Computer Aided Geometric Design 9 (1992) 219-239 219
North-Holland

COMAID 282

Surface compression *

Ronald A. DeVore, Bjorn Jawerth
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Bradley J. Lucier
Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Received November 1990
Revised December 1991

Abstract

DeVore, R.A., B. Jawerth and B.J. Lucier, Surface compression, Computer Aided Geometric Design 9 (1992)
219-239.

We propose wavelet decompositions as a technique for compressing the number of a control parameters of
surfaces that arise in Computer-Aided Geometric Design. In addition, we give a specific numerical algorithm
for surface compression based on wavelet decompositions of surfaces into box splines.

Keywords. Compression of surfaces, box splines, computer-aided geometric design, nonlinear approximation

1. Introduction

Some surfaces in Computer-Aided Geometric Design can be described naively but quite
accurately by using a large number of control parameters; these parameters can arise, for
example, as measurements from a physical model. In order to effectively store and manipulate
the computer representation of such surfaces, we wish to reduce the amount of data while
maintaining accuracy, a process we will call surface compression. Previous work in this subject
has been based on knot removal (see for example [Lyche & Mgrken 87]). The purpose of the
present paper is to give a new approach, developed from the ideas in [DeVore et al. ’92], for
compressing parametric surfaces by means of wavelet decompositions. We break the process
into two steps: first, we approximate to the required accuracy a parametric surface, derived in
any way, by a linear combination of translates of a single function called a wavelet, and,
second, we derive a new, compressed, approximation to the surface, which will attain roughly
the same accuracy as the first approximation, but with fewer control parameters.

A wavelet decomposition of a function f defined on R is an expression of the form

f= Z Z a; kD (1.1)

k€Z j=(j,,...,ipez?

* The first author was supported by NSF Grant DMS-8620108, the second author by NSF Grant DMS-8803585, and
the third author by NSF Grants DMS-8802734 and DMS-9006219. This research was supported in part by the Air
Force Office of Scientific Research (contract 89-0455), the Office of Naval Research (contracts N00014-90-1343,
N00014-91-J-1152, and N00014-91-J-1076), the Defense Advanced Research Projects Agency (AFOSR contract
89-0455), and the Army High Performance Computing Research Center.

Correspondence to: R.A. DeVore, Department of Mathematics, University of South Carolina, Columbia, SC 29208,
USA.

0167-8396,/92/$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved

R

220 R.A. DeVore et al. / Surface compression

where the coefficients a;, =a;,(f) depend on f, and the functions ¢;, are defined as
b1u(x) = $(25(x ~j/2)),

the dyadic dilates (by 2*) and translates (by j/2%) of a single function ¢ called a wavelet.

Higher values of k correspond to higher frequency or higher resolution features of f.

The decomposition (1.1) is particularly useful if the norm of f in some L, space or
smoothness class (such as a Sobolev space) can be determined solely by examining the size or
decay of the coefficients a;,. Of course, not every choice of ¢ allows one to decompose
general functions f as in (1.1); some examples of functions ¢ that can be used in (1.1) are the
orthogonal wavelets of [Meyer ’89] and [Daubechies °88], the ¢ transform of [Frazier &
Jawerth ’90], and various types of spline functions. Although methods for surface compression
can be based on any of these wavelets, only for box splines [de Boor & Hollig "82] will we
discuss in any detail how to calculate the representation (1.1).

For notational brevity, we shall sometimes index the j,k term of (1.1) by the dyadic cube
I=j27%4+27%0, where 2 :=[0,1]¢ is the unit cube in R¢. We shall say that j2~* corresponds
to I. We shall also denote by 9, the set of dyadic cubes I whose sidelength /(1) is 27k and
by 2 the union of the 9, k € Z. Then, (1.1) can be rewritten

f= Z a;9;. (1.2)
e

The main idea of our compression algorithm is as foliows. Suppose that the surface we wish
to compress can be represented as y = f(x), x = (x;, x,), the graph of a function f defined
on R2 We choose a wavelet function ¢ and view f as built up from its decomposition (1.2).
To compress f we would like to replace the infinite sum (1.2) by a finite sum S =X, b;¢,
(the coefficients b, are not necessarily the same as the a,), while at the same time requiring
that the distance between the two surfaces (which in our case can be bounded by || f— S|/ .)
be small. If we wish to do this compression as efficiently as possible, we are led to a problem
of nonlinear approximation from the nonlinear manifold 5, of all functions § = Xa,¢; with
at most n of the coefficients a, # 0. (This is a nonlinear problem because the sum of two
functions in ¥, is contained in ¥ ,, but not, in general, in 3,). This approximation problem
for approximation in the L, metric, 0 <p <, was studied extensively in [DeVore et al. "92]
and the algorithms presented in this paper are motivated by the results in [DeVore et al. 92].

In Section 2 we discuss how to calculate the decomposition (1.2) for box splines using
quasi-interpolants. Then, in Section 3, we discuss the results of [DeVore et al. ’92] that we
find relevant to surface compression. While there are many meaningful choices for the
function ¢ in the wavelet decomposition and the ensuing compression algorithms, we shall
describe only one possibility in detail and give some numerical examples. This example is
based on quartic box splines on a three-directional mesh and cardinal spline interpolation.
Our algorithm for this special case is described in Section 4.

An a priori error bound for the compression, given in Section 5, shows that || f— S|, =
O(n~=/%) if, roughly speaking, f has « ‘derivatives’ in L_ for some o >2/a. This is to be
contrasted with linear methods of approximations I(f) for which || f—I(f) |, = O(n~%/?)
only if f has « ‘derivatives’ not in L_, but in L, a much stricter requirement. Thus, for some
functions f our compression algorithm achieves a much higher rate of approximation than is
possible with linear approximation algorithms. We give examples in Section 6 that illustrate
this phenomenon.

2. Box splines as wavelets

We briefly recall from [DeVore et al. ’92] one way to obtain the decomposition (1.2) in the
case of box splines.

R.A. DeVore et al. / Surface compression 221

Let T:={t}", be a set of vectors that span R?. Each vector t;, which we assume has
integer components, can appear several times in 7. The box spline M := M, is the function
defined by the distributional equation

m
| M(x)f(x)dx= f(Zm) dy, feCy(RY), (2.1)
R? Om \i=1
where Q,, :=[— 1,2]™ is the unit cube in R™. Then (see [de Boor & Héllig *82]) M is a
piecewise polynomial of total order r:==m —d + 1 (total degree m — d) which is supported on
the set

m
-y = . 1 1
{x~ x= Yyt —3<¥ <73, tiET}-
i=1

The box spline M is in C* (RY) where s :=s,— 2 and s, is the smallest integer for which there
are s, vectors in T whose removal from T results in a set of vectors which do not span R
(see [de Boor & Hollig ’82]). An important property of the box spline M is that there are
constants c; such that M can be refined as

M(x) =) c;M(2x—}j). (2.2)
J
(When applied to box splines, property (2.2) has been known as subdivision, or refinement;
computational and theoretical consequences of (2.2) have been developed in [Béhm ’83,
Cohen et al. ’84, Dahmen & Micchelli ’84, ’85b].) It follows from (2.2) that any M,, I €9,
can be rewritten in terms of the box splines M,, J€9,,, m > k, i.e., box splines at any finer
dyadic level.
We shall be interested in box splines M whose integer translates are locally linearly
independent. This is the case if and only if (see [Dahmen & Micchelli *85a] or [Jia *85])

ldet(Y,)] =1

for each d X d matrix Y, whose columns are vectors from 7 that span R%

Two useful examples of box splines in R? are as follows. First, we can set T := {(1,0), (0,1),
(1,1)}. The resulting continuous box spline will be linear between the grid lines x, =i, x, =],
and x, —x,=k, i,j,k € Z, and will have M(0) =1 and M(j) =0 for 0 #j € Z2. As a second
example, we can take T = {(1,0), (1,0), (0,1), (0,1), (1,1), (1,1)}. The resulting box spline, which
we will use in Section 4, will be C? and piecewise quartic; its third derivative will be
discontinuous along the same grid lines as for the linear box spline; its integer translates will
be locally linearly independent and will contain all polynomials of total degree three or less.

Associated with the box spline M, we have for each k=0, +1,..., the dilated spaces

& = span{M(2*x —j): je z4}.
To create the wavelet decomposition (1.2), we first need to find a good approximant to f from
the space %, for each k=0, +1,.... While there are many ways for doing this (such as
cardinal spline interpolation which is described and used later in this paper), we shall for the
moment discuss only the quasi-interpolant projectors Q, which are defined for any function
in L, as follows.

Each § €.%, has the representation
S = Z ¥ (S)M,;

Iew,

where the dual functionals v, are all dilates of a single functional
vi(8) =v(S(274(- +1)))

222 R.A. DeVore et al. / Surface compression

when I corresponds to j27% By the Hahn-Banach theorem, we can extend the functional y
to all of L, while preserving its norm as a functional on L;. If we continue to denote the
extension by vy and its dilates by vy,, then the operator

Qu(f)= X v(f)M,

€9,

is a projector from L,(loc) to &, that is bounded on L, for each 1 <p <. (L (loc) is the
space of functions that are integrable on any compact subset of R2.)

Instead of just invoking the Hahn—Banach theorem (which is non-constructive), one can
find practical algorithms for extending the functional y to all of L. Such formulas can be
found in the paper [de Boor & Fix ’73] (for the univariate case) and in the book [Chui ’88].
Basically, one finds local projections from L, onto discontinuous piecewise polynomial
spaces, and then projects in a separate step from discontinuous piecewise polynomials to the
spline space .. This gives a bounded projector on L, for all 1<p <. It is sometimes
important to have bounded (nonlinear) projectors in L, for g <1 onto .%. Using results
from [Brown & Lucier *92], one can show that starting with the best local projection from L,
onto discontinuous piecewise polynomial spaces gives a final (nonlinear) projection Q, that is
bounded (and a locally near-best approximation) for all 0 < g < .

Using the fact that the ¢, are a partition of unity, it is easy to prove (see [DeVore et al.
’92]) that for each fe& L, (R9), 1 <p <, and for each f <& C(R?) we have

Il f=Qu(f)ll,my—>0 as k— o,

Therefore, for each k,, we can write

f=Qk0(f)+)y (Qk+1(f)_Qk(f))= Y X aM; (2.3)

=k k=ky I€D,
with convergence in the L, norm. Here in the last equality, we use the refinement equation
(2.2) to rewrite Q,, {(f) — O(f) in terms of ¢,, I €2, .. This gives the representation (1.2)
for ¢ =M. When 1 <p <, one can let ky > —o since || Q, ()l L,ms) = 0 as kg — —o (see
[DeVore et al. ’92)).

We should make clear that the general representation (1.2) is not unique. Indeed, any M,
can be rewritten as a linear combination of M, at any finer dyadic level because of (2.2). So,
even the function M, does not have a unique decomposition. On the other hand, the
decomposition that we have derived has uniquely determined coefficients once the extension
of y is chosen; once the operator Q, is fixed, the decomposition is completely determined by
(2.3). We could begin with another projector in place of quasi-interpolants and obtain yet
another representation of f. Other possible projections Q, include the L, spline projector
and the cardinal spline interpolant. The former associates to f € L, its best L, approximant
S.(f) from %, and we obtain our decomposition (1.2) for f € L, (R?) by writing f again as a
telescoping sum f=X,(S;,(f)— S, (f)). The cardinal interpolant is the spline I,(f)€.%,
which interpolates f € C at the lattice points j27*, j € Z%. This leads to a decomposition (1.2)
for f € C(R?). We shall in fact use the cardinal interpolants in our algorithm of Section 4 and
the analysis of Section 5.

3. Approximation from %,

We recall some of the results of [DeVore et al. ’92] which form the basis for the
compression algorithm of the next section. Let ¢ be a function which allows the decomposi-
tion (1.2) for general functions f. We shall be interested in approximating functions f by

R.A. DeVore et al. / Surface compression 223

elements from ¥,. In order to measure the error of such an approximation in the metric of
L,, 0 <p <, toafunction f on a domain D, we introduce

g (f)p= Siélg Il f=Sl L(D)-

The main goal of [DeVore et al. *92] is to characterize, under suitable conditions on ¢ that we
will not relate here, the L, order of approximation by the elements of 3, in terms of the
smoothness of f in Besov spaces. We recall that a Besov space measures the smoothness of a
function f€ L, (D), D a domain in R¢, in terms of the modulus of smoothness
o,(f, t)p= sup N ALCEs) Loemys
h|<t

where D(h) is the set of x such that the line segment [x, x + 4] is contained in D. (The
forward difference A5(f, x) is defined iteratively by A% f, x):=f(x) and A%+I(f, x):=
AK(f, x+h) — AL(f, x), k> 0.) In what follows D =R? or D is a cube in R

If @ >0 and 0 <p, g <, the Besov space BJ(L (D)) is the collection of all f & L (D) for
which the following is finite:

© ds 1/q
([[t"“w,(f, t)p]qT , 0<g<oo,
| f 1 Bgeron = \0

sup t°w,(f, t),, q=m,

20

(3.1)

where r —1<a <r. The expression in (3.1) is a semi-(quasi)norm for BJ(L,(D)) and we
obtain the norm for this space by adding the || - || L,p) Norm to the semi-norm. There are
several other equivalent semi-norms for B,‘;(Lp) which are of interest. We shall make use of
the fact that for any cube D,

o 1/q
Y [2%0,(f, 27%),]"] . 0<a<w,
| f Ba(L D) = § k=0 (3.2)
sup 2¥°w, (f, 27%),, q=.

k=0

This follows by noting first that the integral can be taken over [0,1] and that ,(f, ¢), is an
increasing, bounded function of ¢ and then discretizing the integral in (3.1) at the points 27%,
k>0.

Of special importance for the L, approximation by the elements of 3, are the spaces

B®:=B*(L_.) where T==T(a,p)’=(a/d+1/p)_l'

Of course the spaces B“ also depend on p but in our applications p will be fixed and clearly
understood.
The main result of [DeVore et al. *92] is the characterization

o« 7‘1
L [ne/9,(£),] =~ < = feB" (33)
n=1

which holds for D = R? and D a cube in R% for 1 <p <, and for all @ <min(r, s +1/p).
Here s is associated with the smoothness of ¢ and r is related to how well we can
approximate by the elements of .. In the special case where ¢ is a box spline, ¢ =M, then
r is the order of the box spline ¢ and s is its smoothness (M = C¥).

We make the following heuristic comments about the equivalence between approximation
and regularity expressed by (3.3). The Besov space B* measures smoothness of order @ in L_,

!
¢
{
¢
§
¢

224 R.A. DeVore et al. / Surface compression

r=C(a/d+1/p)~!. On the other hand the approximation order in L, of (3.3) is, roughly
speaking, O(n~¢/ d) In other words, (3.3) characterizes the functions f that have an order of
approximation like O(rn~%/%) in L, as those having smoothness of order a in L,. The fact
that 7 <p (indeed 7 <1 if @ > d) represents the gain in nonlinear methods over their linear
counterparts.

There is in fact no simple characterization of functions with approximation order o,(f)
precisely O(n~%/4); however (3.3) is a close substitute. In one direction, it does follow from
(3.3) that each f € B can be approximated with order of approximation o,(f), = O(n~%/%):

0(f)p<Cn™/4| f | ge. (3.4)

Conversely, we know that any f € L, with this approximation order is in B*~¢ for all € > 0.

The proof of (3.4) given in [DeVore et al. ’92] implicitly gives a numerical algorithm for
determining ‘good’ approximations S € 5,,. Actually, there are two algorithms. The simplest
of these chooses the n largest coefficients in the decomposition (1.2). This choice however
results in constants in the bound of the error of approximation (3.4) that depend on p; they
blow up as p — . A second algorithm presented in [DeVore et al. *92] results in constants
independent of p but is much more complicated. So much so, that we shall use a modified
algorithm for our compression in Section 4.

The results in [DeVore et al. ’92] do rot imply that (3.4) holds when p = «. Since the case
p = « is perhaps the most natural choice for surface compression, the numerical algorithm of
Section 4 is based on this choice. We establish therefore in Section 5 a bound for ¢,(f), which
is only slightly worse than (3.4). The approximant providing the bound (3.4) for p = is
constructed by our compression algorithm.

As noted in Section 1, an important feature of the decomposition (1.2) for f is that the
norm of f in various function spaces can be described in terms of the coefficients a;. In
particular, it was proved in [DeVore et al. *92] that

[Flae= (T lal7111777)"". (3.5)

We shall make no specific use of (3.5) in what follows.

4. An algorithm for surface compression

In this section, we shall describe a specific algorithm (and some of its possible variants) for
surface compression. In order to simplify the discussion that follows, we shall first describe
how to construct a surface z=S(x, y) that compresses a surface given by a function
z=f(x, y) defined on all of R? (thus, for the remainder of the paper, d = 2). Compressing
surfaces defined on all of R? leads to computations with infinite matrices, etc. Of course, the
actual implementation of our algorithm is for surfaces on finite domains. Therefore, at the
end of this section we will show how to restrict attention to surfaces defined on a square
0 :=[0,1]%. Obvious modifications allow for the construction of parametrized surfaces S(u, v),
0<u, v<1, with S a mapping of 2 into R> Essentially, the only changes needed below to
move to the parametric case is to treat the coefficients as vectors in R>.

We devote the next few paragraphs to a brief overview of our compression algorithm. Our
algorithm is based on the quartic box spline M for a three-directional mesh described briefly
in Section 2. At each dyadic level we will calculate the cardinal interpolant I,(f) to f. I, f is
defined by the property

l] e

R.A. DeVore et al. / Surface compression 225

We choose a dyadic level K at which the wavelet decomposition is truncated, i.e., for our
purposes I(f) will be a sufficiently good approximation to f. We obtain the decomposition

f=L(f)=L(f)+ Z (I f) = L—i(f)) = Z Lz a;(f)M,. (4.1)

k=1Ileg,
Let Ty :=L(f)—L,_(f), k=2,...,K and T, =I(f). We write T, =¥, 5 a,(f)M,;. Our
compressed approximation S:=.S, + +-- +S, of f consists of terms b,M, from each dyadic

level k. If one wanted, one could simply choose for the coefficients of S, all coefficients
by=a,(f), I €2,, in the decomposition (4.1) bigger than some specified tolerance e.

In our method, we modify this simple strategy in two ways. First, our tolerance depends on
the set 2,: at the dyadic level &, the tolerance is set to €, == ke /2 K. We make the selection
of coefficients at coarse levels more likely for two reasons: (1) because each M, has large
support, an added coefficient will decrease the error over a large area, and (2) there are many
fewer coefficients at coarse levels than at fine levels. A second modification in our algorithm
is that we pass along to the next finer level (by rewriting) any term b, M, which is not put into
our approximation S. The effect of this is to retain until the finest level all information about
f (that is an exact realization of f up to the finest dyadic level).

At the coarsest level, we let A, denote the collection of all cubes I €2, such that
la/(f)| >e/2K and set S; =1, 4, a,(f)M, The remaining terms a,(f)M; with I €2, but
I & A, are rewritten at the next dyadic level and are added to T2 This gives T2 Z,egz
d.f)M Here d,(f)=a,(f)+ a;(f) where a, are the coefficients in T, and the a; arise by
rewriting. We now test the coefficients d,. If |d,(f)| > 2¢/2K, then I is in A, otherwise
d,(fIM, is rewritten. We let S, =¥, 4, d,(f)M,. We continue in this way and arrive at our
final approximation §=S,+ --- +Sg to f.

We now give a more detailed numerical description of the algorithm by explaining the
various steps in the construction.

4.1. Preliminaries

In order to specify an algorithm one must first choose a wavelet ¢, a norm in which to
measure the error, and the highest and lowest dyadic level of refinement. We discuss these
preliminary topics in this section.

As noted above, there are many possible choices of ¢. Whereas our algorithm takes ¢ to
be the quartic box spline M on a three-directional mesh, one could just as well choose various
box splines or tensor product B-splines or the wavelets obtained by multi-resolution. The box
splines on a three-dimensional mesh have been extensively studied in [de Boor & Hollig *82]
(see also the monograph [Chui ’88]). We recall some of their important properties.

Let T:={z})% with t,:=1¢,:=(1,0), t,==1t5=0(0,1), and ¢;:=1¢:=(1,1). The box spline
M = M, is the function defined by the distributional equation (2.1). It is a piecewise quartic
(total degree 4; r = 5) polynomial on the mesh consisting of the lines ut;, u €R,i=1, 2,3 and
their integer translates; it has smoothness C 2, The support of M is the set

x: x_zyzz’_% ytsé’tiET}'

The refinement 1dent1ty (2.2) for M is easily derived from its Fourier transform
6 sin(t;-x/2)
CM(x)=T]——5—,
i=1 t'x / 2

where x -y is the scalar product of the two vectors x and y. Taking the Fourier transform of

226 R.A. DeVore et al. / Surface compression

both sides of (2.2) leads to a polynomial identity for the coefficients ¢ ; in (2.2). In this way, we
obtain

M(x):= chM(Zx—j), (4.2)

J

where ¢;=10/16, j=0; ¢;=6/16, j= +(1,0), £0,1), +(1,1); ¢;=2/16, j= +(1,- 1),
+(1,2), £,1); ¢;=1/16, j= +£(2,0), £(0,2), +(2,2); and c; = 0 otherwise.

For surface compression, it seems most natural to measure the error of approximation in
the L, norm. We shall assume that the surface we wish to compress is continuous. It is
important to note that there is a simple relationship between the L, norm of a spline § €.%,
and its coefficients s; in the box spline representation § =Y, g, $/M;; namely, for some
constant C,,. :

Cy'max|s;| < IS L réy < max |s;|.
leg, I1e2,

The upper inequality follows from the fact that the {M,} are a partition of unity. We will not
need the numerical value of the constant in the lower inequality.

Our algorithm requires one to prescribe the allowable error € of the compressed approxi-
mation to the surface. As noted above, the error of approximation is measured in the L
norm. The algorithm guarantees the approximation error does not exceed e provided the
initial numerical realization of f has an L, error in approximating f which does not exceed
e/2. .

We arbitrarily choose the lowest dyadic level to be 1, which corresponds to a dyadic grid
size of 1/2. It is also necessary to choose a highest dyadic level K at which the wavelet
decomposition of f is to be truncated for its numerical representation. We denote by

T= Y X aM,

k<K I€9,

the truncation of the wavelet decomposition of f at level K. The level K should be chosen so
that || f— Tl ._<e/2. There is a simple a priori bound for || f— T |l._ in terms of the
smoothness of f. Namely, if f is in the Lipschitz space Lip §, then the following bound was
given in [DeVore et al. ’92]:

Ilf=Tl. <C27%

with C depending on 8. K should be chosen so that C27%% < e /2. We discuss in more detail
a priori bounds for truncation in Section 5.

4.2. Rewriting. splines

The refinement equation (4.2) allows us to rewrite any spline S €.%, at a finer dyadic
level:

S= Y sMQ2Fx—j)= Y, sM(2**'x—j); sj= Y c,s,. (4.3)

jez? jez? pt+2v=j

The subroutine REwrITE(4) uses (4.3) to rewrite a spline § €.%, at the next finer dyadic
level. REwrITE(A) takes the matrix 4 = (sj)j < 72 wWhich corresponds to coefficients of a spline
S €.%,, at some dyadic level k, and returns the matrix A" := (sjf) corresponding to the
coefficients of § with respect to the basis M;, I €9, _ ;.

R.A. DeVore et al. / Surface compression 227

4.3. Calculating the cardinal interpolant

While any projector onto ., that is defined for continuous functions would be a possible
choice in our algorithm, we shall use the cardinal interpolant, which we now describe.
If y:=(yj)jE 22 is a collection of real numbers, then the spline S €%, which satisfies

S(j)y=y;, Jj€Z? (4.4)

is called the cardinal interpolant to y. It has been shown in [de Boor et al. ’85] that there is a
unique solution § € C(R?) satisfying (4.4) whenever y € [. If we write S in its B-spline series
§=LX;cz2 5;M(x—j), then the coefficients s:=(s;) of the cardinal interpolant S can be
found by inverting the Toeplitz operator 7

(Tb)i= ¥ M(i=i)b;, bi=(b),cp

jez?
Namely,
s=9 1y,

To assemble the Toeplitz operator, one needs the values of M at the integers: M(0)=1/2,
M(j)=1/12,if j= +(1,0), £(0,1), £(1,1) and otherwise M(j) =0, j € Z2

One can find to any desired accuracy a finite number of coefficients of the cardinal
interpolant by creating a finite matrix which is an approximation to 9 ~!. The operator 7!
is also Toeplitz, 9! := (a(i —j)), and the coefficients & = (a(j)) can be found formally by
inverting the symbol of .. To numerically find these coefficients, we solve the equation
Fa =26 with §:=(8(j)) the Kronecker sequence 8(0):=1 and 8(j):=0, j# 0. Since the
coefficients in .1 are known (from the inverse of the symbol) to decay exponentially, it is
sufficient to write .y =8 as a system of equations and take a large enough block of this
system corresponding to the indices |i| <m, with m sufficiently large. The integer m is
chosen depending on the desired accuracy of the approximation.

The subroutine INTERPOLATE(B) generates the approximate cardinal interpolant to the
entries of a given matrix B = (b;) (each entry b; is associated to the point j). In our program
we did this by applying the cardinal mask of our approximation of .9 ~! to B. Namely, the
coefficients a; of the cardinal interpolant are given by

a;= Y, a(i)b;,_,.
lil<m

Thus, if we begin with the matrix B = F, = (f(j/2*));cz then INTERPOLATE returns the
cocefficients of the cardinal interpolant I,(f) of f.

4.4. Constructing the compressed approximant

The algorithm ComprEss uses the two subroutines REwRITE and INTERPOLATE to produce
B :=(b(i, k), the non-zero coefficients of the compressed approximant

K
S= Y Y b(i, k)M(2*x—1i)
k=1ieA,
to the surface z = f(x, y). Here A, denotes the set of those indices i such that b(i, k) :==
B, (i) # 0. ComprEss assumes that -f can be evaluated at any point in R? and that K, the
number of dyadic levels, and e, the error tolerance, have been provided by the user.

228 R.A. DeVore et al. / Surface compression

COMPRESS:
for k=1to K do ‘
A, = InterpoLATE((f(j/25)); 72)
next k
for k=K down to 2 do
A=A, —Rewrrte(4, _,)
next k
for k=1to K do

if | 4,(j)| > ke/2K then
Bk(]) =Ak(j); Ak(]) =0

end if

next j

if £k <K then
Appy=A, 41+ RewriTE(A,)

end if

next k
end COMPRESS

4.5. Operating on a finite domain

In this section, we derive the finite subsets of Z? that enter into the computation when we
wish to compress a surface over the unit square {2 :=[0,1]>. A similar analysis can be carried
out for other domains.

First of all, we must keep only the coefficients B,(j) that contribute a nonzero amount to
the surface on {2. We refer to the support of M to see that we need B, defined for j in the
set

JE={ji=(jp Jr) €7 -1<j; <2+ 1, —1<j, <2k +1},
which contains one ‘strip’ of coefficients outside of (2. To calculate
By 1(J) =Ay1(J) — REWRITE(A,) (J)
for j in one strip outside of (2, we need A,(j) to be defined on the set
Jd={j=() €Z?|-2<j,<2%+2, -2<j,<2"+2},

which has two strips outside of Q. If the coefficients A4,(j) are calculated using the finite
approximation with |i| <m to 9! then we need values of f(j/2%) for the set

JE={i=() €2 -2-m<j;<2¥+2+m, =2-m<j,<2¥+2+m}.

A value of m = 12 gives a relative error of about 10~7 in L”.

If the surface we are trying to compress is not a mathematical surface but rather is
described only by scattered data, then one needs to begin with a mathematical approximation
to this data. One possibility is to use one of the standard methods for scattered data
interpolation. In the event that the data is densely distributed, a triangulation of the data set
and piecewise linear interpolation may be sufficient.

If f is defined only on {2 then, in order to evaluate it at the points in JkF / 2k it is necessary
to extend f to a larger domain while at the same time maintaining its smoothness. (One could
always assume that f is identically zero outside (2, but this would introduce artificial
discontinuities in f along the boundary of (2.) We shall use the following method of Whitney

R.A. DeVore et al. / Surface compression 229

to extend a function f from (2 to the larger cube £, :=[—1,2]*. We first describe a univariate
operator which extends a function f from [0,1] to [—1,1]. Let B;, 0 <i < 3, satisfy

3 .
L (-2 =1, j=0,..3. | (45)
i=0 :

The system of equations (4.5) is a vanderMonde system and hence has a unique solution. This
choice of B, guarantees that the following univariate extension operator E; extends cubic
polynomials exactly:

b

f(x), 0 1 .
1 0. (4.6)

Eof(x) ={ T p,f(-2"x), -

NN
NN

x
x

To obtain a multivariate extension of f defined on (2, we first extend, for each fixed y, the
function f(-, y) to the rectangle [—1,1] X [0,1] by using (4.6). Using obvious modification of
(4.6), we can now extend the function to [—1,1]%, to [—1,2] X[—1,1] and finally to Q2,. If

necessary, we could repeat this extension procedure and thereby extend f to any larger finite
cube. This results in a function Ef defined on (2, which agrees with f on {2 and satisfies

04(Ef, t) L9 < Coy(f, t) L, t>0. (4.7)

If a function f must be extended from a cube Q to a cube Q' that is much larger than Q, the
extension operators of (4.6) must be applied a large number of times. In this case, it may be
useful to multiply the extension by a smooth cutoff function that is one on Q and vanishes
outside of a neighborhood of Q. For example, the function f could be extended to (2, and
then be multiplied by a cutoff function that is one on 2 but vanishes outside of [—1,2]
Multiplication by a smooth cutoff function does not preserve (4.7), but it does preserve
membership in the regularity spaces that interest us, which is sufficient for our purposes.

For projections other than cardinal interpolants, it may be that the problem of extending f
can be avoided. For example, if we use quasi-interpolants, we can restrict the support of the
coefficient functional v, to lie in {2 whenever the support of M, intersects {2 nontrivially. In
this way there is no need to extend f to a larger set.

5. Error bounds

In this section, we shall give an error bound for the approximation of f by the compressed
wavelet decompositions of the algorithm of the previous section. Since the approximation
takes place in the L norm and for an adaptive choice of coefficients, the error bound we
shall give is not covered by the results in [DeVore et al. ’92]. Although we continue to
formulate our results solely for the case of the quartic box spline M, it will be clear from our
proof that our results apply to more general ¢. We shall assume that all computations are
done exactly, including the computation of the coefficients of the cardinal spline interpolants.
A finer analysis could take into consideration errors in these computations.

Let f€ C(£2) be the function which determines the mathematical surface that is being
compressed. We first want to observe that we can assume that f has support in the larger
cube 27 :=[—231° Indeed, if f is not defined outside of {2 then we extend f to the larger
cube [—2,3]? by using the Whitney extension theorem with a preservation of the modulus of
smoothness in the sense of (4.7). We can then multiply f by a smooth function which is one
on [—1,2]* and has support on [—2,3]2. In this way, we extend f from {2 to all of R? with the
extended function supported on £2”. Moreover, if f is in a Besov space BJ(L,(2)), a <4,

230 R.A. DeVore et al. / Surface compression

then, because of (4.7), the extension is in B;’(L p(Rz)) with comparable norm. We continue to
denote the extended function by f.

We have in (3.3) described the connection between the smoothness of the function f and
its order of approximation in L,, 0 <p < o, by the compressed wavelet decomposition. For
example, (3.3) shows that if f€ B%(R%), then f is approximated with order O(n~%/%) with n
the number of terms in the compressed approximant. We shall see that (3.3) holds in the case
p=o, d=2, as well, provided we assume slightly more smoothness for f. In fact our
compression algorithm will provide this approximation. We let X := B%(L_(R?)) with o> 7

=2/a. The number & :=2/7—2 /0, which we call the ‘discrepancy’, measures how much
membershlp in X*¢ differs from membership in B*.

The space X consists ot functions which have smoothness of order « but measured in L,
Since o > 7, X? is a smaller space than B*: X* Cc B“.

From the Sobolev embedding theorem for Besov spaces, we have for any cube I, the
continuous embedding: X*(I) c BZ(L_ (1) =Lip(8, I) and

If I Lip(8,/) "= SUp w Cll f “ X(Iy- (5-1)
Xy | X — |
For o > 1, this embedding can be found in any of the standard treatments of Besov spaces
(see e.g. [Peetre *76]). The case o < 1 follows from Theorem 9.6 in [DeVore & Sharpley "84].
We say more about this embedding later.

Now let I(f¥=X;cq, s,(f)M; denote the cardinal spline interpolant to f. Let [
denote the collection of €9, for which M, is not identically zero on (2. Then, on 2,
L(f)=X, o $/(f)M,. From our remarks in Section 4 concerning the Toeplitz structure of
I, it follows that the coefficient functionals @; are uniformly bounded as mappings from
C(R?) into . Moreover, from the exponential decay of the entries in Toeplitz representation
of I, we have that for some 0 <n <1, :

)l

with C an absolute constant. Here and later, we shall use the convention that cubes I
correspond to i/2% and cubes J correspond to j /2.

Our first result limits the number of dyadic levels that need to be considered in the
decomposition of f.

Is,(f)I<C ¥ o' (5.2)

jez?

Lemma 5.1. If f € X*(R?), then for k=1, 2,...

| fF=L(F) N mery < C27%2 || £ || xemy
with C depending. only on § and a.

Proof. Since | s,(f)| < C |l f |l L w2, for all I €9, and since the M, I €, are nonnegative
and form a partition of unity, we obtain

I Ik(f) ! Lm(ﬁZ) ”(si(f))]egk I 17 < <C|l f I L (R?)-

’Hence. I, is a-bounded mapping from C(R?) into itself with norm independent of k. Since
I, is also a linear prolector onto %, we have f—L(f)=f—S+ (S —f), for each § eyk
Therefore,

I f=L.(f) ||Lm(R2> 1+ I L) dist(f, F) Lymey < C dist(f,) wn. (5.3)

R.A. DeVore et al. / Surface compression 231

We have given in [DeVore et al. ’92] the following bound
dist(f, &) Lw»y<C w(f, 2"‘)m ' (5.4)

where o is the modulus of continuity of f. From the embedding inequality (5.1), it follows
that o(f, 1) < Ct® || f || x2w?. The lemma now follows from (5.3) and (5.4). O

The significance of Lemma 5.1 is that it gives us an a priori bound for the number of dyadic
levels needed in the representation of f if we are to have an error < e. Namely, it is enough
to take K so that C27%%|| f|| x« < e where C is the constant of Lemma 5.1. That is, K need
only be larger than log, C | f || x=/e.

We now recall the basic steps of the algorithm of Section 4 when applied to functions
f € X*® We shall at first consider only functions f with || f || x« < 1. If we are given an error
tolerance € > 0, we choose K as above so that

1 F =L () N Ly < €/2.

Because of our restriction on || f || x» < 1, K can be chosen independent of f, i.e., K depends
only on 8. For each k=2,...,K, let T,:==L(f)—I,_(f) and T, =I(f). On 2, we can
write T,(f) =E;c o; a,(f)M, where, as before, 9, consists of all cubes in 9, such that M,
does not vanish identically on . Then, T, + T, + - -+ + Ty is our (approximate) wavelet
decomposition of f.

To construct our approximation to f, we examine the coefficients of T;. We let A, be the
collection of those I €2/ for which |a,(f)| >€/2K and A the remaining cubes in 2,.
Then, S; =X, 4, a,(f)M,, is our initial approximation to f. We let T, =X, ¢ 4, a,(fIM,;
and rewrite 7, at the next finer dyadic level: T, = ¥, ¢ o; a;(f)M,.

In general, if T, is the current rewrite (obtained by rewriting terms from level k — 1 at
level k), then we examine the coefficients of T, + T, to determine which terms will be kept in
our approximation. Such a coefficient is d,(f) =a,(f)+ aj(f) where a,(f) is the original
coefficient which appears in T, and a;(f) is the coefficient obtained by rewriting T,. Let A,
denote the collection of all cubes €9y for which |d;| >ke/2K and let S =Y, ,,
d,(f)M;. Then S, + --- +5, is our updated approximation to f and T}, =X, c 4, 4,(f)M;
where the set A} is the collection of all cubes in &, which are not in A,. We can rewrite
T;., at the level k+ 1:

Tia= L al(f)M,.
169,
Now S:=8,+S,+ --- + S8, is our final approximation to f. The coefficients of the error
L(f) =S =L x, d(fIM; all satisfy | d,(f)| <e/2. Since the M, are a partition of unity of
nonnegative functions, we have || I(f)— S|l L0y < €/2. Therefore,

”f_S”Lm(.Q)< ||f—IK(f) || Lw(n)+||11<(f) —S||me)<€- ‘(5-5)

Our main result, Theorem 5.3, will count the number of cubes N in A = U £_,A,; then N
is also the number of terms in S. Before doing this, we give a bound for the size of the
coefficients a,(f). For this, we shall use the quasi-interpolant operators Q, for ., intro-
duced in Section 1. For each fe L (R?),

O (f)= Z Y (f)M;

1€,

where vy, are linear functionals on L,(R?) all obtained from one functional y by dilation and
translation. Actually, there are many possible choices for y; each is obtained by extending the
dual basis functionals (for the basis (M), c 5) from %, to L,(R?). In particular, y can be

232 R.A. DeVore et al. / Surface compression

chosen so that each v, is supported on I (see [DeVore et al. *92]). It follows that the Q, are
bounded projectors from L,(R?) onto #, 1 <p <, from C(R?) onto %%, for p = . Using
the fact that ., contains all polynomials of total degree 3, and that Q, is a projector onto
., it is easy to prove that (see [DeVore et al. 92])

I f=Qu(F) N <CE(f, T*), Jeg, (5-6)

where E(f, J*) is the error in approximating f by polynomials of total degree <3 in the
norm of C(J*) and J* is the cube with the same center as J and sidelength I(J *) = 16I(J).
We also will need a bound for E(f, I*) which is related to the embedding inequality (5.1).

Lemma 5.2. If 0 <a <4, then for each f € X*(I*) and each I €9, we have

E(f, I*) <CIIIP2| £ xeany (5.7)
with the constant C depending only on 8.

Proof. If] €2, let QJ-, j=0,1,..., be the dyadic partition relative to I* that is obtained by
‘quartering’ I* and so on. Let 5;(f), =s,(f, I*), denote the error in approx1mat1ng f in the
LP(I) norm by piecewise polynomlals of total degree < 3 on the partition &, j=0, 1,.
Then E(f, I'*)=sy(f, [*).. As was shown in [DeVore & Popov ’88], for the analogous case
of piecewise polynomials of coordinate degree, we have for all 0 <p < o,

S(f)P Cw4(f 2 k—J)pa J—O 1 (58)

From (5.8) for p = ¢ and from the discretization (3.2) of the Besov space semi-norm | -.| x
we have for 0 <a < 4,

@©

2 2970 (f)g < Cl f 1 5.

j=0

Now let R; denote the best piecewise cubic approx1mat10n in L _(I*) to f on the partition

2\ f—R; || Lan=s (f) Then, f=R,+ (R, —Ry) + - -+ with convergence in L,(I*) and
R -R;_,; lS a piecewise polynomial on the finer partition .9 The cubes in 9 have side
length C27*=J, Therefore, from elementary inequalities for polynomlals we have

” Rj_Rj_IHL,,(I*)<C22(k+])/0”Rj_Rj_1”L(,(I*)-
It follows that
| f=Roll Lygr+ < CZZZ(H’)/””R —-R;_ 1||1,,,(1*)
j=0 .
Since 2/0=2/1r—8=a—8 and 2-%*8 <27k for j>0, if o<1, we obtain from the

previous inequality that

oo
I f=Roll Lgrn < C27k8 Y 2U+ka|| R;,—R;_, 2, cr%

i=0
o0 . le
< C27k8] Y 2U+kac | R, —R; I a" . (5.9
j=0
Now, R, —R;_,=f~ —(f—R;) and so on the right side of (5.9), | R, = R;_, || «*) can

be replaced by s,(f)2 +s _fe. In this way, we see that the right 31de of (5 9). does not
exceed C27%?| f | xe Wthh gives (5.7). The case o> 1 is proved similarly using Holder’s
inequality. O

R.A. DeVore et al. / Surface compression 233

The operators I, are also bounded projectors from C(R?) onto S, and [,(8) —I,_(S) =0,
for all S €., _,. From this, it follows that a,(S) =0, I €9,, for all § €.%,_,. Also, for each
I1€9,, a,(f) is a linear combination of s,(f) and (by rewriting) of s,(f) for cubes J €2, _,
with supp M, N supp M, # @§. Therefore, from (5.2), we obtain

{6

with C an absolute constant. As before, we use the notation that I corresponds to i /2% and J
corresponds to j/2*.
In inequality (5.10), we can replace f by f— Q,_,(f) and use (5.6) to obtain
la,(F)1=la,(f— Qe) <C X 0" E(f, T*). (5.11)

Jeo,

la,(f)]l <C Y nii

jez?

(5.10)

We recall o used in the definition of X“. If o < 1, we use the fact that an /, norm is greater
than an /; norm to obtain from (5.11):

la/(F)I7<C T niIE(S, 7% (5.12)

Jez,

Here 0 <7 <1 is not necessarily the same constant as in (5.11). When o > 1 this also holds
(with a new value of 0 < 7 < 1) because of Hélder’s inequality.

We next give a bound for the number of terms N in our compressed approximation to f
needed to attain an error e.

Theorem 5.3. Let & > 0 be fixed and let 0 <a < 4. Given € >0 and fe X*, with || f | x=< 1,
the algorithm of the previous section will give a compressed approximation S =Y. 4 byM, to f
such that

| f=Slloqoy<e (5.13)
and

N=|A| <Cye= % (5.14)
with C, depending only on 8.

Proof. We have already observed that (5.13) holds (see (5.5)). We need therefore only count
the number of terms N in A= UX A,. Let N, :=|A, | A trivial bound is

N, < C2%, (5.15)

which follows from the fact that there are at most C22* cubes I €2}. We shall now give
another bound for N,.

Let €A, and consider the coefficient d,(f)=a,(f)+ aj(f). Since all the coefficients
d,(f), Je A _,, by definition, satisfy |d,(f)| <(k—1)¢/2K and since the refinement
weights ¢, in (4.3), which are active in determining a;(f), are nonnegative and sum to one,
we have |a;(f)| <(k —1e/2K, for all € A,. On the other hand, by the definition of A,,
|d(f)| >ke/2K. This gives

la,(f)| > €/2K, T€A,. (5.16)

We raise both sides of (5.16) to the power o and replace | a,(f)|° by its upper bound (5.12)
and then sum over all € A, to obtain

Ne®<CK® Y ¥ i E(f, J*) <CK® ¥ E(f, J*)7
I€A, JeD, Jez,

234 R.A. DeVore et al. / Surface compression

where we use our previous notation that i /2% corresponds to I and j/2* corresponds to J.
Here, the constant C depends only on 8.
Now, we use our bound (5.7) of Lemma 5.2 in (5.12) to obtain

N, < CK e koo Z | f X (5.17)
Jew,
The semi-norm on X“ is set subadditive in the sense that if {4 j} is a family of sets and
A=U A; then
| f |§’“(A) < CZ | f |)‘(7""(A,-)
j

where C is the maximum number of times a point x €A4 appears in different of the A; (see
[DeVore & Popov ’88)]). In our case, a point x € R? appears in at most C of the sets J * with
C an absolute constant. Therefore, (5.17) gives
N, < CK% 7275 | f|Zup2, < CK%727k8, (5.18)
This is the other bound we wanted for N,.
From (5.15) and (5.18), we find for any integer m:

m K
N<C{ Y 2%+ ¥ e 27k} < Co22m 4 702773}, (5.19)
k=1 k=m

If we choose m so that 22 = ¢ ~727"%% the two terms on the right side of (5.19) will be of
the same order. Also, 221 %%7/D = ¢~ and hence 22" = e 0/U+80/D = ~1/T = =2/ ag
desired. O

Corollary 54. If fe X%, 0 <a <4, and n are given, then by choosing € and K appropriately the
algorithm of Section 4 generates a compressed approximant S with at most n terms and

I f= S iay<C§?| f | xen=2/? (5.20)
with C,, given in Theorem 5.3, depending only on 8.

Proof. Let A :=|f|x« and €:=C§/* n~%/2\ with C, the constant in (5.14). The algorithm
when applied to f and e gives an approximant S. If we apply the algorithm to g ==f/A and
€/A, the algorithm gives S /A as the approximant to g. Hence, from Theorem 5.3,

I f=Slleqy=Allg=8/Al Ly <k,

which is (5.20). On the other hand, the number of terms in S by (5.14) does not exceed
Cole/A)¥*=pn. O

6. Computational examples

We now discuss the application of the compression algorithm of Section 4 to three surfaces
z=f(x, y) defined on the domain [—1,1]*> (in place of the domain [0,1]* used in our
mathematical analysis of Section 5). These surfaces were chosen to display various singulari-
ties. The first example is the ‘sombrero’ function

fi(x, y)=sin(2wr?) /r?, r=yx2+y?,

which has a removable singularity at 0. The second is the ‘ridge’ function
fo(x, y)=e ¥V

RA. DeVore et al. / Surface compression 235

which has singularities on the line y = x. The third function

Fox, y) =112

has a cusp singularity at the origin.

For surfaces z =f(x, y) we can compare the error in our compressed, nonlinear, approxi-
mation S and the linear approximation I,(f) to f. In particular, if we have n coefficients in
each approximation,

||f_S||Lw<Cn—a/2 “f“X“’ a<4, (61)
whereas
N f=L(f) N, <Cn 2| f l wamay, n=2F a<4, (6.2)
Sombrero

ORIGINAL
(a)

Sombrero Sombrero

n =248.
{b) (c)

Fig. 1.

236 RA. DeVore et al. / Surface compression

whenever the right sides of (6.1) and (6.2) are finite. In (6.2) we define || f || =) to be
sup, ., ¢ “w, (f, t).. Roughly speaking, the right side of (6.1) will be finite if f has «
‘derivatives’ in L, , 1/0=a/2 — 8, while the right side of (6.2) is finite when f has «
derivatives in L. It can often happen that the right side of (6.1) is finite for values of « for
which the right side of (6.2) is infinite. Thus, we can get higher order approximation with our
nonlinear method than with the typical linear method. The space

. 1 o 1
X" =BY(L(2)), =5 -8=1-5,

is close to the space B®:=B(L, ({2)), so we will base our discussion on the spaces B®.
Because the fourth derivatives of f;, which is in C%, are all bounded, it follows that
| f1 lwesqy is comparable to || f, || gL 0y for all o > 0. Consequently, for a fixed number of

Ridge

- ORIGINAL

(a)

Ridge

(b) o ' @

Fig. 2.

R.A. DeVore et al. / Surface compression 237

coefficients n, the error in our wavelet approximation scheme and the error in the associated
linear scheme will be comparable. In fact, the fourth derivative of sin(2mwr?)/r? is greater
than 3000 when 7 is in a neighborhood of 1, so, estimating || f; || x« accordingly and taking
a = 4, we see that the error in our approximation is about 3000Cn ~2 for some unknown (but
presumably benign) constant C. So, even though this function is smooth, its fourth derivatives
are very big, and the approximation requires more coefficients than for the ‘ridge’ and ‘cusp’
surfaces, which are in some sense more singular. Nonetheless, as few as 416 coefficients will
give a compressed surface which approximates the original to within 1.48 X 1072, The
approximant differs little from the original, however, the two surfaces can be distinguished in
Fig. 1 by examining contour lines.

An easy computation for the ridge functlon f, shows that for A orthogonal to the line
y =x, we have | A%(f,, x, y)| = | 42(f,, x, y)| = | h|in a band of width | #| about this line. It

Cusp

ORIGINAL

Cusp Cusp

Fig. 3.

238 R.A. DeVore et al. / Surface compression

Table 1

Errors and coefficients for computational examples

Example Error Number of coefficients

Sombrero 1.30x 1073 6485
2.19%x1073 4794
1.07x10~4 2500
2.14x107* 1878
8.66x10~* 1077
1.39%x 1073 i 881
7.08x1073 541
1.48%x 1072 416
3.59%x1072 306
6.00x1072 248

Ridge 1.60x 1073 1934
6.49x1073 482
1.30x 1072 237
2.59%x1072 116
422x1072 80

Cusp 1.38%x 1073 618
2.76x 1073 463
1.38x 1072 222
2.69%1072 163
7.13%x1072 .91
1.05%107! 70

follows that
wa(fr, 1), =t1*/7 0<t<land 0<r<w.

Therefore, f € B* provided « < 2. The a priori error bounds of Section 5 show that achieving
an error of O(n~%/?) for any 0 <a <2 requires at most O(n) nonzero coefficients. This
should be compared to the linear approximant I.(f,), which also achieves an error of
O(n~*/?) with O(n) coefficients, but for which 0 <« < 1, since w,(f,), =, 0 <t <1.

Roughly speaking, the compressed approximant to f, has a single row of cubes from the
highest dyadic level along the line y =x. Cubes from coarser dyadic levels appear in wider
bands about the singularity line. Fig. 2 presents the original surface and two compressed
surfaces. The compressed surface with 237 coefficients is already virtually indistinguishable
from the original.

As expected, the greatest advantage of the nonlinear compression algorithm of this paper
appears when approximating a function with a point singularity such as the cusp f;. The
modulus of smoothness w,(f3, t). =t/2*%/7. Therefore, this function is in all of the B®
spaces even though the smoothness in L, is w,(f, t), =t/ 2. The error bounds of Section 5
show that our compression algorithm produces a surface with an error O(n~%/2) with O(n)
coefficients for any « < 4. On the other hand, a typical linear method such as I (f;) achieves
an error no smaller than O(n~1/*) with O(n) coefficients. We present the original surface
with two compressed surfaces in Fig. 3. As few as 70 coefficients produce a compressed
surface which is a good approximation to the original, while a compressed surface with 222
coefficients is virtually indistinguishable from the original.

In Table 1, we present some examples of the error of approximation produced by the
compression algorithm for various numbers of coefficients. It is interesting to note that the
error for the the cusp and ridge functions behaves like 604n~2% and 3.36n~ 1%, respectively,
in the number of coefficients n, as expected from our theory. On the other hand, the error for

-

PR

R.A. DeVore et al. / Surface compression 239

the sombrero function behaves like 860577n =27 for n between 248 and 881, like 24058n ~ 246
for n between 881 and 4794, and like 49.4n~ 13 for n larger than 4794. This apparently is due
to the fact that a higher order asymptotic expansion of the error is of the form

Con 2+ Cn~>?+ Cyn3,
where C; depends on the j + 4th derivatives of f;:
Il 1 [l = 40,000, Il £ llw = 850,000, and || f& || = 12,000,000.

The relative sizes of Cg, C;, and C, make the last term dominate for small #, the second term
dominate for intermediate n, and the first term dominate for large ».

Acknowledgements

We thank Bert Still for conducting the calculations and rendering the figures.

References

Béhm, W. (1983), Subdividing multivariate splines, Computer-Aided Design 15, 345-352.

de Boor, C. and Fix, G.J. (1973), Spline approximation by quasi-interpolants, J. Approx. Theory 8, 19-45.

de Boor, C. and Hollig, K. (1982), B-splines from parallelpipeds, J. Analyse Math. 42, 99-115.

de Boor, C., Hollig, K. and Riemenschneider, S. (1985) Bivariate cardinal interpolation by splines on a three-direc-
tion mesh, Illinois J. Math. 29, 533-566.

Brown, L. and Lucier, B. (1992), Best approximations in L! are near best in L?, p <1, Proc. Amer. Math. Soc., to
appear.

Chui, CK., (1988), Multivariate Splines, CBMS-NSF Conference Series, Providence, RI.

Cohen, E., Lyche, T. and Riesenfeld, R. (1984), Discrete box splines and refinement algorithms, Computer Aided
Geometric Design 1, 131-141.

Dahmen, W. and Micchelli, C. (1984), Subdivision algorithms for the generation of box-spline surfaces, Computer
Aided Geometric Design 1, 115-129.

Dahmen, W. and Micchelli, C. (1985a), Local linear independence of translates of a box spline, Studia Math. 82,
243-262.

Dahmen, W. and Micchelli, C. (1985b), Line average algorithm: a method for the computer generation of smooth
surfaces, Computer Aided Geometric Design 2, 77-85.

Daubechies, 1. (1988), Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math. 41, 909-996.

DeVore, R., Jawerth, B. and Popov, V. (1992), Compression of wavelet decompositions, Amer. J. Math., to appear.

DeVore, R. and Popov, V. (1988), Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305, 397-414.

DeVore, R.A. and Sharpley, R. (1984), Maximal functions measuring smosthness; Mem. Amer. Math. Soc. 283.

Frazier, M. and Jawerth, B. (1990), A discrete transform and decompositions of distributiéh'spaces, J. Funct. Anal.
93, 34-170.

Jia, R-Q. (1985), Local linear independence of the translates of a box spline, Constr. Approx. 1, 175-182.

Lyche, T. and Mgrken, K. (1987), Knot removal for parametric B-spline curves and surfaces, Computer Aided
Geometric Design 4, 217-230.

Meyer, Y. (1989), Wavelets and operators, in: E. Berkson, T. Peck, and J. Uhl, eds., Analysis at Urbana, Vol. I,
London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, UK, 256-365.

Peetre, J. (1976), New Thoughts on Besov spaces, Mathematics Department, Duke University, Durham, NC.

