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Abstract

Coifman and Donoho suggested translation-invariant wavelet shrinkage as a way to

remove noise from images. Basically, their technique applies wavelet shrinkage to a two-

dimensional version of the semi-discrete wavelet representation of Mallat and Zhong. Coif-

man and Donoho also showed how the method could be implemented in O(N logN) oper-

ations, where there are N pixels. In this paper, we provide a mathematical framework for

iterated translation-invariant wavelet shrinkage, and show, using a theorem of Kato and

Masuda, that with orthogonal wavelets it is equivalent to gradient descent in L2(I) along

the semi-norm for the Besov space B1
1(L1(I)), which, in turn, can be interpreted as a new

nonlinear wavelet-based image smoothing scale space. Unlike many other scale spaces, the

characterization is not in terms of a nonlinear partial differential equation.

Keywords: Wavelets, wavelet shrinkage, gradient descent, image smoothing scale space.

EDICS Category: 2-NFLT (Nonlinear Filtering and Enhancement). Also 2-WAVP

(Wavelets and Multiresolution Processing).

1. Introduction

Ronald Coifman and David Donoho [4] suggested translation-invariant wavelet shrink-

age as a way to remove noise from images. Basically, their technique applies wavelet shrink-

age to a two-dimensional version of the semi-discrete wavelet representation of Mallat and

Zhong [15]. Coifman and Donoho also showed how the method could be implemented in

O(N logN) operations, where there are N pixels, which compares to O(N) operations for

ordinary wavelet shrinkage, and O(N logN) operations for the Fast Fourier Transform. In

this paper, we provide a mathematical framework for iterated translation-invariant wave-

let shrinkage, and show, using a theorem of Kato and Masuda [13], that with orthogonal

wavelets it is equivalent to gradient descent in L2(I) along the semi-norm for the Besov

space B1
1(L1(I)), which, in turn, can be interpreted as a new nonlinear wavelet-based

image smoothing scale space.
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The rest of the paper is organized as follows. Section 2 notes the Besov spaces we

use and recalls the equivalence between certain Besov space norms of functions and se-

quence norms of wavelet coefficients. In Section 3 we briefly describe the periodic wavelet

constructions we use. Section 4 gives an overview of image smoothing scale spaces, while

Section 5 relates several scale spaces to variational problems, and Section 6 shows how

to interpret usual wavelet shrinkage as an image smoothing scale space. In Section 7,

we discuss various redundant wavelet representations of images, of which the translation-

invariant wavelet representation is of most interest to us. Section 8 formalizes the notion

of iterated translation-invariant wavelet shrinkage, and uses a theorem of Kato and Ma-

suda to show that, in the limit, it is mathematically equivalent (when using orthogonal

wavelets) to gradient descent in L2(I) along the B1
1(L1(I)) semi-norm. Finally, in Section

9 we present various computational examples of interest.

2. Orthogonal Wavelets and Besov Spaces

We begin with a function f defined on the unit square I := [0, 1)2, which is extended

periodically to all of R2 by

f(x+ j) = f(x), x ∈ I, j ∈ Z2,

where Z2 := {(j1, j2) | j1, j2 ∈ Z}. This function f represents our image on I.

Besov spaces have been used with great success to both explain and predict the perfor-

mance of wavelet-based image processing algorithms, e.g., in compression [6], noise removal

[2] [9], and tomography [8] [14]. Here, we work with the Besov space B1
1(L1(I)), which

contains, roughly speaking, functions with one derivative in L1(I).

The precise definition of the Besov spaces Bαq (Lp(I)), which can be found, e.g., in [7],

does not concern us here; what is important, both theoretically and algorithmically, is the

equivalence between the Bαq (Lp(I)) norm and certain norms of wavelet coefficients.

We consider compactly supported orthogonal wavelets, specifically Daubechies’ orthog-

onal wavelets [5]. Assume we have a scaling function φ and wavelets Ψ := {ψ(i) | i = 1, 2, 3}
constructed by tensor products of a one-dimensional orthogonal wavelet system.

If we define

ψj,k(x) := 2kψ(2kx− j)

for ψ ∈ Ψ, k ≥ 0, and j ∈ Z2, then any function f in L2(R2) can be written as

f =
∑
j

〈f, φ(· − j)〉φ(· − j) +
∑
j,k,ψ

〈f, ψj,k〉ψj,k,

where the sums range over all j ∈ Z2, all k ≥ 0, and all ψ ∈ Ψ.
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If the functions in Ψ are smooth enough, then one can often determine whether a

function f is in the Besov space Bαq (Lp(R2)) by examining its wavelet coefficients. We

need this equivalence only when p = q, in which case

|f |Bαq (Lq(R2)) �
(∑
j,k,ψ

[2αk|〈f, ψj,k〉| ‖ψj,k‖Lq ]q
)1/q

=

(∑
j,k,ψ

[2αk2(1−2/q)k|〈f, ψj,k〉|]q
)1/q

.

(A(f) � B(f) means that there exist positive constants C1 and C2 such that for all f ,

C1A(f) ≤ B(f) ≤ C2A(f).) See, e.g., [10].

We also have the equivalent norms

‖f‖Bαq (Lq(R2)) �
(∑

j

|〈f, φ(· − j)〉|q
)1/q

+

(∑
j,k,ψ

[ 2αk2(1−2/q)k|〈f, ψj,k〉| ]q
)1/q

.

3. Periodic Wavelets

One can easily construct periodic wavelets on L2(I) that can be used to decompose

periodic functions f on L2(I). For example, for ψ ∈ Ψ, k ≥ 0 and j ∈ {0, 1, . . . , 2k − 1}2,

one sets [7]

ψ◦j,k(x) :=
∑
`∈Z2

ψj,k(x+ `), x ∈ I.

One constructs φ◦ in the same way; we have φ◦(x) = 1 for all x, since {φ(· − j) | j ∈ Z2}
forms a partition of unity.

Again, it is not hard to show [7] that one now has a periodic orthogonal wavelet system

on L2(I) such that

f(x) = 〈f, φ◦〉+
∑
j,k,ψ

〈f, ψ◦j,k〉ψ◦j,k(x)

and

|f |Bαq (Lq(I)) �
(∑
j,k,ψ

[ 2αk2(1−2/q)k|〈f, ψ◦j,k〉| ]q
)1/q

.

Since we deal only with periodic wavelets in the rest of the paper, we drop the super-

scripts and write for f ∈ Lp(I), 1 ≤ p <∞,

(1) f = 〈f, 1〉+
∑
j,k,ψ

〈f, ψj,k〉ψj,k

and

(2) |f |Bαq (Lq(I)) �
(∑
j,k,ψ

[ 2(α+1−2/q)k|〈f, ψj,k〉| ]q
)1/q

.
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4. Image Smoothing Scale Spaces

The concept of an image smoothing scale space seems to us rather vague, although

there are many examples; see, for example [11]. We think of it as a contraction semigroup

on L2(I). That is, it is an operator Sλ that depends on a parameter λ that satisfies for

nonnegative λ and µ and all f and g in L2(I)

SλSµf = Sλ+µf,(3)

‖Sλf − Sλg‖L2(I) ≤ ‖f − g‖L2(I), and(4)

S0f = f.(5)

This definition does not require that Sλf be continuous in λ for each f ; an example

of such a discontinuous smoothing scale space Sλ is the projection onto a closed subspace

(or any closed convex subset) of L2(I) for λ > 0 and the identity otherwise. We define a

continuous contraction semigroup as satisfying (3), (4), and (5) as well as

(6) lim
λ→0, λ>0

‖Sλf − f‖L2(I) = 0.

Perhaps the best-known example of an image smoothing scale space is the space gen-

erated by the heat equation; i.e., Sλf(x) = u(x, λ) where u(x, t) satisfies

(7)

∂u

∂t
−∆u = 0, x ∈ I, t > 0,

u(x, 0) = f(x), x ∈ I,

with periodic boundary conditions or Neumann boundary conditions.

5. Variational Problems

It is argued in [16] that many reasonable image smoothing scale spaces can be realized

as descent along the subgradient of a lower-semicontinuous, (proper) convex functional on

L2(I). We give definitions of these terms below. An excellent reference for this section is

[1].

A (proper) convex functional is a function φ that maps L2(I) to (−∞,∞], not identi-

cally equal to ∞, such that for all f and g in L2(I) and all t ∈ (0, 1),

φ((1− t)f + tg) ≤ (1− t)φ(f) + tφ(g).

φ is lower-semicontinuous (l.s.c.) if and only if for all values a ∈ (−∞,∞), the set of all f

such that φ(f) ≤ a is closed in L2(I). The domain of φ, denoted domφ, is the set of all f

such that φ(f) is finite.

4



An example of a l.s.c. convex functional is

(8) φ1(f) :=


1

2

∫
I

|∇f(x)|2 dx, f ∈ H1(I),

∞, otherwise,

where H1(I) is the space of functions in L2(I) with square-integrable gradients. This

functional is associated with the heat equation. If a subset S of L2(I) is closed and

convex, then

(9) φ2(f) = χS(f) :=

{
0, f ∈ S,
∞, otherwise,

is also a l.s.c. convex functional, whose gradient flow is just given by the projection onto

S at any time t > 0.

The subgradient of a l.s.c. convex function φ, denoted ∂φ, is defined by

g ∈ ∂φ(f) ⇐⇒ (∀h ∈ L2(I)) φ(h) ≥ φ(f) + 〈g, h− f〉.

Note that ∂φ is generally multi-valued. If φ is differentiable at f then the subgradient of

φ at f is single-valued, consisting of the derivative of φ at f .

The domain of ∂φ is the set of all f for which ∂φ(f) is not empty. Note that if

φ(f) = ∞, then ∂φ(f) is empty, since there is at least one h for which φ(h) < ∞. Thus,

the domain of ∂φ is a subset of the domain of φ.

The subgradient of φ1 is equal to {−∆f} for f ∈ H2(I), the space of functions with

square-integrable second derivatives, and is empty otherwise. Thus, the domain of ∂φ can

be strictly smaller than the domain of φ; in all cases, however, dom ∂φ is dense in domφ.

In (9), ∂φ2 is harder to describe. One knows, however, that if f is in the interior of S then

∂φ2(f) = {0}; if S has a well-defined exterior normal at a point f on the boundary of S,

∂φ2(f) consists of all positive multiples of that exterior normal.

We consider the formal problem: Find u : [0,∞)→ L2(I) that satisfies

(10)

∂u

∂t
+ ∂φ(u) 3 0, t ≥ 0,

u(0) = u0 ∈ L2(I).

The classical approach to solving this equation involves the Yosida approximation, which

corresponds to using backward differences [1]. One chooses a timestep ∆t and obtains

approximations un∆t ≈ u(n∆t) that satisfy: u0
∆t = u0 and

(11)
un∆t − un−1

∆t

∆t
+ ∂φ(un∆t) 3 0, n = 1, 2, . . . .
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For any un−1
∆t ∈ L2(I), this problem always has a unique solution, which can be character-

ized as the function that minimizes over all g ∈ L2(I) the functional

(12)
1

2∆t
‖g − un−1

∆t ‖2L2(I) + φ(g).

We define

u(t) := lim
n→∞
n∆t=t

un∆t;

it is well known that this limit exists, and Stu0 := u(t) defines a contraction semigroup on

L2(I) that satisfies (10) [1].

With the previous examples, the solution of (10) with φ = φ1 is the same as the

solution of (7) with initial data u0 = f . In this case, we have a continuous contraction

semigroup on L2(I). The solution of (10) with φ = φ2 is

u(t) =

{
u0, t = 0,

PSu0, t > 0,

where PS is the projection operator onto the set S. Here, the solution operator Stu0 := u(t)

is a contraction semigroup, but not a continuous contraction semigroup for u0 /∈ S.

6. Wavelet Shrinkage as an Image Smoothing Scale Space

This section repeats and isolates some arguments in Section C of [2]; more discussion

of our motivations can be found there.

We consider now the specific case of gradient descent along the functional |f |B1
1(L1(I))

in R2. Given a suitably smooth periodic orthogonal wavelet basis, we have by (2),

|f |B1
1(L1(I)) � φ(f) :=

∑
j,k,ψ

|〈f, ψj,k〉|.

We now take the position that it doesn’t really matter what form of equivalent functionals

we take, so we consider gradient descent along the functional φ(f). The domain of φ is

the set of all functions in B1
1(L1(I)), which is dense in L2(I); the subgradient of φ is

∂φ(f) = L2(I) ∩
∑
j,k,ψ

sign(〈f, ψj,k〉)ψj,k,

where

∂|x| = signx :=


{1}, x > 0,

[−1, 1], x = 0,

{−1}, x < 0.
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As usual, the domain of ∂φ consists of all f for which ∂φ(f) is nonempty. Because the

wavelets are orthogonal, and for each nonzero term in f the corresponding term in ∂φ(f)

has size ‖ψj,k‖L2(I), the domain of ∂φ consists of all f of the form (1) with only finitely

many nonzero terms in the sum.

We now note the equality

(13) ‖f‖2L2(I) = |〈f, 1〉|2 +
∑
j,k,ψ

|〈f, ψj,k〉|2.

With these definitions of ‖f‖L2(I) and φ(f), we now propose to solve (10) along the

lines of Section C in [2]. To this end, we solve at each time step (11), by minimizing (12).

Calculus shows that

〈un∆t, 1〉 = 〈u0, 1〉

for all n and ∆t, and

〈un∆t, ψj,k〉 = Sn∆t(〈u0, ψj,k〉),

where

Sλ(x) :=


x− λ, λ ≤ x,
0, −λ ≤ x ≤ λ,
x+ λ, x ≤ −λ.

Since u
T/∆t
∆t doesn’t depend on ∆t, we see that the limit u(T ) = u

T/∆t
∆t for any ∆t for

which T/∆t is an integer. Thus, the solution of (10) is just

u(t) = 〈u0, 1〉+
∑
j,k,ψ

St(〈u0, ψj,k〉)ψj,k,

which is wavelet shrinkage as introduced by David Donoho and Iain Johnstone [9]. Thus,

wavelet shrinkage induces a continuous contraction semigroup on L2(I) that can be inter-

preted as gradient descent along the B1
1(L1(I)) seminorm, which in turn can be interpreted

as a nonlinear image smoothing scale space.

7. Redundant Wavelet Representation of Images

The mapping between L2(I) and the sequence space `2 given by

f ∈ L2(I)↔ {〈f, 1〉, 〈f, ψj,k〉} ∈ `2

is one-to-one and onto; indeed, it is an isometry. So, for every f ∈ L2(I) we have a

corresponding sequence in `2, but, more importantly, for every sequence in `2 there is a

corresponding f ∈ L2(I).
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There are some practical difficulties with using this representation of images. For

instance, the seminorm on the right hand sides of (2) is wavelet dependent : if you change

the wavelets used in the representation, you change the semi-norm, in contrast to the

intrinsic definition of the Besov space norm.

More disquieting is the fact that while usual definition of the Besov space norm is

invariant under translation of the function f , (2) is not. Coifman and Donoho proposed to

use translation-invariant wavelet smoothing to get around this problem, but translation-

invariant representations of images were used before this (e.g., representations using the

continuous wavelet transform [5, Chapter 2]). We propose to make this idea precise in this

section.

We achieve translation invariance as follows. For h in I, we define the translation

operator Thf(x) := f(x− h), remembering that our functions are doubly periodic on the

plane. One can find the wavelet representation of T−hf , and then apply Th to this wavelet

representation. Finally, we average over all h ∈ I.

Putting these words into formulae goes as follows.

T−hf(x) = 〈T−hf, 1〉+
∑
j,k,ψ

〈T−hf, ψj,k〉ψj,k(x)

=

∫
I

f(y + h) dy +
∑
j,k,ψ

∫
I

f(y + h) 2kψ(2ky − j) dy × 2kψ(2kx− j)

=

∫
I

f(y) dy +
∑
j,k,ψ

∫
I

f(y) 2kψ(2k(y − h)− j) dy × 2kψ(2kx− j)

(The third equality comes from a change of variables y + h→ y.) Thus,

f(x) =

∫
I

Th(T−hf(x)) dh

=

∫
I

f(y) dy +

∫
I

∑
j,k,ψ

∫
I

f(y) 2kψ(2k(y − h)− j) dy × 2kψ(2k(x− h)− j) dh

=

∫
I

f(y) dy +
∑
j,k,ψ

∫
I

∫
I

f(y) 2kψ(2k(y − h)) dy × 2kψ(2k(x− h)) dh

The last equality comes from a change in the order of integration and summation and the

change of variables 2kh+ j → 2kh.

Note that the terms in the sum no longer depend on the index j, and for each k

there are 22k terms with different j. By defining ψk(x) := 2kψ(2kx), we get the final

representation formula

f(x) =

∫
I

f(y) dy +
∑
k,ψ

22k

∫
I

∫
I

f(y)ψk(y − h) dy ψk(x− h) dh.
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This representation is a two-dimensional version of the semi-discrete, translation-invariant

representation of Mallat and Zhong [15]. We invite the reader to compare this formula

with the representation formula for the continuous wavelet transform [5, p. 33].

We also have the equality

‖f‖2L2(I) = ‖T−hf‖2L2(I)

=

(∫
I

f(y + h) dy

)2

+
∑
j,k,ψ

|〈T−hf, ψj,k〉|2

=

(∫
I

f(y + h) dy

)2

+
∑
j,k,ψ

(∫
I

f(y + h) 2kψ(2ky − j) dy
)2

=

(∫
I

f(y) dy

)2

+
∑
j,k,ψ

(∫
I

f(y) 2kψ(2k(y − h)− j) dy
)2

.

By similar arguments,

‖f‖2L2(I) =

∫
I

‖T−hf‖2L2(I) dh

=

(∫
I

f(y) dy

)2

+

∫
I

∑
j,k,ψ

(∫
I

f(y) 2kψ(2k(y − h)− j) dy
)2

dh

=

(∫
I

f(y) dy

)2

+
∑
k,ψ

22k

∫
I

(∫
I

f(y)ψk(y − h) dy

)2

dh.

Finally,

(14)

|f |B1
1(L1(I)) =

∫
I

|T−hf |B1
1(L1(I)) dh

�
∫
I

∑
j,k,ψ

∣∣∣∣∫
I

f(y) 2kψ(2k(y − h)− j) dy
∣∣∣∣dh

=
∑
k,ψ

22k

∫
I

∣∣∣∣∫
I

f(y)ψk(y − h) dy

∣∣∣∣ dh
We note that this representation of f is redundant : the mapping

(15) f → {
∫
I

f(y)ψk(y − h) dy | h ∈ I, k ≥ 0, ψ ∈ Ψ}

is a one-to-one mapping (modulo constants) from L2(I) to L2(Ω), where Ω = I × N × Ψ

with measure dh⊗22kδk⊗δψ, where dh is Lebesgue measure and δ is point mass. However,
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it is not onto—the image of L2(I) is a closed subspace of L2(Ω), but it is not all of L2(Ω).

This is true also for the continuous wavelet transform. So, generally speaking, an arbitrary

element of L2(Ω) is not the image of any f under the mapping (15).

In practice, we are given only a finite amount of data, so we cannot calculate the above

formulae for all k ≥ 0 and all translations h ∈ I. Let’s assume now that we are given

2m rows of 2m pixels, each of which is the average of f on a square of size 2−m × 2−m.

Then using the orthogonal wavelets constructed by Daubechies [5], we can calculate these

formulae for k < m and average over 22m different pixel translations j/2m, j = (j1, j2),

0 ≤ j1, j2 < 2m, instead of averaging over h ∈ I. With these changes, we get

f(x) =

∫
I

f(y) dy +
∑

0≤k<m
j,ψ

22(k−m)

∫
I

f(y)ψk(y −
j

2m
) dy ψk(x− j

2m
),

‖f‖2L2(I) =

(∫
I

f(y) dy

)2

+
∑

0≤k<m
j,ψ

22(k−m)

(∫
I

f(y)ψk(y −
j

2m
) dy

)2

, and

|f |B1
1(L1(I)) �

∑
0≤k<m
j,ψ

22(k−m)

∣∣∣∣∫
I

f(y)ψk(y −
j

2m
) dy

∣∣∣∣.
(The fact that we begin with pixel values that are not, typically, the exact value of 〈f, φj,m〉
introduces an error that is bounded in Section D of [2].)

Note that for each dyadic level k we need to compute 3×22m terms, one for each pixel

and one for each ψ ∈ Ψ. A simple argument shows that we can use the wavelet rewrite rule

to calculate each term in constant time (see [4]), so the entire calculation takes O(m22m)

operations, as compared with O(22m) operations for the discrete wavelet transform.

8. Translation-Invariant Denoising

To simplify notation in this section, we assume without loss of generality that f has

integral zero; if it does not, then we subtract the mean of f from f before proceeding.

Coifman and Donoho proposed applying wavelet shrinkage to the most recent repre-

sentation of f written above in order to remove noise from a noisy image f . That is, they

proposed to calculate

∑
0≤k<m
j,ψ

22(k−m)Sλ(

∫
I

f(y)ψk(y −
j

2m
) dy)ψk(x−

j

2m
)

as a smoothing transform for f . In the idealized case where one averages over all h ∈ I
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rather than over all pixel translations j, the operator would be

∑
k,ψ

22k

∫
I

Sλ(

∫
I

f(y)ψk(y − h) dy)ψk(x− h) dh

The question is now how to interpret these transforms.

If we denote this transform by Sλf , then we see immediately that Sλ is not a semi-

group, as opposed to wavelet shrinkage with the discrete wavelet transform. In particular,

SλSµf 6= Sλ+µf for general f .

This poses a practical problem. Let’s say that we shrink the wavelet coefficients by λ,

but find that the smoothing is not enough. If we then shrink by µ, we find that the result

is not the same as if we shrink in one step by λ+µ. The semigroup property is important

because we would like the image after total “shrinkage” of λ, say, not to depend on the

substeps we take of size λ1, . . . , λn such that λ = λ1 + · · ·+ λn.

If we denote the above smoothing operators by S̃λ, one can ask whether

lim
n→∞

S̃nλ/nf

exists. We show below that the answer is yes, and we denote the resulting operator by

Sλ. Sλ is a continuous contraction semigroup on L2(I) that defines a wavelet-based image

smoothing scale space. If we denote

Wf(k, ψ, h) :=

∫
I

f(y)ψk(y − h) dy

then Sλ formally satisfies

dSλf

dλ
= −

∑
0≤k<m
j,ψ

22(k−m) sign(WSλf(k, ψ,
j

2m
))ψk(x− j

2m
).

Exactly the same issues arise when we average over all h ∈ I instead of over all pixels;

in this case, Sλ formally satisfies

dSλf

dλ
= −

∑
k,ψ

22k

∫
I

sign(WSλf(k, ψ, h))ψk(x− h) dh.

We now show how a theorem of Kato and Masuda [13] can be used when averaging

over all h ∈ I; a similar argument works when averaging over all j.
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To do this, we note that the mapping f → Wf maps L2(I) to a closed subspace of

L2(Ω), which we call V . Conversely, for any W (k, ψ, h) in L2(Ω),

P̃W (x) :=
∑
k,ψ

22k

∫
I

W (k, ψ, h)ψk(x− h) dh

is a function in L2(I). P̃ is a bounded linear projection from L2(Ω) to L2(I). Thus, we

can define an orthogonal projection P from L2(Ω) to V by

PW (k, ψ, h) :=WP̃W (k, ψ, h).

We now recall that for the discrete wavelet transform, wavelet shrinkage is gradient

descent along the discrete L1 norm of the wavelet coefficients. In the same way, the

operator W (k, ψ, h)→ Sλ(W (k, ψ, h)) is gradient descent in L2(Ω) along the L1(Ω) norm.

That is, it is the solution operator of the problem

du

dt
+ ∂‖u‖L1(Ω) 3 0, t ≥ 0,

u(0) = W.

Furthermore, orthogonal projection W → PVW onto a closed subspace V of L2(Ω) is the

solution operator of the problem

du

dt
+ ∂χV (u) 3 0, t ≥ 0,

u(0) = W,

for any positive t. Thus, our original operator can be written

S̃λf =W−1PV Sλ(Wf),

and

S̃nλ/nf =W−1(PV Sλ/n)n(Wf).

Example 4.1 in Kato and Masuda [13] shows that

lim
n→∞

(PV St/n)nWf

is the solution operator of

du

dt
+ ∂[χV (u) + ‖u‖L1(Ω)] 3 0, t ≥ 0,

u(0) =Wf.
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This type of result is known as a Trotter product formula. Since, by §7, we can define

|u|B1
1(L1(I)) to be

|u|B1
1(L1(I)) := ‖Wu‖L1(Ω) + χV (Wu)

(since χV (Wu) = 0), we have that Stf is the solution operator of

du

dt
+ ∂|u|B1

1(L1(I)) 3 0, t ≥ 0,

u(0) = f.

9. Computations

First, we compute with the Haar wavelet. Although the Haar wavelet is orthogonal, it is

not smooth enough for the equivalence between the B1
1(L1(I)) norm and the sequence norm

given in (14) to hold. Thus, although the result given above shows that iterated translation-

invariant wavelet shrinkage using the Haar wavelet can be interpreted as gradient descent

along a norm given by the right-hand side of (14), that norm is not equivalent to the

B1
1(L1(I)) norm.

Our second set of images are computed with the formally second-order accurate or-

thogonal wavelets introduced by Daubechies and described by [5]. Here, we do have the

equivalence (14) for B1
1(L1(I)), so the theory of the previous section applies.

In the left of Figure 1, we show the effects of smoothing on a simple geometrical image.

Note that with the Haar wavelet, horizontal and vertical edges and the corners between

them are well preserved, while diagonal edges and other corners are smoothed more dras-

tically. With the smooth, orthogonal, wavelets, all edges and corners are smoothed more

uniformly. Thus, it appears that translation-invariant smoothing using the Haar wavelet

does not correspond to gradient descent of a norm that is equivalent to a rotationally-

invariant norm, as is the usual B1
1(L1(I)) norm.

In the right of Figure 1, we show the effects of smoothing on a “natural” image. Note

that while the Haar wavelets achieve more of a “segmentation” of the image, horizontal

and vertical lines are strongly preferred.

In Figure 2, we show a fingerprint image used in [2] as an example together with the

same image after adding Gaussian noise with a standard deviation of 32 grey scales. In

the left part of Figure 3, we show the noisy image after applying translation-invariant

wavelet shrinkage with orthogonal wavelets with the (experimentally determined) optimal

value of t = 0.071188. The optimal shrinkage parameter using plain wavelet shrinkage

(in this case, applied to the biorthogonal wavelets of [3] and [12] as illustrated on page

272 of [5]) was estimated in [2] to be t = 41.834798/512 = 0.081709; the right half of

Figure 3 repeats Figure 4 of [2], which shows the image after wavelet shrinkage by what

is called the “critical” parameter in that paper, of 43.516416/512 = .084993. (Note that
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Fig. 1. Scale space smoothing. For each set of images, Haar is on the left and

orthogonal Daubechies is on the right. Maximum t = 3.0 on the left, maximum

t = 0.75 on the right.
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Fig. 2. Original image on left, noisy image on right.

Fig. 3. Translation-invariant wavelet denoising on left, t = 0.0711878; wavelet

shrinkage with “critical” shrinkage on right.

the shrinkage parameters reported in [2] must be divided by 512, the square root of the

number of pixels, to compare to this paper.) It would seem, heuristically, that the process

of averaging over all pixel translates of the image after wavelet shrinkage would provide

some measure of smoothing beyond that effected by the wavelet shrinkage itself, so the

smaller optimal shrinkage parameter in this paper does not surprise us; on the other hand,

we can offer no argument to quantify this effect.
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