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ABSTRACT 

The equilibrium state of a diffusion model for random genetic drift in  a 
cline is analyzed numerically. The monoecious organism occupies an un- 
bounded linear habitat with constant, uniform population density. Migration is 
homogeneouq symmetric and independent of genotype. A single diallelic 
locus with a step environment is investigated in the absence of dominance 
and mutation. The flattening of the expected cline due to random drift is very 
slight in  natural populations. The ratio of the variance of either gene fre- 
quency to the product of the expected gene frequencies decreases monotoni- 
cally to a nonzero constant. The correlation between the gene frequencies a t  
two points decreases monotonically to zero as the separation is increased 
with the average position fixed; the decrease is asymptotically exponential. 
The correlation decreases monotonically to a positive constant depending on  
the separation as the average position increasingly deviates from the center 
of the cline with the separation fixed. The correlation also decreases monotoni- 
cally to zero if one of the points is fixed and the other is moved outward in 
the habitat, the ultimate decrease again being exponential. Some asymptotic 
formulae are derived analytically.-The loss of an allele favored in an 
environmental pocket is investigated by simulating a chain of demes exchang- 
ing migrants, the other assumptions being the same as above. For most natural 
populations, provided the allele would be maintained in the population deter- 
ministically, this process is too slow to have evolutionary importance. 

I N  a recent paper (NAGYLAKI 1978a), the biological importance of random 
genetic drift in a cline was briefly discussed, previous work was reviewed and 

a diffusion model was developed. The diffusion treatment requires that the 
selection coefficient, s, the variance of the migrational displacement, 2, and the 
reciprocal of the population density, l/p, all be small and of the same order of 
magnitude (NAGYLAKI 1978b), and yields the following results (NAGYLAKI 
1978a). If both alleles are favored in very large regions, for most selection 
gradients, s, 2 and p appear only combined in the single dimensionless param- 
eter /3, the ratio of the characteristic length for migration and random drift to 
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the natural distance for migration and selection. Random drift is highly signifi- 
cant if /3 << 1;  it causes only relatively small variations of order 1//3 around 
the deterministic cline if /3 >> 1. With /3 >> 1, the correlation between the 
gene frequencies at any two points is very nearly independent of 8, and hence 
is parameter-free for particular forms of the selection gradient. For a very steep 
selection gradient, $3 = 2+?%p~, i.e., essentially the product of the square root 
of the selection intensity and the neighborhood size. Thus, with weak selection, 
a large neighborhood size is required for large /3. 

Since the derivation of detailed analytic results appears to be quite difficult, 
we must resort to numerical methods. Such treatments of random drift in linear 
stepping-stone clines of finite length have been given by FELSENSTEIN (1975) 
and SLATKIN and MARUYAMA (1975). The strong-selection limit of the diffusion 
model (pertinent to FELSENSTEIN’S work) was studied numerically by LUSKIN 
and NAGYLAKI (1979) , who also obtained some asymptotic results analytically. 
The numerical investigation of the complete diffusion model in Section I of 
this paper relates to the computations of SLATKIN and MARUYAMA (1975), 
already discussed in NAGYLAKI (1978a). In Section 11, we shall deduce analyti- 
cally some aspects of the long-distance behavior of the diffusion approximation. 

By combining parameters into the single quantity p ,  the diffusion approxi- 
mation enormously increases the range of parameters accessible to numerical 
analysis. All migration patterns with the same variance can be treated simul- 
taneously, and a single calculation with a fixed value of p covers all possible 
values of s, a2, and p yielding that $3. Furthermore, without the diffusion approx- 
imation, numerical investigation of parameter sets with extremely weak migra- 
tion and selection and high population density is not practicable. 

Deterministic theory (FLEMING 1975; NAGYLAKI 1975) shows that an allele 
favored in an environmental pocket will be maintained in the population if and 
only if k, the ratio of the width of the pocket to the natural length of the cline 
corresponding to the step environment, exceeds a critical value, usually of order 
unity. With finite population density, however, random drift causes certain 
loss of this allele in a finite time. In Section 111, we shall examine the effective- 
ness of spatial heterogeneity in preserving genetic diversity by studying the 
distribution of this extinction time. Although lack of a detailed analytic theory 
will force us to employ direct simulation, we shall find that the results may be 
simply and informatively interpreted in terms of the diffusion parameters k 
and /3. 

I. NUMERICAL ANAYLSIS O F  THE INFINITE CLINE 

Our diffusion model is the limit of the following discrete scheme. A diploid 
monoecious population occupies an infinite chain of equally spaced colonies. 
We suppose migration is homogeneous, symmetric and independent of geno- 
type, and consider a single diallelic locus with alleles A,  and A, in the absence 
of dominance and mutation. The generation starts with the same very large 
number of zygotes in each colony. Selection and migration, occurring in suc- 
cession, may alter the subpopulation sizes, but the latter must remain extremely 
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large. Any biologically reasonable variation of the subpopulation numbers 
under selection, in particular, no change (soft selection) and change determined 
by the mean fitness in each colony (hard selection) , leads to the same diffusion 
limit (NAGYLAKI 1978b). Random genetic drift acts through population regu- 
lation, which truncates each colony to the same finite number of adults. Each 
of these adults produces many gametes without fertility differences. These 
gametes fuse at random to form the next generation of zygotes, in Hardy- 
Weinberg proportions in each colony. 

We confine ourselves to the step environment, positing 1 + s sgn x, 1, 1 - s 
sgn x (s > 0;  sgn 5 = x/lx[ , x # 0) for the fitnesses of AIAI,  A,A,, A,A, at 
position x (-" < x < w) .  This choice represents precisely cases of abrupt 
environmental change, such as sudden shifts in soil or vegetation, and approxi- 
mates fairly accurately situations in which the characteristic length of the 
environmental variation is less than Z = c/q%% (SLATKIN 1973), the natural 
length for the cline corresponding to the step environment. Many of our general 
conclusions will concern long-distance behavior; these should hold qualitatively 
even for slower environmental variation (FISHER 1950; FELSENSTEIN 1975; 
MAY, ENDLER and MCMURTRIE 1975; NAGYLAKI 1975, 1978c; SLATKIN and 
MARUYAMA 1975). Notice that for simplicity we have assumed equal selection 
intensities in the two environments. 

We investigate only the equilibrium state of the population. For the step 
environment, the characteristic convergence time to equilibrium is l/s (NAGY- 
LAKI 1978a). Our treatment will be restricted to the expected gene frequency 
in the cline and the covariance between the gene frequencies at two arbitrary 
points. Let us denote the mean allelic frequency at x by p ( f ) ,  where [ = x/Z 
is a convenient, dimensionless spatial coordinate. We express the covariance 
between the gene frequencies at x and y = ZT,I as a function, U (z,w), of the 
dimensionless average position z = ( f  + q) /2  and separation w = ( f  I- T,I ) /~ .  

Taking into account the symmetries p(-z)  = 1 - p ( z )  and u(-z,w) = 
u(z,--w) = u(z,w),  we have the following boundary value problem in the 
quarter-plane z 2 0, w 2 0 (NAGYLAKI 1978a): 

p z z  + p ( z )  [I -p(z)] - v(z,o) = 0, (la) 
uZz + U- -I- 4 (1 - P ( z  f W) - p (  12- w I ) }  U = 0, (Ib) 
uw(z,Of) +@-'{p(Z)[1-p(z)] - U ( z , o ) } = o ,  (IC) 
P(0)  = 1/27 (Id) 
p ( z )  + 1 as 2-  00, (le) 
V z ( 0 , W )  = 0,  (If)  
U ( Z , W )  + 0 as z+w+m,  (Ig) 

in which the subscripts represent partial derivatives (e.g., uZz = a2v/azz). 
The only parameter in (1) is /3 = 2d?&~~. Having ignored mutation, we con- 

fine ourselves to selection intensities exceeding typical mutation rates: s > IPS. 
Since the neighborhood size pa always seems to exceed about 30, and is usually at 
least a few hundred (WRIGHT 1978, Chapter 2), the model is of evolutionary 
interest only if /? 2 1/4. We shall solve the system (1) for /? = 1/4, 1 and 4. As 
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noted above, for >> 1, random drift causes relatively small variations of order 
l/$ around the deterministic cline. Hence, if j? >, 4, we expect the weak-random 
drift computations of LUSKIN and NAGYLAKI (1979) to be an adequate approxi- 
mation. Our results will show that this is, indeed, the case. 

We expect all the results in this section to deviate at most one percent from 
the (unknown) exact solution of (1). In fact, the agreement with the asymptotic 
behavior derived in Section I1 is much closer than that. 

In Figure 1, we plot j j ( z ) .  The first curve from the left is the deterministic 
solution (HALDANE 1948) 

(2) -(1/2) + (3/2) tanh2 [ (42)  + tanh-1 d-1; 
continuing toward the right, the others correspond to @ = 4 , l  and 1/4. The effect 
of random drift on the expected gene frequency is evidently fairly small; it  is 
quite negligible for /3 2 4. Figure 1 exhibits the flattening of the cline due to 
random drift, previously noted by SLATKIN and ~MARUYAMA (1975). Setting 
q ( z )  = 1 - p ( z )  and plotting -In q ( z )  shows that Q ( z )  ultimately tends to zero 
exponentially, in precise agreement with the asymptotic results (7), (12) and 
( 13) in Section 11. The position where p (2) = 1 /2 is fixed at the origin by sym- 
metry; as indicated by the variances displayed in Figure 2 below, individual 
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2 4 6 8 I O "  

FIGURE 1 .-The expected gene frequency as a function of position. 
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observations of the random variable p ( z )  may be shifted considerably. Consult 
SLATKIN and MARUYAMA (1975) for further discussion. 

Since the gene frequency has mean p ( z )  and must be in [O,l], the maximum 
possible value of the variance U (z,O) is p ( z )  [I - jj ( z )  1. Hence, the ratio of these 
quantities, 

shown in Figure 2, is a good measure of random variation. As expected, P ( z )  
decreases for each z as p increases. Although P ( z )  becomes proportional to 1//3 
as p -+ 00 (NAGYLAKI 1978a), for finite p ,  P ( z )  decreases more slowly than I/@. 
For /3 = 4, p F ( z )  is already only about 15% less than its limiting value for 
/3 = w, as computed by LUSKIN and NAGYLAKI (1979). P ( z )  is horizontal at 
z = 0 by dint of the symmetry condition F (-2) = P ( z )  ; it decreases monotoni- 
cally to a constant value (depending on 8) as z increases; the limit P(") agrees 
exactly with the analytic expressions ( IO) ,  (12) and (13) in Section 11. Since 
F ( z )  decreases as increases, it is hardly surprising that P ( 0 )  - P (  ") decreases 
with p ,  showing that the curves are flattened; /3[F(O) - P ( 0 0 ) ] ,  however, 
increases with increasing 8. 

The correlation between the allelic frequencies at x and y reads 

r(z,w) = U ( 2 , W )  [v(z+w,o)v(z-ww,o)I-1'2 ; (4) 
we exhibit --In r (z,w) in Figures 3 through 11. Far from the origin ( z  = w = 0) , 
the correlation increases if p increases with z and w fixed. Near the origin, in 
agreement with the results of SLATKIN and MARUYAMA (1975), the correlation 

O a 3 L  0.2 - 
0 2 4 6 8 1 0 2  

FIGURE 2.-The standardized variance as a function of pasition. 



5 02 T. NAGYLAKI AND B.  LUCIER 

depends rather weakly on p ,  and decreases as /3 increases. As p 4 w, r(z,w) 
becomes independent of /3 (NAGYLAKI 1978a) ; for p = 4, r(z,w) is already within 
about 10% of its limiting value for /3 = 00, calculated by LUSKIN and NAGYLAKI 
(1979). 

We display the monotonic decrease of the correlation for fixed average posi- 
tion, z, and variable separation, w, in Figures 3 through 5. The curves are never 
too far from exponential; as w + they clearly become exponential, the expon- 
ential approximation being quite accurate in all cases for w > 4. The decay rates 
in the exponentials are monotone decreasing in both z and (i.e., the correlations 
decrease more slowly for large z and large 8) ; they range from 0.93 for z = 5 
and fl= 4 to 1.42 for z = 0 and 8 = 1/4. The decay rates for p = 4 are within a 
few percent of the ones obtained by LUSKIN and NAGYLAKI (1979) for /3 = W .  

The correlations for z = 0 and z = 1 are quite close because r(-z,w) = r(z,w) 
implies ar/./az (0,w) = 0. 

Figures 6 through 8 exhibit the monotonic decrease of the correlation as a 
function of the average position, z,  for various values of the separation, w. The 
curves are horizontal at z = 0 because r (-z,w) = r(z,w) . The constant limits 
as z + agree with (1 1) , (12) and (13) in Section 11. The curves show greater 
variation for large w in the sense that r(O,w)/r(w,w) increases as w increases. 

Suppose that we now fix one point at 7 and vary the position of the other point, 
& moving it outward from 7. In Figures 9 through 11 we display r (~~4-7~7) for 
various values of 7. As noted by SLATKIN and MARUYAMA (1975) for 7) = 0, the 
monotone decrease is very close to exponential throughout. For 9 = 3 the results 
are already extremely close to the limiting form (ll), (12), (13) derived in 
Section 11, which applies as 7-j W. The figures show that the correlation 
decreases monotonically to this limit as 7 increases. 

11. ASYMPTOTIC BEHAVIOR O F  THE INFINITE CLINE 

Since in this section we shall be concerned only with long-distance properties 
of the cline, we can generalize the fitness pattern of Section I to 1 + sg (x ) ,  1, 
1 - sg(z), with the assumption that g(z) 4 1 as z + m. If both points at which 
the gene frequency is measured are on the right side of the cline and far away, 
i.e., z - w > > 1, we can still deduce the asymptotic behavior from (1). In fact, 
(le) and (lg) permit us to linearize (1) in 4 and U ;  as z - w - j  w, these satisfy 
the boundary value problem 

q z z  - q ( z )  $- v(z,o) = 0, ( 5 4  

U** I- v,, - 4v = 0, (5b) 

vw(z,O+) + p-’ [ Q ( Z )  - v(z,O)] = 0, (5c) 

Q(z) -+ 0 as z +  00, ( 5 4  

v(z ,w)+O as z+w-jW.  (5e) 
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FIGURE 3.-The correlation for B = % as a function of separation for various fixed values 

FIGURE 4.-The correlation for p = 1 as n function of separation for  various fixed values 

FIGURE 5.-The correlation for /3 = 4 as a function of separation for various fixed values 

of the average position. 

of the average position. 

of the average position. 
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FIGURE 6.-The correlation for ,8 = % as a function of average position for various fixed 

FIGURE 7.-The correlation for /3 = 1 as a function of average position for various fixed 

FIGURE &-The correlation for /3 = 4 as a function of average position for various fixed 

values of the separation. 

values of the separation. 

values of the separation. 
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FIGURE 9.-The correlation for f l  = % as a function of separation for various fixed locations 

FIGURE 10.-The correlation for p = 1 as a function of separation for various fixed locations 

FIGURE 11.-The correlation for /3 = 4 as a function of separation for various fixed locations 

of the point closer to the environmental transition. 

of the point closer to the environmental transition. 

of the point closer to the environmental transition. 

Separation of variables shows that solutions of (5b) have the form 

U (z,w) - A&-", x2 + p2 = 4. (6) 
In view of (5e) and the required positivity of U for all z and w, 
real and positive. Inserting (6) into (5c) yields 

and p must be 

cf(z) - A ( 1  +pp)e--Xz as z+ 00, (7)  
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the exponential decay agreeing with (5d). Substituting (6) and (7) into (5a), 
we find 

X"PP/(l+BP), (8) 

f ( p )  ,8fi3+p2-33pp-4=O (9) 

F ( z )  --j P ( w )  = 1/(1+ pp) as z+a, (10) 

I ( Z , W )  - e-bW as z -  w+ W. (11) 

Thus, although our simple method does not determine the constant A, the stan- 
dardized variance and the correlation fortunately turn out to be independent 
of A.  

To fully specify F and I*, it remains to solve (9) for p ( p ) .  By Descartes' Rule 
of Signs (see e.g., FIEDLER 1969, p. 1170), the number of positive roots of a 
polynomial equation is either equal to tlie number of changes of sign of the 
coefficients, or it is less by an even number. Since there is exactly one change of 
sign in f(p), (9) has precisely one positive root, ,u(p).  Observing that f (d/3) = 
-1 < 0 and f(2) = 2j3 > 0, we conclude that the root p is in ( d T 2 ) .  

The solution of (9) is standard (see, e.g., VILHELM 1969, pp. 77-79). Define 
the following functions of the coefficients: 

and combining this with (6) yields the cubic 

for p = fi(/3). From (6) and (7) we obtain 

b = - 1  - (9pz)-', C =  (27P3)-'-3(2p)-', (12a) 

D = -b3 - C' = 1 - 23 ( 12,8')-' + 4(27p4)-'. (12b) 

If the discriminant D 2 0, then (9) has three real roots; these are all distinct if 
D > 0. If D < 0, then (9) has one real and two complex conjugate roots. Now, 
D is a quadratic in @-z, so it is easy to see that D < 0 if and only if p+ < p < p-, 
where 

p-. = [(27/96) (23 C 11d%73)]-1/2. 

Hence, @+ = 0.284 and 8- = 1.355. Which one of the three roots is the unique 
positive one depends on the sign of c; (12a) informs us that c > 0 if and only if 
p < Po = d 2 / 9  = 0.157 < p+. With 

d =  ( sgnc)dFi  7 (1k) 

we have the following cases: 

(1) 8 < p +  or p2p-: 
Set 

4 = cos-' (c/d3). 

(a) B<Po:  
,p = - (3/3)-' + 2d COS [ (T - +)/3]. 
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(2) B+ < B  <P-: 
Put 

6 = cosh-1 ( c /d3 )  = In { (c/d3) + [ ( ~ / d ~ ) ~  - 1I1l2}. 

p = - (3P)-' - 2d cosh (6/3). 

(12e) 

(13c) 

[The degenerate case c = 0, i.e., p = Po, is trivially solved (VILHELM 1969, pp. 
77-79) .] 

We can derive approximations for p ( P )  for small and large p .  Substituting a 
power series in /3 into (9) and equating coefficients produces 

(144 

Then 

p = 2 - (l/2)p + (1 7/16)p2 - (5/2)ps 4- O(P4) 

~ = = 3 +  (6P)-'-5~3"(72p2)-' + 8(81/?')>"+ 0(P4) 

as 0. A series in inverse powers of /3 yields 

(14b) 

a s p + a .  Thus,as/?+O,p+2andX+O; a s / 3 + a , p - + V T a n d X + l . T h e  
latter limit recaptures the results PF(w) = l/dF and T-(z,w) - exp (--=Tzu) 
of LUSKIN and NAGYLAKI (1979) for weak random drift. 

A few qualitative conclusions, confirming some of the computations in Section 
11, follow without appealing to the explicit solution (12), (13). 

Solving (9) for /3 as a function of p, differentiating and using that v%< p < 2 
shows that 

dP dA - < 0, whence - > 0. 
dB dP 

Hence, as the amount of random drift is increased (i.e., f l  decreased), the ex- 
pected cline is broadened, and, provided z - w is snfficiently large, the correla- 
tion is decreased. 

By an easy calculation, with the aid of (9) and (IO), we find 

d -F( ") = 2p > 0; 
dP 

combined with (15) this implies 

d 
---F(w) < 0, 
dP 

therehy establishing the decrease of the asymptotic standardized variance with 
weakening random drift. 

A few numerical examples will relate the above theory to the computations 
in Section I and indicate the accuracy of the series (14). The exact values of 
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TABLE 1 

Comparison of analysis, computation, and approximation 

Analysis Computation Approximation 
B U x B l W )  U x P l W )  U 

1/10 1.95863 0.40468 0.83622 - - - 1.95813 

1 1.8311 7 0.80425 0.35321 1.82631 0.80418 0.35180 1.87720 
4 1.76747 0.93598 0.12392 1.76328 0.93557 0.12328 1.76774 

1/4 1.91729 0.56921 0.67599 1.90601 0.56896 0.67501 1 .go234 

p, X and F ( w )  in Table 1 were calculated from (13), ( 6 )  and (lo),  respec- 
tively. We can estimate the computed value of p most accurately from the corre- 
lations for w = 1 in Figures 6 through 8 because these yield the highest value 
of z - w; as expected from the figures, this procedure slightly underestimates the 
true value of p. For an independent check on A, we employ the values of the 
expected gene frequency plotted in Figure 1. The results displayed in Figure 2 
supply the calculated values of P (  a). The agreement between all the exact and 
computed results is excellent. The last column in Table 1 is based on (14) : we 
use (14a) for /3 = 1/10 and 1/4, and (14b) for /3 = 1 and 4. The inverse-power 
series (14b) must be utilized for /3 = 1 because, in contrast to the power series 
(14a), the coefficients in (14b) decrease fairly rapidly. These approximations 
are quite adequate; only for /3 fairly close to 1/2 is neither series acceptable. 

Before ending this section, we present the asymptotic behavior far to the left. 
Let us assume g(x) -+ -,a2 as x -+ ,-w, but is otherwise arbitrary. By definition, 
w > 0. If the gene frequency is measured at two points far to the left, we may 
suppose that z + w + --CO. The asymptotic boundary value problem for p ( z )  and 
U (z,w) differs only slightly from ( 5 )  ; by the techniques used above we find 

p ( z )  - B(l + a / 3 p o ) e a V  as z+ -00, (1 7a) 
P ( z )  -+ F ( - a )  = 1/(1 +a$&) as z+ -00, (1 7b) 
r(z,w) as z+w*-w, (17c) 

where B is a constant, X o 2  4- pO2 = 4, and po is given in terms of the unique posi- 
tive root p = p ( P )  of (9) by po = p(&) .  It follows at once that all qualitative 
properties are the same on the two sides of the cline ( p  and Q being inter- 
changed), as they must be. 

111. LOSS O F  A N  ALLELE FAVORED IN A N  ENVIRONMENTAL POCKET 

In the previous sections we assumed that both alleles were favored in such 
large regions that extremely long absorption times render the study of equilib- 
rium properties of the infinite cline biologically meaningful. If at least one allele 
is favored in a region not greatly exceeding the characteristic lengths in the 
problem, the absorption times may be sufficiently short to have biological rele- 
vance. Hence, to discover both the range of applicability of the previous sections 
and the efficacy of spatial diversity in maintaining genetic variability, we must 
investigate the extinction of an allele favored in an environmental pocket. 
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Lacking a detailed diffusion approximation for the absorption times, we must 
resort to numerical analysis of special cases of the Markov chain on which a 
diffusion approximation would be based. Both biology and the desire for valid, 
simple and informative diffusion jnterpreta tion compels us to choose parameters 
for which simulation is much more effective than matrix iteration. 

The model described in the first paragraph of Section I is specialized as follows. 
Each deme has N individuals just before reproduction. Migration is confined to 
nearest neighbors, which exchange migrants at rate 4 2 .  Since one obviously 
cannot simulate an infinitely long chain of colonies, we assume that there are i 
demes, A,  being favored in j of them and deleterious in the remainder. With the 
discrete form of the step envircnment discussed in Section I, the selection coeffi- 
cient sn in deme n has the form (s > 0) 

Intuition and deterministic analyses ( NAGYLAKI 1975, 1978d) suggest that 
placing the environmental pocket in the interior of the habitat rather than at 
one end would make no qualitative difference. In any case, the environment 
often is different near the end of a habitat, as it was in HALDANE'S (1948) origi- 
nal application to Peromyscus polionotus. 

If p , ( t )  is the frequency of A,  in adults just prior to reproduction in colony n 
in generation t (= 0:1,2, . . .), pn is also the gene frequency after reproduction, 
and after selection it becomes 

Migration alters this to 

After population regulation, the gene frequencies in the colonies are indepen- 
dently distributed, the distribution of p ,  ( t  + 1) begin binomial with parameter 
p,** and index 2N. 

To keep the number of parameters to a minimum and to model a common 
biological situation, we wish to choose i so large that there are no end effects. 
Therefore, we must use only such initial conditions that even with i = 00 A,  will 
be lost with probability one in a finite time. If A ,  is initially represented in an 
infinite number of colonies, however, then the probability of its being represented 
in a finite number of colonies in generation t (  < a) is zero, so its probability of 
extinction in a finite time is also zero. Hence, we suppose that A,  initially occurs 
in a finite number of demes in the infinite chain we wish to approximate. 

Let us posit that the two parts of the habitat corresponding to the two environ- 
ments in (18) become connected at t = 0. If both subpopulations are at equilib- 
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rium at that time, then, regardless of the previous migration pattern in the two 
subpopulations, we have 

Since there appears to be no other natural initial condition for our problem, we 
shall always posit (20). With the restriction that pn( 0) > 0 only in a finite 
number of demes even if i = a, we expect our results to be a good qualitative 
guide for all initial conditions. 

Having no rigorous proof, we first check numerically that the distribution of 
the extinction time T is, indeed, independent of i for sufficiently large i. We 
choose s = 0.05, m = 0.4, N = 8, and j = 1, and display the results of the simula- 
tion in Table 2. For various values of i, we present the median extinction time T ,  
the mean extinction time T, the standard error o?; of 'T, and the coefficient of 
variation alJT of the distribution of T.  All times are in generations. Each line 
is based on 1000 extinctions; in addition, 15 fixations occurred with i = 5 , l  with 
i = 9, and none for higher values of i. Since extinction is certain with i = m, 

fixations indicate the presence of end effects. Nevertheless, Table 2 shows no 
statistically significant deviations of the extinction time distribution even for 
small i. 

For each line of Table 2, indeed for all the simulations in this section, a posi- 
tive skewness was found. This, and the fact that the mean always exceeds the 
median, are consequences of the expected long tail of the distribution of the 
extinction time. In Figure 12 we plot the probability density h ( T )  corresponding 
to the last line of Table 2. We used unequal interval sizes for the underlying 
histogram in order to obtain roughly the same relative error in different parts 
of the distribution; the error bars are two standard deviations long. The median 
is approximately normally distributed with mean T = 44 and standard devia- 
tion [2/~(f)d"l@%]-~ z 1.39 ( C R A M ~ R  1946, p. 369). Since the median is much 
less influenced by extremely long extinction times than the mean, it is hardly 
surprising that it has a smaller standard error. The 25th and 75th percentile 
points are at T = 25.5 = T - 0.3650~ and T = 78.0 = T 4- 0.671aT, respectively; 
if the distribution of T were Gaussian, these points would be at T * 0.6750,. 

TABLE 2 

Extinction times for various habitat lengths 

T u p  
i $ F 0- 

5 46 63.11 1.74, 0.870 
9 46 63.11 1.75 0.875 
17 50 63.51 1.60 0.795 
33 45 59.65 1.50 0.795 
65 44 60.07 1.60 0.843 
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I l l  I I I  I I I T 0 20 40 60 80 100 120 140 160 ’ 
FIGURE 12.-The probability density of the extinction time for  s = 0.05, m = 0.4, N = 8, 

j = 1 and i = 65. 

We display the results of our simulations in Table 3. Since the simulations 
are extremely expensive, and the errors decline only as the reciprocal of the 
square root of the number of extinctions, 20 extinctions were observed for every 
parameter set. The parameters s, m, N ,  j and i specify the Markov chain. The 
The characteristic length for the deterministic cline in the diffusion limit is 
1 = dm/(2s)  (SLATKIN 1973). 

If i is sufficiently large to eliminate end effects, and the diffusion approxima- 
tion applies, then the distribution of the extinction time, measured in natural 
units of l/s generations. depends only on two, rather than four (i.e., s, m, N and 
j )  parameters (NAGYLAKI 1978a). This important reduction of the number of 
parameters by two is possible because the units of length and time are arbitrary 
in the diffusion limit. The two dimensionless parameter combinations of which 
the scaled extinction time 7 = sT is a function are most informatively chosen as 
Zi = j / l  and p = 2d2msN.  The deterministic parameter k represents the size of 
the environmental pocket in natural units (NAGYLAKI 1975) ; as discussed before, 
F is an index of the amount of random drift. In the last four columns of Table 3 
we present the median ;, the mean y, the standard error U; of y, and the coefficient 
of variation u JY. 

To have no end effects and assure extinction, we require at least that i >> i 
and i > > 1. As Figure 1 indicates, however, for moderate or strong random drift 
(&I 5 1) , the characteristic length of spatial variation appreciably exceeds I ;  
then we enforce i >> I even more stringently. There are 560 extinctions in 
Table 3;  no fixations were observed. 

The diffusion approximation holds if s << 1, m << 1, N >> 1, and i >> 1 
(NAGYLAKI 1978b). To test that the results depend only on k and p ,  we ran dif- 
ferent combinations of s, m, N and i that yield the same k and p (see lines 2 and 
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TABLE 3 

Extinction times for various parameters 

0.00075 0.1 
0.00075 0.1 
0.0015 0.2 
0.0015 0.2 
0.0015 0.2 
0.00075 0.4 
0.003 0.4 
0.0015 0.2 
0.0015 0.2 
0.0015 0.05 
0.00075 0.025 
0.0015 0.05 
0.003 0.1 
0.00075 0.1 
0.003 0.1 
0.003 0.1 
0.003 0.1 
0.006 0.2 
0.003 0.025 
0.006 0.05 
0.006 0.05 
0.006 0.05 
0.012 0.1 
0.006 0.0125 
0.012 0.025 
0.024 0.05 
0.012 0.00625 
0.024 0.0125 

19 4 
38 4 
19 4 
38 4 
75 4 

150 8 
75 4 

150 4 
300 4 

19 4 
38 4 
38 4 
19 4 
38 8 
38 4 
75 4 

150 4 
150 4 

19 4 
19 4 
38 4 
75 4 
75 4. 
19 4 
19 4 
19 4 
19 4 
19 4 

100 8.16 0.490 
60 8.16 0.490 
60 8.16 0.490 
36 8.16 0.490 
36 8.16 0.490 
72 16.33 0.490 
36 8.16 0.490 
36 8.16 0.490 
36 8.16 0.490 

100 4.08 0.980 
100 4.06 0.980 
100 4.08 0.980 
100 4.08 0.980 
100 8.16 0.980 
60 4.08 0.980 
36 4.08 0.980 
36 4.08 0.980 
36 4.08 0.980 

100 2.04 1.960 
100 2.04 1.960 

36 2.04 1.960 
36 2.04 1.960 
36 1.02 3.919 
36 1.02 3.919 
36 1.02 3.919 
36 0.51 7.638 
36 0.51 7.838 

60 2.04. 1.960 

0.465 
0.931 
0.9331 
1.862 
3.674 
7.348 
7.348 
7.348 

14.697 
0.465 
0.465 
0.931 
0.931 
0.931 
1.862 
3.674 
7.348 

14.697 
0.465 
0.931 
1.862 
3.674 
7.348 
0.465 
0.93 1 
1.862 
0.465 
0.931 

1.61 2.68 
1.62 2.30 
2.09 2.21 
2.51 3.56 
3.98 5.36 
4.03 4.41 
2.60 3.16 
4.92 5.36 
2.00 3.15 
2.04 4.69 
3.82 5.16 
2.57 4.26 
4.17 5.98 
5.27 6.38 
5.00 6.88 
9.21 12.42 

21.39 25.93 
5.50 8.78 
6.79 8.95 

22.00 27.03 
29.88 53.25 

727.5 840.2 
24.44 35.53 
88.20 105.3 

524.6 766.1 
234.9 270.0 

2231 2777 

- 
S m N j i  I k P 7 i- 0- 0 /7 

7 i- 

0.838 1.987 0.80 1.88 
0.698 1.165 
0.451 0.877 
0.316 0.640 
0.624 0.784 
0.814 0.680 
0.546 0.553 
0.355 0.503 
0.416 0.347 
1.026 1.454 
1.570 1.498 
1.025 0.888 
1.184 1.242 
1.112 0.831 
1.249 0.875 
1.097 0.713 
2.153 0.775 
3.508 0.605 
1.922 0.979 
2.507 1.252 
4.756 0.787 

12.17 1.022 
160.0 0.851 

9.061 1.141 
21.591 0.918 

153.9 0.898 
44.44 0.736 

514.7 0.829 

3, 6 to 8, etc.). For each (k,P) for which more than one set (s,m,N,j) was used, 
we divide the extinction times for each (s,m,N,i) into three groups, T < 71, 
71 < T < T~ and T > 72, by choosing T~ and T ~ ,  depending only on k and P, so that 
the frequencies in the three classes are very roughly equal. This procedure yields 
a contingency table for each (k,P) (e.g., a 2 X 3 table for lines 2 and 3), so a 
+test will tell us whether the samples of 20 extinction times for the same (IC,/?) 
and different (s,m,N,j) may come from the same distribution. No x2 was even 
close to significance. The total was x:* = 8.35, corresponding to a probability of 
0.76 of a greater deviation from the diffusion approximation. Since we were 
forced to use some high values of m, and usually took j = 4 in order to limit 
computation costs, the agreement is surprisingly good. 

We also checked the diffusion approximation in another way. In the deter- 
ministic diffusion limit, A,  is preserved if and only if k > tan-l 1 = 0.785 
(NAGYLAKI 1975). Choose s = 0.003, j = 4 and i = 36; then m = 0.4. 0.1, 0.025 
and 0.00625 correspond to k = 0.490, 0.980, 1.960 and 3.919, respectively. 
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TABLE 4 

Pooled extinction times for various parameters 

513 

k'P 0.465 0.931 1.862 3.674 7.348 14.697 

1.88 2.49 2.21 3.56 4.3 1 5.36 
0.490 0.838 0.336 0.316 0.624 0.361 0.416 

1.987 1.044 0.640 0.784 0.650 0.347 

3.92 5.13 6.38 6.88 12.42 25.93 
0.980 0.762 0.635 1.249 1.097 2.153 3.508 

1.508 0.959 0.875 0.713 0.775 0.605 

8.78 8.95 27.03 53.25 840.2 - 
1.960 1.922 2.507 4.756 12.17 160.0 - 

0.979 1.252 0.787 1.022 0.851 - 
- 35.53 105.3 766.1 - - 

- - 3.919 9.061 21.59 153.9 - 
1.41 0.928 0.898 - 

270.0 2777 - - 
7.838 44.M 514.7 - - 

- - 

- - 
- - 

- - - - 0.736 0.829 

Iterating the deterministic system (19), (20),  we found convergence of the gene 
frequency to zero in the subcritical case, k = 0.490, and convergence to a cline 
in the three supercritical cases, k > 0.785. The maximum gene frequencies at 
equilibrium for k = 0.980, 1.960 and 3.919 are 0.317, 0.810 and 0.973. The dif- 
fusion values, read off roughly from Figure 3 of NAGYLAKI (1975), are 0.31, 
0.82 and 0.98, in much closer agreement than one might expect. 

Having convinced ourselves of the validity of the diffusion approximation, we 
may pool extinction times, T, for the same (A$) .  In Table 4 we display for each 
(A$)  the mean 7 (top line for each k) , the standard error 7 (middle line) and 
the coefficient of variation vT/; (bottom line). We omit the median because 
its relation to the mean does not vary greatly. (All the distributions in Table 3 
were skewed up.) 

Let us dispose first of the coefficients of variation. These are all between 0.347 
and 1.987, and have large standard errors. Table 4 suggests no obvious depen- 
dence on k, though the exact values are surely functions of k. We intuitively 
expect that the coefficients of variation should decrease as random drift becomes 
weaker. Therefore, we wish to examine Table 4 for decrease as /3 increases with 
k fixed. We can apply the exact Wilcoxon signed-ranks test (BROWNLEE 1965, 
pp. 258-260) in the following manner. 

Each row of n coefficients of variation supplies [n/2] independent adjacent 
pairs, and the pairs in different rows are independent. We obtain signed differ- 
ences to which the test applies by subtracting the right from the left member 
of the pair. A low total rank sum for the negative differences indicates a pattern 
of decrease along rows. When n is odd, there are different ways of forming pairs. 
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Functional dependence should be clearest toward the right, where p varies more 
rapidly. Hence, with n odd, it is reasonable to ignore the first element in each 
row; e.g., for k =  1.960 we have the differences 1.252- 0.787 =0.465 and 
1.022 - 0.851 = 0.171. This procedure yields a rank sum of 5 for Table 4; the 
probability of ;I rank sum less than or equal to 5 is 10/21° = 0.010. If we dis- 
regard our a priori argument, however, and neglect the last element in rows with 
odd n, we lose significance: the rank sum is now 16, and the probability level 
rises to 141/21° = 0.138. This occurs entirely due to fluctuations for k = 1.960. 
Decrease can be established independently for k = 0.490 and k = 0.980. From 
Appendix Table 2 of KENDALL (1962). we find that the probabilities of Spear- 
man rank correlations as low or lower than those calculated for these rows are 
(3.029 and 0.0083, respectively. We conclude that the coefficient of variation 
decreases with increasing p. 

A glance at the mean extinction times and their errors in Table 4 immediately 
reveals that the means increase with both k and p. In the subcritical case 
(k = 0.490): the increase with p is extremely slow. Even without appeal to 
normality and the estimated errors, however, the increase is statistically signifi- 
cant: the probability of obtaining a Spearman rank correlation as high or higher 
by chance is 0.0083. The slow increase is expected on intuitive grounds: very 
roughly, the process is analogous to the elimination of a deleterious allele by 
selection and random drift. Approximating a result of NEI (1971), we can easily 
see that in this simpler case T - In N as N --j with s fixed, leading us to con- 
jecture that ; grows like hi /3 as fl+ 00 with k fixed at a subcritical value. 

The increase with /3 is faster in the supercritical case, becoming more rapid 
for higher values of k. The dependence on the deterministic parameter k is even 
stronger than on the relative random drift parameter p.  For higher values of p, 
very long mean extinction times are reached for lower values of k. 

We conclude that, if a cline exists deterministically, mean extinction times 
will be very long in almost all cases. This is particularly so because, as discussed 
in Section I, in most natural populations p will greatly exceed unity unless selec- 
tion is extremely weak. Thus, spatial diversity is extremely effective in main- 
taining polymorphism: random drift generally causes gene frequency fluctuation, 
rather than loss of genetic variability. The model will usually cease to apply long 
before extinction. 

Although the cost of extending our simulations to higher k and p is prohibitive, 
we can support our assertions by analogy. Conceptually, our problem resembles 
that of an island of N individuals on which A,  is favored, the fitness pattern 
being identical to the one in the environmental pocket and all immigrants being 
A A , .  This island model has the same qualitative behavior as the full cline prob- 
lem in the deterministic case (NAGYLAKI 1975). Our island model, in turn, is 
equivalent to selection and irreversible mutation in an isolated panmictic 
population. 

LI and NEI (1977) have evaluated the expected extinction times in the latter 
situation by numerical integration. In their notation, S = 4Ns (we retain our 
convention, s > 0, for  consistency) and M = 4". The dependence of k and /3 
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TABLE 5 

Mean extinction times of LI and NEI for  the island model 

515 

k'P 1.41 2.24 3.16 4.47 7.07 10.0 14.1 22.4 31.6 

1.41 
2.24 
3.16 
4.47 
7.07 

10.0 
14.1 
22.4 
31.6 

3.1X1010 - 
- 1.2~1029 

- - 
on S and M is obvious: k = d S / M  and ,8 = d S M .  Since the island and cline 
models are analogous, but not identical, these choices may be multiplied by 
numerical factors of order unity. With our convention, the critical value of k 
is one (HALDANE 1930; NAGYLAKI 1975). In their Table 3, LI and NEI (1977) 
present the mean extinction times in units of 4N generations; to obtain; for their 
model, we must evidently multiply their results by S. We display their values 
for large k and ,8 in Table 5. [Their results for small k and p are similar to ours. 
The third entry in their first row should be 0.61, not 0.41 (W.-H. LI, private 
communication) .] 

Table 5 agrees with all the observations based on Table 4. The rapid increase 
of 7 to astronomical values as either k or ,8 significantly exceed one (for k > 1) 
is manifest. 

DISCUSSION 

The diffusion approximation investigated numerically in Section I and analyt- 
ically in Section 11 neglects all third centrol moments of the gene frequency 
distribution (NAGYLAKI 1978a,b). Nevertheless, all the results are entirely rea- 
sonable. The problem of establishing the absence of pathologies mathematically 
(NAGYLAKI 1978a,b) and examining the accuracy of the diffusion approximation 
remains open. 

In Section IJI, we employed the diffusion approximation only to reduce the 
number of parameters from four to two, facilitating thorough numerical analysis 
and straightforward biological interpretation. Various tests indicate that the 
diffusion approximation is more than adequate for this purpose. 

The simulations of Section 111 show that in the single-locus diallelic model, 
provided the allele favored in the environmental pocket would be maintained 
in the population deterministically, the extinction time in a natural population 
due to random drift would almost invariably be extremely long. Other evolu- 
tionary forces, such as demographic or  environmental changes, would supervene 
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long before extinction. Hence, at the level of the classical model, random drift 
is reflected in stochastic fluctuation-usually small-of gene frequencies. When 
spatial diversity acts to preserve genetic variability, it does so too effectively to 
permit its loss sufficiently fast to matter. 

With many alleles at a single locus, low gene frequencies will be common, 
and one expects reduction of the number of alleles to occur more rapidly than 
complete loss of polymorphism. But we have no results even for the deterministic 
theory with multiple alleles. 

The studies presented here suggest that much greater genetic complexity is 
required for the operation o€ WRIGHT’S (1977) shifting balance theory of evolu- 
tion. As WRIGHT has insisted, control by many loci with strong epistasis is cer- 
tainly a prerequisite; pleiotropy may also be necessary. 
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