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Abstract We formulate various variational problems

in which the smoothness of functions is measured using

Besov space semi-norms. Equivalent Besov space semi-

norms can be defined in terms of moduli of smooth-

ness or sequence norms of coefficients in appropri-

ate wavelet expansions. Wavelet-based semi-norms have

been used before in variational problems, but existing

algorithms do not preserve edges, and many result in

blocky artifacts. Here we devise algorithms using mod-

BJL was supported in part by the Office of Naval Research,
Contract N00014-91-J-1076, the Institute for Mathematics
and its Applications, Minneapolis, USA, and the Simons
Foundation (Awards #209418 and #229816). SEL and JDC
were supported in part by NSF-DMS 1320829. AC acknowl-
edges the support of the Isaac Newton Institute, Cambridge,
and of a grant of the Simons Foundation.

G. T. Buzzard
Department of Mathematics, Purdue University, 150 N.
University St., West Lafayette, IN 47907, USA
E-mail: buzzard@purdue.edu

A. Chambolle
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uli of smoothness for the B1
∞(L1(I)) Besov space semi-

norm. We choose that particular space because it is

closely related both to the space of functions of bounded

variation, BV(I), that is used in Rudin–Osher–Fatemi

(ROF) image smoothing, and to the B1
1(L1(I)) Besov

space, which is associated with wavelet shrinkage algo-

rithms. It contains all functions in BV(I), which include

functions with discontinuities along smooth curves, as

well as “fractal-like” rough regions; examples are given

in an appendix. Furthermore, it prefers affine regions

to staircases, potentially making it a desirable regular-

izer for recovering piecewise affine data. While our mo-

tivations and computational examples come from im-

age processing, we make no claim that our methods

“beat” the best current algorithms. The novelty in this

work is a new algorithm that incorporates a translation-

invariant Besov regularizer that does not depend on

wavelets, thus improving on earlier results. Further-

more, the algorithm naturally exposes a range of scales

that depends on the image data, noise level, and the

smoothing parameter. We also analyze the norms of

smooth, textured, and random Gaussian noise data in

B1
∞(L1(I)), B1

1(L1(I)), BV(I) and L2(I) and their dual

spaces. Numerical results demonstrate properties of so-

lutions obtained from this moduli-of-smoothness–based

regularizer.

1 Introduction

This paper has several goals.

We formulate various variational problems in which

the smoothness of functions is measured using Besov

space semi-norms. Equivalent Besov space semi-norms

can be defined in terms of moduli of smoothness or se-

quence norms of coefficients in appropriate wavelet ex-
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pansions. Wavelet-based semi-norms have been used be-

fore in variational problems; here we devise algorithms

using moduli of smoothness.

In particular, we build algorithms around the

B1
∞(L1(I)) Besov space semi-norm. We chose that par-

ticular space because it is closely related both to the

space of functions of bounded variation (incorporated

in Rudin–Osher–Fatemi (ROF) image smoothing) and

to the B1
1(L1(I)) Besov space, which is associated with

wavelet shrinkage algorithms.

While our motivations and computational examples

come from image processing, we make no claim that our

methods “beat” the best current algorithms in these

areas. Perhaps others can improve on our results.

We give further background and motivation in Sec-

tion 2. Section 3 introduces the modulus-of-smoothness

definition of the B1
∞(L1(I)) semi-norm and discusses

its properties. Section 4 introduces discrete versions of

Besov space and BV semi-norms based on moduli of

smoothness. The next Section 5 discusses previously-

introduced algorithms for minimizing various varia-

tional problems and how they can be adapted to our cir-

cumstances. Section 6 gives an algorithm for a projec-

tion needed in our algorithms. The very brief Section 7

summarizes our main algorithm. We then examine the

norms of smooth features, Gaussian noise, and periodic

textures in various function spaces in Section 8. We pro-

vide computational examples in Section 9. Finally, an

Appendix contains a one-parameter family of bounded,

self-similar functions whose variation tends to infinity

while the B1
∞(L(I)) norms are bounded.

2 Background and motivation

In this section we discuss some past image smoothing

methods and motivations for the approach taken here.

Rudin, Osher, and Fatemi [20] introduced an image

smoothing method that is equivalent to the following:

given a noisy image f , represented as a function on the

unit square I = [0, 1]2, and a positive smoothing param-

eter λ, find the function f̃ that achieves the minimum

of the functional

K(f, λ) = inf
g

(1

2
‖f − g‖2L2(I)

+ λ‖g‖BV(I)

)
, (1)

where ‖g‖BV(I) is the bounded-variation semi-norm of

g. (We will not give precise definitions here, see the

references for details.) Around the same time, Sauer and

Bouman [21] used a discrete version of the BV(I) semi-

norm to regularize a tomography inversion problem.

Not much later, Donoho and Johnstone [15] in-

troduced the notion of wavelet shrinkage for image

smoothing. Here one calculates an orthogonal wavelet

decomposition of the function f ,

f =
∑

j≥0, k∈Z2, ψ∈Ψ

cj,k,ψ ψj,k,

where ψj,k(x) = 2kψ(2kx−j) = 2kψ(2k(x−j/2k)) with

2k the dyadic scale, j/2k a dyadic translation, and Ψ

a basic set of wavelet functions (often three functions

in two dimensions). Given a positive parameter λ, one

then smooths f by shrinking the wavelet coefficients to

calculate

f̄ =
∑

j∈Z2, k≥0, ψ∈Ψ

Sλ(cj,k,ψ)ψj,k, (2)

where

Sλ(t) =


t− λ, λ ≤ t,
0, −λ ≤ t ≤ λ,
t+ λ, t ≤ −λ.

(3)

They derived similar results when using hard threshold-

ing

Tλ(t) =


t, λ ≤ t,
0, −λ ≤ t ≤ λ,
t, t ≤ −λ,

instead of Sλ(t) to calculate the wavelet coefficients of

f̃ .

In 1992, DeVore and Lucier [11] related both varia-

tional image smoothing as in (1) and wavelet shrinkage

as in (2) to interpolation of function spaces using so-

called (power) K-functionals: given two (quasi-)normed

function spaces X and Y and any p, q > 0, one can con-

sider

K(f, λ,X, Y ) = inf
g

(‖f − g‖pX + λ‖g‖qY ) (4)

for any function f and smoothing parameter λ > 0. One

sees that (up to a constant) (1) is of the form (4) with

X = L2(I), p = 2, and Y = BV(I), q = 1. It is noted in

[11], however, that because Sobolev spaces and Besov

spaces have topologies that can be defined by norms of

the wavelet coefficients of functions in those spaces, we

have that for appropriately chosen λk, k ≥ 0,

f̄ =
∑

j∈Z2, k≥0, ψ∈Ψ

Tλk(cj,k,ψ)ψj,k (5)

is, to within a constant, a minimizer ofK(f, λ, L2(I), Y )

whenever Y is one of a family of Sobolev spaces

Wα(L2(I)), α > 0, or Besov spaces Bαq (Lq(I)), with

α > 0 and 1/q = α/2 + 1/2.

There was speculation in [11] that because BV(I)

satisfies the strict inclusion

B1
1(L1(I)) ⊂ BV(I) ⊂ B1

∞(L1(I))
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between the Besov spaces B1
1(L1(I)) and B1

∞(L1(I)),

wavelet shrinkage or wavelet thresholding will likely

give a solution “similar” to the minimizer of (1). How-

ever, because the Besov space B1
1(L1(I)) does not

include functions that are discontinuous across one-

dimensional curves, what we shall call images with

edges, the minimizing image f̃ of

1

2
‖f − g‖2L2(I)

+ λ‖g‖B1
1(L1(I)),

cannot have such discontinuities, i.e., it cannot have

edges.

Later, Chambolle, DeVore, Lee, and Lucier [7] noted

that because

‖f‖2L2(I)
=
∑
j,k,ψ

|cj,k,ψ|2

for an orthonormal wavelet transform, and the topology

of B1
q (L1(I)) is generated by the wavelet sequence norm

‖f‖qB1
q (L1(I))

:=
∑
k≥0

(∑
j,ψ

|cj,k,ψ|

)q
, 0 < q <∞,

and

‖f‖B1
∞(L1(I)) := sup

k≥0

∑
j,ψ

|cj,k,ψ|,

when Ψ contains smooth enough functions (smoother

than Haar wavelets), one can derive algorithms for exact

minimizers of

1

2
‖f − g‖2L2(I)

+ λ‖g‖qB1
q (L1(I))

(6)

for q = 1 and 2 and

1

2
‖f − g‖2L2(I)

+ λ‖g‖B1
∞(L1(I)). (7)

We’ll call the latter problem B1
∞(L1(I)) smoothing.

It was noted in [7] that when q = 1, wavelet shrink-

age by λ gives the exact minimizer of (6). Further algo-

rithms were suggested for q = 2 and q = ∞; basically,

the minimizer of (6) and (7) is given by

f̃ =
∑
k

∑
j,k

Sλk(cj,k,ψ)ψj,k,

where now the shrinkage parameter λk is not con-

stant, but depends on the scale k of the wavelet term

cj,k,ψ ψj,k. The case q =∞ was also discussed in [16].

Because B1
∞(L1(I)) contains BV(I), B1

∞(L1(I))

certainly contains images with edges, and it must con-

tain functions that are more singular than functions in

BV(I), i.e., it contains functions with certain fractal-

like structures that are not of bounded variation. In-

deed, in the appendix we give an example of a one-

parameter family of bounded, self-similar, “fractal”,

functions whose norms in B1
∞(L1(I)) are bounded but

whose norms in BV(I) tend to ∞.

B1
∞(L1(I)) smoothing should have another nice

property. Minimizers of (1) applied to noisy images gen-

erally exhibit stair-casing or terrace-like effects because

the BV(I) semi-norm does not distinguish between a

staircase or a plane that rises the same distance, while

the B1
∞(L1(I)) semi-norm of a plane is zero, and the

B1
∞(L1(I)) semi-norm of a staircase is nonzero. Thus,

the terracing effects should not appear in otherwise

smooth regions of minimizers of (7).

In practice, however, if one applies the wavelet

shrinkage algorithm for (7) to images, one finds that

the minimizers do not generally look much different,

qualitatively, than minimizers of (6) with q = 1.

This leads to the natural question about whether

other, equivalent , norms for B1
∞(L1(I)) would give dif-

ferent results. Perhaps such B1
∞(L1(I)) minimizers will

have not only edges but also fractal-like structures that

are not seen in BV(I) smoothing.

As it happens, Besov spaces have norms defined

via moduli of smoothness, what we’ll call “pointwise”

norms for Besov spaces. In this paper we develop im-

age smoothing algorithms based on the pointwise Besov

space norm for the space B1
∞(L1(I)). As we’ll see, the

resulting images have properties that are qualitatively

different from the properties of minimizers of both

BV(I) smoothing and wavelet B1
∞(L1(I)) smoothing.

Previous work by Bredies, Kunish, and Pock [4] has

been motivated by similar considerations. In their varia-

tional problem they use what they call the Total Gener-

alized Variation (TGV), which includes, roughly speak-

ing, the variation of higher order derivatives, not just

of the function itself. We include comparisons of their

techniques with ours in Section 9.

3 Pointwise norms for Besov spaces

We begin by defining the Besov space Bαq (Lp(I)), where

I = [0, 1]2 is the domain of our images. Roughly speak-

ing, functions in this space have α “derivatives” in

Lp(I); the parameter q is useful in measuring finer gra-

dations of smoothness.

The rth-order forward difference at the point x ∈ I
in the direction h ∈ R2 of a function f : I → R is defined

for nonnegative integers r by

∆0f(x, h) = f(x),

∆r+1f(x, h) = ∆rf(x+ h, h)−∆rf(x, h).
(8)

The difference ∆rf(x, h) is defined for those x ∈ I for

which all of f(x), f(x + h), . . . , f(x + rh) are defined;

we’ll denote this set by Irh = {x ∈ I | x+ rh ∈ I}.
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For 0 < p ≤ ∞, the rth order modulus of smooth-

ness in Lp(I) is defined by

ωr(f, t)p = sup
|h|≤t

‖∆rf(·, h)‖Lp(Irh). (9)

Given parameters 0 < α <∞ and 0 < p, q ≤ ∞ we

choose the integer r such that r− 1 ≤ α < r and define

the Bαq (Lp(I)) semi-norm as

|f |Bαq (Lp(I)) =

(∫ ∞
0

[
t−αωr(f, t)p

]q dt
t

)1/q

for 0 < q <∞ and

|f |Bα∞(Lp(I)) = sup
t>0

t−αωr(f, t)p.

The Bαq (Lp(I)) norm we use is then

‖f‖Bαq (Lp(I)) = |f |Bαq (Lp(I)) + ‖f‖Lp(I).

In particular, the semi-norm for B1
∞(L1(I)) is

|f |B1
∞(L1(I)) = sup

t>0

1

t
ω2(f, t)1. (10)

Combining (10) and (9), we have

|f |B1
∞(L1(I)) = sup

|h|>0

1

|h|
‖∆2f(·, h)‖L1(I2h) (11)

and

‖f‖B1
∞(L1(I)) = ‖f‖L1(I) + |f |B1

∞(L1(I)).

Note that we are not dividing by |h|2; if we were, the

functions in the space would consist of functions whose

second derivatives are measures. More to the point, be-

cause

ω2(f, nt)1 ≤ n2ω2(f, t)1,

(see Chapter 2 of [10]) we have

1

(nt)2
ω2(f, nt)1 ≤

1

t2
ω2(f, t)1,

so

sup
t>0

1

t2
ω2(f, t)1 = lim

t→0

1

t2
ω2(f, t)1.

The supremum in (10) is generally not taken in the limit

as t→ 0, however. For example, if f has two continuous

derivatives in L1(I), then as δ → 0, |δh|−2∆2f(x, δh)→
D2
hf(x), the second directional derivative of f in the

direction h at x, and

1

t
ω2(f, t)1 = t

( 1

t2
ω2(f, t)1

)
→ 0

as t → 0, as the quantity in parentheses is finite.

So computations with the B1
∞(L1(I)) semi-norm must

take into account all the values of |h| > 0, not just

the limit as |h| → 0. On the other hand, we have that

ωr(f, t)p ≤ 2r‖f‖Lp(I) for 1 ≤ p ≤ ∞, so t−1ω2(f, t)1 →
0 as t→∞. So the supremum in (11) is found on some

finite interval [0, t∗].

Note also that BV(I), the space of functions of

bounded variation on I is contained in B1
∞(L1(I)), be-

cause an equivalent semi-norm for BV(I) is

|f |BV(I) = sup
t>0

1

t
ω1(f, t)1 = lim

t→0

1

t
ω1(f, t)1,

and because ω2(f, t)1 ≤ 2ω1(f, t)1 by (8), functions in

B1
∞(L1(I)) can be “more singular” than functions in

BV(I).

The supremum in (11) is taken over all directions h,

and we cannot compute over all directions. For effec-

tive computations, we note as a consequence of a result

of [14] that an equivalent semi-norm |f |B1
∞(L1(I)) arises

if we replace the set of all directions h in (11) by mul-

tiples of any three of the directions (1, 0), (0, 1), (1, 1),

and (1,−1). For the sake of symmetry, we use all four

directions.

4 Discrete norms, spaces, and variational

problems

We consider a number of variational approaches to noise

removal and image smoothing in general.

The first model uses the L2(I) norm as a measure

of the difference between the original and smooth func-

tion: Given a function f defined on I and a parameter

λ > 0, find the minimizer over all g with f − g ∈ L2(I)

and g ∈ B1
∞(L1(I)) of

E(g) =
1

2λ
‖f − g‖2L2(I)

+ |g|B1
∞(L1(I)). (12)

One could replace the L2(I) norm in the previous

expression with an L1(I) norm, and so come up with

the second model: Given a function f defined on I and

a parameter λ > 0, find the minimizer over all g with

f − g ∈ L1(I) and g ∈ B1
∞(L1(I)) of

E(g) =
1

λ
‖f − g‖L1(I) + |g|B1

∞(L1(I)). (13)

We discuss algorithmic issues related to this model, but

leave discussion of computational results to others.

The existence of minimizers of energies (12) and (13)

is not a difficult issue. For (12), one just needs to ob-

serve that a minimizing sequence has weakly converging

subsequences in L2(I) and that both terms of the en-

ergy are lower semicontinuous with respect to this con-

vergence. For (13), minimizing sequences are bounded

in L1(I) and in theory their limits could be measures,

however the Besov semi-norm term prevents this from
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happening. In fact, sublevel sets of energy (13) are com-

pact subsets of Lp(I) for any p < 2; this is easily seen

by adapting the arguments of the proof of Theorem 7.1

in [12].

One could wonder whether this extends to linear

inverse problems (recover g from f = Kg+noise, where

K is a linear operator), for which one would for instance

minimize energies such as

E(g) =
1

2λ
‖f −Kg‖2L2(I)

+ |g|B1
∞(L1(I)). (14)

Again, if one assumes that K is continuous from Lp(I)

to L2(I) for some 1 ≤ p < 2 (in which case it is also

weakly continuous), existence can be deduced by the

classical direct method.

4.1 Discrete Lp and Besov norms

For computations, we want to extend the idea of spaces,

semi-norms, etc., from the continuous domain to the

discrete domain. So for discrete functions f, g defined

for I = {i = (i1, i2) | 0 ≤ i1, i2 < N}, h = 1/N , we

define a discrete inner product,

〈f, g〉 =
∑
i∈I

figi h
2,

and the discrete Lp(I) norm for 1 ≤ p <∞

‖g‖pLp(I) =
∑
i∈I
|gi|p h2.

We need a discrete B1
∞(L1(I)) semi-norm. For no-

tational convenience we introduce the translation oper-

ator Tj defined for any j = (j1, j2) by (Tjg)i = gi+j .

Then for any pixel offset j we define discrete divided
second differences

∇2
jg =

1

|jh|
(T2jg − 2Tjg + g),

which is defined only for i ∈ I2j = {i ∈ I | i+ 2j ∈ I}
(which will be empty if |j| is large enough). Pointwise,

we have

∇2
jgi =

(T2jg)i − 2(Tjg)i + gi
|jh|

=
gi+2j − 2gi+j + gi

|jh|
.

Following (11), our discrete B1
∞(L1(I)) semi-norm

is then

|g|B1
∞(L1(I)) = max

k>0
max

j=(k,0),(0,k),
(k,k),(k,−k)

∑
i∈I2j

|∇2
jgi|h2.

The sum is zero if I2j is empty. As shorthand we write

∇2g = {∇2
jg | j = (k, 0), (0, k), (k, k), (k,−k); k > 0}

= {∇2
jgi ∈ R | j = (k, 0), (0, k), (k, k), (k,−k);

k > 0; i ∈ I2j}.

If we introduce a sequence of scalar fields

p = {pj | k > 0; j = (k, 0), (0, k), (k, k), (k,−k)}

= {pji ∈ R | j = (k, 0), (0, k), (k, k), (k,−k);

k > 0; i ∈ I2j},

with the inner product

〈p, q〉 =
∑
k≥1

∑
j=(k,0),(0,k),
(k,k),(k,−k)

∑
i∈I2j

pji · q
j
i h

2,

we can consider the operator adjoint in this inner prod-

uct to ∇2g, which we denote by ∇2 · p. One sees imme-

diately that

∇2 · p =
∑
k>0

∑
j=(k,0),(0,k),
(k,k),(k,−k)

T−2jpj − 2T−jpj + pj

|jh|
,

which is defined now wherever any of Tjpji , etc., are

defined. (Equivalently, assume that each scalar field pj

is extended as zero outside its domain.) Thus

∇2 · pi =
∑
k>0

∑
j=(k,0),(0,k),
(k,k),(k,−k)

(T−2jpj)i − 2(T−jpj)i + pji
|jh|

=
∑
k>0

∑
j=(k,0),(0,k),
(k,k),(k,−k)

pji−2j − 2pji−j + pji
|jh|

.

Then we can write

|g|B1
∞(L1(I)) = max

k>0
max

j=(k,0),(0,k),
(k,k),(k,−k)

∑
i∈I2j

|∇2
jgi|h2

= sup
‖{‖pj‖L∞(I2j)}‖`1(P )≤1

〈
∇2g, p

〉
= sup
‖{‖pj‖L∞(I2j)}‖`1(P )≤1

〈
g,∇2 · p

〉
,

where the `1 norm is taken over the (finite) set

P = {j | j = (k, 0), (0, k), (k, k), (k,−k);

k > 0; I2j 6= ∅}.

We note that our formulation doesn’t incorporate

any notion of “boundary conditions.” Each scalar field

pj is defined on its own distinct subdomain I2j of I.

Even for a fixed k, the four scalar fields for j = (k, 0),

(0, k), (k, k), and (k,−k) are defined on different do-

mains, so there is no “vector field” on a common domain

as is usually defined for discrete BV(I) (sometimes two-

dimensional, sometimes four or more—see, e.g., [8]).
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Our discrete version of (12) is then: Given a dis-

crete function f and a positive parameter λ, find the

minimizer over all g of the functional

Eh(g) =
1

2λ
‖f − g‖2L2(I) + |g|B1

∞(L1(I)). (15)

Similarly, our discrete version of (13) is: Given a dis-

crete function f and a positive parameter λ, find the

minimizer over all g of the functional

Eh(g) =
1

λ
‖f − g‖L1(I) + |g|B1

∞(L1(I)). (16)

5 Discrete algorithms

We can formulate our discrete variational problems (15)

and (16) as saddle-point problems that can readily be

solved by algorithms from [6]. In this setting, we con-

sider two Hilbert spaces X and Y and the bounded

linear operator K : X → Y with the usual norm ‖K‖ =

sup‖g‖≤1 ‖Kg‖. We consider the general saddle-point

problem

min
g∈X

max
p∈Y

(〈Kg, p〉+G(g)− F ∗(p)), (17)

where G and F ∗ are lower semicontinuous (l.s.c.),

proper, convex functions from X and Y (respectively)

to [0,+∞]; F ∗ is itself the convex conjugate of a convex

l.s.c. function F . This saddle-point problem is a primal-

dual formulation of the nonlinear primal problem

min
g∈X

(F (Kg) +G(g))

and of the corresponding dual problem

max
p∈Y
−(G∗(−K∗p) + F ∗(p)),

where K∗ : Y → X is the adjoint of K. An overview

of these concepts from convex analysis can be found

in [19]. We use the notation ∂F for the (multi-valued)

subgradient of a l.s.c. function F

A number of algorithms are given in [6] to compute

approximate solutions to (17); whether a particular al-

gorithm is appropriate depends on properties of F ∗ and

G. That paper also includes comparisons between the

algorithms introduced there and competing algorithms.

Our focus here is not on that comparison, but just to in-

dicate that relatively efficient algorithms exist to solve

the discrete minimization problems in the following sec-

tions.

Algorithm 1 in [6] is appropriate for completely gen-

eral F and G; a special case can be stated as follows.

Algorithm 1 General F and G

1. Let L = ‖K‖. Choose positive τ and σ with τσL2 < 1,
(g0, p0) ∈ X × Y and set ḡ0 = g0.

2. For n ≥ 0, update gn, pn, and ḡn as follows:
pn+1 = (I + σ∂F∗)−1(pn + σKḡn),

gn+1 = (I + τ∂G)−1(gn − τK∗pn+1),

ḡn+1 = 2gn+1 − gn.

Then there exists a saddle point (g∗, p∗) such that

gn → g∗ and pn → p∗. This algorithm exhibits O(1/N)

convergence after N steps.

Algorithm 2 in [6] is appropriate when G (or F ∗) is

uniformly convex, which means that there exists γ > 0

such that for any g in the domain of ∂G, w ∈ ∂G(g),

and g′ ∈ X,

G(g′) ≥ G(g) + 〈w, g′ − g〉+
γ

2
‖g − g′‖2.

Algorithm 2 can then be written as follows.

Algorithm 2 G (or F ∗) is uniformly convex

1. Let L = ‖K‖. Choose positive τ0 and σ0 with τ0σ0L2 ≤
1, (g0, p0) ∈ X × Y and set ḡ0 = g0.

2. For n ≥ 0, update gn, pn, ḡn and σn, τn, θn as follows:
pn+1 = (I + σn∂F

∗)−1(pn + σnKḡ
n),

gn+1 = (I + τn∂G)−1(gn − τnK∗pn+1),

θn = 1/
√

1 + 2γτn, τn+1 = θnτn, σn+1 = σn/θn,

ḡn+1 = gn+1 + θn(gn+1 − gn).

Then there exists a unique saddle point (g∗, p∗) such

that gn → g∗ and pn → p∗.

These algorithms can directly be applied to solve

problems (15) and (16). For example, we can rewrite

(15) as

Eh(g) = sup
p

(〈
∇2g, p

〉
+

1

2λ
‖f − g‖2L2(I) − δ(p)

)
,

where

δ(p) =

{
0, if ‖{‖pj‖L∞(I2j)}‖`1(P ) ≤ 1,

∞, otherwise.

This matches formula (17) with

Kg = ∇2g, K∗p = ∇2 · p,

G(g) =
1

2λ
‖f − g‖2L2(I), and F ∗(p) = δ(p).

We know that G is uniformly convex with γ = λ−1, so

Algorithm 2 applies. In fact, we have that the iterates
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gn and K∗pn in Algorithm 2 converge to a pair u and

∇2 · p that satisfy

u = f − λ∇2 · p.

For (16), we can rewrite

Eh(g) = sup
p

(〈
∇2g, p

〉
+

1

λ
‖f − g‖L1(I) − δ(p)

)
.

This matches formula (17) with

Kg = ∇2g, K∗p = ∇2 · p,

G(g) =
1

λ
‖f − g‖L1(I), and F ∗(p) = δ(p).

Neither F ∗ nor G are uniformly convex, so in contrast

to problem (15), where we can use Algorithm 2, we are

limited to using Algorithm 1 for (16).

The function F ∗ is the same for both problems, and

for any σ > 0 we have (I + σ∂F ∗)−1(p) = PK(p), the

projection of p onto the set

K = {p | ‖{‖pj‖L∞(I2j)}‖`1(P ) ≤ 1}. (18)

Although this projection is nontrivial, it is reasonable

to compute; we give an algorithm for this operation in

the next section.

For both (15) and (16), computing (I + τ∂G)−1 in-

volves simple, pointwise operations. For the first case

we have

(I + τ∂G)−1(g)i =
gi + (τ/λ)fi

1 + τ/λ
,

while for (16) we have

(I + τ∂G)−1(g)i = Sτ/λ(gi − fi) + fi,

where Sτ/λ is given by (3).

To apply Algorithms 1 and 2 we need a bound on

L = ‖K‖. We have (using (a+2b+c)2 ≤ 6(a2+b2+c2))∑
i∈I2j

|∇2
jgi|2 h2 ≤

6

|jh|2
∑
i∈I2j

(
g2i+j + g2i + g2i−j

)
h2

≤ 18

|jh|2
‖g‖2L2(I).

Because, for each k > 0, j = (k, 0), (0, k), (k, k), and

(k,−k), for which |j| = k, k,
√

2k, and
√

2k, respec-

tively, we have

‖∇2g‖2 := 〈∇2g,∇2g〉 ≤
∑
k>0

54

k2h2
‖g‖2L2(I)

=
9π2

h2
‖g‖2L2(I).

So L = ‖K‖ ≤ 3π/h ≈ 9.4248/h.

Theorem 2 of [6] gives an a priori error bound for the

iterates of Algorithm 2 of the following form: Choose

τ0 > 0, σ0 = 1/(τ0L
2). Then for any ε > 0 there is a N0

(depending on ε and γτ0) such that for any N > N0

‖ĝ − gN‖2 ≤ 1 + ε

N2

(‖ĝ − g0‖2
γ2τ20

+
L2

γ2
‖p̂− p0‖2

)
.

Computational results are given in [6] that indicate that

N0 is quite moderate (≈ 100) in many situations.

In our case, we just want ‖ĝ − gN‖ / ε greyscales.

So we take
‖ĝ − g0‖2

γ2τ20
≤ ε2

or (because ‖ĝ − g0‖ ≤ 256 greyscales, as pixel values

lie between 0 and 256)

256

γε
≤ τ0.

Then we take

1

N2

L2

γ2
‖p̂− p0‖2 ≤ ε2,

but p0 = 0 and ‖p̂‖ ≤ 1, so

L/(γε) ≤ N

We choose the least τ0 and N that satisfy these two

inequalities.

6 Computing PK

It remains to give the algorithm for PK, whereK is given

by (18). The problem can be formulated as: Given the

sequence of scalar fields p = {pji | i ∈ I2j , j ∈ P =

{(k, 0), (0, k), (k, k), (k,−k) | k > 0}} find q = {qji }
that minimizes

1

2

∑
i∈I2j ,j∈P

|pji − q
j
i |

2 with
∑
j∈P

max
i∈I2j

|qji | ≤ 1. (19)

The set P has at most 2N elements j (0 < k < N/2,

four js for each k), but in practice we compute pji for

only a finite number of scales k ≤ kmax, where kmax is

defined in Section 7.

Instead of directly solving (19), we introduce vari-

ables µj , j ∈ P , and search for q = {qji } that minimizes

1

2

∑
i,j

|pji − q
j
i |

2 with |qji | ≤ µ
j ,

∑
j

µj ≤ 1, and µj ≥ 0.
(20)
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If µ = {µj} is known, we know that at a minimizer, q

satisfies

qji =

µ
j p

j
i

|pji |
, µj < |pji |,

pji , µj ≥ |pji |.
(21)

Therefore, we aim to find appropriate µ, a problem that

can be simplified even further. To this end, denote the

characteristic function on the set {i ∈ I2j | µj < |pji |}
as

[µj < |pji |] :=

{
1, if µj < |pji |,
0, otherwise,

so at a minimum we have

1

2

∑
i,j

|pji − q
j
i |

2 =
1

2

∑
i,j

∣∣∣∣pji − pji µj|pji |
∣∣∣∣2[µj < |pji |]

=
1

2

∑
i,j

|pji |
2

(
1− µj

|pji |

)2

[µj < |pji |].

The Karush–Kuhn–Tucker (KKT) theorem states that

there are nonnegative Lagrange multipliers ηj and ν

such that the projector PKp can be computed from the

µ that minimizes

1

2

∑
i,j

|pji |
2

(
1− µj

|pji |

)2

[µj < |pji |]

−
∑
j

µjηj −
(

1 −
∑
j

µj
)
ν.

Note that for each i, j the expression

(|pji | − µ
j)2 [µj < |pji |]

is continuously differentiable with respect to µj , so the

previous displayed expression is continuously differen-

tiable with respect to µ.

Differentiating with respect to µj gives∑
i

|pji |
2

(
1− µj

|pji |

)
−1

|pji |
[µj < |pji |]− η

j + ν = 0,

or∑
i

(|pji | − µ
j)[µj < |pji |] + ηj − ν = 0. (22)

The sum is nonnegative and the KKT theorem says

that ν > 0⇒
∑
j µ

j = 1 and ηj > 0⇒ µj = 0.

Thus, if ν = 0, then (22) implies that ηj = 0 for all

j and µj ≥ |pji | for all i, j, so (21) implies q = p.

If ν > 0 then
∑
j µ

j = 1. If ηj > 0 for some j, then

µj = 0 and so qji = 0 for all i by (21). If ηj = 0 then

(22) implies∑
i

(|pji | − µ
j)[µj < |pji |] = ν. (23)

Note that as ν increases, µj decreases, so each of the

µj can be considered a function of ν: µj = µj(ν).

If we set A(µ) = {i | |pji | > µ}, the left-hand side of

(23) can be written for general µ as

G(µ) =
∑
A(µ)

(|pji | − µ) =
∑
A(µ)

|pji | − |A(µ)| × µ,

where |A(µ)| is the number of items in A(µ).

G is a continuous, decreasing, piecewise linear func-

tion of µ. In Algorithm 4 we describe how to find the

solution µj of G(µ) = ν. We do this by precomputing

a table of values G(|pji |) for i ∈ I2j . For each ν, we use

binary search to find adjacent values in this table for

which the linear function G(µ), restricted to lie between

these two adjacent values, takes on the value ν precisely

once. Linear interpolation gives the proper value of µj .

Note that µj is a continuous, piecewise linear function

of ν, being the inverse of G.

Once Algorithm 4 is established, the projection

(PKp)
j can be computed using Algorithm 3. The func-

tion F (ν) in Algorithm 3 is, yet again, a continuous,

piecewise linear function of ν, being a sum of functions

of the same type. Except in the trivial case where F is

a first-degree polynomial, it does not have any higher-

order smoothness. To find the unique zero of F , we

employ an algorithm from [18] that requires the evalu-

ation of no derivatives, yet which has second-order con-

vergence properties for smooth F .

Algorithm 3 Computing the projection (PKp)
j

1. If ‖{‖pj‖L∞(I2j)}‖`1(P ) ≤ 1, then PKp = p.
2. Otherwise, do the following:

(a) Find a root ν̄ of

F (ν) = 1−
∑
j∈P

µj(ν),

which guarantees the constraint
∑
j µ

j = 1. This
can be done in a number of ways. We chose to
use the algorithm from [18], and this part of the
algorithm takes an immeasurably small amount of
time.

(b) With this value of ν̄ we can calculate µj = µj(ν̄)
for j ∈ P and subsequently calculate qj = (PKp)j

using (21).

7 The main iteration

The iterations of Algorithm 1 or 2 must estimate kmax

as n increases. Here we have no theoretical justification

for our argument, and possibly in pathological cases we

could get it wrong.
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Algorithm 4 Computing µj(ν) for any ν > 0

1. Sort the numbers {|pji | | i ∈ I2j} into nonincreasing
order and add a single element 0 at the end; call this
sequence {aj`}. There are at most N2 elements of {aj`},
so this takes at most O(N2 logN) time.

2. Calculate the sequence {bj`} by

bj` =
∑
k<`

ajk − `× a
j
` .

For each j, this takes at most O(N2) time. Note that bj`
increases as ` increases, and if ν = bj` , then µj(ν) = aj` ,

i.e., the pairs (bj` , a
j
`) lie on the graph of the one-to-one

relation (23) between µj and ν.
3. Given any ν ≥ 0, we have the following mechanism for

calculating µj(ν):

(a) If ν ≥ bj
N2 , set µj(ν) = 0.

(b) Otherwise, use binary search to calculate an index

` such that bj` ≤ ν < bj`+1. Since the relationship

between µj and ν in (23) is linear between any

two consecutive pairs (bj` , a
j
`) and (bj`+1, a

j
`+1),

we can interpolate linearly between (bj` , a
j
`) and

(bj`+1, a
j
`+1) to find the point (ν, µj(ν)):

µj(ν) = aj` +
ν − bj`

bj`+1 − b
j
`

(aj`+1 − a
j
`).

This takes O(logN) time.

1. We pick an initial value of kmax (typically 4) and

set pj to be zero scalar fields for j ∈ P .

2. We iterate Algorithm 1 or 2 a fixed number of times.

3. We have a parameter zmin (we’ve used 4), and we

want the scalar fields pj , j = (k, 0), (0, k), (k, k),

(k,−k), to be zero for the zmin largest values of k.

Heuristically, if we have zero scalar fields pj for the

zmin largest values of k, then we think it unlikely

that at a minimizer of (15) or (16) any scalar fields

pj with k > kmax will be nonzero. So we adjust kmax

so that the all scalar fields pj for the zmin largest

values of k are zero.

4. We then decide whether to stop the iteration or go

back to step 2.

8 Norms of image features

Generally speaking, image features are classified as:

smooth regions; edges; textures; and noise. We follow

the framework of [3] to compute some sample solutions

to the following problem.

One goal of image processing is to separate an image

into its various features or components. In this section

we show that one can separate smooth regions, tex-

ture, and noise by looking at the asymptotic behavior

of various norms applied to these features. Because edge

features have components at all wavelengths, parts of

edges may appear as texture, noise, or smooth regions.

In this section we operate on the (two-dimensional)

unit interval [0, 1]2 with N × N images, with N = 2K

for some K reasonably large. We set h = 1/N and deal

with the weighted L2(I) norm ‖f‖2 =
∑
i f

2
i h

2, where

fi is the value of the pixel at i = (i1, i2).

8.1 Smooth features

Basically, if a function is smooth (a broad Gaus-

sian, say), then all its norms, in L2(I), B1
∞(L1(I)),

B1
∞(L1(I))∗, or other spaces, will be of moderate size.

(If X is a Banach space, we denote its dual by X∗.)

If we’re to distinguish among smooth features, noise,

and textures, then we’ll need to find spaces for which

the norms of noise and textures either tend to infin-

ity or tend to zero as a parameter (the frequency of a

texture, the size of pixels, etc.) changes.

8.2 Gaussian noise

We consider here issues that are similar to those con-

sidered in Section 3.6 of [2].

We begin by studying the behavior of Gaussian pixel

noise. Then the pixel values fi = εi are i.i.d. Gaussian

random variables with mean zero and variance σ2, and

E(‖ε‖2L2(I)
) =

∑
i

E(ε2i )h
2 = σ2,

since there are N2 pixels and N2h2 = 1.

We consider the orthonormal wavelet transform of

ε with wavelets ψj,k(x) = 2kψ(2kx − j), k ≥ 0, j =

(j1, j2), ψ ∈ Ψ , that are smoother than Haar (so that

the following norm equivalences work). Then we can

write

ε =
∑
k

∑
j,ψ

ηj,k,ψψj,k.

Because the transform is orthonormal (so ‖ψj,k‖L2(I) =

1), the ηj,k,ψ are i.i.d. Gaussian with mean zero and

σ2 = E(‖ε‖2) =
∑
k

∑
j,ψ

E(‖ηj,k,ψψj,k‖2) = N2E(η2j,k,ψ)

for any ηj,k,ψ, so E(η2j,k,ψ) = σ2/N2. For similar rea-

sons,

E(|ηj,k,ψ|) = C1
σ

N
and Var(|ηj,k,ψ|) = C2

σ2

N2
(24)

for some known C1 and C2.
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We also note that if X1, X2, . . . , Xn are i.i.d. N(0, 1)

random variables, then for large n [9, p. 374],

E(max
i
Xi) ≈

√√√√log

(
n2

2π log
(
n2

2π

))

=

√
2 log n− log

(
2π log

(n2
2π

))
≈
√

2 log n.

(25)

Wavelet-based Besov semi-norms have the following

characterizations:

|ε|B1
1(L1) =

∑
j,k,ψ

|ηj,k,ψ| and

|ε|B1
∞(L1) = sup

k

∑
j,ψ

|ηj,k,ψ|,

and the norms in the dual spaces (for finite images) are

|ε|B1
1(L1)∗ = sup

j,k,ψ
|ηj,k,ψ| and

|ε|B1
∞(L1)∗ =

∑
k

sup
j,ψ
|ηj,k,ψ|.

Now we take expectations. Because supj,ψ |ηj,k,ψ| =
max(supj,ψ ηj,k,ψ,− infj,ψ ηj,k,ψ), we use formulas (24)

and (25) to see

E(|ε|B1
1(L1)) = N2 × C1

σ

N
= C1Nσ,

E(|ε|B1
1(L1)∗) = E( sup

j,k,ψ
|ηj,k,ψ|) ≈

√
4 logN

σ

N
.

We note that there are 3×22k coefficients ηj,kψ at level

k, and because the ηj,k,ψ are independent,
∑
j,ψ |ηj,k,ψ|

is asymptotically a Gaussian random variable with

E

(∑
j,ψ

|ηj,k,ψ|
)

= 3× 22kC1
σ

N
and

Var

(∑
j,ψ

|ηj,k,ψ|
)

= 3× 22kC2
σ2

N2
.

When k = K − 1, a maximum, we have 22k = N2/4

and

E

(∑
j,ψ

|ηj,k,ψ|
)

=
3

4
C1σN and

Var

(∑
j,ψ

|ηj,k,ψ|
)

=
3

4
C2σ

2.

When k = K−2, we get the same expressions divided by

4. So the mean when k = K − 1 is four times the mean

when k = K−2, and that difference is roughly N times

the standard deviation of the two random variables; a

similar argument holds for smaller k.

Thus

E(|ε|B1
∞(L1)) = E

(
sup
k

∑
j,ψ

|ηj,k,ψ|
)

will most likely occur for k = K − 1, so

E(|ε|B1
∞(L1)) ≈

3

4
C1σN.

Finally, we want to estimate

|ε|B1
∞(L1)∗ =

∑
k

sup
j,ψ
|ηj,k,ψ|.

Again we have

E(sup
j,ψ
|ηj,k,ψ|) ≈ C

σ

N

√
2 log 22k = C

√
k
σ

N
.

So

E(|ε|B1
∞(L1)∗) ≈

K−1∑
k=0

C
√
k
σ

N

≈ CK3/2 σ

N
= C(log2N)3/2

σ

N
.

Thus, because of the continuous inclusions

B1
1(L1) ⊂ BV ⊂ B1

∞(L1)

and

B1
∞(L1)∗ ⊂ BV∗ ⊂ B1

1(L1)∗,

we find that

CNσ ≤ E
(
|ε|BV

)
≤ CNσ,

and

C
√

logN
σ

N
≤ E

(
|ε|BV∗

)
≤ C(logN)3/2

σ

N
.

8.3 Periodic textures

We compute some norms of the function f(x1, x2) =

sin(2πnx1), n = 1, 2, . . ., which we use as a model for

periodic textures.

Note that because f is constant in x2, a second dif-

ference of f at x in any direction h = (h1, h2) takes the

same value as the second difference of f at x in direc-

tion (h1, 0) and |(h1, h2)| ≥ |(h1, 0)|, so the supremum

in (11) occurs for some h = (h1, 0). We take a centered

second difference in the horizontal direction, and abuse

notation a bit with x1 = x and h1 = h:

sin(2nπ(x+ h))− 2 sin(2nπx) + sin(2nπ(x− h))

=
(
sin(2nπx) cos(2nπh) + cos(2nπx) sin(2nπh)

)
− 2 sin(2nπx)

+
(
sin(2nπx) cos(2nπh)− cos(2nπx) sin(2nπh)

)
= −4 sin(2nπx)

1− cos(2nπh)

2

= −4 sin(2nπx) sin2(2nπh).
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So the L1(I) norm of the second difference is

4 sin2(2nπh)

∫
I

| sin(2nπx1)| dx1 dx2.

The value of the integral, which we’ll call I0, doesn’t

depend on n.

We see that sin2(2nπh)/h takes a maximum value

when

0 = h× 2 sin(2nπh) cos(2nπh)2nπ − sin2(2nπh)

= sin(2nπh)
(
4nπh cos(2nπh)− sin(2nπh)

)
.

So this is a maximum when h satisfies tan(2nπh) =

4nπh, i.e, if we take y0 to be the smallest positive so-

lution of tan y = 2y, then y0 = 2nπh, or h = y0/(2nπ)

and

|f |B1
∞(L1(I)) = sup

t>0
t−1ω2(sin(2πnx1), t)1

=
2nπ

y0
× 4 sin2(y0)I0 = Cn.

A trivial calculation shows that L2(I) norm of f is√
2.

We know of no rigorous argument to estimate the

size of f in the dual space of B1
∞(L1(I)). We will note,

however, that if we write g in a Fourier basis of a prod-

uct of sines and cosines in x1 and x2, then

|f |B1
∞(L1(I))∗ = sup

∫
I
fg

|g|B1
∞(L1(I))

,

and for f(x1, x2) = sin(2πnx1), the only nonzero term

in g that contributes to the integral in the numerator is

the sin(2πnx1) term. Trying only g = sin(2πnx1) gives

a numerator of 1/2 and a denominator that is � n.

So unless adding extra Fourier terms to g =

sin(2πnx1) (which will not affect the numerator) de-

creases the norm in the denominator (which we doubt),

we expect that |f |(B1
∞(L1(I)))∗ � (1/n).

These calculations support what one might suspect

heuristically: If the frequency n of a texture is small, a

smoothness norm cannot distinguish between that tex-

ture and a smooth function of the same amplitude. And

if the frequency of a texture is large (so the wavelength

is on the order of a small power of logN in an N×N im-

age), then the dual of a smoothness norm cannot distin-

guish that texture from Gaussian noise whose standard

deviation is the amplitude of the texture. Similarly, the

dual of a smoothness norm will not distinguish low-

contrast textures of moderate frequency from Gaussian

noise with standard deviation much higher than the

contrast of the texture.

9 Computational examples

9.1 Noise removal, smoothing

We compute the minimizers of

1

2λ
‖f − u‖2L2(I) + |u|B1

∞(L1(I)). (26)

In Figure 1, we begin with a 481×321 natural image

from [4] together with their noisy input image “contain-

ing zero mean Gaussian noise with standard deviation

= 0.05.” We measured the RMS difference between the

clean image and the noisy as 12.34 greyscales, less than

the 256 × 0.05 = 12.8 greyscales one might expect be-

cause of limiting pixel values to between 0 and 255.

We computed our L2(I)–B1
∞(L1(I)) smoothing

with parameter values λ = 1/64, 3/128, 1/32, 3/64,

and 1/16. Because this image is not square, we had to

decide whether to take h to be the inverse of the num-

ber of pixels in the smaller or larger side; we chose the

smaller. Algorithm 2 applies. We applied Formula (12)

of [5] to ensure that the bound on the final error was

less than 1/4 greyscale. (The final error could be much

less than that, the error bound was < 1/4 greyscale.)

Table 1 Nonzero limiters µj of the vector fields pj for vari-
ous values of λ for the image in Figure 1.

λ k µ(k,0) µ(0,k) µ(k,k) µ(k,−k)

1/64 1 .3944 .3381 .1358 .1316
3/128 1 .2567 .2425 .2059 .2049

2 .0901 .0000 .0000 .0000
1/32 1 .1773 .1725 .1597 .1561

2 .1559 .0745 .0433 .0606
3/64 1 .1078 .1138 .0977 .0972

2 .0930 .0688 .1357 .1204
3 .0078 .0000 .0000 .0561
4 .0000 .0000 .0000 .0565
5 .0000 .0000 .0000 .0453

1/16 1 .0782 .0854 .0737 .0732
2 .0622 .0579 .1054 .0935
3 .0000 .0000 .0353 .0721
4 .0000 .0000 .0000 .0000
5 .0000 .0000 .0000 .0807
6 .0000 .0000 .0000 .1823

In Table 1 we show how more scales are involved

in the computation as λ increases. We include all the

nonzero limiters µj of Section 6 when the computation

ended (with our error bound < 1/4). Our computa-

tions always involve second differences over a distance

of k = 1 pixels, and as λ increases to 1/16, computa-

tions incorporate second differences over k = 2, . . . , 6

pixels.

We show the results of [4] using ROF and L2–TGV2
α

smoothings, where the authors report choosing α exper-

imentally to achieve the best RMSE results. We also
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Fig. 1 Top left: original 480 × 321 image; top right: noisy image, RMSE = 12.34, SSIM = .4979. (All RMSE in greyscales.)
Middle left: ROF, RMSE = 6.29, SSIM = .8710; middle right: L2–TGV2

α, RMSE = 6.17, SSIM = .8844. Bottom left: L2(I)–
B1
∞(L1(I)) with λ = 3/64, RMSE = 5.66, SSIM = .9030; bottom right: L2(I)–B1

∞(L1(I)) with λ = 1/32, RMSE = 5.43,
SSIM = .9022.

show our L2(I)–B1
∞(L1(I)) smoothing with parameter

values λ = 3/64 and λ = 1/32; these parameter values

produced the best RMS error (λ = 1/32) and SSIM

index [24, 23] (λ = 3/64) from among our choices of λ.

In Table 2, we report for various smoothing meth-

ods measures of image differences in a smooth subre-

gion, a rough subregion, and a subregion with a rela-

tively sharp edge, of the image in Figure 1; these sub-

regions are shown in Figure 2. As might be expected,

methods that smooth more (L2(I)–TGV2
α and L2(I)–

B1
∞(L1(I)) with λ = 3/64) do better in the smooth

region and worse in the rough region than methods

that smooth less (ROF and L2(I)–B1
∞(L1(I)) with

λ = 1/32, respectively). What may be of more interest

is that smoothing with the largest space B1
∞(L1(I)) ⊃

BV(I) = TGV2
α(I) leads to the best results in the

fractal-like rough regions.
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Table 2 Image difference measures in subregions shown in Figure 2 for Rudin–Osher–Fatemi, L2–TGV2
α, and L2(I)–

B1
∞(L1(I)) smoothing for the image in Figure 1.

ROF TGV2
α B1

∞(L1(I)), λ = 3/64 B1
∞(L1(I)), λ = 1/32

Smooth RMSE 2.9824 2.2243 2.6488 2.9861
SSIM 0.9521 0.9735 0.9694 0.9521

Rough RMSE 6.5958 6.6423 5.8526 5.3570
SSIM 0.6727 0.6617 0.7426 0.7895

Near beak RMSE 5.9354 5.8434 5.8347 6.4221
SSIM 0.9596 0.9725 0.9654 0.9682

Fig. 2 Smooth subregion of image in Figure 1, beginning
at row 10, column 10, of size 140 × 140; rough subregion
beginning at row 250, column 10, of size 140 × 50; region
near beak beginning at row 30, column 220, of size 60× 30.

We next present some results that indicate the qual-

itative nature of the smoothed images produced by our

method, including the style of artifacts when noise lev-

els and smoothing parameters are large.

In Figure 3, we started with a 512 × 512 image of

a girl; we then added i.i.d. Gaussian noise with mean
zero and standard deviation 16 greyscales, so 99.7% of

the noise added to pixels takes values within three stan-

dard deviations, or between −48 and 48 greyscales. For

our image the added noise caused many of the noisy

pixels to be “clipped” to either 0 or 255. We see that

even when removing high noise levels there are rela-

tively sharp edges, and in areas where noise was added

to smooth regions, smooth reconstructions appear. The

image with the smaller λ shows an intermediate state

where noise has been smoothed but not entirely re-

moved. Higher-contrast textures in the sweater survive

smoothing that removes the noise, while lower-contrast

textures are removed.

We now apply pointwise Besov smoothing to a syn-

thetic image found in [17] with different smoothing pa-

rameters to indicate the scale space generated by the

method. We take (26) with λ = 3/32, 1/8, 1/4, 1. Re-

sults are in Figure 4.

While B1
∞(L1(I)) minimizers do not suffer from

staircasing, the example in Figure 4 also demonstrates

their potential lack of smoothness. This is not so sur-

prising, since B1
∞(L1(I)) is a “weak” smoother and

in particular, weaker than both BV and TGV. While

B1
∞(L1(I)) minimizers do not suffer from staircasing,

they are also not required to have even the gradi-

ent a bounded measure, like BV and TGV. The im-

age quality metrics reported in [17] for the BV−L2

and TGV − L2 minimizers of the noisy image in Fig-

ure 4 were SSIM=0.8979 and SSIM=0.9429, as op-

posed to the peak we experimentally obtained with

B1
∞(L1(I))− L2 of SSIM=0.8801 for λ = 1/8, also in-

dicative of this lack of smoothness.

9.2 Separating smooth features, periodic textures, and

noise

We follow the framework of Section 3.2 of [2] to compute

some sample solutions to the following problem.

Informally speaking, given an image f and positive

parameters λ and µ, we wish to find functions û and v̂

that minimize over all u and v the functional

1

2λ
‖f − u− v‖2L2(I) + ‖u‖X + δµK(v),

where X is a “smoothness space” and K = {v | ‖v‖Y ≤
1} for some “dual smoothness space” Y , and δS(v) = 0

if v ∈ S and +∞ otherwise.

We take X to be the (discrete) Besov space

B1
∞(L1(I)) and Y to be the dual of the same space.

We use the 512× 512 synthetic image whose pixels are

given by

fi = round(64 + 128e−16|x−(
1
2 ,

1
2 )|

2

+ 16 sin(2π(x2 − 1/2)× 16× 4x2−1/2) + 16εi),

where i = (i1, i2), x = i/512, and εi are i.i.d. N(0, 1)

random variables. As usual, we “clip” the values of fi
so they cannot go above 255 or below 0, but the choice

of parameters means that εi would need to be at least

3 standard deviations away from the mean (depending

on the phase of the sinusoid and the value of the Gaus-

sian at that point) for a pixel to be clipped, so clipping

happens rarely.
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Fig. 3 Top left: original 512 × 512 image; top right: noisy 512 × 512 image. Bottom left: smoothed image with λ = 1/32;
bottom right: smoothed image with λ = 3/64.

The sinusoidal part of this image has wavelength

1/16 near the center, 1/8 near the top, and 1/32 near

the bottom of the image.

In [2], the authors set λ to be “very small”, to

achieve “a maximum norm of f − u − v of about 0.5

(for values ranging from 0 to 255).” Their goal was to

have very little in the f − u− v component.

Our goal here is different—to have a nontrivial com-

ponent of the image in f − u − v. We use λ = 1/4,

µ = 1/32 (the standard deviation of the noise divided

by N), and apply Algorithm 5.1.1 of [2] (equivalently,

Algorithm 2.5 of [3]) with ε = 1/4 (so we expect results

to be accurate to within about 1/4 RMS greyscales).

We also use Formula (12) from [5] to ensure that each

iterated solution un, vn has an error of < 1/4 RMS

greyscales. (Again we note that this just bounds the er-

ror from above, the true error could be much smaller.)

We make several comments about the results. First,

we find the noise contained in v (the “dual smoothness

space” term) and the texture in f − u − v (the L2(I)

term). This allocation of noise and texture corresponds

to the calculations in Section 8. Second, the calculations
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Fig. 4 Top left: original 300× 200 image; top right: noisy 300× 200 image. Middle left: L2(I)–B1
∞(L1(I)) smoothed image

with λ = 3/32: SSIM=0.8640 and RMSE=7.751; middle right: L2(I)–B1
∞(L1(I)) smoothed image with λ = 1/8: SSIM=0.8801

and RMSE=8.0484. Bottom left: L2(I)–B1
∞(L1(I)) smoothed image with λ = 1/4: SSIM=0.8784 and RMSE=9.6573; bottom

right: L2(I)–B1
∞(L1(I)) smoothed image with λ = 1: SSIM=0.7936 and RMSE=20.97744.

in Section 8 suggest that when the frequency of a tex-

ture is small, one cannot distinguish it from a smooth

feature, and when the frequency of a texture is large,

one cannot separate it from the noise. This computation

supports the theory—in the images of Figure 5, low-

frequency texture can be found in the smooth part and

is absent from the noise image, while high-frequency

texture is (mostly) absent from the smooth image while

“ghosting” into the noise image. The texture image has

small contributions from both the smooth Gaussian and

the noise.

The relative amount of this contribution can be ob-

served in Figure 6. This is the vertical slice of all four

images with i1 = 250.

We hesitated to include slice images for a number

of reasons. Functions in BV(I) can be discontinuous

across a vertical line in I, functions in B1
∞(L1(I)) are

less smooth, and “natural” images have significantly
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Fig. 5 Top left: composite 512× 512 image; top right: smooth part u. Bottom left: texture f − u− v plus 128; bottom right:
noise v plus 128.

less smoothness still, see [13]. So, mathematically, the

notion of the value of the original image, or even of the

smooth part u, along a line is subtle, and practically it

means that the value along one vertical line may have

little relationship with the value along an adjacent or

nearby line.

The value of an image f along a slice is related

the boundary values along ∂Ω of a function in a

smoothness space defined on Ω itself, or so-called “trace

theorems”—each vertical line divides I into two subdo-

mains, and one-sided “traces” may exist, determined

by the value of f on each of the subdomains. One may

consider “the” value along a vertical line to be the av-

erage of these two one-sided traces. Given an arbitrary

function u in B1
∞(L1(I)), the value of u along a vertical

slice S, the trace of the function of that slice, is not in

general in L1(S), but only in Lp(S) for p < 1. This can

be proved using techniques similar to those in [22]; for

u ∈ BV(I), the trace of u is in L1(S)—see [1].

The situation for noise ε on two adjacent vertical

slices is even worse—the expected value of their inner

product is zero (they’re orthogonal, in expectation). We
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Fig. 6 Cross-section of the middle column of the images in Figure 5. From left to right, top to bottom: composite 512× 512
image; smooth part u, periodic texture f − u− v; noise v.

can expect no relationship between the noise on two dif-

ference slices. The relationship between the texture part

on two adjacent slices is between that of the smooth

part u and the extracted noise—it’s not as strong as

the “smooth” part, but certainly stronger than noise.

So we chose a vertical line near the center of the

image where the values of the components of f along

that line illustrated a few points, at least a bit better

than some of the nearby vertical lines.

First, we note that because the Human Visual Sys-

tem is very good at seeing patterns in images, one can

see “ghosting” of the high-frequency oscillatory texture

part in the smooth part of the image, but the slice of the

smooth part u shows that the actual high-frequency os-

cillations in u are very small—one hardly notices them

in the slice of u.

Second, one can get an idea of the magnitude of the

low-frequency oscillation that is included in the smooth

part u.

And finally, one can see that the amplitude of the

oscillatory texture f − u− v is largest in the middle of

the slice and smaller at the ends, where the texture has

partially “bled” into the smooth part u and the noise

v.

Appendix

Here we describe a family of self-similar functions

with fractal-like properties that illustrate some of the

differences between membership in the Besov space

B1
∞(L1(I)) and the space of functions of bounded vari-

ation BV(I).

We begin with the function Φ that is continuous

on R2, zero outside of I, with Φ(( 1
2 ,

1
2 )) = 1, and a

linear polynomial on the triangles in I delineated by the

boundary of I, the line x2 = x1, and the line x1+x2 = 1.

The graph of Φ is a pyramid with base I and height 1.
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Fig. 7 Graph of the function f in (28) that is in B1
∞(L1(I))

but not in BV(I).

We define φ(x) = 1
4Φ(2x), so φ is a scaled dyadic

dilate of Φ with support [0, 1/2]2.

We construct the sequence of functions f0(x) = φ(x)

and

fk+1(x) = φ(x) +
2

3
[fk(2x− (1, 0))

+ fk(2x− (0, 1)) + fk(2x− (1, 1))]. (27)

We see that fk consists of fk−1 plus 3k dyadically di-

lated translates φj,k(x) = φ(2kx − j) for some multi-

indices j = (j1, j2) with coefficients (2/3)k. The sup-

ports of all the φj,k are essentially disjoint.

Finally, we let f = limk→∞ fk. We can write

f =

∞∑
k=0

∑
j

cj,kφj,k(x), cj,k =
(2

3

)k
. (28)

Thus, f is an infinite sum of scaled, dilated, and trans-

lated versions of the single pyramid Φ; Figure 7 illus-

trates the graph of f .

The arguments in [12]1 show that for any 0 < p, q ≤
∞ and α < min(2, 1 + 1/p) we have

‖f‖Bαq (Lp(I)) �
(∑

k

(∑
j

[
2αk‖cj,kφj,k‖Lp(I)

]p) q
p
) 1
q

,

with the usual changes when p or q are ∞. In our case,

we have

‖f‖B1
∞(L1(I)) � sup

k

∑
j

2k
(2

3

)k
‖φj,k‖L1(I),

1 The crucial point is to see that we can take the local poly-
nomial approximation in formula (4.18) of [12] to be identi-
cally zero on dyadic subsquares that are not entirely con-
tained in the support of a single φj,k—the self-similarity of f
means that the local error with approximation zero is a fixed
multiple of the error with the best linear polynomial approx-
imation on each subsquare, and hence is near optimal with a
constant that doesn’t depend on the scale.

where for each k there are 3k different offsets j.

We note that ‖φj,k‖L1(I) = 4−k‖φ‖L1(I); because

there are 3k terms in the sum for each k,∑
j

2k
(2

3

)k
‖φj,k‖L1(I) = ‖φ‖L1(I),

and we have ‖f‖B1
∞(L1(I)) � ‖φ‖L1(I) <∞.

We’ll now see that f is not in BV(I). Denoting the

variation of f by V (f), a simple scaling argument shows

that V (φj,k) = 2−kV (φ). Since the supports of all the

φj,k in the definition of f are essentially disjoint, the

co-area formula shows that

V (f) =
∑
k

∑
j

(2

3

)k
V (φj,k)

=
∑
k

(2

3

)k
× 3k × 2−kV (φ)

=
∑
k

V (φ) =∞.

In other words, there is a constant C such that for

all h ∈ R2,

‖f(·+ 2h)− 2f(·+ h) + f‖L1(I2h) ≤ C|h|,

but there is no constant C such that for all h ∈ R2,

‖f(·+ h)− f‖L1(Ih) ≤ C|h|.

Note that by replacing 2/3 in (27) with any 0 <

r < 2/3, the resulting limit f is in both B1
∞(L1(I))

and BV(I) (indeed, it’s in B1
1(L1(I)) ⊂ BV(I)). In this

case, we have

V (f) =
1

1− (3/2)r
V (φ),

so the variation of f tends to ∞ as r → 2/3 (as one

might expect), while ‖f‖B1
∞(L1(I)) remains bounded.

And if r > 2/3, the function f is in neither BV(I)

nor B1
∞(L1(I)).

Thus both BV(I) and B1
∞(L1(I)) contain fractal-

like functions, but their norms in B1
∞(L1(I)) can be

arbitrarily smaller than their norms in BV(I).
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