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Abstract. We show that any best L1 polynomial approximation to a function f

in Lp, 0 < p < 1, is near best in Lp.

Let I = [0, 1]d and let Pr be the set of all polynomials in d variables of total
degree less than r. It is known that for each f in L1(I) a (not necessarily unique)
best approximation E1f to f exists in Pr, and that E1f = q if and only if

(1)

∣∣∣∣∣
∫
E+

s(x) dx −
∫
E−

s(x) dx

∣∣∣∣∣ ≤
∫
E0

|s(x)| dx for all s in Pr,

where E+ = {x ∈ I | q(x) > f(x)}, E− = {x ∈ I | q(x) < f(x)}, and E0 =
{x ∈ I | q(x) = f(x)}. Condition (1) makes sense even if f is not in L1(I), and
when (1) is satisfied, we call q a best L1(I) approximation to f and denote q
by E1f . It is easy to show that for constant approximations ( r = 1 ) the extended
E1, which is the median operator, is defined for all measurable f and bounded
on Lp(I) for any p > 0 (see [2] for a discussion of medians). It is also easy to
show that the similarly extended L2 best projection operator onto polynomials is
bounded on Lp for p ≥ 1 and any r > 0. These facts motivate us to prove the
following theorem.

Theorem. For each f in Lp(I), 0 < p < 1, and for all r > 0, a best L1(I)
approximation E1f exists in Pr. Moreover, for all choices of E1f ,

‖f − E1f‖p ≤ (1 + 2K)1/p inf
q∈Pr

‖f − q‖p,

where

K = sup
q∈Pr

‖q‖∞
‖q‖1

.

This theorem provides a method to find near-best polynomial approximations in
Lp(I) for 0 < p < 1. Such approximations are useful in atomic decompositions of
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the Besov spaces Bαp (Lp(I)), p < 1, which are the regularity spaces for nonlinear

approximation in Lq(I), q−1 = p−1 − α/d, by wavelets and free-knot splines.
Theory and applications to image and surface compression can be found in [2–6].
Of course, such near-best approximations are known to exist; the new thing here is
that L1(I) projections provide them.

We make several remarks about the theorem. First, a more careful argument
shows that

‖f − E1f‖p ≤ (2K)
1
p−1 inf

q∈Pr
‖f − q‖p

for 0 < p < 1; see [1]. Second, our proof extends to approximation by any finite-
dimensional subpace of L1(Ω) ∩ L∞(Ω) for any finite measure space (Ω, dµ). (A
measure space with atoms must first be embedded into a continuous measure space.)
Generalizations to the behavior of the best Lp(I) approximation in Lp−1(I) for
p > 1, and the fact that the best L1(I) approximation is defined for any measurable
f are contained in [1].

We first prove the following lemma, which contains the main argument.

Lemma. If there exists a best L1(I) approximation E1f ∈ Pr to f ∈ Lp(I),
then

‖E1f‖p ≤
(

2 sup
q∈Pr

‖q‖∞
‖q‖1

)1/p

‖f‖p.

Proof. Condition (1) implies, in particular, that for q = E1f ,

(2)

∣∣∣∣∣
∫
E+

q(x) dx −
∫
E−

q(x) dx

∣∣∣∣∣ ≤
∫
E0

|q(x)| dx.

Our approach is to bound from below ‖f‖p among all f satisfying (2) for a
particular q.

We introduce the function

g(x) =



0, x ∈ E+, q(x) > 0,

q(x), x ∈ E+, q(x) ≤ 0,

0, x ∈ E−, q(x) < 0,

q(x), x ∈ E−, q(x) ≥ 0,

q(x), x ∈ E0.

Clearly, ‖g‖p ≤ ‖f‖p and the sets Ẽ+ ⊂ E+, Ẽ− ⊂ E−, and Ẽ0 ⊃ E0 for g and
q satisfy

(3)

∣∣∣∣∣
∫
Ẽ+

q(x) dx −
∫
Ẽ−

q(x) dx

∣∣∣∣∣ ≤
∫
Ẽ0

|q(x)| dx.

Now
∫
I
|g|p =

∫
Ẽ0
|q|p, and to further bound ‖f‖p from below we minimize∫

Ẽ0
|q(x)|p dx among all partitions (Ẽ+, Ẽ−, Ẽ0) with q > 0 on Ẽ+, q < 0 on

Ẽ−, and (3) holding. These conditions imply that∫
Ẽ+∪Ẽ−

|q(x)| dx ≤
∫
Ẽ0

|q(x)| dx;
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i.e., ∫
Ẽ0

|q(x)| dx ≥ 1

2
‖q‖1.

We claim that the best choice of Ẽ0 satisfies

inf
x∈Ẽ0

|q(x)| ≥ sup
x 6∈Ẽ0

|q(x)| and

∫
Ẽ0

|q(x)| dx =
1

2
‖q‖1.

Suppose Ẽ′0 is any other choice. We can assume
∫
Ẽ′0
|q(x)| dx = 1

2‖q‖1, because

otherwise we could make Ẽ′0, and, a fortiori ,
∫
Ẽ′0
|q(x)|p dx, smaller.

Let a be any number between supx 6∈Ẽ0
|q(x)| and infx∈Ẽ0

|q(x)|, and let A =

Ẽ0 \ Ẽ′0 and B = Ẽ′0 \ Ẽ0. Then
∫
A
|q(x)| dx =

∫
B
|q(x)| dx and∫

A

|q(x)| dx =

∫
A

|q(x)|p|q(x)|1−p dx ≥ a1−p
∫
A

|q(x)|p dx,∫
B

|q(x)| dx =

∫
B

|q(x)|p|q(x)|1−p dx ≤ a1−p
∫
B

|q(x)|p dx.

Therefore, ∫
A

|q(x)|p dx ≤
∫
B

|q(x)|p dx,

and ∫
Ẽ0

|q(x)|p dx ≤
∫
Ẽ′0

|q(x)|p dx.

So ∫
I
|q(x)|p dx∫

I
|f(x)|p dx ≤

∫
I
|q(x)|p dx∫

Ẽ0
|q(x)|p dx .

Since
∫
Ẽ0
|q(x)| dx = 1

2‖q‖1, we have

‖q‖∞|Ẽ0| ≥
1

2
‖q‖1, or |Ẽ0| ≥

1

2

‖q‖1
‖q‖∞

.

Now ∫
I\Ẽ0

|q(x)|p dx ≤ ap(1− |Ẽ0|)

and ∫
Ẽ0

|q(x)|p dx ≥ ap|Ẽ0|.

So ∫
I
|q(x)|p dx∫

Ẽ0
|q(x)|p dx = 1 +

∫
I\Ẽ0

|q(x)|p dx∫
Ẽ0
|q(x)|p dx ≤ 1 +

1− |Ẽ0|
|Ẽ0|

=
1

|Ẽ0|
≤ 2
‖q‖∞
‖q‖1

.

Therefore, ‖q‖p ≤ (2K)1/p‖f‖p, where K = supq∈Pr (‖q‖∞/‖q‖1). �
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Corollary. For each f in Lp(I), 0 < p < 1, a best L1(I) polynomial approxi-
mation E1f exists.

Proof. For each positive integer n, define fn by

fn(x) =


n, f(x) > n,

f(x), |f(x)| ≤ n,
−n, f(x) < −n.

Then fn ∈ L∞(I) and ‖fn‖p ≤ ‖f‖p. Best L1(I) approximations qn to fn exist
for all n, and

‖qn‖p ≤ C‖fn‖p ≤ C‖f‖p.

However, for each p and r there is a constant C1 such that for all q ∈ Pr,
‖q‖∞ ≤ C1‖q‖p. Therefore for all n we have ‖qn‖∞ ≤ CC1‖f‖p, so that for some
n we have ‖qn‖∞ < n. This implies that we can choose E1f = qn because the
sets E+, E−, and E0 are the same for f as for fn. �
Proof of the main theorem. The corollary shows that E1f exists. Now E1 is linear
with respect to addition of polynomials in Pr: If we let g = f + q, q ∈ Pr, and
E1g = E1f + q, then clearly condition (1) is satisfied because E+, E−, and E0

are the same for g and E1g as for f and E1f . So E1f + q is a best L1(I)
approximation to f + q according to our definition.

Finally, because ‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp, we have for all q ∈ Pr,

‖f − E1f‖pp ≤ ‖f − q‖pp + ‖q − E1f‖pp
= ‖f − q‖pp + ‖E1(q − f)‖pp
≤ (1 + 2K)‖f − q‖pp

by the lemma. �
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