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Purpose: To evaluate the accuracy of a visually lossless, image-
adaptive, wavelet-based compression method for achieve-
ment of high compression rates at mammography.

Materials and
Methods:

The study was approved by the institutional review board
of the University of South Florida as a research study with
existing medical records and was exempt from individual
patient consent requirements. Patient identifiers were
obliterated from all images. The study was HIPAA compli-
ant. An algorithm based on scale-specific quantization of
biorthogonal wavelet coefficients was developed for the
compression of digitized mammograms with high spatial
and dynamic resolution. The method was applied to 500
normal and abnormal mammograms from 278 patients
who were 32–85 years old, 85 of whom had biopsy-proved
cancer. Film images were digitized with a charge-coupled
device–based digitizer. The original and compressed re-
constructed images were evaluated in a localization re-
sponse operating characteristic experiment involving
three radiologists with 2–10 years of experience in reading
mammograms.

Results: Compression rates in the range of 14:1 to 2051:1 were
achieved, and the rates were dependent on the degree of
parenchymal density and the type of breast structure.
Ranges of the area under the receiver operating character-
istic curve were 0.70–0.83 and 0.72–0.86 for original and
compressed reconstructed mammograms, respectively.
Ranges of the area under the localization response operat-
ing characteristic curve were 0.39–0.65 and 0.43–0.71
for original and compressed reconstructed mammograms,
respectively. The localization accuracy increased an aver-
age of 6% (0.04 of 0.67) with the compressed mammo-
grams. Localization performance differences were statisti-
cally significant with P � .05 and favored interpretation
with the wavelet-compressed reconstructed images.

Conclusion: The tested wavelet-based compression method proved to
be an accurate approach for digitized mammography and
yielded visually lossless high-rate compression and im-
proved tumor localization.
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According to the most recent cancer
statistics (1), more than 200 000
new female patients with breast

cancer and about 40 000 deaths related
to breast cancer were expected in 2004.
Although the breast cancer incidence rate
has increased almost every year since
1980, the breast cancer death rate has
shown a substantial decrease. Both
trends may be attributed, in large part, to
mammography, which is widely recog-
nized as the most sensitive technique for
breast cancer detection (2).

Conventional mammography is a
film-based x-ray technique referred to as
screen-film mammography (3). Full-field
digital mammography is a new technology
in which a solid-state detector is used in-
stead of film for the generation of the
breast image (4). Modern applications,
including computer-aided detection and
computer-aided diagnosis, computer dis-
play and interpretation (soft-copy mam-
mography), digital image transmission
and storage, require a digital format of
the mammogram. In screen-film mam-
mography, the digital image is obtained
by means of film digitization with dedi-
cated high-resolution imagers. In full-field
digital mammography, the output is di-
rectly digital. The use of digitized and/or
digital mammography is expected to be-
come widespread in the next 5–10 years
because of the advent of the new full-field
digital mammographic systems; the wider
accessibility and effectiveness of picture
archiving and communication systems
that push the transition from film-based
to filmless radiology departments; and the
ever-increasing need for telemammo-
graphic services because of cost and re-
imbursement issues, the need for consul-
tation by specialists in mammography, or
the lack of mammographic clinics (5).

In either digitized or direct digital
mammography, however, the resulting
electronic image files are very large, and
the size poses a major challenge to the
transmission, storage, and manipulation
processes. For example, a digitized mam-
mographic film can yield a file of up to 90
MB of data, depending on the spatial and
dynamic resolution of the digitization pro-
cess, and a complete study (four films)
yields files that amount to 360 MB. Simi-
larly, digital mammograms range from

9–50 MB per view. One mammographic
unit (Senographe 2000D; GE Medical
Systems, Waukesha, Wis), for example,
generates images at 100-�m and 16 bit/
pixel resolution (and 14 of the latter are
actually used), which leads to a total of
about 9 MB per image. The unit of an-
other manufacturer (Senoscan; Fischer
Imaging, Denver, Colo) generates images
at 50-�m resolution and 12 bit/pixel,
which yields a total of about 50 MB per
image. Even at 9 MB, the times to trans-
mit, retrieve, or process digital images
are unacceptably long, and the size of the
digitized images places overwhelming re-
quirements on storage. Advances in
transmission and storage technologies
alone cannot solve the problems associ-
ated with digital mammography. Image
compression is a desirable process and
often is essential for attaining cost and
time efficiency in transmission of data
(teleradiology or telemammography), in-
ternal communication and storage (hospi-
tal networking and archiving), and display
(electronic or soft-copy interpretation).

Researchers in several studies (6,7)
have demonstrated the need for high-rate
compression algorithms for medical im-
aging applications. High compression
rates, however, can only be achieved
through lossy compression techniques
that have not been considered acceptable
for clinical applications, particularly mam-
mography. In the past, we experimented
with various wavelet bases for the com-
pression of digitized mammograms (8,9)
at high rates and demonstrated that such
techniques could be acceptable for mam-
mography because they cause losses that
are not visually perceived and, hence, are
not clinically important. This effect often
is referred to as “visually lossless” com-
pression. The purpose of our study was to
evaluate the accuracy of a visually loss-
less, image-adaptive, wavelet-based com-
pression method for achievement of high
compression rates at mammography.

Materials and Methods

Database
This study was approved by the institu-
tional review board of the University of
South Florida as a research study with

existing medical records and was ex-
empt from individual patient consent re-
quirements. Patient identifiers were
obliterated from all images. The study
was compliant with the Health Insur-
ance Portability and Accountability Act.

Five hundred single-view screening
mammograms were used for the evalua-
tion of the proposed compression
method. Mammograms were selected
by authors (M.K., C.G.B., and M.S.S.)
from the files of 278 patients imaged at
the Lifetime Cancer Screening Center of
the H. Lee Moffitt Cancer Center & Re-
search Institute, Tampa, Fla, from 1987
to 1997. The age range of patients was
32–85 years, with a mean age of 55
years. Mammograms were selected to
meet the requirements of the study in
terms of lesion size, histologic proper-
ties of the lesions, and breast parenchy-
mal density. Half of the mammograms
in each of the three subgroups were
obtained in the craniocaudal view, and
the other half were obtained in the me-
diolateral oblique view.

Of 500 single-view mammograms,
250 were obtained in patients with neg-
ative results and were selected from 125
patients; 131, in patients with benign
results and were selected from 68 pa-
tients; and 119, in patients with cancer-
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ous results and were selected from 85
patients. A total of 375 findings were
present on the mammograms of the pa-
tients with benign and cancerous re-
sults; 182 of the findings were masses
(98 patients with benign results and 84
with cancerous results) and 193 were
calcification clusters (100 patients with
benign results and 93 with cancerous
results). All cancers were minimal,
namely in situ noninvasive carcinoma or
invasive carcinoma with a mass that had
a diameter no greater than 1 cm, as
established by the Breast Cancer Detec-
tion Demonstration Projects (10).
Mammograms in patients with negative
results were selected from those pa-
tients with at least 2 years of follow-up
with negative results. Mammograms in
patients with negative results matched
the mammograms with positive (benign
and malignant results) ones in terms of
breast size, parenchymal density, and
density pattern.

Films were digitized at 30-�m and
16 bit/pixel resolution with a charge-
coupled device–based digitizer system
(ImageClear R3000; DBA, Melbourne,
Fla); hereafter, this system will be re-
ferred to as unit A. Fourteen of the 16
bits were actually used by this digitiza-
tion system, as in the case of one of the
imaging units (Senographe 2000D; GE
Medical Systems). The pixel size was
changed by a factor of two to 60-�m
spatial resolution by using neighbor-
hood averaging; pixel depth was not
changed. This spatial resolution was se-
lected on the basis of results from prior
studies (11,12) that suggested that 50–
90-�m and 12–16 bit/pixel resolution
are optimum digitization conditions for
the majority of applications, including
soft-copy interpretation and processing,
computer-aided detection, and com-
puter-aided diagnosis development. We
also considered the fact that all new and
currently used direct digital mammo-
graphic systems generate data of similar
spatial and dynamic resolution (ie, 50–
100 �m and 12–16 bit/pixel, respec-
tively).

To avoid having large areas of back-
ground (exposed area of film outside the
breast area) changing the calculations of
the compression rate calculations and

to focus the process more on the area of
interest (breast area), images were au-
tomatically cropped to remove as much
of the background area as possible.
First, the breast boundary was automat-
ically outlined to determine the breast
area (13). Then, a tight rectangle that
enclosed the entire breast area was
drawn. Finally, the exposed part of the
film outside the tight rectangle was re-
moved to form an image smaller in size
than the original. Images obtained in the
same patient were cropped to the same
size but images in different patients usu-
ally were of different sizes. Compres-
sion rates were determined by compar-
ing the sizes of the original and the
compressed cropped images at 60-�m
spatial resolution.

Image Compression Method
The compression algorithm, designed
and implemented by one author (B.J.L.),
is a further development of methods used
in previous investigations (8,9,14,15).
Details of the new method are given in the
Appendix.

The compression algorithm was ap-
plied to all mammograms in the data-
base. Compressed images were recon-
structed for soft-copy display and visual
evaluation (Figs 1, 2). The compressed
reconstructed images had the same dy-
namic range, namely the same range of
pixel gray-scale values or bit depth, as
the original images. There was a differ-
ence between the two images, namely
between the original and compressed
reconstructed data, because some in-
formation is lost with wavelet compres-
sion. The difference image was a resid-
ual noisy image and appeared as though
the compression process caused re-
moval of the signal from the original
image that was corrupted by Poisson
noise (ie, the signal-dependent quantum
mottle) (inserts in Figs 1b and 2b)
(20,21). Because of this behavior, the
same or similar algorithms can be used
for both wavelet compression and
wavelet denoising (14,16–19,22).

On a practical note, the time for
compression of a 1410 � 3375-pixel im-
age was 2.24 seconds with a 500-MHz
system (UltraSparc II; Sun Microsys-
tems, Santa Clara, Calif). Decompres-

sion was slightly faster, at 2.10 seconds,
with the same system. Personal com-
puters available in 2004 are estimated
to be about four to six times as fast as
the workstation used to compress the
images in this study.

A mathematic evaluation of the
compression output was performed by
one author (B.J.L.) by using standard
statistical metrics that included the cal-
culation and comparison of the median,
mean, minimum and maximum com-
pression rates, median root mean
square error, and median maximum er-
ror in gray-scale values (23).

Localization Response Operating
Characteristic Experiment
Visual signal detection experiments are
based on two main psychophysical tech-
niques. The most popular in medical im-
aging is the receiver operating charac-
teristic (ROC) method; in this method,
a specified signal or finding of a disease
may or may not be present on the im-
age, and the observers are asked to
rank their confidence about the pres-
ence or absence of the signal or the
finding of a disease with a rating scale
(five-point, 10-point, continuous, or
other) (24,25). ROC experiments deal
with signal likelihood but not with signal
location. In contrast, the localization re-
sponse operating characteristic (LROC)
approach involves both signal likelihood
and signal location tasks and, hence,
offers a more complete analysis of ob-
server performance (26,27). Thus, the
LROC approach was used in our study;
the design was determined and the im-
plementation was performed by one au-
thor (M.K.).

Three board-certified mammogra-
phers (J.J.K., M.R.H., and R.A.C.) par-
ticipated in the LROC experiment. At
the time of the study, their experience
in reading mammograms was 1, 4, and
10 years, respectively. All three re-
viewed 500 images on a computer mon-
itor in two different formats (original
digitized images and compressed recon-
structed images) in 10 different bi-
weekly sessions. One hundred images
were presented per session (randomly
mixed mammograms from patients with
negative findings and mammograms
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from patients with positive findings in
the original or the compressed format);
care was taken to maintain at least an
8-week interval between readings of the
same mammogram in different formats.
Each reading session lasted approxi-
mately 30 minutes and was conducted
in a light-controlled environment where
the ambient light level was maintained
below 50 lux. Session volume and dura-
tion were selected to avoid potential
memory bias and fatigue associated
with soft-copy reading.

The observers were asked to iden-
tify and report every finding that was
regarded as a suspicious breast lesion
on a mammographic image. For each
reported finding, the observer specified
its location by a click of the computer
mouse at the center of the finding and
rated the likelihood that the finding was
breast cancer. A five-point scale was
used for rating the findings; a score of 1
corresponded to a low likelihood for
cancer (or a high likelihood that the
finding was normal tissue or a benign
lesion) and a score of 5 corresponded to
a high likelihood that the finding was
cancer (or a low likelihood that it was a
benign lesion). This rating scale was
used for both the mammographic im-
ages with cancerous findings and those
with benign findings. For the images on
which no abnormalities (eg, the mam-
mographic images with negative find-
ings) or for mammographic images with
benign findings or those with cancer on
which no abnormalities could be de-
tected, the observer was instructed to
identify a single “most suspicious” area
on the image and to assign a low rating
(forced localization choice) according to
LROC design requirements (26).

Workstation and User Interface
Display and interpretation hardware
consisted of one high-resolution moni-
tor (DR 110; Data-Ray, Westminster,
Colo) with a video board (Md5/SBX;
Dome, Waltham, Mass) and the same
model of workstation as was used for
image compression that provided a
2048 � 2560-pixel display with an 8-bit
digital-to-analog converter. Images
were reduced in resolution by a factor
of two in each dimension to fit the dis-

play. The resolution reduction was per-
formed in real time while the image was
loaded for display. A zoom option to the
original spatial resolution was available
for evaluation of regions of interest
(256 � 256 pixels) on the original 60-
�m-resolution image. Note that this dis-
play approach is similar to that used
with most direct digital mammographic
systems for the soft-copy display of dig-
ital mammograms. Monitors were cali-
brated before each reading session ac-
cording to the Digital Imaging and
Communications in Medicine part 14
gray-scale display standard with a cali-
bration system (28).

The user interface software was
programmed in the C programming lan-
guage. The code was used with an image
processing library (XIL; Sun Microsys-
tems) and a volume file format (SunVi-
sion; Sun Microsystems). A dialog box
on a monitor (Sun Microsystems) with a
1280 � 1024-pixel display allowed se-
lection of mammograms and reporting.
In addition to the high-resolution zoom

option, the interface allowed the follow-
ing options: the manual adjustment of
the gray-scale values of the image by
using window level, window width, and
� correction functions; the selection of
the locations of the findings on the
screen with the computer mouse that
automatically recorded the x and y coor-
dinates in a text file for subsequent anal-
ysis; the recording of the rating of each
finding; and the review and modification
of selected locations and ratings.

Statistical Analysis
The x and y coordinates of the detected
findings and corresponding likelihood
ratings were recorded electronically for
each observer. In the first stage of the
analysis, the selected x,y coordinates
were compared with data in a ground
truth file to determine the number of
correct and incorrect localizations. The
ground truth file was established by one
of the authors (C.G.B.), who had 10
years of mammographic imaging experi-

Figure 1

Figure 1: Left mediolateral oblique digitized mammographic view with malignant calcifications (arrow)
obtained at a resolution of 60 �m and 16 bit/pixel. (a) Original image of about 11 MB. (b) Compressed and
reconstructed image of about 94 kB, yielding a compression rate of 113:1. Insert represents difference be-
tween original image and compressed reconstructed image and indicates losses of compression.
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ence at the time of the study. This au-
thor reviewed the patients’ files, which
included radiology and pathology re-
ports, and determined the locations of
the findings and their pathologic charac-
teristics. Coordinates of each finding
were recorded both in pixels and in mil-
limeters of distance from the lower left
corner of the image. A finding reported
by the observer was considered cor-
rectly localized (CL) if the ordinate
point selected by the observer had x,y
coordinates that were within � 200 pix-
els of those listed in the truth file. If the
difference was greater than 200 pixels,
then the finding was considered incor-
rectly localized (IL). The 200-pixel crite-
rion was determined empirically by con-
ducting an experiment in which 10
observers, with mammographic imag-
ing experience that ranged from 3
months to 10 years, were asked to lo-
cate the centers of known lesions with
ill-defined margins by using the inter-
face described previously. On some im-
ages, the centers were different from

each other by as much as 200 pixels. All
measurements were performed on the
original 60-�m-resolution images.

The 1998 version of the LROC pro-
gram—developed and provided by
Swensson (26), Swensson et al (29),
and Swensson (30)—was used in the
analysis of the data. This program gener-
ates both ROC and LROC fitted curves
and estimates of performance indices,
which include the area under the ROC
curve, Az; the area under the LROC
curve; and the localization accuracy that
corresponds to the ordinate of the LROC
curve. The highest rated report of a find-
ing on each image was used as the sum-
mary rating to represent the entire image
in the analytic process (26,29). Analysis
was performed by one author (M.K.) for
three mammographic combinations.

1. The first combination included
mammograms obtained in patients with
negative findings versus those obtained
in patients with cancerous findings. In
this scenario, the responses in regard to
the 250 images in patients with negative

findings and no lesions were compared
with the responses in regard to the 119
images in patients with findings of can-
cerous lesions. This comparison al-
lowed us to evaluate the ability of the
readers to detect and diagnose cancer
on the digitized images before and after
compression. Such a data set (ie, mam-
mograms with negative findings and
mammograms with cancerous findings
only) is typical in most reported ROC
and LROC experiments. Most observer
studies do not include mammograms in
patients with benign findings in whom
biopsies were performed despite the
fact that these are the primary source of
uncertainty and false interpretations.
Here, we studied the effect of benign
findings on observer performance in the
next two combinations.

2. The second combination included
mammograms obtained in patients with
benign findings versus those obtained in
patients with cancerous findings. In this
scenario, the 131 mammograms in pa-
tients with benign findings were consid-
ered to signify “nontarget” or “nondis-
ease” and were compared with the 119
mammograms in patients with cancer-
ous findings. This comparison allowed
us to evaluate the ability of the readers
to differentiate between benign and
cancerous findings on the soft-copy dis-
play before and after compression.

3. The third combination included
mammograms obtained in patients with
negative and benign findings combined
versus those obtained in patients with
cancerous findings. In this scenario, the
381 mammograms obtained in patients
with negative and benign findings (non-
target) were compared with the 119
mammograms in patients with cancer-
ous findings. This comparison may be
closer to a clinical setup, in which the
readers are asked to differentiate be-
tween patients with negative, benign,
and cancerous findings to allow the fo-
cus on the latter.

Performance differences were tested
for statistical significance with a two-
tailed paired t test. In addition, compres-
sion rates for CL and IL lesions were cal-
culated and compared as a function of
observer, reading modality, and mammo-
graphic combination.

Figure 2

Figure 2: Left craniocaudal digitized mammographic view with a malignant mass (arrow) obtained at a
resolution of 60 �m and 16 bit/pixel. (a) Original image of about 16 MB. (b) Compressed reconstructed image
of about 61 kB, yielding a compression rate of 268:1. Insert represents difference between original image and
compressed reconstructed image and indicates losses of compression.

BREAST IMAGING: High-Performance Wavelet Compression for Mammography Kallergi et al

66 Radiology: Volume 238: Number 1—January 2006



Results

Compression rates ranged from 14:1 to
2051:1 (Table 1). Minimum rates were
similar for the various types of lesions,
whereas maximum rates differed sub-
stantially (Table 1). Of all mammo-
graphic images used in this study, 60%
(302 of 500) of the images were com-
pressed at a rate less than 100:1 and
greater than 20:1. Only 6% (29 of 500)
of the images were compressed at rates
of 20:1 or less. Similar distributions of
compression rate were observed for the
various mammographic types (Fig 3).
The mean compression rate was 59:1
for the mammograms in patients with
negative findings, 56:1 for those in pa-
tients with benign findings, and 53:1 for
those in patients with cancerous find-
ings.

ROC and LROC curves were gener-
ated for each observer for original im-
ages and compressed reconstructed im-
ages (Fig 4). The Az, the area under the
LROC curve, the localization accuracy,
and the corresponding standard error
of the mean were determined for all
three mammographic data combina-
tions that were discussed earlier, before
and after wavelet compression (Tables
2–4). The results of the analysis with
the 95% confidence interval and the
two-tailed paired t test showed that all
but one of the differences were statisti-
cally significant (Table 5). The excep-
tion was for the difference in Az values
obtained for mammographic combina-
tion 2 in which observer performances
for interpretation of the images from
patients with benign findings and those
with cancerous findings were compared.
All statistically significant differences
favored the compressed reconstructed
version of the digitized mammograms
(Table 5).

ROC and LROC parameters were
also estimated for a subset of the origi-
nal database that contained only inde-
pendent mammograms (ie, mammo-
grams from different patients). This
analysis was performed by one of the
authors (M.K.) to determine the effect
of data clustering on the ROC and
LROC parameters. This subset con-
sisted of 227 images, and 106 of the

images were from patients who had
negative findings; 66, from patients who
had benign findings; and 55, from pa-
tients who had cancerous findings. The
Az, the area under the LROC curve, and
localization accuracy values of the sub-
set differed by �2% from the values
obtained from the full set (Tables 2–4).
The standard errors for the subset were
consistently higher by as much as 10%–
25% than those obtained for the full set
(Tables 2–4). Statistically significant
outcomes remained the same as those
obtained for the full set (Table 5).

The numbers of CL and IL lesions,
determined for each observer with orig-
inal images and compressed recon-
structed images, showed an increase in
the number of CL lesions and a corre-
sponding decrease in the number of IL
lesions when interpretation was per-

formed with the compressed recon-
structed images rather than with the
original images. The CL and IL indices
were also calculated as a function of
lesion type and disease detected on im-
ages obtained before and after com-
pression. These results showed an in-
crease in CL lesions ranging from 7%
(three of 46) to 29% (11 of 38), depend-
ing on the finding and the disease (Fig
5). The smallest increase in CL lesions
was observed for the mammograms in
patients who had cancerous findings
with calcification clusters, and the larg-
est increase in CL lesions was observed
for the mammograms in patients who
had benign findings with masses. The
decrease in IL lesions ranged from 17%
(three of 18) to 42% (11 of 26). The
smallest decrease in IL lesions was ob-
served for the mammograms in patients

Figure 3

Figure 3: Bar diagram shows
distribution of compression rates
for mammograms from patients
with negative, benign, and cancer-
ous findings in the tested set.

Table 1

Compression Rates, Median Root Mean Square Error, and Median Maximum Error
Obtained from Mammograms

Findings on
Mammograms

Compression Rate
Median Root
Mean Square
Error*

Median
Maximum
Error*Median Minimum Maximum

Negative 65:1 14:1 2051:1 33.5 407
Benign

Calcification clusters 67:1 14:1 1231:1 33.7 403
Masses 94:1 19:1 1045:1 29.8 422

Cancerous
Calcification clusters 72:1 14:1 409:1 30.9 411
Masses 74:1 18:1 832:1 32.4 426

* All errors were measured in gray-scale values.
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who had cancerous findings with calcifi-
cation clusters, and the largest decrease
in IL lesions was observed for the mam-
mograms in patients with benign find-
ings with calcification clusters. Overall,
readers localized findings more accu-
rately on the compressed mammograms
with benign findings than they did on
the compressed mammograms with ma-
lignant findings. This result implies that
the compression algorithm had an effect
on image quality. Random noise seems

to have been removed from the original
image (inserts in Figs 1b and 2b), and
that removal affected image smoothness
and appearance. At this time, it is not
clear what exactly caused improved vi-
sual interpretation. Denoising effects of
the wavelet algorithm seem to increase
the smoothness of the image without
necessarily increasing contrast. The
changes in image smoothness may have
contributed to the improvement in CL
and IL findings seen in this study.

Discussion

In this study, we conducted an LROC
experiment to measure the ability of
mammographers to recognize and local-
ize breast cancer associated with a mass
or calcification clusters on original and
compressed digitized mammograms
displayed on high-resolution computer
monitors. This allowed us to evaluate
the accuracy of a visually lossless, im-
age-adaptive, wavelet-based compres-

Figure 4

Figure 4: Graphs for readers (a) 1, (b) 2, and (c) 3 show fitted ROC and LROC
curves obtained from the analysis of the mammograms from patients with negative
findings versus mammograms from patients with cancerous findings (combination
1). Corresponding performance parameters are listed in Table 2. FP � false-posi-
tive, TP � true-positive.
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sion method with which high compres-
sion rates were achieved. Soft-copy
reading of original digitized mammo-
grams was shown to be no more accu-
rate than soft-copy reading of com-
pressed reconstructed digitized mam-
mograms, and, in many instances,
soft-copy reading of original digitized
mammograms underperformed soft-
copy reading of compressed recon-
structed digitized mammograms. This
may be explained by the observation
that the compression algorithm re-
moved signal-dependent quantum noise
from the images. In mammography,
quantum noise is relatively low, but its
removal is expected to result in a
smoother image appearance that, in
this study, seemed to have a favorable
effect on visual perception with soft-
copy display. Interestingly, the perfor-
mance obtained with the images that
were processed with wavelet-based
compression and were reconstructed
was better than that obtained with
wavelet-enhanced mammograms from
a separate LROC experiment in which
the same database, the same worksta-
tion-user interface, and the same ob-
servers were used (31). The different
results could be attributed to the dif-
ferent wavelet methods, which had
different effects on image noise and
characteristics, used in these studies.

The compression algorithm outlined
in this article was specifically designed
to keep diagnostically important fea-
tures on mammograms unchanged. This
compression algorithm was used with a
local image quality measure, and it al-
lowed both compression rates and dif-
ferences between the original and com-
pressed images to vary, depending
mainly on the degree of parenchymal
density. The results showed that com-
pression rates were generally smaller
for mammograms in patients with nega-
tive findings and for mammograms in
patients with benign or malignant calci-
fication clusters and larger for mammo-
grams in patients with benign or malig-
nant masses. Root mean square error
and maximum gray-scale errors were
comparable for all mammograms and
types of abnormalities. These results
suggested the potential for an adaptive

performance of the algorithm, depend-
ing on the clinical relevance and con-
tents of the mammogram.

Mammograms with negative, be-

nign, and cancerous findings were com-
bined in three ways in an effort to eval-
uate different perspectives in observer
performance. In all individual compari-

Table 2

Az , Area under LROC Curve, Localization Accuracy, and Standard Errors for Original
and Compressed Images: Combination 1

Data Set

Az

Area under
LROC Curve

Localization Accuracy

Value
Standard
Error Value

Standard
Error

Original images
Observer 1 0.8201 0.0180 0.6401 0.7651 0.0285
Observer 2 0.8080 0.0179 0.6160 0.7478 0.0289
Observer 3 0.8268 0.0177 0.6535 0.7853 0.0268

Compressed images
Observer 1 0.8551 0.0173 0.7102 0.8124 0.0268
Observer 2 0.8389 0.0169 0.6778 0.7975 0.0252
Observer 3 0.8491 0.0170 0.6981 0.8112 0.0256

Table 3

Az , Area under LROC Curve, Localization Accuracy, and Standard Errors for Original
and Compressed Images: Combination 2

Data Set

Az

Area under
LROC Curve

Localization Accuracy

Value
Standard
Error Value

Standard
Error

Original images
Observer 1 0.7135 0.0201 0.4270 0.5686 0.0395
Observer 2 0.7047 0.0199 0.4095 0.5501 0.0400
Observer 3 0.6955 0.0190 0.3909 0.5730 0.0365

Compressed images
Observer 1 0.7225 0.0201 0.4449 0.5927 0.0383
Observer 2 0.7164 0.0195 0.4327 0.5975 0.0366
Observer 3 0.7208 0.0194 0.4416 0.6138 0.0355

Table 4

Az , Area under LROC Curve, Localization Accuracy, and Standard Errors for Original
and Compressed Images: Combination 3

Data Set

Az

Area under
LROC Curve

Localization Accuracy

Value
Standard
Error Value

Standard
Error

Original images
Observer 1 0.7720 0.0182 0.5441 0.6886 0.0314
Observer 2 0.7625 0.0180 0.5249 0.6723 0.0318
Observer 3 0.7635 0.0173 0.5269 0.6928 0.0290

Compressed images
Observer 1 0.7927 0.0177 0.5853 0.7272 0.0289
Observer 2 0.7864 0.0169 0.5728 0.7244 0.0271
Observer 3 0.7871 0.0171 0.5742 0.7247 0.0279
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sons and for all three scenarios, the
ROC and LROC curves of data from
compressed images were above the
curves of data from the original images.
Performance parameters (eg, Az, area
under the LROC curve, and localization
accuracy) also were higher for the com-
pressed data than they were for the
original soft-copy data. All but two of
the differences were statistically signifi-
cant with P � .05, and all favored the
compressed reconstructed display. It
should be noted that the paired t test
used here to determine the statistical
significance of the differences is a lim-
ited approach because the variability of
the individual area measurements was
not considered, and with so few degrees
of freedom (two degrees of freedom),
the paired t test is not very powerful. A
possibly more powerful approach for
multireader multicase studies might
have been to apply the jackknife tech-
nique to the values of the LROC indices
and apply analysis of variance, as re-
cently suggested by Charkraborty and
Berbaum (32). Overall, use of the LROC
is not entirely satisfactory for experi-
ments that involve search and localiza-
tion. An alternative is the free-response
ROC paradigm, which has its own

weaknesses (32). We selected the
LROC method for this work to allow
relative comparisons with the results of
our previous studies in which the same
database and analysis were used (31,33).

Localization accuracy increased for
mammograms in patients with both be-
nign and cancerous findings, but it was
greater for those in patients with benign
findings than it was for those in patients
with cancerous findings and greater for
patients with benign masses than for
those with benign calcification clusters.
A review of the size and contrast char-
acteristics of the benign and cancerous
lesions showed that benign lesions
tended to be larger and had more con-
trast than did malignant lesions. Hence,
it is possible that compression losses
introduced by our technique had a
smaller effect on the benign lesions than
they did on the cancerous lesions be-
cause of the larger size of the benign
lesions and increased contrast.

To put the results of our study in
perspective and to help in the under-
standing of their potential effect on im-
ages generated with other units or vari-
ous digital systems, we shall briefly
discuss relevant properties of unit A. A
detailed evaluation of this imaging unit

is presented elsewhere (34). This im-
ager was based on a charge-coupled de-
vice and was developed for digital mam-
mographic applications, including tele-
mammography. It was one of the least
noisy film digitization systems on the
market, although its cost prevented a
full commercialization of the product.
Its average signal-to-noise ratio for
60-�m and 16 bit/pixel resolution data
was determined to be 7.6. This is higher
than the signal-to-noise ratio of a sys-
tem with that of 2.8 for 50-�m resolu-
tion and 12-bit data (LS85; Kodak,
Rochester, NY), hereafter referred to
as unit B, and an imager with a signal-
to-noise ratio of 3.3 for 43.5-�m resolu-
tion and 12-bit data (MultiRAD 850;
Howtek, Nashua, NH), hereafter re-
ferred to as unit C.

Average background image gray-
scale values (ie, in the area outside the
breast) were 12 for unit A, 257 for unit
B, and 160 for unit C. Note that unit B is
a laser-based system, and unit C is a
charge-coupled device–based system.
The low noise properties of unit A may
suggest that the results obtained in this
study are on the low end, as far as digi-
tized mammography is concerned, and
are possibly at the high end, as far as
digital mammography is concerned. The
latter conclusion is based on our initial
observation that the background signal

Figure 5

Figure 5: Bar diagram of the three-observer
average values of the number of CL mammograms
that contained benign and malignant calcification
clusters and masses for both original and com-
pressed reconstructed images. In all subgroups of
mammograms, findings were more accurately
localized on the compressed reconstructed im-
ages than on the original images.

Table 5

Statistical Values according to Mammographic Combination and Parameter

Mammographic Combination and Parameter*
Parameter
Value P Value

95% Confidence
Interval

Combination 1
Mean difference in Az value 0.029 .016 0.013, 0.046
Mean difference in area under LROC curve 0.059 .016 0.027, 0.091
Mean difference in localization accuracy 0.041 .032 0.008, 0.074

Combination 2
Mean difference in Az value 0.015 .081 �0.005, 0.034
Mean difference in area under LROC curve 0.030 .083 �0.010, 0.068
Mean difference in localization accuracy 0.035 .037 0.005, 0.064

Combination 3
Mean difference in Az value 0.023 .002 0.018, 0.027
Mean difference in area under LROC curve 0.046 .002 0.036, 0.055
Mean difference in localization accuracy 0.041 .020 0.015, 0.066

Note.—Statistical values were determined with a two-tailed paired t test (t � 4.303, 2 df, P � .05).

* Each parameter represents the mean difference between the value for the compressed images and that for the original
images for the three mammographic combinations. Combination 1 represents mammograms in patients with negative findings
versus those in patients with cancerous findings; combination 2, mammograms in patients with benign findings versus those
in patients with cancerous findings; and combination 3, mammograms in patients with negative and benign findings combined
versus mammograms in patients with cancerous findings.
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in digital mammograms is zero for at
least two of the current commercial dig-
ital systems (35). One might expect that
similarly high compression rates would
be achieved with our wavelet method
with digital, as well as with digitized,
mammography. The improved perfor-
mance seen with the compressed digi-
tized data, however, may not necessar-
ily translate to the digital domain
because of noise differences between di-
rect digital and digitized information.

It may be argued that the com-
pressed reconstructed soft-copy mam-
mograms should have been compared
with the original film images instead of
with the digitized unprocessed images.
In an earlier independent ROC study
(33,36), however, in which the same
mammographic database, same observ-
ers, and a similar workstation-user in-
terface were used, we demonstrated
equivalency between the interpretation
with the standard film mammographic
image and the interpretation with the
digitized soft copy. Hence, the compari-
son in this study is indirectly a compari-
son between the standard film mam-
mographic image and the soft-copy
compressed reconstructed mammo-
graphic image. An additional incentive
for the present study design was that
image compression is mostly applicable
to digital applications, and it is highly
likely that the reference image will be
the digital image and not the film image.

One may also be skeptical about the
applicability and value of our compres-
sion method to film mammograms digi-
tized differently and to direct digital
mammograms. Certainly, whether these
observations can be generalized to other
digitized and direct digital mammograms
remains to be seen. Furthermore, the im-
plementation of the method in clinical
practice will have to be carefully evalu-
ated.

In conclusion, the tested wavelet-
based compression technique proved to
be an accurate approach for digitized
mammography and yielded visually loss-
less high-rate compression and im-
proved tumor localization. The tech-
nique could offer a clinically acceptable
and effective solution to problems asso-
ciated with display, transfer, and ar-

chiving of high-resolution digitized, and
possibly digital, mammograms.

Appendix

The image compression method applied
and evaluated in this study is a further
development of methods reported pre-
viously (8,14,16). An image is consid-
ered to be a function f(x) from a rectan-
gular region of the plane to the interval
[0,65535], which contains all possible
pixel values reportable with the film
digitizer we used. The image is decom-
posed by using a biorthogonal wavelet
decomposition, delineated with an
equation thus:

f�x� � �
j

dj,K	j,K�x�

� �
j,k�K,


cj,k,

j,k�x�, (A1)

where we have used the normalization
	j,k(x) � 	(2k x � j), 
j,k (x) � 
(2k x �
j) found in DeVore et al (15); x � (x1,
x2), j � ( j1, j2) is a multiindex denoting
the approximate location ( j1/2

k, j2/2
k),

k denotes the scale, K corresponds to
the coarsest scale, 	 is the scaling func-
tion, and each 
 is a “feature” wavelet.
There are three such feature wavelets,
one that models oscillations vertically,
one that models them horizontally, and
one for “checkerboard” patterns. Gen-
eral information on wavelet decomposi-
tions can be found elsewhere (17). The
first sum in Equation (A1) models only
the broadest parts of the image at the
coarsest scale; the second sum models
the features that exist on the image at
each dyadic scale 2�k. We used the
biorthogonal fifth-order accurate wave-
lets with piecewise constant duals of Co-
hen, Daubechies, and Feauveau, found
in the text by Daubechies (17, p 272).
We chose this family of wavelets be-
cause they are symmetric and have few
oscillations for a given approximation
order. The first-order member of this
family is the Haar wavelet, which is dis-
continuous and presents too many arti-
facts to be used for serious compres-
sion. The third-order wavelet in this
family gives reasonable visual and com-
pression results; preliminary experi-

ments with 20 mammograms showed,
however, that the fifth-order wavelet gave
measurably smaller root mean square er-
rors at the same compression rates.

An accurate description of the pro-
cess requires more practical details.
Specifically, the images were decom-
posed until there were no more than
eight rows or columns (this determined
the coarsest scale K noted before), at
which point the wavelet rewrite rules
for the associated one-dimensional syn-
thesis and analysis scaling functions 	,
	̃, and one-dimensional synthesis and
analysis wavelets 
, 
̃, namely

	�x� � �
j

aj	�2x � j�, (A2)

	̃�x� � �
j

ãj	̃�2x � j�, (A3)


�x� � �
j

��1�jã1�j	�2x � j�, (A4)

and


̃�x� � �
j

��1�ja1�j�̃�2x � j�, (A5)

did not have enough data to be applied.
Note that in these one-dimensional ex-
pressions x is a number, not a vector,
and j is an integer, not a multiindex.

We dealt with the image boundaries
by reflecting the image across each
edge. This approximation is only first-
order accurate, but one can show math-
ematically that this degree of accuracy
has a small effect on compression (14).
The underlying wavelet rewrite rules re-
quired an even number of rows and col-
umns at each scale of the image decom-
position; whenever an odd number of
rows or columns arose at a certain dy-
adic scale, we modeled the last unpaired
value as the difference between that
value and the average of the previous
two values.

Given the wavelet decomposition of
the image f(x), the compressed image,
expressed with

f��x� � �
j

dj,K	j,K�x�

� �
j,k�K,


c�j,k,

j,k�x�, (A6)
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was obtained by replacing the original
wavelet coefficients cj,k,
 with scalar
quantized coefficients c� j,k,
 given by

c� j,k,
 � qk round�cj,k,
/qk�, (A7)

where “round” is a function that rounds
its argument to the nearest integer and
qk is a scale-dependent quantization
level. It was pointed out previously that
one can choose the scale-based quanti-
zation level to match the purpose of the
images (15). For example, in the inves-
tigation of DeVore et al (15), it was
argued that for natural images (eg, out-
door scenes, portraits) viewed at a fixed
distance, choosing qk�1 � 4qk (which
requires that a feature with half the di-
ameter of another feature must have
four times the contrast to be similarly
visible) gives the best match for the hu-
man visual system. This quantization
rule attempts to minimize the mean ab-
solute error (15), expressed as follows:

 � f�x� � f��x��dx. (A8)

Mammographic images, however,
are not natural images, in that they con-
tain specific diagnostically important
features (microcalcification clusters, le-
sion boundaries, spiculations, architec-
tural distortions, etc) that occur at vari-
ous scales and must be preserved. On
the basis of a pilot examination of 40
compressed images with various diag-
nostic features, the scale-dependent
quantization levels of qk�1 � 2qk pre-
served the required diagnostic informa-
tion better than other quantization
rules. This quantization rule attempts to
minimize the root mean square error
and is expressed as follows:

� � f�x� � f��x��2dx�1/ 2. (A9)

The pilot examination was performed by
two senior mammographers (C.G.B. and
R.A.C.) who compared the compressed
images with the original images in terms
of visibility and appearance of lesions,
density of parenchymal tissues, demarca-
tion of skin lines, and presence of arti-
facts. Compressed images were classified
in one of three groups: (a) identical to the
original, (b) similar to the original with
minor differences, or (c) different from
the original with major differences.

When we compress an image, we
can choose exactly one of the following
three quantities, after which the other
two are fixed: (a) the number of non-
zero compressed coefficients c� j,k,
,
which has been shown experimentally
to be directly related to compression
rates (15); (b) the global root mean
square error, expressed as

� � f�x� � f��x��2dx�1/ 2; (A10)

or (c) the quantization qk at the finest
dyadic level. We chose the quantization
level at the finest scale (ie, 2 � 2-pixel
blocks) to be 128; that is, features that
oscillated on a scale of 2 pixels must
have had a contrast change of at least 64
gray-scale levels to be kept, otherwise
they were quantized to zero. Similarly,
features that oscillated on a scale of 4
pixels must have had a contrast change
of at least 32 gray-scale levels to be
kept, and features on a scale of 8 pixels
must have had a contrast change of 16
gray-scale levels, etc. For the largest
features, the quantization level qk was
not allowed to be less than one-eighth.
Although these local (in each region of
the image and at each scale) image qual-
ity measures qk are fixed, the amount of
compression and the measures of vari-
ous global error vary, depending on the
image “complexity,” and for mammo-
grams, this variation depends mainly on
the degree of parenchymal density.

Once the quantized coefficients c�j,k,

have been chosen, the compressed image
is completely determined; the rest of the
compression method affects only the
compression rate (15). Briefly, we set up
a binary decision tree (Is the quantized
coefficient zero? If not, is it negative?
etc). We also used the so-called Q-coder
(18) as an adaptive binary arithmetic
coder to encode the results. The most
important factor in achieving high com-
pression rates is encoding in a small frac-
tion of a bit whether or not each quan-
tized coefficient is zero (19).
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