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A  new  digital  compressive  detection
strategy  is developed.
Chemical  classification  demon-
strated  using  as few  as  ∼10
photons.
Binary  filters  are  optimal  when  tak-
ing few  measurements.
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a  b  s  t  r  a  c  t

A  key  bottleneck  to high-speed  chemical  analysis,  including  hyperspectral  imaging  and  monitoring  of
dynamic  chemical  processes,  is the  time  required  to  collect  and  analyze  hyperspectral  data.  Here we
describe,  both  theoretically  and  experimentally,  a means  of  greatly  speeding  up  the  collection  of  such
data  using  a new  digital  compressive  detection  strategy.  Our  results  demonstrate  that  detecting  as  few
as ∼10 Raman  scattered  photons  (in  as  little  time  as  ∼30  �s)  can  be sufficient  to  positively  distinguish
chemical species.  This  is  achieved  by  measuring  the  Raman  scattered  light  intensity  transmitted  through
programmable  binary  optical  filters  designed  to  minimize  the error in  the  chemical  classification  (or  con-
centration)  variables  of interest.  The  theoretical  results  are  implemented  and  validated  using a  digital
compressive  detection  instrument  that  incorporates  a 785  nm  diode  excitation  laser,  digital  micromirror
spatial  light  modulator,  and  photon  counting  photodiode  detector.  Samples  consisting  of  pairs  of  liq-
lassification
otal least squares

uids  with  different  degrees  of spectral  overlap  (including  benzene/acetone  and  n-heptane/n-octane)  are
used to  illustrate  how  the  accuracy  of  the  present  digital  compressive  detection  method  depends  on  the
correlation  coefficients  of the  corresponding  spectra.  Comparisons  of  measured  and  predicted  chemi-
cal classification  score  plots,  as well  as  linear  and  non-linear  discriminant  analyses,  demonstrate  that
this digital  compressive  detection  strategy  is Poisson  photon  noise  limited  and  outperforms  total  least
squares-based  compressive  detection  with  analog  filters.
. Introduction
Rapid identification and quantification of chemical species in
omplex mixtures is of importance to a wide range of applications
n biology, medicine, manufacturing, and security. Multivariate

∗ Corresponding author. Tel.: +1 765 494 5591.
E-mail address: wilcoxds@purdue.edu (D.S. Wilcox).

003-2670/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.aca.2012.10.005
© 2012 Elsevier B.V. All rights reserved.

statistical techniques combined with optical spectroscopies are
increasingly employed in such applications for chemical compo-
nent classification, calibration, and hyperspectral imaging. Here we
show that a new digital compressive detection strategy can be used
to facilitate rapid and accurate chemical classification based on the

detection of as few as ∼10 Raman scattered photons. Unlike previ-
ous full spectral or compressive detection/sensing methods, digital
compressive detection utilizes binary optical filters that are opti-
mized to minimize the resulting chemical classification uncertainty
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http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:wilcoxds@purdue.edu
dx.doi.org/10.1016/j.aca.2012.10.005


1  Chim

(
f
m
fi

t
t
e
[
e
e
t
d
d
f
e
f
c
l
s
t
p

p
o
f
r
e
C
b
s
c
c
o
t
i
t
a
h
s

p
C
t
[
s
p
s
s
i
i
h
w
r
t
m
t
a
u
M
g
b
b
a
b
i
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as further explained below). Our strategy is shown to outper-
orm previous full spectral and compressive chemical classification

ethods, including those based on analog rather than binary optical
lters.

The present results build upon previous studies that have shown
hat chemometric techniques could be incorporated directly into
he measurement process by using either static optical interfer-
nce filters [1],  or tunable liquid crystal [2–4] or micromirror
5–9] based multivariate optical elements built into the spectrom-
ter hardware. The versatility of the tunable multivariate optical
lement permits these instruments to function as generalized spec-
rometers, capable of either full spectral acquisition or compressive
etection using programmable optical filter functions. Here we
emonstrate that our new digital compressive detection strategy
acilitates the chemical classification of liquid samples with differ-
nt degrees of spectral overlap with data collection times ranging
rom ∼30 �s to ∼5 ms.  We  further demonstrate how the resulting
lassification error varies both with the degree of spectral over-
ap and detection time. The variance and shape of the associated
core plots are shown to entirely depend on photon counting statis-
ics, as demonstrated using comparisons with detailed theoretical
redictions as well as linear and non-linear discriminant analyses.

Conventional optical array (e.g., CCD) based spectrometers dis-
erse light of different wavelengths onto N separate detectors in
rder to measure a spectrum. While this approach is advantageous
or many applications, it has important drawbacks in the low-signal
egime. For example, if we assume that a given chemical species
mits over a fixed time period ∼100 photons distributed over ∼100
CD pixels, then the resulting signal at each pixel would be well
elow the typical CCD read noise of a few counts per pixel. We
how that digital compressive detection can be used to accurately
lassify chemical species under such conditions by using a single-
hannel photon counting detector to determine the total number
f photons transmitted by binary optical filters optimized to dis-
inguish the compounds of interest. On the other hand, it is also
mportant to stress that the advantages of our compressive detec-
ion strategy are primarily restricted to this low signal regime, as

 conventional CCD detection scheme may  be preferential under
igh signal conditions (under which read and dark noise do not
ignificantly impact the spectral signal-to-noise ratio).

Compressive detection is related in an interesting way  to com-
ressive data storage and multivariate chemometric methods.
hemometric techniques such as total least squares (TLS) [10], par-
ial least squares (PLS) [10], principle component analysis (PCA)
10], and feature selection [11] may  all be used to project N-channel
pectral information onto a lower dimensional space defined by the
rojections (dot-product scores) of a measured spectrum onto a
maller number of M-axes. The latter M-scores may  be used to clas-
ify, quantify, and compressively store the chemical information of
nterest. Compressive detection differs from the above procedures
n that the M-scores are directly detected using the instrument
ardware, rather than by post-processing full spectra. In other
ords, the intensity transmitted through each of the M filters rep-

esents a direct measure of the associated score, as it is equivalent
o a dot-product of the collected light and the filter function. This

ode of measurement benefits from Felgett’s (or multiplex) signal-
o-noise advantage, since the photons transmitted by each filter
re detected on one channel, rather than being separately detected
sing N independent channels. The choice of filters to determine the
-axes may  be considered as one type of feature selection. For a

iven measured spectrum, the set of all features could be defined to
e the dot product of the spectrum with a vector having all entries

etween 0 and 1. We  select M of these vectors as filters to minimize

 particular measure of uncertainty in the quantities of interest. In a
road sense, the practice of integrating mathematics and hardware

s precisely the goal of Integrated Sensing and Processing (ISP) [12],
ica Acta 755 (2012) 17– 27

and so compressive detection (or the related multivariate optical
computing concept [1]) may  be considered a subset of ISP.

In this work we  focus on compressive detection of emission-type
spectra with binary optical filters and photon counting detection
statistics. A key advantage of our digital compressive detection
strategy derives from the fact that our binary filters are optimized to
minimize the error in the classification score or component concen-
tration, while previous compressive detection strategies focused on
minimizing spectral differences. Our results demonstrate the sur-
prising finding that results obtained using binary filters, optimized
as described in this work, are capable of outperforming classifica-
tion results obtained using analog filters and previous chemometric
strategies.

2. Theory

In this section we construct a mathematical model that
describes the measured response of a given filter in terms of
assumed rates of photon emission for specified spectra. We  then
reformulate the problem of choosing filters to minimize the
expected squared error in estimating these rates as a constrained
optimization problem. We  end this section by discussing some
theoretical and practical observations about the solution of this
problem.

2.1. Background

The problem of finding optimal settings for measurements taken
with either the digital micromirror device (DMD) or an analog-
based spatial light modulator (SLM) falls squarely into the subfield
of statistics known as Design of Experiments, specifically with so-
called linear models. A mathematical description of the results in
the field as of 1993 is given by Pukelsheim [13]. Because our data
are fundamentally photon counts,  modeled by Poisson random vari-
ables whose variances equal their means, our problem does not fit
precisely into the framework he develops, but we adopt his point
of view in what follows.

The problem we consider is based on a hard model of linear
additive spectra. Essentially we  want to determine the concentra-
tions of various chemical species from combined known spectra;
this is sometimes known as the supervised spectral unmixing prob-
lem. See [14,15] for very general introductions to this problem.
The work most closely related to ours is [16,17]; while they use a
Poisson model similar to ours (with error terms), they assume full
spectrum measurements and hence do not consider the choice of
optimal filters for multiplex measurements. Another related paper
is [18], which considers the problem of parameter estimation from
Poisson observations in the case that there are more parameters
than measurements. This latter paper also includes an informative
discussion on other approaches to Poisson estimation.

2.2. Formulating the estimation problem

Assume that our sample consists of various amounts of chemical
species from a known list, called S1, S2, . . .,  Sn. (These Sj’s are not the
spectra, just labels for the different compounds.) In a given experi-
ment, the stream of photons counted by a detector from each Sj can
be modeled as a Poisson process with rate parameter �j , where �j

has units photon s−1. All the photons from the various Sjs are mixed
together in the stream of photons coming from the sample, and we
are going to use the pattern of energies of the photons to “unmix”

the photons and so estimate all the rate parameters �j .

Each �j will depend on, among other things, the amount of Sj
in the sample. We assume that we  know the rate at which a unit
amount of Sj gives off photons, so if we can estimate �j , we  can



 Chim

e
t
r

a
p

l

e
t
d
a
I
c
s
a

P

w
T
t
a

t

W
t
a
m

l
m
p
(
i
l
t
I
i
t
f
t
e
w

T

(
b
a
a

S
a
fi
a

p
b

T

D.S. Wilcox et al. / Analytica

stimate the amount of compound Sj in the sample. We  emphasize
hat the measurements in our experiment are determined by the
ate parameters �j , and that is what we are going to estimate; the

mounts of the various Sjs may  be calculated from the �js in a
ost-processing step.

So, the number of photons emitted in an interval of time of
ength t of species Sj is a Poisson random variable with mean t�j .

The wavelength, or energy, of each photon observed in the
xperiments can be labeled with an integer i ∈ {1, . . .,  N}; N is
he total number of energy bins, or wavelength channels, in the
etection system. Assume that we know that the probability that

 photon from species Sj has label i is given by Pij, so
∑N

i=1Pij = 1.
n other words, the Pij, i = 1, . . .,  N form the spectrum of the jth
ompound, normalized so that the sum (or integrated area of the
pectrum) is 1. Then the stream of labeled photons emanating from

 sample are modeled by a vector Poisson process with rates

�,

here � = (�1, . . . , �n)T , and P = (Pij). (Here and later, superscript
 denotes “transpose.”) If we run the experiment for time t then
he number of photons with label i entering our instrument from
ll chemical species has a Poisson distribution with mean

(P�)i = t

n∑
�=1

Pi���.

e assume that the number of wavelength channels, N, is greater
han the number of chemical species n, and that the columns of P
re linearly independent. This is a real limitation when there are
any possible chemical species to detect.
Now that we have a model for the rate of photon emission with

abel i that we might measure, we shall describe the mathematical
odel for the measuring device. We  may  consider taking n inde-

endent measurements, one for each possible chemical species.
This will be generalized later.) In the jth measurement, we can set
n our optical filter the transmittance of all photons with energy
evel i to be a number Fij with 0 ≤ Fij ≤ 1; i.e., the probability that in
he jth measurement a photon with energy label i is counted is Fij.
f Fij = 1, then in the jth measurement all photons with energy level

 are passed through to the detector and counted; if Fij = 0, then in
he jth measurement all photons with energy level i are blocked
rom the detector – none of them are counted. Our observation in
he jth measurement is the total photon count, summed over all
nergy levels i, from observing the photon stream for Tjj seconds,
hich will be a Poisson random variable with mean

jj

N∑
i=1

Fij

(
n∑

�=1

Pi���

)
= Tjj

N∑
i=1

n∑
�=1

FijPi���.

We  use a double subscript on Tjj because we shall make these num-
ers the diagonal of a matrix T.) The columns of the matrix F = (Fij)
re filters, and the entries of F can be chosen as we wish, since they
re parameters of our measuring device.

For a DMD, we can choose only Fij = 0 or Fij = 1, while for an analog
LM we can in principle choose any 0 ≤ Fij ≤ 1. While it seems that
nalog SLMs offer more flexibility, we shall see later that optimal
lters are nearly digital,  in that nearly all the entries Fij, i = 1, . . .,  N,
re either 0 or 1.

We  denote by x our complete observation, a vector of n inde-

endent Poisson random variables with means and variances given
y the vector

FT P�, (1)
ica Acta 755 (2012) 17– 27 19

where T is the n × n diagonal matrix with diagonal entries T11, . . .,
Tnn. We  assume that F is chosen so that FTP is invertible (which is
possible since P has full rank).

If we denote by x̂ a sample from this random variable, then our
estimate �̂ of the true rates � is given by

�̂ = (TFT P)−1x̂ = (FT P)−1T−1x̂. (2)

We note that the expected value of �̂ satisfies

E(�̂) = (FT P)−1T−1E(x̂) = (FT P)−1T−1(TFT P�) = �.

Our first goal is to derive an effective expression for the expected
squared error of �̂ as an estimator of �,

E
(
‖�̂ − �‖2

)
=
∑

j

E((�̂j − �j)
2) =

∑
j

Var(�̂j);

this is the sum of the expected squared errors of all �̂js as estima-

tors of the photon count rates �j of the j chemical species Sj. We
shall then look at the problem of minimizing this sum.

We remark that our analysis allows models for which there are
more measurements than chemical compounds, in which case our
estimate will be

�̂ = BT−1x̂,

where B is a left inverse of FTP, i.e., B(FTP) = I. If we denote by M
the total number of measurements (M ≥ n), then F will be an N × M
matrix, and T will be an M × M matrix.

In a later paper, we give an example of two  synthetic spectra
for which three filters perform better (in the sense of having lower
expected square errors) than the optimal choice of a pair of filters.
We do not know how often such examples would come up with
real chemical spectra.

2.3. Optimizing the estimation problems

To design our filters we can assume, without loss of generality,
that the total measurement time,

∑
jTjj, is 1, so that Tjj can be inter-

preted as the fraction of the measurement time that the jth filter
is applied. When the total measurement time in an experiment is
� seconds, then one takes a measurement with the jth filter for a
period of �Tjj seconds. With this normalization, our estimator in an
experiment of total measurement time � is

�̂ = B(�T)−1x̂ = �−1BT−1x̂

and the variance of our estimator is inversely proportional to �
(because the variance of x̂ is proportional to �).

We write A = FTP and let B be a left inverse of A, i.e., BA = I (so
B = A−1 if A is a square matrix). Then the previous section leads to
the following problem:

Problem 2.1. For a given � and N × n matrix P of normalized
spectra, find a number M (the number of measurements), an M × M
diagonal matrix, T (the times for all measurements), an N × M filter
matrix, F, and an n × M estimator matrix B to minimize

E(‖BT−1x̂ − �‖2) (3)

subject to

BA = I, A = FT P,
∑

T = 1,
i

ii

where 0 ≤ Fij ≤ 1 and Tii > 0.
Our first goal is to find an explicit formula for (3).
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We  denote by ej a column vector whose jth component is 1 and
hose other components are 0. The jth component of the random

ariable x, xj = eT
j
x, is Poisson with mean and variance equal to

jje
T
j FT P� = Tjj(A�)j,

ince FTP = A by definition. So the random variable �j defined by

j = xj

Tjj
− (A�)j

as mean 0 and variance T−1
jj

(A�)j . In other words,

= T−1x − A�

s a vector of independent random variables, the jth component of
hich has mean 0 and variance T−1

jj
(A�)j . Thus, since BA = I,

� = BT−1x − �

s a vector random variable; the ith component of B�,
∑

jbij�j, has
ean 0 and variance

j

b2
ijVar(�j) =

∑
j

b2
ijT

−1
jj

(A�)j

hus we have the useful formula

(|(BT−1x)i − �i|2) =
∑

j

b2
ijT

−1
jj

(A�)j.

his expression is of interest in its own right, because one might
ant to ignore the error in estimating some components �i of �,

o-called nuisance parameters [16]. A good example of this is the
ntensity of a fixed background spectrum, showing up in the device
ven when there is no sample; we can leave out of the following
um the estimate of the error of the background (see Appendix A
or further discussion).

If we now sum over all i, we get

E
(
‖BT−1x − �‖2

)
=
∑

i

∑
j

b2
ijT

−1
jj

(A�)j

=
∑

j

T−1
jj

(A�)j

∑
i

b2
ij

=
∑

j

1
Tjj

(A�)j‖Bej‖2.

(4)

For fixed A, B, and �, one can find the optimal measurement
imes Tii; the following result follows from the Cauchy–Schwarz
nequality.

heorem 2.1. For fixed A and B, the optimal values of Tii in Problem
.1 are given by

ii = ‖Bei‖
√

(A�)i∑
j‖Bej‖

√
(A�)j

. (5)

Thus, we can reformulate Problem 2.1 by replacing (3) with the
ight hand side of (4) and replacing Tii by the right hand side in (5).
his gives

(‖BT−1x̂ − �‖2) =
(∑

i

‖Bei‖
√

(A�)i

)2

. (6)

nstead of minimizing the square, we can equivalently minimize

he value itself. This gives the following.

roblem 2.2. For a given � and N × n matrix P of normalized
pectra, determine the number of measurements, M,  an N × M filter
atrix, F, and an n × M matrix, B, to minimize
ica Acta 755 (2012) 17– 27

M∑
i=1

‖Bei‖
√

(A�)i (7)

subject to

BA = I, A = FT P, 0 ≤ Fij ≤ 1 forall i, j.

We note the following property of optimal filters F, proved in
[19].

Theorem 2.2. If a (possibly nonoptimal) value of M, the number of
measurements, is fixed, then the optimal filters obtained as the solution
to Problem 2.2 can be chosen to consist of only 0s and 1s, except for at
most n − 1 entries strictly between 0 and 1 in each filter.

Thus, one could say that the optimal filters are almost binary,  or
almost digital,  in that one can take nearly all the channels of each
filter to be either completely open (with Fij = 1, i.e., full transmit-
tance) or closed (with Fij = 0, i.e., no transmittance). For example,
to distinguish two spectra, we can choose two optimal filters such
that only one channel in each filter is not digital, and presumably
making that one channel in each filter 0 or 1 would leave one with
filters that are nearly optimal. In our experiments we rounded each
non-binary computed filter component Fij to the nearer of 0 or 1.

We conjecture that for the optimal number of measurements,
M, the optimal filters can be chosen to be completely digital.

We note that for fixed �, A, and T, the minimizing B is the
standard generalized least-squares minimizer as given in the fol-
lowing theorem:

Theorem 2.3 (generalized least squares). Fix �, A, and T as in Prob-
lem 2.1 and assume that D = diag(A�), the diagonal matrix whose
diagonal entries are the components of the vector A�, is invertible.
Then the optimal B in Problem 2.1,  which minimizes (4),  is given by

B = (AT D−1TA)−1AT D−1.

Note that this theorem does not provide the optimal B for Problem
2.2 even when A is known (except when A is invertible, in which
case B = A−1), since T depends on B.

2.4. Computations

We address here some practical questions about computations
based on the previous formulas.

Given A = FTP and �, finding the B that minimizes (7) is a
standard problem in convex analysis [19]. Similarly, given A, B, and
�, formula (5) gives explicit values of Tii. So both matrices B and T
are functions of A and �.

If we ignore the dependence of (7) on �, the main problem is
determining the matrix A = FTP that minimizes (7); this consists of
determining both the optimal number of measurement filters and
the entries of each filter. We  suggest, as a practical matter, to use the
minimal number of filters, which is the number of possible chem-
ical species in the sample, M = n. Determining A then reduces to
minimizing (7) over all “feasible” matrices A; a matrix A is feasible
if it can be written as A = FTP with 0 ≤ Fij ≤ 1 for all i and j.

The problem of finding the optimal A is a nonlinear, nonsmooth,
nonconvex problem. Except in the case of two chemical species
and two filters, we know of no algorithm that is guaranteed to find

such a minimum. On the other hand, when the dimension of A is
relatively small (we have tested up to ten chemical species and ten
filters), the general routines from MatlabTM, FMINCON for example,
seem to perform adequately.
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Fig. 1. Schematic of the DMD-based near in

As for which vector � we should use in (7),  we believe that a
ractical set of filters F can be designed assuming that the pure
omponent emission rates are normalized to the same value,

i = �j (8)

or all i and j, i.e., we design measurement filters F to min-
mize the error in estimating a mixture where the rate of
hotons emitted by all chemical species are the same. Setting

 = (1,  1, . . . , 1)T suffices. This determines A = FTP, B, and T. Mat-
ab software to determine OB filters is available on request. See

ww.math.purdue.edu/∼buzzard/software/ for more details.

. Experimental

.1. Experimental apparatus

The compressive detection spectrometer, shown in Fig. 1,
mploys a Raman backscattering collection geometry. Part 1 is
imilar to that described in [2].  The excitation source is a 785 nm
ingle mode laser (Innovative Photonic Solutions). After passing
hrough a laser-line bandpass filter (Semrock, LL01-785-12.5), the
aser is focused onto the sample with a NIR lens (Olympus, LMPlan
R, 20×).  The Raman scattering is collected and separated from
he laser Rayleigh scattering with a dichroic mirror (Semrock,
PD01-785RS-25) and a 785 nm notch filter (Semrock, NF03-785E-
5).

The Raman scattered light is then sent to Part 2, where it is first
ltered with a 900 nm shortpass filter (Thorlabs, FES0900) and sub-
equently directed to a volume holographic grating (1200 L mm−1,
enter wavelength 830 nm,  Edmund Optics, 48–590). The window
f the dispersed light is ∼200–1700 cm−1 with a spectral resolution
f 30 cm−1 (this resolution is limited by the beam quality and
ence the image of the diode laser focal spot size, which spans
pproximately 15 mirrors on the surface of the DMD). The light is
ollimated with an achromatic lens with a focal length of f = 50 mm
Thorlabs, AC254-050-B) and focused onto the DMD  (Texas Instru-

ents, DLP Discovery 4000). The DMD  consists of 1920 × 1080
luminum mirrors (10.8 �m pitch) that can tilt ±12

◦
relative to

he flat state of the array, controlled by an interface card (DLP

4000, Texas Instruments). All 1080 mirrors in each rows of the
rray are set to the same angle, and the 1920 columns are divided
nto adjacent groupings – e.g., if we want to divide the energy of
he photons into 128 “bins”, then groups of 15 adjacent columns
 digital compressive detection instrument.

are set in unison. The DMD  is mounted at an angle such that the
−12◦ mirror position directs photons back with a vertical offset
of ∼1◦ below the incident light in order to spatially separate the
incident and reflected photons. The latter photons are recombined
in a second pass through the holographic grating, and focused
onto a fiber optic cable that is connected to a photodiode photon
counting module (PerkinElmer, SPCMCD2969PE). The photon
counting module has a dark count rate of ∼200 photons s−1 and
no read noise. A TTL pulse is output by the photon counter as
each photon is detected, and the pulses are counted in a USB data
acquisition (DAQ) card (National Instruments, USB-6212BNC).
Integration timing is controlled by setting the sampling rate and
number of samples to acquire with the DAQ card in Labview 2009.

Binary filter functions (F), optimal times (T), and the estimator
(B) were generated from the spectra of all pure components (see
Section 3.2 for more information) using functions from Matlab 7.13
R2011b. The input binary optical filter function determined which
mirrors will point toward the detector (assigned a value of 1) or
point away (assigned a value of 0). The binary (0–1) mathematical
filters are configured to the DMD  through Labview software (Texas
Instruments, DDC4100, Load Blocks.vi) that sets blocks of mirrors
on the DMD  array corresponding to different wavelengths to the
appropriate ±12◦ position. Labview scripts were used to sequen-
tially apply the filters and integrate for the corresponding times, to
store the raw photon counts, and to calculate the photon rates. Lin-
ear and quadratic discriminant analyses were performed in Matlab
7.13 R2011b. Data was  further processed and plotted in Igor Pro
6.04.

3.2. Constructing filters

Generating accurate filters for a given application requires high
signal-to-noise training spectra of each of the components of inter-
est. Measuring full spectra with the DMD  is achieved by notch
scanning. This is done by sequentially directing one mirror (or
a small set of mirrors) toward the detector (with all other mir-
rors directed away) and counting the number of photons detected
at each notch position. Notch scanning measurements were per-
formed using 1 s per notch to obtain spectra with a signal-to-noise
ratio of ∼500:1. A background spectrum is present in all of our train-

ing spectra, arising from the interaction of the excitation laser and
the intervening optical elements. We  have implemented two com-
pressive detection strategies for removing this background. The
first method involves measuring the background (with no sample)

http://www.math.purdue.edu/&sim;buzzard/software/
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Fig. 2. Classification of minimally overlapping spectra. The Raman spectra of acetone, benzene, and the background are shown in panels (a)–(c), respectively (note that panels
(a)  and (b) include the background spectrum of panel (c)). The shaded regions denote the OB wavelengths that are directed toward the detector. The score plot in panel (d)
shows  the classification of acetone (red) and benzene (blue) using both linear and quadratic discriminants. Each point was obtained using three OB filters applied for a total
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loud)  – the lightest disks indicate one result each, the darkest acetone disk indica
eferences to color in this figure legend, the reader is referred to the web version of

nd subtracting it from the spectrum of each sample. The back-
round spectrum and background-free sample spectra are then
ach treated as independent components. Alternatively, since the
ackground is a fixed, unwanted component, we  have modified
he optimization problem to minimize the variance of only the
hemical components of interest (see Appendix A). In this method,
he training spectra are used as measured (i.e., they include the
ackground), and the background is treated as an additional inde-
endent component. Linear combinations of the resulting optimal
igital filters are used to differentiate the photon counts originat-

ng from the variable components and the fixed background (see
ppendix A). All of the results presented in this work have been
btained using the latter approach.

Once the training spectra are measured, they are normalized to
nit area and are used as input to generate filters satisfying the con-
traints of Problem 2.2; we refer to filters generated in this way  as
ptimal binary (OB) filters. Alternatively, the instrument shown in
ig. 1 may  utilize various other types of filters. For example, analog
lters of any spectral shape may  be produced by performing mea-
urements using 7 binary filters in order to obtain a grayscale with
28 transmittance levels at each wavelength channel (see Appendix

 for more details). Such filters may  be used to implement TLS mul-
ivariate spectral analysis, which we have done in the following
wo ways. The first method, referred to as TLS1, utilizes analog
lters whose shapes are the same as the Raman spectra of each
f the chemical components of interest (as measured using notch
canning). The second method, referred to as TLS2, utilizes linear
ombinations of the above filter functions to produce filters that
irectly measure the classification score for each component. Since
LS2 filters include both positive and negative features, two  filters
re used to independently measure the positive and negative fea-
ures, which are subsequently combined to obtain the TLS2 filter
ignal. Further details regarding the construction of OB filters and
nalog TLS1/TLS2 filters are provided in Appendix C, and examples
f the three types of filters are presented in Section 4.

. Results and discussion
In order to critically test and quantitatively compare the digi-
al OB and analog TLS1/TLS2 compressive detection strategies we
ave performed measurements using three pairs of organic liquids
ith varying degrees of spectral overlap. The first pair of liquids,
es each pair of photon rates was  obtained in 1000 independent measurements (per
3 results, the darkest benzene disk indicates 74 results. (For interpretation of the

rticle.)

acetone and benzene, have the least similar spectra (with a cor-
relation coefficient of 0.12). The second pair of liquids, n-hexane
and methylcyclohexane, have more significantly overlapped spec-
tra (with a correlation coefficient of 0.71). The third pair of liquids,
n-heptane and n-octane, have very highly overlapped spectra (with
a correlation coefficient of 0.99). In addition to testing the influence
of spectral overlap, we  compare the resulting score distributions
with theoretical predictions, including both linear and non-linear
discriminant analyses.

4.1. Classification of minimally overlapping spectra

The spectra of acetone and benzene, shown in Fig. 2, are well
separated, and in fact nearly orthogonal to each other as the angle
between the corresponding normalized spectral vectors is ∼84◦

(and thus their dot-product is 0.12). Note that all the spectra include
the background spectrum shown in Fig. 2(c). The corresponding OB
filter functions (obtained as described in Appendix A) are indicated
by the gray regions in Fig. 2(a)–(c); these are the regions in which
DMD  mirrors are directed toward the detector to distinguish ace-
tone and benzene from each other as well as from the background
signal.

In this minimally overlapping case, each of the OB filters reflects
photons toward the detector that originate primarily from the cor-
responding component. We  say that each filter is “associated with”
one spectra. The filters associated with acetone and benzene appear
reasonable in that each wavelength is (approximately) assigned to a
filter where the probability of that wavelength appearing in a spec-
trum is highest (see Fig. 2). However, there is no simple heuristic
for determining the mirror positions of optimal binary filters. We
start the optimization using a heuristic that assigns to each com-
ponent spectrum a corresponding filter that has 1s in positions of
relatively high photon count for that spectrum. However, the error
from these filters is significantly higher than that found by the opti-
mization routine. Moreover, having more filters than component
spectra can decrease the recovery error, but there is no evident
heuristic for finding such filters. We  note the background is treated
as a nuisance parameter (Appendix A), and the resulting filters are

somewhat unintuitive.

The data points in the score plot in Fig. 2(d) represent the result-
ing component photon count rates (�̂ = (FT P)−1T−1x̂) computed
directly from the measured number of photons emerging from each
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Fig. 3. Classification of moderately overlapping spectra. The Raman spectra of n-hexane (plus background), methylcyclohexane (plus background), and the background are
shown  in panels (a)–(c), respectively. The shaded regions denote the wavelengths directed toward the detector, as determined by the OB filters. Note that the filter associated
with  the background differs in this experiment from the filter in the previous experiment, even though the backgrounds are the same. This illustrates that filters depend
on  the interaction of all spectra in an experiment. The score plot in panel (d) shows the classification of n-hexane (red) and methylcyclohexane (blue) using both linear
and  quadratic discriminants. Each point was obtained using three OB filters applied for a total integration time of 200 �s. The darkness of each colored disk represents the
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lter (x̂), as specified by Eq. (2) (in this data set, the values of T
ere T11 = 0.5289, T22 = 0.4195, and T33 = 0.0516 for acetone, ben-

ene, and the background, respectively). The score plots shown in
ig. 2(d) demonstrate that, when using OB filters, the photon rates
an classify acetone and benzene in a total integration time of only
0 �s (for all three filters). This figure illustrates clearly that the
oints in a data cloud lie on a geometrical lattice arising from the
act that only whole numbers of photons are detected. The lattice
oints are well separated in this example because the number of
etected photons, x̂j , was generally less than 10 photons per filter.
onsequently, many of the 1000 independent measurements (per
loud) resulted in coincident triples of x̂j , and thus coincident pairs

f �̂j in Fig. 2(d). This figure also illustrates that we allow compo-

ents of �̂ to be negative, which is necessary as we require E(�̂),
he expected value of �̂, to equal �, i.e., we require that �̂ be an
nbiased estimate of �. If we had chosen to set all negative compo-
ents of �̂ summarily to zero, then �̂ would be a biased estimator
f �.

Linear discriminant analysis (LDA) and quadratic discriminant
nalysis (QDA) were employed to find a classification boundary
nd crossing rate (using results obtained with a total integration
ime of 100 �s). Though neither of LDA’s assumptions (equal group
ovariances and normally distributed probability densities) were
et  with this data set, a reasonable classification boundary is nev-

rtheless found, with 0% error (boundary crossing) for acetone and
.2% for benzene. Relaxing the equal group covariance assumption
ith QDA results in a better non-linear classification boundary. The

rror rate in this case becomes 0.3% for acetone and 0% for ben-
ene. These results clearly demonstrate that digital compressive
etection can accurately classify these two compounds using only

 handful of detected photons.

.2. Classification of moderately overlapping spectra

The more significantly overlapped spectra of n-hexane and
ethylcyclohexane (and the background) are shown in Fig. 3.

lthough the spectral vectors of these two compounds are sepa-
ated by an angle of only ∼45◦ (and thus have a dot product of
.71), the spectra clearly have different shapes. The gray regions in
ig. 3 again show the corresponding OB filters. Note that unlike the
ents (per cloud) – the lightest disks indicate one result each, the darkest n-hexane
rpretation of the references to color in this figure legend, the reader is referred to

spectra in Section 4.1, when using OB filters many of the detected
photons come from multiple components. As a consequence of
the increased degree of overlap, a longer total integration time
of 200 �s is required to accurately distinguish the chemical com-
ponents. The fractional times per filter were 0.3746, 0.5085, and
0.1169 for the three filters associated with n-hexane, methylcy-
clohexane, and the background, respectively. The score plots in
Fig. 3(d) again contain 1000 points per cloud. In this case the aver-
age observed photon counts x̂ were of the order of 25 photons per
filter measurement (see Eq. (2)), resulting in many fewer coincident
pairs of �̂.

The n-hexane/methylcyclohexane score plots were again ana-
lyzed using both LDA and QDA (with a training set collected using
a total integration time of 100 ms). The group covariances of the n-
hexane and methylcyclohexane rates are more similar than those
of benzene and acetone, and consequently LDA and QDA provided
similar classification results. QDA was  slightly better at classifying
the 200 �s total integration data correctly, with an error rate of 0.9%
for n-hexane and 0.2% for methylcyclohexane vs LDA’s error rate of
0% for n-hexane and 1.5% for methylcyclohexane.

4.3. Classification of highly overlapping spectra

In this section we  apply the OB theorem to the more challenging
classification of two  linear alkanes, n-heptane and n-octane. From
the spectra of n-heptane and n-octane, shown in Fig. 4, it is clear
that there are very few regions where one component dominates
(the dot product of the two normalized spectral vectors is 0.99,
which corresponds to an angle of ∼8◦ between the two  vectors). At
many wavelengths, there is a near 50:50 probability of detecting a
photon from n-heptane or n-octane. The wavelengths of greatest
variance in the alkane spectra yield at most a ∼40:60 probability of
detecting a photon from one component or the other. Nevertheless,
by solving Problem 2.2 we  obtain the resulting OB filters shown in
Fig. 4. The score plots in Fig. 4(d) were obtained using a total inte-
gration time of 5 ms  and fractional times of 0.4378, 0.5176, 0.0446

for the filters associated with n-heptane, n-octane, and the back-
ground, respectively. Due to the high degree of spectral overlap,
considerably more photons (an average of 200 per filter measure-
ment) were needed for minimally overlapping score distributions.
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Fig. 4. Classification of highly overlapping spectra. The Raman spectra of n-heptane (plus background), n-octane (plus background), and the background are shown in
panels  (a)–(c), respectively. The shaded regions denote the wavelengths directed toward the detector, as determined by the OB filters. The score plot in panel (d) shows the
classification of n-heptane (red) and n-octane (blue) using a linear discriminant. Each point was  obtained using three OB filters applied for a total integration time of 5 ms.
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ndicate one result each, the darkest disk for both n-heptane and n-octane indicates
eferred  to the web  version of the article.)

he LDA classification boundary was obtained using a training set
btained in a total integration time of 100 ms,  and gives an error
ate of 0.9% for n-heptane and 0.3% for n-octane; QDA gives the
ame results because the group covariances are equal.

.4. Classification as a function of time

Sections 4.1–4.3 have shown the minimum amount of time
equired to classify spectra with varying degrees of overlap to

ithin ∼1% error. Fig. 5 shows how the classification score plots

or n-hexane and methylcyclohexane vary as a function of inte-
ration time, ranging from (a) 0.3 ms  to (d) 100 ms.  When longer
ntegration times are employed, the variance of each distribution

ig. 5. The variance of the experimentally measured photon rates for pure n-hexane
red) and pure methylcyclohexane (blue) decreases as the total measurement time
ncreases from (a) 0.3 ms  to (d) 100 ms.  The misclassification rate vanishes at longer
imes, as the 1000 points in each cloud cluster tightly together. The horizontal and
ertical lines in each panel indicate the corresponding mean photon detection rates.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of the article.)
s was obtained in 1000 independent measurements (per cloud) – the lightest disks
ults. (For interpretation of the references to color in this figure legend, the reader is

decreases as the inverse of the integration time and the associated
misclassification rate essentially vanishes. The shapes and sizes of
the score plots are entirely determined by photon counting (Pois-
son) statistics (as demonstrated in the following sub-section).

4.5. Comparison with theory

Fig. 6 shows both the experimentally measured and theoret-
ically simulated score plot for the n-hexane/methylcyclohexane
system at 1ms  total integration time. The mean rates, �, used
in the theoretical predictions were set to the experimental aver-
age �̂ values obtained from 10,000 independent measurements
of n-hexane and methylcyclohexane. Thus, the OB filters, optimal
times, normalized training spectra (including the background), and
approximated � were the only input parameters. It was assumed
that the filters were perfectly square (binary) functions, and that
the photons emerging through the filters had ideal Poisson dis-
tributions. The results shown in Fig. 6 clearly show the excellent
agreement between the theoretical (black) and experimental (col-
ored) measurement.

We  applied the Kolmogorov–Smirnov statistical test to deter-
mine whether the experimental outputs of the filters are indeed
distributed as Poisson random variables. We  took 10,000 measure-
ment triples (with each triple totaling 1 ms  measurement time) of
both n-hexane and methylcyclohexane in the experimental appa-
ratus. Using this data, we  tested whether the six sets of random
samples are distributed as Poisson random variables with the sam-
ple means. The tests show that one cannot reject the hypotheses
that the experimental output of the filters is Poisson with the sam-
ple means, even at 20% level of significance. It is possible, however,
that the sample means may  differ from what the theory predicts;
such a comparison is left to a later study. Preliminary results sug-
gest this discrepancy is due to photon leakage from DMD  mirrors
corresponding to longer Raman scattered wavelengths.

4.6. Comparison with TLS

The classification performance obtained using OB filters is found

to be better than that obtained using TLS, as illustrated using the n-
hexane/methylcyclohexane results shown in Fig. 7. As discussed in
Section 3.2 and Appendix C, two methods have been used to imple-
ment TLS filters in our compressive detection instrument: TLS1
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Fig. 6. Comparison between the experimental and theoretical variances and shapes of the photon count distributions for n-hexane and methylcyclohexane. Each cloud
contains 10,000 points. The panels show (a) the experimental distributions, (b) the theoretical distributions, and (c) the overlay of experimental and theoretical distributions,
which  reveals that they are in excellent agreement.
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ig. 7. Compressive detection results obtained using (a) OB filters are clearly better
LS2.  Each cloud contains 10,000 data points.

which uses spectral equivalent transmission functions) and TLS2
which uses linear combinations of TLS1 filters to directly measure
ndividual component photon rates). Fig. 7 compares the measured
istributions of n-hexane and methylcyclohexane integrated for a
otal time of 1 ms  using filters obtained from the OB theorem, TLS1,
nd TLS2. The OB filters clearly outperformed either implemen-
ation of TLS, while TLS2 outperformed TLS1 (as indicated by the
arger variance of the latter score distribution). Recall that TLS2
equires twice as many DMD  measurements as TLS1 in order to
ndependently measure the positive and negative features of each
LS2 filter (as further explained in Appendix C). The fractional inte-
ration times per TLS1 filter were ∼333 �s, and the corresponding
LS2 filters were applied for ∼0.167 �s. We  have found that TLS2
s a better method than TLS1 for classifying any moderate to highly
verlapping spectra. The improved performance obtained using
LS2 is linked to the fact that the TLS2 filters are better focused
n the more highly overlapping regions of the component spectra.
owever, results obtained using the OB filters invariably outper-

orm both TLS1 and TLS2.

. Conclusion and future work

A new digital compressive detection strategy has been imple-
ented in this work. We  have developed a method for finding
ptimal binary filters that can be realized using a digital micromir-
or device based compressive detection spectrometer. The binary
lters are optimal in the sense that the sum of the variance of
he estimated component photon count rates is minimized. The
results obtained using either implementation of total least squares, (b) TLS1, or (c)

ability to minimize the latter objective arises from the freedom to
choose which binary mirrors are open or closed, as well as optimal
integration times per filter.

We  have tested and validated this new digital compressive
detection strategy by classifying liquids with various degrees of
spectral overlap. We  found that as few as 10–25 photons per mea-
surement were required to accurately classify low to moderately
overlapping spectra with an error of less than 1% with total mea-
surement times ranging from tens to hundreds of microseconds. For
the highly overlapping case of two  linear alkanes, accurate classifi-
cation was obtained by detecting ∼200 photons, collected in a few
milliseconds. Data acquisition times approaching these timescales
are not accessible using conventional, CCD-based Raman spec-
troscopy, thus highlighting the power of compressive detection.
OB filters were also shown to require fewer photons for accurate
classification than TLS filters.

In future publications we intend to explore several extensions
of the present paper. For example, the classification results we
present here can be extended to quantification results with slightly
longer measurement times (cf. Fig. 5). Moreover, we  plan to extend
the “nuisance variable” approach, used here to remove the back-
ground signal, to remove fluorescence that may vary from sample
to sample. In addition, the speed of our results facilitates real
time chemical imaging measurements, by using compressive detec-

tion to classify pure compounds (or mixtures) present at each
spatial point of a sample. Finally, because Partial Least Squares
(PLS) or Principal Component Analysis (PCA) scores are simply the
inner products of the sample spectrum with various filters, we can
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mplement such calculations in the hardware directly (as we  did
or TLS filters).
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ppendix A. Dealing with a fixed background

We  say a signal is a “fixed background” if it is present in every
easured spectrum, does not significantly vary in spectral shape

rom one measurement to another, and scales linearly with expo-
ure time. In this appendix we describe how the theory in Section

 can be extended to remove fixed backgrounds.
To illustrate our method, we assume that there are two  pos-

ible chemicals S1 and S2 in our sample, and that a background
ignal is present in all measurements. With no chemical sample
n the equipment, we measure a normalized spectrum Pb (b for
background”); Pb is a column vector whose entries sum to 1. We
epeat this process with pure samples of S1 and S2 in the equip-
ent to obtain normalized spectra P1+b and P2+b. We also measure

he total photons counted over one second with no sample, S1 alone,
nd S2 alone – we denote these quantities by �b, �1+b, and �2+b,
espectively.

From these initial measurements, we solve Problem 2.2 with the
atrix P = [P1 P1+b P2+b], M = 3, and � = (1,  1, 1)T to obtain OB filters

, the matrix T whose diagonal gives relative measurement times
or each filter, and resulting matrices A = FTP and B = A−1.

Each photon from the background is associated either to the
ackground alone or to one of the samples Si plus the background.
o for any concentration of chemical Si, the rate of photons coming
rom Si alone is given by

i =
(

�i+b − �b

�i+b

)
�i+b =

(
1 − �b

�i+b

)
�i+b.

hus, if we have computed estimates �̂1+b and �̂2+b of the rates
f photons counted from S1 plus the background and S2 plus the
ackground, then we estimate �i by

ˆ
i =
(

1 − �b

�i+b

)
�̂i+b.

o E(�̂i) = �i and

ar(�̂i) =
(

1 − �b

�i+b

)2

Var(�̂i+b) < Var(�̂i+b).

ppendix B. Generating analog patterns on the digital
icromirror device

The DMD  mirrors may  either be set on (toward the detector) or
ff (away from the detector). In order to produce analog patterns,
ome mirrors must be turned on longer than others over the period
f photon integration. Since the mirror switching time of our DMD
s ∼30 ms,  the dead time for 128 grayscales (or 128 separate binary
lters) is ∼4 s. Thus, the most efficient way to produce grayscale
atterns is to switch the mirror positions as few times as possible.
ere we show that n binary filters can be combined to reproduce

ne filter with 2n grayscales by varying the integration time of each
f the n filters as follows. For simplicity, consider the case where
ne wants 128 = 27 grayscales in 128 ms.  Given an arbitrary analog
ransmission function, the shape is first scaled to have a maximum
ica Acta 755 (2012) 17– 27

intensity of 127 so that each mirror is assigned a different trans-
mission intensity between 0 and 127. The grayscale transmission
intensities at each filter entry are then expressed as a binary num-
ber. The first of 7 binary filters is obtained by turning on all mirrors
for which the corresponding grayscale entry has the 64 (26) bit set;
all other mirrors are turned off. This filter is measured for 64 ms. The
second binary filter is obtained by turning on all mirrors for which
the corresponding grayscale entry has the 32 (25) bit set; all others
are turned off. This filter is measured for 32 ms.  The third binary
filter is obtained similarly using all entries that have the 16 (24) bit
set; this filter is measured for 16 ms,  etc. In other words, all entries
with grayscales from 32 to 63 and from 96 to 127 have the mir-
ror turned on in the second step; in the third step, all entries with
grayscales from 16 to 31, 48 to 63, 80 to 95, and 112 to 127 have
the mirror turned on; etc. The n measurements are then summed
in a post-processing step to reproduce the effect of applying the
original grayscale filter for 128 ms.  Since the mirrors are switched
7 times, there is a delay of 210 ms  associated with such measure-
ments. However, a faster DMD  interface could reduce the delay to
less than 1 ms  per filter.

Appendix C. Implementing TLS

TLS filters can be implemented in the compressive detection
spectrometer in two different ways. In Section 2, we described the
application of filters Fij with all non-negative entries, correspond-
ing to a transmission of 0–100% at each wavelength (or in the case
of binary filters, 0 or 100%). In the first version of TLS, which we
refer to as TLS1, the jth filter Fij is the same shape as the jth spec-
tra (scaled to have a maximum intensity of 1 or transmission of
100%). TLS1 filters are analog, but all non-negative (ranging from
0% to 100% transmission) at each wavelength. Therefore, the rates
from TLS may  be calculated from Eq. (2),  where B = (FTP)−1 and F are
TLS1 filters. Computing the rates from x̂ using this method requires
that all n filters must be applied to estimate the photon rates of n
components.

The second version of TLS, denoted TLS2, uses linear combina-
tions of TLS1 filters. It follows from the solution of Eq. (2) that the
transmission function defined by the product (FTP)−1FT may  be used
as an alternative way to obtain estimates of �. Note that the filters
F are the same spectral equivalent filters as in TLS1, but the prod-
uct yields TLS2 filters. TLS2 filters can measure the photon rates
of fewer than n components, since each filter is orthogonal to all
others (i.e., each filter only “sees” one component and is blind to all
others). However, the filter entries have intensities that can be posi-
tive or negative. Filters with negative transmission intensity are not
physical, but this can be handled by writing a general filter as the
difference between two filters, each with only positive entries. Each
of these filters is then scaled to have a maximum transmission of
100%. Measuring with each of these filters, then rescaling and taking
the difference in post-processing mimics the measurement with
the corresponding TLS2 filter. While this method requires 2n filters
to measure information from all n components, it can also be used
to measure photon rates from fewer than n components. In other
words, if we are only interested in determining the intensity of a
single component in a mixture then we only need to obtain the sig-
nal from the one TLS2 filter function pertaining to that component
(which required only measuring the number of photons detected
using the corresponding positive and negative filters). See Section
4.6 for a comparison of TLS1, TLS2, and OB filters.

References
[1] M.P. Nelson, J.F. Aust, J.A. Dobrowolski, P.G. Verly, M.L. Myrick, Anal. Chem. 70
(1998) 73–82.

[2] B.M. Davis, A.J. Hemphill, D.C. Maltas, M.A. Zipper, P. Wang, D. Ben-Amotz, Anal.
Chem. 83 (2011) 5086–5092.



 Chim

[

[
[

[

[

[
[

D.S. Wilcox et al. / Analytica

[3]  W.C. Sweatt, C.A. Boye, S.M. Gentry, M.R. Descour, B.R. Stallard, C.L. Grotbeck,
Imaging Spectrometry IV Volume 3438 of Proceedings of the Society of Photo-
Optical Instrumentation Engineers (SPIE), 1998, pp. 98–106.

[4] N. Uzunbajakava, P. de Peinder, G.W. t Hooft, A.T.M. van Gogh, Anal. Chem. 78
(2006) 7302–7308.

[5] Z.J. Smith, S. Strombom, S. Wachsmann-Hogiu, Opt. Express 19 (2011)
16950–16962.

[6] Q.S. Hanley, P.J. Verveer, T.M. Jovin, Appl. Spectrosc. 52 (1998) 783–789.
[7]  R.A. DeVerse, R.M. Hammaker, W.G. Fateley, J.A. Graham, J.D. Tate, Am.  Lab. 30

(1998) 112S.
[8] N.T. Quyen, E. Da Silva, N.Q. Dao, M.D. Jouan, Appl. Spectrosc. 62 (2008)
273–278.
[9] E.P. Wagner, B.W. Smith, S. Madden, J.D. Winefordner, M.  Mignardi, Appl. Spec-

trosc. 49 (1995) 1715–1719.
10] K. Varmuza, P. Filzmoser, Introduction to Multivariate Statistical Analysis in

Chemometrics, CRC Press/Taylor and Francis, Boca Raton, FL, 2009.

[

[

[

ica Acta 755 (2012) 17– 27 27

11] M.  Dash, H. Liu, Intell. Data Anal. 1 (1997) 131–156.
12] C.E. Priebe, D.J. Marchette, D.M. Healyl, Modern Signal Processing, Volume 46,

MSRI Publications, 2003.
13] F. Pukelsheim, Optimal design of experiments, Volume 50 of Classics in Applied

Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2006, Reprint of the 1993 original.

14] J.M. Bioucas-Dias, A. Plaza, in: Society of Photo-Optical Instrumentation Engi-
neers (SPIE) Conference Series, volume 7830 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, 2010.

15] N. Keshave, Lincoln Lab. J. 14 (2003) 55–78.
16] R.D. Palkki, A.D. Lanterman, Opt. Eng. 49 (2010) 113601.

17] B. Drake, J. Kim, M. Mallick, H. Park, 13th Conference on Information Fusion

(FUSION), 2010, pp. 1–8.
18] Z. Harmany, R. Marcia, R. Willett, IEEE Trans. Image Process. 21 (2012)

1084–1096.
19] G.T. Buzzard, B.J. Lucier (2012), in preparation.


	Photon level chemical classification using digital compressive detection
	1 Introduction
	2 Theory
	2.1 Background
	2.2 Formulating the estimation problem
	2.3 Optimizing the estimation problems
	2.4 Computations

	3 Experimental
	3.1 Experimental apparatus
	3.2 Constructing filters

	4 Results and discussion
	4.1 Classification of minimally overlapping spectra
	4.2 Classification of moderately overlapping spectra
	4.3 Classification of highly overlapping spectra
	4.4 Classification as a function of time
	4.5 Comparison with theory
	4.6 Comparison with TLS

	5 Conclusion and future work
	Acknowledgments
	Appendix A Dealing with a fixed background
	Appendix B Generating analog patterns on the digital micromirror device
	Appendix C Implementing TLS
	References


