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1. INTRODUCTION
We study certain Sobolev-type regularizations of the hyperbolic conserva-

tion laws

w+f(u), =0, =zeR t>0, (C)
u{z,0) = ug{z), z€cR

that add terms simulating both dissipative and dispersive processes. These evo-
lution equations have the form

up+ f(u), —vg{u)g —Buz =0, zeR, >0, >0, (S)
with the auxiliary specification

u{z,0) = ug(z), =zc<R.

The behaviour in L!(R) of the solutions of problem (S), as well as the value of (S)
as an approximation to problem (C), is studied. Convergence results, with error
estimates, are given as v and § tend to zero. In a companion paper [19], finite-
difference discretizations of (S) are studied as an approximation for (C).

As a tool to study nonlinear evolution equations posed in L}R), it is shown
that any nonlinear mapping from L!(R) to itself that preserves the integral, is a
contraction, and commutes with translations satisfles a maximum principle.
This lemma gives necessary and sufficient conditions that solutions of (S) satisfy

a maximum principle, despite the dispersive nature of (8).
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We apply our Sobolev equation theory to the study of the singular perturba-

tion problem,

ug + f(u); +nuz =0, z€R, £>0, >0,
u(z,0) = uol{z), =z<R,

and show that solutions of the singularly perturbed problems converge to the

solution of the conservation law if the flux f satisfies a certain ‘‘compatibility

condition” discussed by Whitham in [25] for linear problems.

The plan of this paper is as follows. The remainder of this section intro-
duces notation and discusses preliminary results. In Section 2, a theorem about
maximum principles is proved. Other properties of solutions of evolution equa-
tions are reviewed. In Section 3 we give necessary and sufficient conditions for
(S) to generate a contraction semigroup in L!(R). It is then shown that if these
conditions are satisfied, the solution of (C) is recovered in the limit as v and §
tend to zero with v?/ 8 held fixed. Error estimates are provided. In Section 4,
the results of Section 3 are used to analyze second-order hyperbolic singular

perturbations of (C).

Notation and Preliminary Results

Translations on R* will be denoted by 0:z 2z +y. (Sometimes the notation
0y will be used.) If u is a function whose domain is R, then ou is defined by
ou(z) =u{o(z)). An operator A that maps elements of some function class
defined on R to elements of some other function class is said to commute with
translations if A(ou) = 0A(u). For any set £, xz is the characteristic function
for that set. The symbol C denotes various constants whose values need not be
the same for each instance of its use. The Fréchet space L. (R) is the space of

all locally integrable functions on R.

There is a natural partial ordering on the spaces L!(R) and LJ;(R), with
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u=v if and only if u(z)=wv(x)a.e (du). Endowed with the operations
(uVu)z) = max(u(z)v(z)) and (u/\w)(z) = min(u{z),v{z)), L}(R) is a Banach
lattice, and Ly, (R) is a complete vector lattice. Possibly nonlinear operators T
of a vector lattice to itself that preserve the ordering, so that © = v implies that
Tu > Tv, are order preserving, or monotone. (If T is linear, it is called positive.)

The space BV(R™) of functions of bounded variation is the set of all measur-
able functions © whose first distributional derivatives are finite measures. Two

equivalent BV(R) seminorms are given by

du
lu | = T
and
1
sup —=lloy% —%{l;1p) (1.1)

(See Volpert [24].) The definition of BV(/), where / is a bounded interval, and

BV(RxI) is directly analogous to (1.1).

A mapping A:X -+ Y, where X and Y are Banach spaces, is said to be

Lipschitz continuous if there is a number C such that for allu,v in X,
A(u) = A@)lly = Clu =vilx; (1.2)
|A|[#® is the least such C. If, instead, for every bounded subset & of X thereis a

number C such that (1.2) holds for u,v in £, then A is locally Lipschitz continu-

ous,

We formulate our differential equations in terms of m-accretive operators
and contraction semigroups. A good survey of the application of these topics to
partial differential equations may be found in Evans [12]. If X is a Banach space,
a duality mapping J: X » X* has the properties that for all z€X, ]IJ(:L')HX, =z |y,
and J(z){z)=|lz||2. A possibly multi-valued operator A, defined on some subset

D(4) of X is said to be accretive (or, equivalently, —A is dissipative) if for every
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pair of elements (z,4(z)), (y,A(y)) in the graph of A, and for every duality map-
ping / on X,
J(z ~y)A(z)-A(y)) = 0.

If, in addition, for all positive A, / + A4 is a surjection, then 4 is m-accretive.

2. A MAXIMUM PRINCIPLE.
A number of time dependent partial differential equations, such as the heat
equation, scalar hyperbolic conservation laws (see Crandall [5]), and the porous

medium equation (see Evans [12]), may be formulated as

u +A(w) =0, t>0,
w(0) = ug, wugel(Q),

(2.1)

'

where A is a (possibly multi-valued) m-accretive operator on L¥Q). The
Crandall-Liggett theorem [B] states that, for any fixed £=0, the mapping 5; that
assigns to ug the value u(¢) is a nonexpansive mapping on L!(Q?). Crandall and
Tartar [8] proved the following useful lemma about nonexpansive mappings
T:LYQ) - LY(Q).

LEMMA 2.1 (Crandall-Tartar). Let 7:LY(Q)- LYQ) be such that, for all u in

LX)

fT‘u.dp,:fudu.
Q 1)

Then T is nonezpansive on LY(Q) if and only if T is order preserving on LY(Q).

s

The next lemma extends Lemma 2.1,

LEMMA 2.2. (Maximum Principle). Any contraction T from LYR) or LYZ) (Z
denoaling the integers) to itself that preserves the integral and commutes with

translations satisfles o mazimum (and minimum) principle. That is,

ess sup Tu < esssupu
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(essinf Tu = essinfu ).

Proof. A proof will be given for L'(R), the case of L'(Z) being slightly easier.

From the previous lemma we know that 7 is order preserving, so our atten-
tion may be restricted to nonnegative functions u by considering ©\/0. The

lemma is obviously true if ess sup U = =,
If up(z) = X(—nnj(z) u(z), then un 2 in LY(R) as n +x, and, since T is a
contraction in L}(R), Tu, » Tu in L(R) as n » =, Thus, some subsequence of Tu,

converges a.e. on R, and it suffices to show that
ess sup Tu, <esssupu ,

to prove the lemma.

Since T commutes with translations,

o e = Tou | 3gy = 17(0) = Tt 10y < lowe =& 105 -

Thus, [|Tu lpvm) < | v

If % is any function in L'(R), then

Ress sup U = |[ulgym) - (2.2)

This inequality is clear if ess sup v = 0 or |{u/[pym = <. It is also easily seen for

smooth functions, since if % is smooth,

1 , 1
ess supu < e—flu ()l de = Sluliavm (2.3)
R’

If u is not smooth, let u, = ¥, * u, where ¥.(z) = -i—'g(/( %—) and ¥ is a nonnegative,
smooth, integrable function whose integral is 1. Then u, is smooth, and (2.2)
holds. Young's inequality implies that

flow, _u:“Li(mS (low ”u”Li(R) .
Therefore, |1u,llgym < I |lpym- Also, u,»u a.e as £ tends to zero, and, for any

£, SuUp U, < ess sup 4. Thusesssupu = 151_1:51 ess sup U, and
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2 Izirré esSSSup U, = lil’il‘ti,nf v < Hellanm -

It is clear from (2.3) that equality in (2.2) is satisfied for smooth functions
¢<LYR) if there is an 2, with ¢'(z )= 0 for z <z, and ¢'(z)<0 for z =z, For any
n, pick such a ¢ with ¢=u, g.e. and ess sup ¢ = ess sup u. Then Typ=Tu, a.e.,

and

ess sup Tu, s esssup Ty

n

7 llov

[

liellavee

ess sup ¢

ess sup ¥ .

/77

The simple, but somewhat artificial, example Tu = X[g,1) .]/;u(z)dz shows
that the conclusion of the lemma does not hold if we do not assume that T com-
mutes with translations.

In the preceding lemma, no smoothness properties are assumed of the
mapping T, and T may map smooth functions to discontinuous ones. This
occurs, for example, when the lemma is applied to the solution operator of a
scalar conservation law (although the result is well known for these problems),
or to solutions of (S) with nonsmooth initial data.

This pair of lemmas says a great deal about the solutions of evolution equa-
tions in L!(R). If T represents either S; for some fixed £, or the solution of the

backward difference equation
Tu +AtA(Tu)=uw, AE>0,
then the implications indicated in Figure 1 held.

It is sometimes simple to establish for an operator 4 that fA(u) =0 or
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for all v, A is m-accretive in LY{(R) A commutes

{ Au =0 Q U with translations

for all w, forallu, v, T commutes
47‘“' = f'“' || 7w — T ”Ll(n) < [lu-v ||L1(R) with translations

1
u=vae => for allu,
Tu=Tw ne. 17 |lpvy < lullavm
for all v,

esssup Tu < esssup u

Figure 1. Properties of evolution equations in L!(R).

that A commutes with translations. If one can show that A is m-accretive on
LY(R) in conjunction with these two properties, the other properties illustrated

in Figure 1 then follow. These ideas will be exploited in the following section.

3. SOBOLEV EQUATIONS.

It is well known that solutions of (C) are not, in general, continuous; see
Whitham [25] for a discussion of shocks. Weak solutions of (C), defined by the
relation,

0={w(z)w(z.owmmf“{’rl(w:+f(u>¢z)dxdt, @3.1)
for all pe Cg (RX(—=,TY)),
are in general not unique. The reader may refer to Le Roux [18] for a good
description of this phenomenon.

Oleinik [20), Hopf [15], Volpert [24], and Kruzkov [18] provided existence

and unigueness results for certain classes of weak solutions of (C) through the

prescription of an extra condition, known as an entropy condition. The theory

for solutions of (C) used in this paper is expressed in the following theorem.
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THEOREM 3.1. If f is locally Lipschitz continuous, then for any uq,cBV(R)
and for any T>0 there is a unigue w€BV(Rx[0,T]) such that u satisfles (3.1)
and, in addition, satisfies the entropy condition: for all ¢cC4¢(Rx[0,T]), with

»=0, and for all c €R,

J S [lw=clge+sgn(u—c)(f ()~ f ()¢, dz dt =0, (3.2)

Rx[0.T])

For a proof, see Volpert [24), Kruzkov [168], Crandall and Majda [7].

Kuznetsov [17] proposed a general theory of approximation for solutions of
(3.2) in an arbitrary number of spatial dimensions. We formulate the one-
dimensional version as follows.

THEOREM 3.2. Let u be the entropy solution of (C) with uge LY{R)NBV(R),
and let v:R*-+L}(R) have left and right limits for every t and be right continu-
ous. Pick a positive, symmetric function 7(¢) with support in [-1,1] and
integral 1, positive numbers ¢ and gq, and let w(z,t)= sio-n(;to—)%-n(::—). Define

the "' Kruzkav form'

A= [ [t —ue )| seo(z =t t)
xS
+5gn(u(z ") ~u (@80 (f (02N = 1 (u(2'4)) gorolzr~z t"=t) de" at " da' e

+f[w(:”—z',o—t')lvc(z”)--u.(z‘,t’)\ —w(z"—z t=t")|v{z"t—0)-u(z"t')|jdz " dz'dt’
SxR

where S = Rx[0,t], Then
1t (6) = ()l sz = 14(0) =0 (0} g+ (22 + 1 0 80) [0 avcm
H'U (t’_‘r) ~-v (t')HLl(m —A:DIC'

’r/

+ SLIP
¢ ri<eq —E'<r<t -t

We next investigate properties of the initial-value problem

u + f () —vg (U )gg —BUz =0, ZER, £>0, v, >0, (3.3)
u{z,0) = ug(z), z<R.

A particular instance of this equation has been used to moedel the propagation of
small amplitude, shallow-water waves (see Benjamin et al. [1], and Bona et al

{2]). In this context, ¢ is proportional to elapsed time and 2 is proportional to
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distance in the direction of propagation. The term —vg(u),, models dissipative
processes, and the term —fu,; models the action of dispersion. (An equation is
dispersive if waves of differing wavelengths move with different speeds.) The
equation (3.3) may also be viewed as a regularization of the hyperbolic conserva-
tion law (C). It has been used in this way by Douglas et al. [10] to simulate a

linear waterflood problem.

Existence, uniqueness and regularity of solutions of (3.3) have been studied
by Showalter (23]. Ewing [13] has studied the numerical approximation of solu-
tions of (3.3) and examined the behaviour of solutions of (3.3) as one of v or 8
tends to zero. The present theory focuses on the behaviour of solutions of {3.3)
in L!(R), and on the consegquences of allowing v and f to tend to zero simultane-

ously.

Using a different approach (compensated compactness), Schonbek [21] has
investigated the behaviour of regularizations, like (3.3), that arise from the addi-
tion of small dissipative and dispersive terms. Her techniques apply, with some
degree of success, to special cases of (3.3). Unlike the methods presented here,
her methods also have application to the study of (3.3) with the dispersive term

—fu,y replaced by the Korteweg-de Vries dispersive term +fuy,,.

Previously, Conley and Smoller [4] had proved the existence of travelling
wave solutions of regularizations of hyperbolic systems incorporating both dissi-
pation and a KdV type dispersive term. They also showed that these travelling
wave solutions converged to weak shock solutions of the Riemann problem for
the hyperbolic systems. Smoller and Shapiro [22] have considered which viscos-
ity and dispersion matrices are admissible for systems, in that the regularized
equations admit traveling wave solutions that converge to shock solutions of (C)

as the levels of dissipation and dispersion go to zero.

We will assume throughout this section that the functions f and g are glo-
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bally Lipschitz continuous and, without loss of generality, that F(O)=g(0)=0.
The function space that contains ug will generally be taken as L'(R) or BV(R) so
that solutions of {(3.3) are considered in the following weak sense. Following Ben-
jamin et al. [1], we formally rewrite (3.3) as an integral equation. A scaling
between the dissipative and dispersive terms is introduced that redefines g so

that (3.3) becomes
ug + f (), —ag{uw)z —afu, =0, zeR, £>0, a>0. (3.4)

If 8, denotes differentiation with respect to z, (3.4) may be written as

(1-a?0d)uy = —f (u); + g (u)s (3.5)

—f (W) = (1~ a0B)g (u) ~ g ().

It

The elliptic operator (1 —a®3%) can be inverted on the real line, subject to the

condition that the solution be bounded at infinity, by convolution with the funec-
tion

=l

Hu(z) = Ej?e e,

Thus, we may convert (3.5) to

U = =Hawf (), = (g (u) - Mo %9 (u))
=-M, *f(u)z""XKa *g(u)z (3-6)
=Ka*f(u)—i—(g(u)—Ma*g(u)), z€R, t>0, a>0,
where

_l=zi
K,,(z):—me o,

2af

The operator on the right-hand side of (3.8), which we will write as A(u), is a
Lipschitz continuous map from L!(R) to itself. For, by Young's inequality,
ACw) ~ A0 S 1Kally iy 17 () =7 @l 1q (3.7)
+ (g () =g @)1+ 1M al 1019 () = 9 ()l 100

< 201 lap e = ey + Z-llg e e~ gy
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Thus, from the theory of ordinary differential equations in Banach spaces, Equa-
tion (3.8), posed as an initial-value problem in L!(R), has a unique solution in
C'([0,=),LY(R)) for any ug in L}(R) (see Hille and Phillips [14]).

We will consider solutions of the integral equation (3.6) to be weak solutions
of (3.4). If u is a solution of the integral equation (3.8), then u is a solution of
(3.4) in the sense of distributions. Also, if u is a solution of (3.8) possessing con-
tinuous, bounded derivatives of up to second order, and f and g have two con-
tinuous bounded derivatives, one may differentiate (3.8) to see that u is a classi-
cal solution of (3.4). Thus, such an interpretation of solutions of (3.4) is reason-

able.

Qualitatively, the solutions of (3.3) behave differently for various ranges of
the parameters v and 8. When v and g8 are 0, the solutions of (3.3) are the solu-
tions of the conservation law (C). Here, shocks, or discontinuities, develop in the
solution v (cf. Whitham [25]), and solutions of (C) must be considered in the
weak sense of Theorem 3.1. If g(u) = w, v is positive, and g is still 0, the solution
u of (3.3) is smooth for all positive time. When v is small, however, large gra-
dients arise in the function % near the time when the first shock occurs in the
solution of the conservation law (C) with the same initial data. For each prob-
lem, the solution operator S; is a nonexpansive mapping on L!(R), it satisfy a

maximum principle, and it is order preserving on L(R).

Solutions of (3.3) when v is O and # is positive behave quite differently.
When § is small, near the time when shocks oceur in the solution of the conser-
vation law {C), oscillations occur in the solution of (3.3) in about the same posi-
tion as those shocks. These solutions of (3.3) are not contraction semigroups on
LY(R), they are not order preserving, and they do not satisfy a maximum princi-
ple. Thus, it is interesting to see how the dissipative and dispersive terms

interact.
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The following theorem plays a central role in our analysis.
THEOREM 3.3. The mapping A: LY(R) » L(R), defined by
Aw) = Konf () = (g ()~ Harg (w)), (3.8)
is dissipative on LY(R) if and only if the functions g (¢) & f (¢) are nondecreasing
on R.

The proof of Theorem 4.2 contains the proof that if 4 is dissipative on L'(R)
then the functions g+f are nondecreasing on R.
Proof. Since the dual of LY(R) is L*(R), any duality mapping J for L'(R) is of
the form J(u)(v) = f:f(u)(z)-u(x)d:t , where
R
1 u(z)>0,

Fu)@) = lullpg | -1 w(z)<o,
a(z) uw(z)=0,

where a(z) is any measurable function with |a(z)|<1a.e..

Writing out the integrals in A{u) explicitly gives

T(u —v)(z)(A(w) - A@))z)

[,, Zlz-wl
= J{u -~v)(z) fe—g—{—(f (U(y))—f(v(y)))+g(u(y))—g(v(y))]d!
—lz—y |

e (f(u(y))—f(v(y)))+9(u(y))—9(v(y))]dy (3.9)

- gE) -9 @@ =l

Note that sgn{u —v)(g(u)-g{@))=|gu)—-g{v)|. since g is nondecreasing by
hypothesis.
Integrate (3.9) with respect to z, replace the quantities in braces with their

absolute values, and change the order of integration to obtain
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J(u —v) (A(w) —A(v)) < ”l'-’;—”ﬂﬂ.x
{f | =(F Ca(y D) —F ey +gluly)) —g(viy)]
R 2

R LD E ) Y 1) T
~[lo@)-g@ () az}.

f g+f are nondecreasing on R, then
RIgMO) =g = 1-(F O =7 +g @) ~g M +17 (&) ~F () +g(&)~g ()]
for any £, 7 in R, so that
J(u-v)(A(u)-A(v))<0.
Thus, 4 is dissipative.

7’0/
THEOREM 3.4. Let the mapping A be given by (3.8). Then the following condi-

tions are equivalent.

(1) The functions g(&)+f (¢) are nondecreasing on R.

(2) The mapping —A is accretive on L'(R).

(3) The mappings Syug-u(-t), where u(z,t) is the solution of Equation (3.6),
are conitractions in LYR). Since S, commutes with translations,
[Se(u) | avamy < 1% | Byimy.

(4) The mappings S, are order preserving on L(R),

(5) The mappings S; satisfy a mazimum and a minimum principle.

FProof. Theorem 4.1 has a proof that (1) implies (2).

Because the operator 4 is a Lipschitz continuous map in LY(R), the mapping
-A is not only accretive on L!(R) but also m-accretive, Thus the Crandall-

dggett theorem [6] shows that there exists a semigroup S; for which
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Se(u) = Hm(/ + %ﬂ)"‘(u). and (3.10a)
”St(u)_st ('v)”Ll(R)s Hu ""U“Ll(n)- (310b)

Since the solution of the differential equation (3.8) is in C!([0,=),L1(R)), Brezis
and Pazy [3] show that the function S¢(u) defined by (3.10a) is the same as u(¢)
defined by (3.6). Thus property (3) follows.

We use Lemma 2.1 to show that properties (3) and (4) are equivalent. This

requires

Ju(z.t)dz = fug(z)dz, t>0.
R R
For any u€L'(R), [A(u)dz =0, since [K,dz =0, and [Mydz = 1. Thus, if v is
R R R
the solution of v — :?4(1/) = u, {’u dz = f'u. dz. Because the function S;(u) is
B

the limit as n » = of functions v in £}(R) all having the same integral, the map-
pings S; satisfy the hypotheses of Lemma 2.1.

Lemma 2.2 may be used to show that property (4) implies property (5).
This requires that the mappings S; commute with translations. Since the opera-
tor A commutes with translations, an argument similar to the one above shows
that S; commutes with translations.

Finally, we show that if property (1) is false, then property (5) does not
hold.

Assume that (1) does not hold. Without loss of generality we may assume

that there is some 1> ¢ with g{(n)+ f {n) <g (&) + £ (£). It must be true that n>0

or £ <0; assume, again for deflniteness, that 7 >0.

Let
0 r<~R-1
-1
¢ -R<z< R
uo(z) = n 0<z <R
0 R+1<z
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and define u linearly on the intervals where it is not deflned above so that it is
continuous on R. The positive parameter R is to be determined. For this initial

datum, one determines from (3.8) that
w(0.0) = (=1 (M) =g (M) + o (F (&) + 9 (£) + &(R), (3.11)

where £(R)-+0 as K - =. Since the sum of the other terms on the right-hand
side of (3.11) is positive, for some value of R, %(0,0)>0. Thus for some ¢, S

does not satisfy a maximum principle, so that (5) implies (1).

r7/

Property (1) of Theorem 3.4 may be stated in terms of the original parame-

ters v and B of equation {3.3) as Property (1)
(1)’ The functions vy (¢) = 8% (£) are nondecreasing on R
If f and g are in C}(R), then Property (1)’ is equivalent to

for all ¢€R  vg'(€) = B[S (€)] . (3.12)
The quantity on the right side of this relation measures the interaction between
the dispersive term (%), and the nonlinear transport term (|7 '(£)]), while the
expression on the left is a measure of the strength of the dissipative term. This
condition defines the sense in which the dissipative term must dominate the
interaction between the nonlinear and dispersive terms so that the properties of
Theorem 4.2 hold. Condition (3.12) does not say that dissipation must be large
with respect to the initial data. Rather, it is similar to certain stability condi-
tions for finite-difference equations (see [19]).
The next theorem proves that, under certain conditions, solutions of (3.4)
converge to the entropy solution of the conservation law (3.1).
THEOREM 3.5. Assume that the functions g+f are nondecreasing on R and
that T'>0 is given. Then for any uocBV(R) there exists a unique solution u{z,t)

of (3.4) with ueCY[0.T1LL(R)) and |u(t)|pym wuniformly bounded jfor
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0<t<T. Also, as a0, the solutions u of (3.4) converge in C%([0,T].L}.(R)) to

the entropy solution of (C) for the same wuq.

Proaf The first part of the proof constructs solutions of (3.4) in the space
BV(R), and shows that these solutions satisfy properties analogous to properties

(b) to (f) of Theorem 3.4.
For any positive integer k, let u* = x{_g 4]  %o. Then u* is in LYR)NBV(R),
1 | pym < 1ol vim) + 2 lMkoll gy and [[u* || wg < ol jm): Thus, by Theorem
4.2, for every k there is a unique mapping prC'([0,7].L}R)) such that
Pr(t) = Se(u®). A fortiori, p; isin CH[0,T]), L (R)). Also, for any positive time ¢,
[pe(t) v = 1ol Bvam + 2lftollpmgg): (3.13a)

and

o8 (6 = ol (8.13b)

Since “Ma“Ll(R):HO‘KaHLl(m:L and 'f(u)’BV(R)suf”ln;pluJBV(R)- Equation (3.6)

yields

122281 = 140 ey = (17 s + 5 ) 12 | vim (3.142)

< (If o + llg lizp) (1ol Brimy + 2litollpmg) - (3.14D)

Hence, the functions p, are equicontinuous in Ll (R).

For every k, the range of p, is contained in the set

S = fueLio(R) || pvm < { %ol svm + Rilwollye(gy and [1efljm g < Ifeolij~g)3.15)
which is precompact in L}, (R) {see [11]). Thus, by the Arzela-Ascoli theorem,
some subsequence of the p, renamed p;, converges in C%[0,7],L(R)) to a
function p(t).

The functions p,(f)-p(t) and u*-+uy (where 4, and u, are extended to
Rx[0,T] as constant functions on [0,T]) in C%[0,T],L}: (R)). We now show that

A{pe(t))» A(p(t)) in the same space.
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Clearly, f{pe(t))~ f(p(t}) in C%[0. 71, L. (R}) if f is Lipschitz continuous.
If [ is any bounded interval in R, Jp={z | |2~y |<R for some ¥y in /{, and
Kz} =X(0=2 1#1/%/ 20 then

T+R

I* ww =K wullpygy < f [ K5 E—y) [uv)-v)) dy dz

+ [ [ KHz-y)|u(y)-vly)| dydz
I ly-z|>R

< g-;;!u«y)'—v(y)n dy (3.16)
+ |t =gy | [_(;R]G(x)dx.

In our case, u = {p{t)), v=7F(ps(t)} are uniformly bounded in L™(R), and
F{ox) > f (o) in %[0, T) L (R)). Therefore, the second term of the last expres-
sion in {3.18) may be made arbitrarily small by letting K be sufficiently large.
For any fixed R the first term tends to zero uniformly for ¢t €[0,7). Thus, for any
bounded interval /CR, and £>0, if k is large enough,
K 81 (or) =7 Olljsry S €.

Because the other terms of A{pp) may be treated in the same way, A{pe} > A(p).
Since p(t) is continuous in L (B, the same argument shows that A(p(t)} is also

continuous. Thus p(t) satisfies.
¢
p(t) = ug+ fA(p(r))dT. (3.17)
(]

Differentiating (3.17) with respect to ¢ shows that p(t) is in C}([0, T}, L5 (R)), and
that p(t) satisfies (3.8):
Because of (3.14), [p(t) gy < 10| +2 [|u°||L.m) independently of t.

We now show uniqueness. If & is any solution of (3.8) with initial data vg and

weCH{[0,T].Lit (R)) with |©|pym uniformly bounded for £€[0,T], (3.14a) shows

that H%‘;—(t)llumsﬂ for some number C independent of ¢, and that

”&)(t) —vollLl(ms Ct.
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Assume now that there are two solutions p and @ of (3.6) corresponding to

the same initial data ug. Then, for any ¢, p(t) —w(t)eLY(R), and
L p(6) = )l = 7 (o8) - () 2L 280, (3.18)
= J(p(t) — w(t)) (A(p(2)) = A(()))

where J:LY(R) - L=(R) is the duality mapping of Theorem 4.1. The argument
used in Theorem 4.1 shows that the right hand side of (3.18) is nonpositive.
Therefore, p(t)=w(t)=S5;{ue). More generally, if w~-v is in L}R)., then
¢ () = e (0l < e = 1y

The other properties are as follows. By setting v =ou in the last inequality,
we see that |u(t)|pym < |uolpym. Hence, if ug is constant, u(f) =u,. Because
of part (4) of Theorem 4.2, the mapping ug-u(t) is order preserving by con-
struction. Thus S; satisfles a maximum and minimum principle. The inequality
(3.14a) also applies to u, since u satisfies (3.8).

The second part of this proof shows that the solutions of (3.4) converge to
the entropy solution of (C) as a tends to zero. The dependence on a of the solu-
tions u of (3.4) will be made explicit by writing ©?

Note that, since (3.14a) and |u%(t)|pvm < %ol svm) hold independently of a,
the functions u® mapping [0,7T] into Ll (R) are equicontinuous. The range of
each mapping ©? is again contained in the set S of (3.15). Thus there exists a
sequence of the numbers a tending to zero, such that the corresponding solu-
tions of (3.4) converge in C%([0,T],L}:(R)) to a function u. 4 fortiori, the func-

tions u? converge to u in the weaker topology of L. (Rx[0,T]).
This function v € BY(RX[0,T]) since
e (+y) =w (o Mipyguqo.rn= T1Y ol By,
and similarly,

e +at) =uw (o Mpagugery < T 1881 (1S lzep + 119 llzip) |20l avemy -
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We now show that the functions u?® satisfy an approximate entropy condition
and that v satisfies the entropy condition of Theorem 3.1.

Fix @ >0. For any t¢€[0,T) and c€R, solve the initial value problem

U+ () —0g(V)sy — 0Pz = 0, t >tg, z€R, (3.19)
v{z,tg) = u*(z,ly)Ve,zeR.

Since the operators S; are order preserving, and ¥ and ¢ are solutions of {3.19)
with initial data w®(z,tg) and ¢, respectively, it is true that
v(z,t)=u*(z.t)Vec forallzeR, t=typ.
Therefore, for all tg€[0,t),
ve(z ko) = (uXz . to)Ve ),

where the right-hand side may be interpreted as a measure, since u®V¢ is also
in BY(RX[0,T]). But

v (Z.to) = Alu(to)Ve)(z),
so that, as measures,

{(utvc), = A(u®Ve),

and similarly,

(u?/\c); = A(u®/N\c).

For any nonnegative g€ C§ (Rx[0,T]), we may compute
0= lb{‘5'[71][(1¢"‘VC), —(ut\e ) —{(A(uVe) - A e )] pdz dt
= DM}—((u“Vc)-(u“/\c))w —(f(u™e)~f(uN\e)) Hanps  (3.20)
—(g(u*ve)-gu®/\c))aM, * ¢, dz dt
= -D‘f[({nlua—c lpe + sgn(u®—c)(f (u®) =S (c)) Ma»¢:
+sgn(u®—c)(g(u®)~g(c)) aMa # ¢z dz di .
As o tend to zero, the functions u®+u, |u®-c|-|u-c|, and
sgn(u®—c)(f (u®) = f (c))- sgn(u —c)(f (u) - f(c)) in Lz (Rx[0,T]) and bound-

edly a.e. (passing to a further subsequence, if necessary). Also, M, x ¢, >y, and
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aMy % 9gp =0 in LY Rx[0,T]). The Lebesgue dominated convergence theorem

implies that

0= [ [ lu=clp; +sgn(u—c){f{u)-F(c))ps dzdt.
Bx[0,T]

This is the required entropy condition.

/77

The next theorem uses Kuznetsov's theory to obtain an error estimate.

THEOREM 3.B. If the assumptions of Theorem 4.3 are valid, u® is the solution

of (3. 3), and u is the solution of (C), then theve exist a C such that
lu(t) =w(t)ll g < € (0t % [ug| v -

Proof. 1t is shown in Theorem 3.4 that ‘,"ﬂ<€::._1?<‘_’_a_¢,,l|v (t'—-ﬂ')-—v(t’)[lum is
bounded by eo(|lf lizip + 119 l1p). The argument of Theorem 3.5 shows that, as a
measure,

|lu®—c |, + Alutve), ~A{m®/\c), <D,

If one multiplies this inequality by w=w(z"~z't"~t"), with u®=u%(z",t"), and

substitutes u =u{z'.t') for ¢, an integration by parts shows that

-0 < = [ [alaslsgn(u®-u) g (%) -3 (@)ma:

+ (Mo —61) #[sgn(u®—u) (f (u®) ~f (u))]wg-dz"dt " dz'di".

Here &; is the Dirac delta measure. Since |u2%(')|zym< |up| sy@ uniformly for
t<[0,7] and f and g are Lipschitz, the first and second terms on the right can
be bounded by atllgllup |uolavm Wz llpysy and at [If e |wolavm llwzll 1)

_AfDE

respectively. Because ||“’=”||L1(3)5 C/e, is bounded by

CE(IIS Hp + g i) | uolgy(g)cx/ ¢. By letting &4 tend to zero, we see from Theorem

3.2 that

e (8) =w () 1y = 28| %ol pyim) + CE(IS Nz + llg llzt0 ) [ 20| mremoa &
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Minimizing this expression with respect to & gives

e (8) ~202(8 1108 % C 20| syt 2 2(1if llip + I 1) 2.

s

None of the above theorems hold if the dispersive term —Buz, is replaced
by the KdV dispersive term +fu,,.. In particular, it is simple enough to show
that, no matter how small the coefficient 8, for certain initial data the initial

value problem

U+ (U)g =g (W)gz + Bilaze =0, zERE>0, ' (3.21)
u(z,0) = ug(z), ze<R,

will not satisfy a maximum principle. This initial data can be chosen to be a
third degree polynomial in the neighborhood of the maximum of %y However,
Schonbek [21] has used the theory of compensated compaciness to show that
certain regularizations of the form (3.21) converge to the entropy solution of the

conservation law (C).

The initial data 2¢ for which {3.21) does not satisfy a maximum principle
has a significant high frequency component at its maximum. The KdV equation
is sensitive to high frequency waves: the dispersion relation for the linearized
equation shows that as the wavelength gets shorter, waves travel with an
increasing, unbounded speed in the direction of —=. The model equation (8)
does not have this property. Instead, the phase and group velocities of the
Fourier components of the initial waveform are bounded independently of the
wavelength. This difference may provide some intuition as to why the K4V model

does not satisfy a maximum principle.

4. ON WAVE HIERARCHIES

In a chapter in [25] entitled ‘'Wave Hierarchies,” Whitham studies a class of

singular perturbation problems of the form
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8 I 8
"’[at +°‘a‘z_] at +cza_zi¢+

posed on the quarter-plane z >0, t >0; the positive parameter #>0 is small. Equa-

—6__+aa

at t 2559 = 0 (4.1)

tion (4.1) can be considered a second-order hyperbolic regularization of the

first-order equation

d¢ . 0 _
6t+aax 0, (4.2)

whereas Equation (4.2) is the reduced equation for Equation (4.1).

Using Laplace transform technigues, Whitham shows that Equation (4.1) is
linearly stable if the characteristics of the reduced equation (4.2) are compati-
ble with the characteristics of Equation (4.1), in the sense that ¢, <a <c¢,. This
occurs when, at any point (z,y), the first-order characteristics of {4.2) point into
the cone whose boundary consists of the second-order characteristics of (4.1).
In this case, the fastest and slowest signals in (4.1) travel along the characteris-
tics with speed ¢, and ¢, respectively, while decaying like Ce "7, where ¢ is the
characteristic variable. The bulk of the signal travels at speed a, the wave
speed of the reduced equation. Finally, any incongruities in the boundary condi-
tions are resolved in a boundary layer near z =0 of width proportional to 7.
Whitham's analysis can also be used to cover the pure initial-value problem in
which (4.1) is posed on the half-space z€R, t > 0, and initial data ug(z) is pro-
vided on the line £ = 0.

We use a different approach to provide a thorough analysis for a similar
nonlinear problem. Consider the conservation law (C) and its second-order

hyperbolic regularization

U+ f(u)s +nugy =0, z€R, £>0, (4.3)
u(z,0) = ug(z), z€R.

The hyperbolic regularization (4.3), which results in a singular form of (4.1),

introduces both dissipative and dispersive effects, and we will show that it is &
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special case of the Sobolev equations introduced and analyzed in the previous
section, for which results similar to those in Section 3 are true. We must first
show that Equation (4.3) is well posed with the given initial conditions.

Because the characteristics of Equation (4.3) are the lines z =¢ and £ =¢
for any constant ¢, we are specifying initial data along a characteristic, and the
solution of (4.3) is not unique. Transform (4.3) by taking (1-78;) of each side to
obtain

ug + f (U)g ~NF (U )az ~N*tzzg = 0. (4.4)
By this device, we have separated the effects of the regularization nuz into its
purely dissipative part (—nf(u);,) and its purely dispersive part {—n%u.,y;).
Because the operator (1 —78;) has a non-zero kernel, Equation (4.4) will have
more solutions than (4.3).

It is immediately obvious that Equation (4.4) is a special case of Equation
(3.3). Our analysis of {3.3) relies on the fact that the operator 1-%?382 can be

inverted, subject to boundedness al infinily, by convolution with the function

zl=l
My = #2 7 . Equation (4.4) can therefore be transformed into the integral

equation,

w = Kpaf ()=~ (2) = Ha ] (), (4.5)

_ =izl
(Kn= —S-SEEELe 7 ), which may be viewed as an ordinary differential equation
n

on LP(R) for any 1<p <. Posed as an initial-value problem on L'R), (4.5) has a
unique solution for any Lipschitz continuous f. Thus, we choose the ‘‘correct”

solution of (4.3) to be the unique weak solution of (4.3) with “ut“L-(m[o,T]) <o for
any T'>0.

With this definition, Theorem 3.4 yields the following stability results.
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THEOREM 4.1. The following properties are equivalent.

1. The function f is nondecreasing on R.

2. The mappings S;:ug->u(-,t), where u(z,t) is the solution of (4),
are contractions on L'(R). Since S; commutes with translations,
this implies that | Sy (uo)| pvRy < | 2ol BV(R)-

3. The mappings S; are order preserving on LY(R): if ue(z)=wo(z)
for all z €R, then Sy{ug){z)= Si{ve){z) for all z€R, £ >0.

4. The mappings S; sotisfy maximum and minimum principles:
esssup S, {ug) < esssupug and essinf S; (uo) = essinfug.

In light of Theorem 4.1, we say that (4.3) is stable if f is nondecreasing.

It seems natural to require that f be nondecreasing for stability; otherwise
the '‘dissipative’” term -nf (4)g in (5) is not dissipative on all of ZY{R)! How-
ever, the proof of the preceding theorem relies on the delicate balance between
the dissipative and dispersive effects of the regularization in (4.3).

Once Theorem 4.1 is in hand, the solution operator S; can be extended to
ugeBV(R) as a continuous map on the space of locally integrable functions
Ll (R). Besides being total variation diminishing, the map S; has the following
properties.

THEOREM 4.2. Assume that the function f is Lipschitz continuous and nonde-
creasing. Let Sy(ug) be the solution of (4.3) with u,€BV(R) and let u(z,t) be the
entropy solution of (C). Then there exists o constant C depending on the
Lipschitz constant for i such that Jor any t>0,
8¢ (wg) —w (. )1y = Cnt ) 2ol avmy:

Theorem 4.2 is a direct conseguence of Theorem 3.6,

The results of our analysis can be compared with the linear analysis of Whit-

ham. In Equation (4.3), information travels in the positive z and t directions.
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Whitham's compatibility condition for the regularized equation requires that the
first-order characteristics point into the first quadrant, ie. that f be nonnega-
tive, so that f is nondecreasing. This is exactly the stability condition of Part 1
of Theorem 4.1. If this compatibility condition holds, then Theorem 4.2 provides
strict error estimates for the full nonlinear problem in terms of the regulariza-
tion parameter 7.

The problem

U+ f(U) —Nuz =0, zER, £>0, (4.8)
u(z,0) = ug(z), ze€R

can be analvzed similarly. The following theorem applies.

THEOREM 4.3. Assume that the function f is Lipschitz continuous and nonin-
ereasing. Let S;{uy) be the solufion of (4.8) with u,c BV(R) and let u{z,t) be the
entropy solution of (C). Then there exists a constant C depending on the
Lipschitz constant Jor f such that Jor any t>0,
15e (o) —w (.8l gy = C(nt )V 2 Jug| pym):

Theorem 4.3's stability condition is that f be nonincreasing on R, and the
characteristics of (4.8) can be interpreted as pointing in the negative z direc-
tion and the positive £ direction. Whitham's compaltibility condition is now that
the first-order characteristics of (4.6) point into the second gquadrant; this is

equivalent to requiring that f be nonincreasing on R.
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