i
is linear, and φ|∆i

(xi) = δi0.

We dilate and translate φ to obtain the function

φki,j(x1, x2) := φ(x1/h− (i+ 1/2), x2/h− (j + 1/2)). (2.1)

We can see supp φki,j is a scaled Ω by factor h with center at ((i+ 1/2)h, (j + 1/2)h).

For any discrete function vk ∈ Xk, extend vk on Z2 as in (1.5), (1.6) and define

the injection of vk into BV(I) by

v̄ =
k∑

i,j=−1

vki,jφ
k
i,j on I.
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Notice that vki,j satisfies discrete Neumann boundary conditions,

vk−1,j = vk0,j, vkk,j = vkk−1,j,

vki,−1 = vki,0, vki,k = vki,k−1 .

The injected function v̄ is in the space spanned by {φki,j}, −1 ≤ i, j ≤ k.

Now we calculate the total variation of v̄ on I.

First notice that each triangle in our construction falls into one of two categories;

see Figure 2.2.

(1) “upper-right” type triangle:

∆+
i,j := {((i+

1

2
)h, (j +

1

2
)h), ((i+

1

2
)h, (j +

3

2
)h), ((i+

3

2
)h, (j +

1

2
)h)}.

The basis functions whose supports overlap this triangle are φki,j, φ
k
i+1,j, φ

k
i,j+1,

and their gradients on ∆+
i,j are

∇φki,j =
1

h

 −1

−1

 , ∇φki+1,j =
1

h

 1

0

 , ∇φki,j+1 =
1

h

 0

1

 .

(2) “lower-left” type triangle:

∆−i,j := {((i+
1

2
)h, (j +

1

2
)h), ((i+

1

2
)h, (j − 1

2
)h), ((i− 1

2
)h, (j +

1

2
)h)}.

The basis functions whose supports overlap this triangle are φki,j, φ
k
i−1,j, φ

k
i,j−1,

and their gradients on ∆−i,j are

∇φki,j =
1

h

 1

1

 , ∇φki−1,j =
1

h

 −1

0

 , ∇φki,j−1 =
1

h

 0

−1

 .

It is easy to verify that, in each “upper-right” type triangle ∆+
i,j,

∇v̄ =
1

h

 vki+1,j − vki,j
vki,j+1 − vki,j

 ,
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((i+ 1/2)h, (j − 1/2)h)((i+ 3/2)h, (j + 1/2)h)((i+ 1/2)h, (j + 1/2)h)

((i+ 1/2)h, (j + 3/2)h) ((i− 1/2)h, (j + 1/2)h) ((i+ 1/2)h, (j + 1/2)h)

Fig. 2.2. “upper-right” and “lower-left” type triangular meshes

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

((i+ 3/2)h, h/2)

((i+ 1/2)h,−h/2) ((i+ 3/2)h,−h/2)

((i+ 1/2)h, h/2)

Fig. 2.3. rectangular region on the boundary
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and in each “lower-left” type triangle ∆−i,j,

∇v̄ =
1

h

 vki,j − vki−1,j

vki,j − vki,j−1

 .

On the boundary, parts of these triangles will stretch outside the region I, but

notice on each rectangular region inside the boundary, for example the rectangle in

Figure 2.3,

{((i+
1

2
)h,

1

2
h), ((i+

3

2
)h,

1

2
h), ((i+

3

2
)h, 0), ((i+

1

2
)h, 0)},

the two triangles overlapping this rectangular region are on the same plane and ∇v̄

is a constant vector in this rectangular region, in this example,

∇v̄ =
1

h

 vki+1,0 − vki,0
0

 .

Finally, on the four “corner”s of region I,

[0,
h

2
]× [0,

h

2
], [1− h

2
, 1]× [0,

h

2
],

[0,
h

2
]× [1− h

2
, 1], [1− h

2
, 1]× [1− h

2
, 1];

v̄ is a constant and |∇v̄| = 0. Therefore, integrating |∇v̄| on the whole region I, we

get the following relationship between the total variation of v̄ and the discrete total

variation of vk, ∫
I

|∇v̄| =
k−1∑
i,j=0

h2(|∇++vki,j|+ |∇−−vki,j|)/2

=
1

2
(J++(vk) + J−−(vk)) . (2.2)

Now we introduce the notion of ”smoothed” function in discrete settings.

Definition 2.1.1 Define vL,k to be the “smoothed” function of vk at (i, j) over a

square with center (i, j) and side length (2L+ 1) as

vL,ki,j =
1

(2L+ 1)2

L∑
m,n=−L

vki+m,j+n
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for 0 ≤ i, j ≤ k−1. For indexes outside the range {0, · · · , k−1}, we use the extension

of vk defined in (1.5) and (1.6).

We can also rewrite vL,k as

vL,k =
1

(2L+ 1)2

L∑
m,n=−L

Tm,nv
k,

where Tm,n is the shift operator

(Tm,nv
k)i,j = vki+m,j+n .

Finally we define the injected smoothed function of vk in space L2(I).

Definition 2.1.2 Define v̄L to be the injected smoothed function of vk if

v̄L =
k∑

i,j=−1

vL,ki,j φ
k
i,j,

where φki,j is the basis function as defined before.

Recall that we assume uk is the minimizer of Ek, the injected smoothed minimizer

is then defined by

ūL =
k∑

i,j=−1

uL,ki,j φ
k
i,j on I,

where uL,k is the “smoothed” discrete function of uk,

uL,k =
1

(2L+ 1)2

L∑
m,n=−L

Tm,nu
k .

2.1.2 BV estimate

In this section we bound the BV term in E(ūL),∫
I

|DūL|.

The following lemma bounds the difference between non-symmetric discrete total

variations of “smoothed” discrete function vk.
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Lemma 4 Extend vk over Z2 as in (1.5) and (1.6). For any non-negative integer

L < k,

|J++(vL,k)− J+−(vL,k)| ≤ C

L
Ja(v

k). (2.3)

Proof For simplicity we rewrite J++(vL,k) as

J++(vL,k) =
k−1∑
i,j=0

h2δ++
i,j , (2.4)

where

δ++
i,j =

1

(2L+ 1)2

√
(A+

i,j)
2 + (B+

i,j)
2,

A+
i,j =

vL,ki+1,j − v
L,k
i,j

h
=

L∑
`=−L

vki+L+1,j+` − vki−L,j+`
h

,

B+
i,j =

vL,ki,j+1 − v
L,k
i,j

h
=

L∑
`=−L

vki+`,j+L+1 − vki+`,j−L
h

.

Adding two terms

vki+L+1,j+L+1 − vki−L,j+L+1

h
;

vki+L+1,j+L+1 − vki+L+1,j−L

h
;

to A+
i,j and B+

i,j respectively, we introduce:

Ã+
i,j :=

L+1∑
`=−L

vki+L+1,j+` − vki−L,j+`
h

,

B̃+
i,j :=

L+1∑
`=−L

vki+`,j+L+1 − vki+`,j−L
h

.

In other words, Ã+
i,j

B̃+
i,j

 =

 A+
i,j

B+
i,j

+
1

h

 vki+L+1,j+L+1 − vki−L,j+L+1

vki+L+1,j+L+1 − vki+L+1,j−L

 .
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Then ∣∣∣∣∣∣
 A+

i,j

B+
i,j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
 Ã+

i,j

B̃+
i,j

∣∣∣∣∣∣+
1

h

∣∣∣∣∣∣
 vki+L+1,j+L+1 − vki−L,j+L+1

vki+L+1,j+L+1 − vki+L+1,j−L

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
 Ã+

i,j

B̃+
i,j

∣∣∣∣∣∣+
1

h

∣∣vki+L+1,j+L+1 − vki−L,j+L+1

∣∣
+

1

h

∣∣vki+L+1,j+L+1 − vki+L+1,j−L
∣∣ .

Expanding the second term into a collapsing sum and applying the triangle inequality

gives

1

h

∣∣vki+L+1,j+L+1 − vki−L,j+L+1

∣∣ =

∣∣∣∣∣
L+1∑

`=−L+1

∇−x vki+`,j+L+1

∣∣∣∣∣
≤

L+1∑
`=−L+1

|∇−x vki+`,j+L+1|,

and similarly for the third term, so√
(A+

i,j)
2 + (B+

i,j)
2 ≤

√
(Ã+

i,j)
2 + (B̃+

i,j)
2

+
L+1∑

`=−L+1

|∇−x vki+`,j+L+1|+
L+1∑

`=−L+1

|∇−y vki+L+1,j+`| . (2.5)

Let

δ̃++
i,j =

1

(2L+ 1)2

√
(Ã+

i,j)
2 + (B̃+

i,j)
2,

we bound J++(vL,k) by the sum of h2δ̃++
i,j over all i, j plus some error term.

J++(vL,k) =
1

(2L+ 1)2

k−1∑
i,j=0

h2
√

(A+
i,j)

2 + (B+
i,j)

2

≤ 1

(2L+ 1)2

k−1∑
i,j=0

h2
√

(Ã+
i,j)

2 + (B̃+
i,j)

2

+
1

(2L+ 1)2

k−1∑
i,j=0

h2

{
L+1∑

`=−L+1

|∇−x vki+`,j+L+1|+ |∇−y vki+L+1,j+`|

}
.
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The last line follows from (2.5). Exchange the order of summation in the second term

of the above line and notice that L < k, by the definition of extended vk,

k−1∑
i,j=0

|∇−x vki+`,j+L+1| ≤
2k−1∑
i,j=0

|∇−x vki,j|

= 4
k−1∑
i,j=0

|∇−x vki,j|.

Similarly for the last term, so

k−1∑
i,j=0

|∇−x vki+`,j+L+1|+ |∇−y vki+L+1,j+`| ≤ 4

(
k−1∑
i,j=0

|∇−x vki,j|+ |∇−y vki,j|

)
for any `, L. Thus we obtain

J++(vL,k) ≤
k−1∑
i,j=0

h2δ̃++
i,j +

4

(2L+ 1)2

L+1∑
`=−L+1

k−1∑
i,j=0

h2(|∇−x vki,j|+ |∇−y vki,j|) .

Recall that

Ja =
k−1∑
i,j=0

h2(|∇−x vki,j|+ |∇−y vki,j|) .

Thus

J++(vL,k) ≤
k−1∑
i,j=0

h2δ̃++
i,j +

4

2L+ 1
Ja(v

k)

≤
k−1∑
i,j=0

h2δ̃++
i,j +

2

L
Ja(v

k) . (2.6)

Similarly, we can bound J+−(vL,k) by

J+−(vL,k) ≥
k−1∑
i,j=0

h2δ̃+−
i,j −

2

L
Ja(v

k), (2.7)

where

δ̃+−
i,j =

1

(2L+ 1)2

√
(C̃+

i,j)
2 + (D̃−i,j)

2,

C̃+
i,j =

L∑
`=−L−1

vki+L+1,j+` − vki−L,j+`
h

,

D̃−i,j =
L+1∑
`=−L

vki+`,j+L − vki+`,j−L−1

h
.
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One can now make the crucial observation that

δ̃++
i,j = δ̃+−

i,j+1 .

Therefore, subtracting (2.7) from (2.6), we obtain

J++(vL,k)− J+−(vL,k) ≤
k−1∑
i=0

h2(−δ̃+−
i,0 + δ̃++

i,k−1) +
4

L
Ja(v

k)

≤
k−1∑
i=0

h2(δ̃+−
i,0 + δ̃++

i,k−1) +
4

L
Ja(v

k) . (2.8)

To bound the first term in (2.8), we need to bound

k−1∑
i=0

h2δ̃+−
i,0 =

1

(2L+ 1)2

k−1∑
i=0

h2
√

(C̃+
i,0)2 + (D̃−i,0)2 .

Since vk is symmetric about the boundary,

D̃−i,0 = 0,

again writing each C̃+
i,0 as a collapsing sum, we have

k−1∑
i=0

h2δ̃+−
i,0 =

1

(2L+ 1)2

k−1∑
i=0

h2

∣∣∣∣∣
L∑

`=−L−1

vki+L+1,` − vki−L,`
h

∣∣∣∣∣
=

1

(2L+ 1)2

k−1∑
i=0

h2

∣∣∣∣∣
L∑

`=−L−1

L+1∑
s=−L+1

∇−x vki+s,`

∣∣∣∣∣
≤ 1

(2L+ 1)2

k−1∑
i=0

h2

L∑
`=−L−1

L+1∑
s=−L+1

|∇−x vki+s,`| . (2.9)

Again since the extended vk is symmetric about the boundary j = −1/2,

L∑
`=−L−1

|∇−x vki+s,`| ≤ 2
L∑
`=0

|∇−x vki+s,`| .

Exchange the order of sum in (2.9) and notice L < k, we have

k−1∑
i=0

h2δ̃+−
i,0 ≤

1

(2L+ 1)2

k−1∑
i=0

h2

L∑
`=−L−1

L+1∑
s=−L+1

|∇−x vki+s,`|

≤ 2

(2L+ 1)2

L+1∑
s=−L+1

k−1∑
i=0

L∑
`=0

h2|∇−x vki+s,`|

≤ 2

(2L+ 1)2

L+1∑
s=−L+1

k−1∑
i=0

k−1∑
`=0

h2|∇−x vki+s,`| .
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For any −L+ 1 < s < L+ 1,

k−1∑
i=0

k−1∑
`=0

h2|∇−x vki+s,`| ≤ 2
k−1∑
i=0

k−1∑
`=0

h2|∇−x vki,`| ,

thus

k−1∑
i=0

h2δ̃+−
i,0 ≤

4

(2L+ 1)2

L+1∑
s=−L+1

k−1∑
i=0

k−1∑
`=0

h2|∇−x vki,`|

≤ 4

2L+ 1
Ja(v

k) ≤ 2

L
Ja(v

k) .

The same result also holds for
∑k−1

i=0 h
2δ̃++
i,k−1, then we obtain

J++(vL,k)− J+−(vL,k) ≤ C

L
Ja(v

k) .

By the symmetric nature of our proof, we also have

J+−(vL,k)− J++(vL,k) ≤ C

L
Ja(v

k),

then

|J++(vL,k)− J+−(vL,k)| ≤ C

L
Ja(v

k).

and we complete the proof.

Remark With slight adaption, this result can be easily extended to bound the dif-

ference between any two of the non-symmetric discrete TV operators J++, J+−, J−+

and J−−.

We next give the following property of the symmetric discrete total variation J?.

It states that “smoothing” a discrete function vk doesn’t increase its TV.

Lemma 5

J?(v
L,k) ≤ J?(v

k).

Proof Extend vk over the torus (Z/2kZ)2, Let J̄? be the symmetric discrete TV on

the torus,

J̄?(v
k) =

1

4

2k−1∑
i,j=0

(|∇++vki,j|+ |∇+−vki,j|+ |∇−+vki,j|+ |∇−−vki,j|).
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One can verify that

J̄?(v
k) = 4J?(v

k),

and J̄? is invariant under translation on the torus. Therefore,

J̄?(v
L,k) = J̄?

(
L∑

m,n=−L

Tm,nv
k

)

≤
L∑

m,n=−L

J̄?(Tm,nv
k)

= J̄?(v
k).

This gives

J?(v
L,k) ≤ J?(v

k).

Now we prove the first part of the consistency property for the symmetric discrete

TV operator.

Lemma 6 (Consistency with respect to injection)∫
I

|Dv̄L| ≤ J?(v
k) +

C

L
J?(v

k). (2.10)

Proof By (2.2), we have∫
I

|Dv̄L| = 1

2
(J++(vL,k) + J−−(vL,k))

= J?(v
L,k) +

1

4
[J+−(vL,k)− J++(vL,k) + J−+(vL,k)− J−−(vL,k)] .

By Lemma 5,

J?(v
L,k) ≤ J?(v

k),

therefore,∫
I

|Dv̄L| ≤ J?(v
k) +

1

4
|J++(vL,k)− J+−(vL,k)|+ 1

4
|J−+(vL,k)− J−−(vL,k)| .
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Now apply Lemma 4 and its remark,∫
I

|Dv̄L| ≤ J?(v
k) +

C

L
Ja(v

k) .

Since J? is equivalent to Ja, we obtain∫
I

|Dv̄L| ≤ J?(v
k) +

C

L
J?(v

k) .

2.1.3 L2 estimate

In this section we treat gk (uk, ūL,k resp.) as a piecewise constant function on the

unit square I with constant value gki,j (uki,j, ū
L,k
i,j resp.) on each grid

Ii,j =

[
i

k
,
i+ 1

k

]
×
[
j

k
,
j + 1

k

]
, 0 ≤ i, j ≤ k − 1;

.

The aim of this section is to bound the L2 term

1

2λ
‖ūL − g‖2

in E(ūL) by
1

2λ
‖ūk − gk‖2

plus some error term. Therefore with the help of the consistency property we proved

in last section, we can get

E(ūL) =

∫
I

|DūL|+ 1

2λ
‖ūL − g‖2

≤ J?(u
k) +

1

2λ
‖uk − gk‖2 + some error

= Ek(u
k) + some error,

and prove Proposition 1.

The L2 term can be expanded into several terms,
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‖ūL − g‖2 = ‖ūL − uk + uk − gk + gk − g‖2

≤ ‖uk − gk‖2 + 2‖uk − gk‖‖ūL − uk + gk − g‖

+ ‖ūL − uk + gk − g‖2. (2.11)

By the triangle inequality,

‖ūL − uk + gk − g‖ = ‖ūL − uL,k + uL,k − uk + gk − g‖

≤ ‖ūL − uL,k‖+ ‖uL,k − uk‖+ ‖gk − g‖,

and

‖ūL − uk + gk − g‖2 = ‖ūL − uL,k + uL,k − uk + gk − g‖2

≤ 3(‖ūL − uL,k‖2 + ‖uL,k − uk‖2 + ‖gk − g‖2).

Therefore

‖ūL − g‖2 ≤ ‖uk − gk‖2 + 2‖uk − gk‖ · (‖ūL − uL,k‖+ ‖uL,k − uk‖

+ ‖gk − g‖) + 3(‖ūL − uL,k‖2 + ‖uL,k − uk‖2 + ‖gk − g‖2). (2.12)

and we shall bound terms: ‖ūL−uL,k‖, ‖uL,k−uk‖, ‖gk− g‖ and ‖uk− gk‖. We first

look at ‖gk − g‖.

Recall that the Lipschitz space Lip(α,L2(I)), 0 < α ≤ 1, is the set of all L2

functions f on I that satisfy{∫
Ih

|f(x+ h)| − f(x)|2 dx
}1/2

≤Mtα, t > 0

for all h with |h| ≤ t where Ih := {x : x ∈ I, x + h ∈ I}. Recall the definition of

modulus of smoothness ω1 in (1.10). We define the semi-norm of Lip(α,L2(I)) as

|f |Lip(α,L2) := sup
t>0

(t−αω1(f, t)L2(I)).

the Lipschitz norm of f is ‖f‖Lip(α,L2) := |f |Lip(α,L2) + ‖f‖.

For a general exposition of the theory of Lipschitz space, we refer to [6].
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Lemma 7 If g is in Lip(α,L2(I)), then

‖gk − g‖ ≤ C|g|Lip(α,L2)h
α.

Proof ∫
I

|gk − g|2 =
∑
i,j

∫
Ii,j

|gki,j − g|2

=
∑
i,j

∫
Ii,j

∣∣∣∣∣ 1

|Ii,j|

∫
Ii,j

g(y)− g(x) dy

∣∣∣∣∣
2

dx .

By Holder’s inequality, we have for any p ≥ 1,∣∣∣∣∣ 1

|Ii,j|

∫
Ii,j

g(y)− g(x) dy

∣∣∣∣∣
p

≤ 1

|Ii,j|

∫
Ii,j

|g(y)− g(x)|p . (2.13)

Let p = 2 and apply (2.13) to the inner integral in the previous line, then substitute

the integral variable y by x+ τ and exchange the order of integration, we obtain:∫
I

|gk − g|2 ≤
∑
i,j

∫
Ii,j

1

h2

∫
|τ |≤
√

2h

|g(x+ τ)− g(x)|2 dτ dx

≤ 1

h2

∫
|τ |≤
√

2h

∫
I

|g(x+ τ)− g(x)|2dx dτ

≤ C sup
|τ |≤
√

2h

∫
I

|g(x+ τ)− g(x)|2 dx

≤ Cω2
1(g,
√

2h)L2 ≤ C|g|2Lip(α,L2)h
2α .

On taking square root on both sides, we get the result.

The following lemma bounds the smoothness of gk in the discrete setting by the

smoothness of g in the continuous setting. We use it later to bounding ‖uL,k − uk‖

and ‖ūL − uL,k‖.

Lemma 8 For any p ≥ 1 and any multi-index ` = (m,n),

‖T`gk − gk‖Lp(I) ≤ Cω1(g, |`|h)Lp(I),

where |`| = |m|+ |n|.
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Proof Similar to the proof of Lemma 7, apply the inequality (2.13),

∑
i,j

h2|gki+m,j+n − gki,j|p =
∑
i,j

h2

∣∣∣∣∣ 1

|Ii,j|

∫
Ii,j

g(x+ h`)− g(x) dx

∣∣∣∣∣
p

≤
∑
i,j

h2 1

|Ii,j|

∫
Ii,j

|g(x+ h`)− g(x)|p dx

=

∫
I

|g(x+ h`)− g(x)|p dx

≤ ω1(g, |`|h)pLp(2I)

≤ Cω1(g, |`|h)pLp(I).

Remark We have in fact proved that

ω1(gk, |`|)lp(I) ≤ Cω1(g, |`|h)Lp(I). (2.14)

Remark Specifically, we have

Ja(g
k) =

1

h
(‖T1,0g

k − gk‖L1 + ‖T0,1g
k − gk‖L1)

≤ C

h
ω1(g, h)L1 . (2.15)

Now we estimate ‖uL,k − uk‖ and ‖ūL − uL,k‖.

Lemma 9 If g is in Lip(α,L2(I)), then

‖uL,k − uk‖ ≤ C|g|Lip(α,L2)(Lh)α. (2.16)

Proof Because of the convexity and 1-homogeneity of ‖ · ‖,

‖uL,k − uk‖ =

∥∥∥∥∥ 1

(2L+ 1)2

L∑
m,n=−L

(Tm,nu
k − uk)

∥∥∥∥∥
≤ 1

(2L+ 1)2

L∑
m,n=−L

‖Tm,nuk − uk‖ .



29

Apply the translation continuity property (1.13) for uk to each term in the sum

of the above inequality and use (2.14) to see that

‖uL,k − uk‖ ≤ C

(2L+ 1)2

L∑
m,n=−L

ω1(gk, |m|+ |n|)l2

≤ C

(2L+ 1)2

L∑
m,n=−L

ω1(g, Lh)L2

≤ C

(2L+ 1)2

L∑
m,n=−L

|g|Lip(α,L2)(Lh)α

≤ C|g|Lip(α,L2)(Lh)α.

Lemma 10 If g is in Lip(α,L2(I)), then

‖ūL − uL,k‖ ≤ C|g|Lip(α,L2)h
α. (2.17)

Proof The estimate of ‖ūL − uL,k‖ is similar to the estimate of ‖uL,k − uk‖. We

first bound it by the discrete difference of uk, then use the property of translation

continuity and Lemma 8.

Let ũL =
∑

i′,j′ u
L,k
i,j φ

k
i′,j′ , the sum of φki′,j′ over all (i′, j′) such that for each (i′, j′),

supp φki′,j′ intersects supp φki,j non-trivially, It’s easy to see that in the support of φki,j,

ũL is a constant uL,ki,j .∫
Ii,j

|uL,k − ūL|2 =

∫
Ii,j

|ũL − ūL|2

≤
∫
Ii,j

∣∣∣∣∣∑
i′,j′

(uL,ki,j φ
k
i′,j′ − u

L,k
i′,j′φ

k
i′,j′)

∣∣∣∣∣
2

≤ 6
∑
i′,j′

∫
Ii,j

(uL,ki,j − u
L,k
i′,j′)

2 .

Notice that, for the ”diagonal” type terms in above expression, for example, (uL,ki,j −

uL,ki−1,j−1)2, we have

(uL,ki,j − u
L,k
i−1,j−1)2 ≤ 2[(uL,ki,j − u

L,k
i,j−1)2 + (uL,ki,j−1 − u

L,k
i−1,j−1)2],
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then, sum all these terms and re-index terms when necessary, we get∫
I

|uL,k − ūL|2 =
∑
i,j

∫
Ii,j

|uL,k − ūL|2

≤
∑
i,j

6
∑
i′,j′

∫
Ii,j

(uL,ki,j − u
L,k
i′,j′)

2

≤ 36
∑
i,j

(|uL,ki+1,j − u
L,k
i,j |2 + |uL,ki,j+1 − u

L,k
i,j |2)h2

= C(‖T1,0u
L,k − uL,k‖2 + ‖T0,1u

L,k − uL,k‖2) . (2.18)

Then

‖uL,k − ūL‖ =

{∫
I

|uL,k − ūL|2
}1/2

≤ C(‖T1,0u
L,k − uL,k‖+ ‖T0,1u

L,k − uL,k‖)

≤ C(

∥∥∥∥∥ 1

(2L+ 1)2

L∑
m,n=−L

Tm,n(T1,0u
k − uk)

∥∥∥∥∥+∥∥∥∥∥ 1

(2L+ 1)2

L∑
m,n=−L

Tm,n(T0,1u
k − uk)

∥∥∥∥∥) .

Again by the convexity and 1-homogeneity of ‖ · ‖,

‖uL,k − ūL‖ ≤ C
1

(2L+ 1)2

L∑
m,n=−L

(‖Tm,n(T1,0u
k − uk)‖+

‖Tm,n(T0,1u
k − uk)‖).

By the property of translation continuity of uk (1.13) and the definition of ω1(gk,m)l2

in (1.14),

‖Tm,n(T1,0u
k − uk)‖ ≤ Cω1(gk, 1)l2 ;

‖Tm,n(T0,1u
k − uk)‖ ≤ Cω1(gk, 1)l2 ;

therefore by Lemma 8,

‖uL,k − ūL‖ ≤ C(ω1(gk, 1)l2 + ω1(gk, 1)l2)

≤ C|g|Lip(α,L2)h
α.
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Now we are at the position to bound the last L2 term ‖uk − gk‖ in (2.12).

Lemma 11

‖uk − gk‖ ≤ ‖g‖.

Proof The proof is straightforward, since uk is the minimizer of Ek,

1

2λ
‖uk − gk‖2 ≤ Ek(u

k) ≤ Ek(0) =
1

2λ
‖gk‖2 ≤ 1

2λ
‖g‖2.

2.1.4 Proof of Proposition 1

We prove Proposition 1 in this section.

By the BV estimate (2.10), we have∫
I

|DūL| ≤ J?(u
k) +

C

L
J?(u

k) .

Then

E(ūL) =

∫
I

|DūL|+ 1

2λ
‖ūL − g‖2

= J?(u
k) +

C

L
J?(u

k) +
1

2λ
‖ūL − g‖2 .

Notice that

J?(u
k) ≤ Ek(u

k) ≤ Ek(0) ≤ C

λ
‖g‖2 . (2.19)

Thus

E(ūL) ≤ J?(u
k) +

C

Lλ
‖g‖2 +

1

2λ
‖ūL − g‖2 . (2.20)

Recall (2.12), we rewrite the expending of the last L2 term here,

‖ūL − g‖2 = ‖ūL − uk + uk − gk + gk − g‖2

≤ ‖uk − gk‖2 + 2‖uk − gk‖‖ūL − uk + gk − g‖

+ ‖ūL − uk + gk − g‖2

≤ ‖uk − gk‖2 + 2‖uk − gk‖ · (‖ūL − uL,k‖+ ‖uL,k − uk‖

+ ‖gk − g‖) + 3(‖ūL − uL,k‖2 + ‖uL,k − uk‖2 + ‖gk − g‖2).
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Now applying Lemma 7, Lemma 9, and Lemma 10 to ‖gk − g‖, ‖uL,k − uk‖, and

‖ūL − uL,k‖, respectively, in the above inequality, we obtain

‖ūL − g‖2 ≤ ‖uk − gk‖2 + C(|g|2Lip(α,L2)h
2α + |g|2Lip(α,L2)h

α(Lh)α+

|g|2Lip(α,L2)(Lh)2α + ‖g‖|g|Lip(α,L2)(Lh)α + ‖g‖|g|Lip(α,L2)h
α).

Then put it back to (2.20),

E(ūL) ≤ J?(u
k) +

1

2λ
‖uk − gk‖2 +

C

λ
(‖g‖2L−1 + |g|2Lip(α,L2)h

2α+

+ |g|2Lip(α,L2)h
α(Lh)α + |g|2Lip(α,L2)(Lh)2α

+ ‖g‖|g|Lip(α,L2)(Lh)α + ‖g‖|g|Lip(α,L2)h
α).

Setting L = bh−γc, the smallest powers of h in the above expression are

hγ, hα(1−γ).

Setting them equal each other, we get

γ =
α

α + 1
,

and

E(ūL) ≤ J?(u
k) +

1

2λ
‖uk − gk‖2 +

C

λ
(‖g‖2 + ‖g‖|g|Lip(α,L2))h

α/(α+1)

≤ Ek(u
k) +

C

λ
‖g‖2

Lip(α,L2)h
α/(α+1). (2.21)

Since E(u) ≤ E(ūL), we have immediately that Proposition 1 is true.

2.2 Estimate of the energy of the projected smoothed minimizer

We prove in this section the following proposition.

Proposition 2 If g ∈ Lip(α,L2(I)) and uk is the minimizer of Ek, then

Ek(u
k) ≤ E(u) +

C

λ
‖g‖2

Lip(α,L2)h
α/(α+1).

The structure of this section is similar to section 2.1. Section 2.2.1 introduces the

notion of projected smoothed function. In Section 2.2.2 and section 2.2.3, we bound

the BV term and the L2 term in the energy of the projected smoothed minimizer

respectively. In section 2.2.4, we give the proof for Proposition 2.
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2.2.1 Projected smoothed function

To study the energy estimate in the other direction, we first briefly recall the

definition of mollified function vε; here we assume v is a function in BV(I).

Define v̂ be the extension of v over R2 by symmetrizing v across the boundaries

of I and periodizing it (with period 2 in each direction).

Let η be a non-negative symmetric mollifier, with∫
η = 1;

for example,

η =

 0, |x| ≥ 1,

Ce
1

|x|2−1 , |x| < 1.

Define for each ε > 0

ηε = ε−2η(
x

ε
) and

vε = ηε ∗ v̂ .

Now we introduce the notion of projected smoothed function. We call ṽk a pro-

jected smoothed function for v ∈ BV if ṽk is a discrete function with value ṽki,j at

index (i, j) for 0 ≤ i, j ≤ k − 1,

ṽki,j =
1

h2

∫
Ii,j

vε dx,

where vε is the mollified function of v.

Recall that we assume u is the minimizer of E; then ũk is denoted as the projected

smoothed function for u. We also call ũk the projected smoothed minimizer for E.

2.2.2 BV estimate

We estimate in this section the BV term of the discrete energy Ek(ṽ
k), i.e. we

prove the consistency with respect to projection for the discrete TV operator J?.
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Lemma 12

J?(ṽ
k) ≤

∫
I

|Dvε|+ Ch

∫
I

(|Dxxv
ε|+ |Dyyv

ε|). (2.22)

Proof Recall

∇+
x ṽ

k
i,j =

ṽki+1,j − ṽki,j
h

, ∇+
y ṽ

k
i,j =

ṽki,j+1 − ṽki,j
h

,

∇−x ṽki,j =
ṽki,j − ṽki−1,j

h
, ∇−y ṽki,j =

ṽki,j − ṽki,j−1

h
.

Then

∇+
x ṽ

k
i,j −

1

h2

∫
Ii,j

Dxv
ε

=
ṽki+1,j − ṽki,j

h
− 1

h2

∫
Ii,j

Dxv
ε

=
1

h

1

|Ii,j|

∫
Ii,j

[vε(x+ h, y)− vε(x, y)] dx dy − 1

h2

∫
Ii,j

Dxv
ε .

The integrand of the first integral can be rewritten as an integral of Dvε, then combine

these two integrals and once again rewrite the integrand as an integral of the second

derivative of vε, we have,

∇+
x ṽ

k
i,j −

1

h2

∫
Ii,j

Dxv
ε

=
1

h3

∫
Ii,j

(∫ h

0

Dxv
ε(x+ t, y) dt− hDxv

ε(x, y)

)
dx dy

=
1

h3

∫
Ii,j

∫ h

0

(Dxv
ε(x+ t, y)−Dxv

ε(x, y)) dt dx dy

=
1

h3

∫
Ii,j

∫ h

0

∫ t

0

Dxxv
ε(x+ s, y) ds dt dx dy .

Therefore

∇+
x ṽ

k
i,j =

1

h2

∫
Ii,j

Dxv
ε+

1

h3

∫
Ii,j

∫ h

0

∫ t

0

Dxxv
ε(x+ s, y) ds dt dx dy .
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Similarly,

∇+
y ṽ

k
i,j =

1

h2

∫
Ii,j

Dyv
ε+

1

h3

∫
Ii,j

∫ h

0

∫ t

0

Dyyv
ε(x, y + s) ds dt dx dy .

So we can bound the norm of ∇+ṽki,j by

|∇+ṽki,j| ≤
1

h2

∣∣∣∣∣∣
 ∫

Ii,j
Dxv

ε∫
Ii,j
Dyv

ε

∣∣∣∣∣∣+
1

h3

∣∣∣∣∣∣
 ∫

Ii,j

∫ h
0

∫ t
0
Dxxv

ε(x+ s, y) ds dt dx dy∫
Ii,j

∫ h
0

∫ t
0
Dyyv

ε(x, y + s) ds dt dx dy

∣∣∣∣∣∣
≤ 1

h2

∫
Ii,j

|Dvε|+ 1

h3

∫
Ii,j

∫ h

0

∫ t

0

|Dxxv
ε(x+ s, y)| ds dt dx dy

1

h3

∫
Ii,j

∫ h

0

∫ t

0

|Dyyv
ε(x, y + s)| ds dt dx dy . (2.23)

The last line follows from the fact that∣∣∣∣∣∣
 ∫

f∫
g

∣∣∣∣∣∣ ≤
∫ √

f 2 + g2

by Jensen’s inequality, and ∣∣∣∣∣∣
 a

b

∣∣∣∣∣∣ ≤ |a|+ |b| .
To bound the discrete total variation J++(ṽk), we should sum (2.23) over all

indexes (i, j) with weight h2 at each index. We obtain

J++(ṽk) ≤
∫
I

|Dvε|+ e1 + e2,
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where

e1 =
∑
i,j

h2 1

h3

∫
Ii,j

∫ h

0

∫ t

0

|Dxxv
ε(x+ s, y)| ds dt dx dy

≤ 1

h

∫ h

0

∫ t

0

{∫
I

|Dxxv
ε(x+ s, y)| dx dy

}
ds dt

≤ 1

h

∫ h

0

∫ t

0

{∫
2I

|Dxxv
ε| dx dy

}
ds dt

≤ Ch

∫
I

|Dxxv
ε| .

We also have

e2 =
∑
i,j

h2 1

h3

∫
Ii,j

∫ h

0

∫ t

0

|Dyyv
ε(x, y + s)| ds dt dx dy

≤ Ch

∫
I

|Dyyv
ε| .

Therefore

J++(ṽk) ≤
∫
I

|Dvε|+ Ch

∫
I

(|Dxxv
ε|+ |Dyyv

ε|) .

By the same argument, we have the same bound for J+−, J−+, and J−−,

J(ṽk) ≤
∫
I

|Dvε|+ Ch

∫
I

(|Dxxv
ε|+ |Dyyv

ε|),

where J ∈ {J+−, J−+, J−−}. Thus, we complete the proof.

Remark In fact, we have proved that for any convex linear combination of the

operators J++, J+−, J−+, J−−,

J = λ1J++ + λ2J+− + λ3J−+ + λ4J−−,

λ1, λ2, λ3, λ4 ≥ 0,

λ1 + λ2 + λ3 + λ4 = 1,

the same result holds:

J(ṽk) ≤
∫
I

|Dvε|+ Ch

∫
I

(|Dxxv
ε|+ |Dyyv

ε|) .
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Similar to the discrete case, we also have the following result.

Lemma 13 For any v ∈ BV(I),∫
I

|Dvε| ≤
∫
I

|Dv|.

Proof The proof follows directly the one given in the discrete case in Lemma 5.

Now we prove the consistency with respect to projection.

Lemma 14 (Consistency with respect to projection)

J?(ṽ
k) ≤

∫
I

|Dv|+ Ch

ε

∫
I

|Dv|.

Proof It is clear we only need to bound∫
I

(|Dxxv
ε|+ |Dyyv

ε|)

in (2.22). We now prove

∫
I

|Dxxv
ε| ≤ C

ε

∫
I

|Dv| .

In fact ∫
I

|Dxxv
ε| = sup

|φ|≤1; φ∈C∞0 (I)

∫
Dxxv

ε · φ

= sup
|φ|≤1; φ∈C∞0 (I)

∫
Dxv

εDxφ

= sup
|φ|≤1; φ∈C∞0 (I)

∫
(Dxηε ∗ v)Dxφ

= sup
|φ|≤1; φ∈C∞0 (I)

∫
vDx(−Dxηε(x, y) ∗ φ).

Notice

| −Dxηε(x, y) ∗ φ| ≤ ‖Dxηε(x, y)‖L1‖φ‖∞

≤ C

ε
,
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and −Dxηε(x, y) ∗ φ ∈ C∞0 (Iε), where

Iε := {x : dist(x, Ī) ≤ ε},

therefore ∫
I

|Dxxv
ε| ≤ C

ε

∫
Iε
|Dv|

≤ C

ε

∫
9I

|Dv| ≤ C

ε

∫
I

|Dv| .

The same result also holds for
∫
I
|Dyyv

ε|. Applying these results and Lemma 13

to (2.22), we have the result.

Recall that we assume ũk to be the discretization of uε, where uε is the mollified

minimizer u of the continuous energy E. Applying Lemma 14, we have

J?(ũ
k) ≤

∫
I

|Du|+ Ch

ε

∫
I

|Du| . (2.24)

Noticing that ∫
I

|Du| ≤ E(u) ≤ E(0) ≤ 1

2λ
‖g‖2,

we obtain

J?(ũ
k) ≤

∫
I

|Du|+ Ch

λε
‖g‖2 . (2.25)

This completes the estimation of the total variation term in Ek(ũ
k).

2.2.3 L2 estimate

Finally we bound the L2 term

‖ũk − gk‖

in

Ek(ũ
k) = J?(u

k) +
1

2λ
‖ũk − gk‖2 .
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Similar to the first part, we prove

‖ũk − gk‖2 ≤ ‖u− g‖2 + some error.

Expand the L2 term into a sum of collapsing terms,

‖ũk − gk‖2 = ‖ũk − u+ u− g + g − gk‖2

≤ ‖u− g‖2 + 2‖u− g‖‖ũk − u+ g − gk‖+ ‖ũk − u+ g − gk‖2.

Notice

‖ũk − u+ g − gk‖ = ‖ũk − uε + uε − u+ g − gk‖

≤ ‖ũk − uε‖+ ‖uε − u‖+ ‖g − gk‖,

and

‖ũk − u+ g − gk‖2 = ‖ũk − uε + uε − u+ g − gk‖2

≤ 3(‖ũk − uε‖2 + ‖uε − u‖2 + ‖g − gk‖2).

Thus

‖ũk − gk‖2 ≤ ‖u− g‖2 + 2‖u− g‖ · (‖ũk − uε‖+ ‖uε − u‖+ ‖g − gk‖)

+ 3(‖ũk − uε‖2 + ‖uε − u‖2 + ‖g − gk‖2). (2.26)

We shall bound four terms:

‖ũk − uε‖, ‖uε − u‖, ‖u− g‖, ‖g − gk‖ .

We have already obtained the bound for ‖g − gk‖ previously,

‖g − gk‖ ≤ C|g|Lip(α,L2)h
α . (2.27)

Also,
1

2λ
‖u− g‖2 ≤ E(u) ≤ E(0) =

1

2λ
‖g‖2,

thus

‖u− g‖ ≤ ‖g‖ . (2.28)

We only need to bound the first two terms.
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Lemma 15 If g ∈ Lip(α,L2), then

‖ũk − uε‖ ≤ C|g|Lip(α,L2)h
α.

Proof We have,

‖ũk − uε‖2 =
∑
i,j

∫
Ii,j

|ũki,j − uε|2

≤
∑
i,j

∫
Ii,j

∣∣∣∣ 1

|Ii,j|

∫
Ii,j

|uε(y)− uε(x)| dy
∣∣∣∣2dx

(Apply Holder’s inequality)

≤
∑
i,j

∫
Ii,j

1

|Ii,j|

∫
|z|≤
√

2h

|uε(x+ z)− uε(x)|2dx dz

≤ 1

h2

∫
|z|≤
√

2h

∫
I

|uε(x+ z)− uε(x)|2dx

≤ Cω2
1(uε,

√
2h)L2

≤ Cω2
1(u,
√

2h)L2 .

By continuity of translation property (1.12),

ω1(u, h)L2 ≤ Cω1(g, h)L2 .

Thus

‖ũk − uε‖ ≤ Cω1(g, h)L2

≤ C|g|Lip(α,L2)h
α.

Lemma 16 If g ∈ Lip(α,L2), then

‖uε − u‖ ≤ C|g|Lip(α,L2)ε
α.



41

Proof We have,

‖uε − u‖2 =

∫
I

|uε − u|2

=

∫
I

∣∣∣∣∫
B(0,ε)

ηε(y)(u(x− y)− u(x)) dy

∣∣∣∣2dx
≤
∫
I

(∫
B(0,ε)

η2
ε (y) dy ·

∫
B(0,ε)

|u(x− y)− u(x)|2 dy
)
dx

≤ 1

ε2

∫
B(0,ε)

∫
I

|u(x− y)− u(x)|2dx dy

≤ Cω2
1(u, ε)L2 ≤ Cω2

1(g, ε)L2 ≤ C|g|2Lip(α,L2)ε
2α.

With all the estimates given, we can bound the L2 term.

Lemma 17

‖ũk − gk‖2 ≤
∫
I

|u− g|2 + C|g|2Lip(α,L2)h
2α + C|g|2Lip(α,L2)ε

2α+

C|g|2Lip(α,L2)h
αεα + C‖g‖|g|Lip(α,L2)h

α + C‖g‖|g|Lip(α,L2)ε
α.

Proof We collect the inequalities we need here.

From (2.27),

‖g − gk‖ ≤ C|g|Lip(α,L2)h
α ;

From (2.28),

‖u− g‖ ≤ ‖g‖ ;

From Lemma 15,

‖ũk − uε‖ ≤ C|g|Lip(α,L2)h
α;

From Lemma 16,

‖uε − u‖ ≤ C|g|Lip(α,L2)ε
α.

Apply them to (2.26), the result follows.
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2.2.4 Proof of Proposition 2

At this point, we can establish the second main energy bound.

Proof of Proposition 2 By (2.25) and Lemma 17,

Ek(ũ
k) = J?(ũ

k) +
1

2λ
‖ũk − gk‖2

≤
∫
I

|Du|+ C‖g‖2h

λε
+

1

2λ

∫
I

|u− g|2+

C

2λ
(|g|2Lip(α,L2)h

2α + |g|2Lip(α,L2)ε
2α + |g|2Lip(α,L2)h

αεα+

‖g‖|g|Lip(α,L2)h
α + ‖g‖|g|Lip(α,L2)ε

α).

The terms with the smallest powers in h and ε (without considering coefficients) are

h

ε
, hα, εα .

Let ε = hγ, these terms become

h1−γ, hα, εγα .

Noticing γα ≤ α, let 1− γ = γα to get

γ =
1

α + 1
.

Then

Ek(u
k) ≤ Ek(ũ

k)

≤
∫
I

|Du|+ 1

2λ

∫
I

|u− g|2+

C

λ
(|g|2Lip(α,L2) + ‖g‖|g|Lip(α,L2) + ‖g‖2)hα/(α+1)

≤ E(u) +
C

λ
‖g‖2

Lip(α,L2)h
α/(α+1).

2.3 Error estimate of the discrete minimizer

Our main theorem follows immediately from Proposition 1 and Proposition 2.
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Theorem 2.3.1 If g ∈ Lip(α,L2(I)), uk is the minimizer of Ek and u is the mini-

mizer of E, then

|E(u)− Ek(uk)| ≤
C

λ
‖g‖2

Lip(α,L2)h
α/(α+1).

Remark For g ∈ BV(I), we have α = 1/2, so α/(α + 1) = 1/3; thus the order of

energy difference is at most h1/3.

Finally we give the estimate of error between discrete minimizer and the minimizer

in L2. We need the following lemma.

Lemma 18 If u is the minimizer of the functional E, then for any v ∈ BV,

‖v − u‖2 ≤ 2λ(E(v)− E(u)). (2.29)

Proof Let J(u) be the total variation of u,

J(u) =

∫
I

|Du|.

By the definition of E,

E(v)− E(u) = J(v)− J(u) +
1

2λ
(‖v − g‖2 − ‖u− g‖2).

Since u is the minimizer, (g − u)/λ ∈ ∂J(u), i.e. for any v,(
g − u
λ

, v − u
)
≤ J(v)− J(u),

then

E(v)− E(u) ≥
(g − u

λ
, v − u

)
+

1

2λ
(‖v − g‖2 − ‖u− g‖2)

=
(g − u

λ
, v − u

)
+

1

2λ
(‖v − u‖2 + 2(v − u, u− g))

=
1

2λ
‖v − u‖2.

Theorem 2.3.2 If u is the minimizer of the functional E and uk is the minimizer

of the functional Ek, then

‖uk − u‖2 ≤ C‖g‖2
Lip(α,L2)h

α/(α+1).
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Proof Let ūL be the piecewise linear function defined in the first approach,

‖ūL − u‖2 ≤ 2λ(E(ūL)− E(u))

≤ 2λ
[
(Ek(u

k) +
C

λ
‖g‖2

Lip(α,L2)h
α/(α+1))

+ (−Ek(uk) +
C

λ
‖g‖2

Lip(α,L2)h
α/(α+1))

]
.

The substitution for the first term is by (2.21); the substitution for the second term

is by Proposition 2. Then clearly

‖ūL − u‖2 ≤ C‖g‖2
Lip(α,L2)h

α/(α+1).

Thus by Lemma 9 and Lemma 10,

‖uk − u‖2 = ‖uk − uL,k + uL,k − ūL + ūL − u‖2

≤ 3(‖uL,k − uk‖2 + ‖uL,k − ūL‖2 + ‖ūL − u‖2)

≤ C‖g‖2
Lip(α,L2)h

α/(α+1).
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3. ERROR BOUND FOR A NON-SYMMETRIC

DISCRETE TV OPERATOR

In this chapter, we study the error bound for the discrete energy Ek,

Ek(u
k) = Jk(u

k) +
1

2λ
‖uk − gk‖2, (3.1)

where Jk is a special case of non-symmetric discrete TV operator

Jk(u
k) =

1

2
(J++(uk) + J−−(uk)) .

The consistency property for this discrete TV operator is particularly easy to

prove based on the following observation.∫
I

|Dū| = 1

2
(J++(uk) + J−−(uk))

= Jk(u
k), (3.2)

where ū is the piecewise linear interpolation of uk,

ū =
k−1∑
i,j=0

uki,jφ
k
i,j,

φki,j is the basis function defined in (2.1) in Chapter 2. By (3.2), we immediately have

consistency with respect to injection for Jk,

J(ū) ≤ Jk(u
k).

However, it is difficult to prove the consistency property for the non-symmetric

operator J++ with the technique introduced in Chapter 2. This is because although

we can also smooth uk first and inject the smoothed function into L2 to get ūL,k, we

are not able to apply the idea of the proof of Lemma 5 to prove the similar result for

J++,

J++(ūL,k) ≤ J++(uk),
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due to the dependence on the symmetry of the operator J? in our proof.

We assume throughout this chapter that u is the minimizer of the continuous

energy E and uk is the minimizer of the discrete energy Ek when there is no ambiguity.

The value of uk at pixel (i, j) is denoted by uki,j, with 0 ≤ i, j ≤ k − 1.

The proof of the error bound for the non-symmetric Jk shares most parts with

the proof for the symmetric J? in the previous chapter. First, It doesn’t need any

adaption on the proof of Proposition 2 to prove the following result.

Proposition 3 If g ∈ Lip(α,L2(I)) and uk is the minimizer of Ek, then

Ek(u
k) ≤ E(u) +

C

λ
‖g‖2

Lip(α,L2)h
α/(α+1).

Corollary 1 If g ∈ L∞ ∩ Lip(β, L1(I)) and uk is the minimizer of Ek, then

Ek(u
k) ≤ E(u) +

C

λ
(‖g‖2 + ‖g‖∞|g|Lip(β,L1))h

β/(β+2).

Proof We only need to point out that g ∈ L∞(I) ∩ Lip(β, L1(I)) implies g ∈

Lip(β/2, L2(I)). In fact, for any w ∈ R2, |w| ≤ h,∫
Ih

|g(x+ w)− g(x)|2 ≤ sup
Ih

|g(x+ w)− g(x)|
∫
Ih

|g(x+ w)− g(x)|dx

≤ C sup
I
|g|ω1(g, h)L1

≤ C‖g‖∞|g|Lip(β,L1)h
β,

where Ih is as defined in (1.10), thus

ω1(g, h)L2 = sup
0<|w|≤h

{∫
Ih

|g(x+ w)− g(x)|2
}1/2

≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1)h
β/2,

and

‖g‖Lip(β/2,L2) = sup
h>0

(h−β/2ω1(g, h)L2)

≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1).
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We prove in the next section the bound in the other direction.

Proposition 4 If g ∈ L∞ ∩ Lip(β, L1(I)), then

E(u) ≤ E(uk) +
C

λ
(‖g‖2 + ‖g‖∞|g|Lip(β,L1))h

β/2. (3.3)

3.1 Estimate of the energy of the injected minimizer

Unlike the symmetric case, we do not use “smoothed” discrete function; instead

we interpolate directly the discrete function to obtain its injection into L2.

Definition 3.1.1 Define v̄ to be the injected function of vk if

v̄ =
k−1∑
i,j=0

vki,jφ
k
i,j,

where φki,j is the basis function defined in (2.1) in chapter 2.

Assuming uk is the minimizer for Ek, we now bound the energy E(ū).

For the BV term, by (2.2) in section 2.1.1 we have

∫
I

|Dū| = 1

2
(J++(uk) + J−−(uk))

= Jk(u
k) .

We use it directly as the BV estimate.

To estimate the L2 term in E(ū), we expand it into a collapsing sum.

‖ū− g‖2 = ‖ū− uk + uk − gk + gk − g‖2

≤ ‖uk − gk‖2 + 2‖uk − gk‖‖ū− uk + gk − g‖+ ‖ū− uk + gk − g‖2

≤ ‖uk − gk‖2 + 2‖uk − gk‖(‖ū− uk‖+ ‖gk − g‖)

+ 2(‖ū− uk‖2 + ‖gk − g‖2). (3.4)
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Thus we shall bound ‖ū− uk‖, ‖gk − g‖ and ‖uk − gk‖. By Lemma 11 in section

2.1.3, we have

‖uk − gk‖ ≤ ‖g‖.

We also need a slightly modified version of Lemma 7 of section 2.1.3 to bound

‖gk − g‖.

Lemma 19 If g ∈ L∞(I) ∩ Lip(β, L1(I)), then

‖gk − g‖ ≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1)h
β/2.

Proof As shown in the proof of Corollary 1, g ∈ L∞(I)∩Lip(β, L1(I)) implies that

g ∈ Lip(β/2, L2(I)) and

|g|Lip(β/2,L2(I)) ≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1) .

By applying Lemma 7 in section 2.1.3, the result follows.

Finally we bound ‖ū− uk‖.

Lemma 20 If uk is the minimizer of Ek and g ∈ Lip(β, L1(I))
⋂
L∞(I), then

‖ū− uk‖ ≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1)h
β/2.

Proof Let ũ =
∑

i′,j′ u
k
i,jφ

k
i′,j′ , where the sum is taken over all (i′, j′) such that

supp φki′,j′ intersects supp φki,j non-trivially. We have shown previously the formula (2.18),∫
I

|uk − ū|2 ≤ 36
∑
i,j

(|uki+1,j − uki,j|2 + |uki,j+1 − uki,j|2)h2,

Thus, ∫
I

|uk − ū|2 ≤ 36
∑
i,j

(|uki+1,j − uki,j|2 + |uki,j+1 − uki,j|2)h2

≤ C‖uk‖∞ · h · Ja(uk), (3.5)
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where Ja(u
k) is the discretization of the anisotropic TV defined in (1.7) in section

1.1. Therefore,

‖ū− uk‖ ≤ C{‖uk‖∞ · h · Ja(uk)}1/2

≤ C‖gk‖1/2
∞ h1/2J1/2

a (uk) (by maximum principle Lemma 3)

≤ C‖g‖1/2
∞ ω

1/2
1 (g, h)L1 (by (2.15))

≤ C‖g‖1/2
∞ |g|

1/2

Lip(β,L1)h
β/2.

Now we can prove Proposition 4.

Proof By (2.2), we have ∫
I

|Dū| = Jk(u
k).

Since u is the minimizer of E,

E(u) ≤ E(ū)

=

∫
I

|Dū|+ 1

2λ
‖ū− g‖2

= Jk(u
k) +

1

2λ
‖ū− g‖2

= Jk(u
k) +

1

2λ
‖ū− uk + uk − gk + gk − g‖2

≤ Jk(u
k) +

1

2λ
‖uk − gk‖2 +

1

λ
‖uk − gk‖‖ū− uk + gk − g‖

+
1

2λ
‖ū− uk + gk − g‖2

≤ Ek(u
k) +

1

λ
‖uk − gk‖(‖ū− uk‖+ ‖gk − g‖)

+
1

λ
(‖ū− uk‖2 + ‖gk − g‖2) (by (3.4)).

By applying Lemma 7, Lemma 19 and Lemma 20 to the last inequality, we obtain

E(u) ≤ Ek(u
k) +

C

λ
(‖g‖∞|g|Lip(β,L1)h

β + ‖g‖∞|g|Lip(β,L1)h
β+

‖g‖‖g‖1/2
∞ |g|

1/2

Lip(β,L1)h
β/2 + ‖g‖‖g‖1/2

∞ |g|
1/2

Lip(β,L1)h
β/2) .
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When h < 1, the largest terms have order O(hβ/2), thus

E(u) ≤ Ek(u
k) +

C

λ
(‖g‖‖g‖1/2

∞ |g|
1/2

Lip(β,L1))h
β/2

≤ Ek(u
k) +

C

λ
(‖g‖2 + ‖g‖∞|g|Lip(β,L1))h

β/2.

We combine Proposition 4 and Corollary 1, and notice

β/2 > β/(β + 2),

to obtain the inequality (3.3) for the solution of (3.1).

Theorem 3.1.1 If g ∈ Lip(β, L1) ∩ L∞ and uk is the minimizer of energy with a

non-symmetric discrete TV operator Jk,

Jk(u
k) =

1

2
(J++(uk) + J−−(uk)),

and u is the minimizer of E, then

|Ek(uk)− E(u)| ≤ C

λ
N(g)hβ/(β+2),

where

N(g) = ‖g‖2 + ‖g‖∞|g|Lip(β,L1).

Along the same line as the argument in the proof of Theorem 2.2, we obtain the

following error bound for the discrete minimizer.

Theorem 3.1.2 If uk is the minimizer of Ek defined in Theorem 3.1 and u is the

minimizer of E, then

‖uk − u‖ ≤ C[N(g)]1/2hβ/2(β+2),

where N(g) is as defined in Theorem 3.1.
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