A SHORT PROOF OF THE DIRECT SUMMAND THEOREM VIA THE FLATNESS LEMMA

LINQUAN MA

The goal is to explain a short proof of the direct summand theorem which relies only on André's flatness lemma [And18], the idea follows from [And20] and we use the same notation as in op. cit.. I thank Bhargav Bhatt and Kestutis Cesnavicius for discussions on the proof at MSRI Spring 2019.

Theorem 0.1. Every complete local domain R of mixed characteristic (0, p) with perfect residue field admits a big Cohen-Macaulay algebra. In particular, the direct summand theorem holds.

Proof. Write R = S/P where $(S, \mathfrak{m}) = W(k)[[z_1, \ldots, z_n]]$. Since $p \notin P$, by standard prime avoidance, we can pick $f_1, \ldots, f_c \in P$ such that p, f_1, \ldots, f_c is a regular sequence in S with $c = \operatorname{ht} P$. Extend f_1, \ldots, f_c, p to a full system of parameters on S: $f_1, \ldots, f_c, p, x_2, \ldots, x_d$. Then p, x_2, \ldots, x_d is a system of parameters on S/P and $S/(f_1, \ldots, f_c)$. Since P is a minimal prime of (f_1, \ldots, f_c) , there exists $g \notin P$ such that $gP \in \sqrt{(f_1, \ldots, f_c)}$.

Let $S_{\infty,0} = S[p^{1/p^{\infty}}, z_1^{1/p^{\infty}}, \dots, z_n^{1/p^{\infty}}]$ and let $S_{\infty} = S_{\infty,0} \langle f_1^{1/p^{\infty}}, \dots, f_c^{1/p^{\infty}}, g^{1/p^{\infty}} \rangle [\frac{1}{p}]^{\circ}$. Then both $S_{\infty,0}$ and S_{∞} are perfected algebras. Moreover, let $T = S_{\infty}/(f_1^{1/p^{\infty}}, f_2^{1/p^{\infty}}, \dots, f_c^{1/p^{\infty}})^{-}$, where $(-)^{-}$ denotes closure in the *p*-adic topology. Then *T* is also a perfected algebra.

Claim 0.2. p, x_2, \ldots, x_d is a $p^{1/p^{\infty}}$ -almost regular sequence on T.

Proof. By André's flatness lemma (see [Bha18, Theorem 2.3]), S_{∞} is $p^{1/p^{\infty}}$ -almost faithfully flat over $S_{\infty,0} \mod p$ and thus $p, f_1^{1/p^e}, \ldots, f_c^{1/p^e}, x_2, \ldots, x_d$ is a $p^{1/p^{\infty}}$ -almost regular sequence on S_{∞} for every e. This implies p, x_2, \ldots, x_d is a $p^{1/p^{\infty}}$ -almost regular sequence on $S_{\infty}/(f_1^{1/p^e}, \ldots, f_c^{1/p^e})$ for every e.¹ Hence after taking direct limit for e and p-adic completion, we know that p, x_2, \ldots, x_d is a $p^{1/p^{\infty}}$ -almost regular sequence on T.

Claim 0.3. p, x_2, \ldots, x_d is a $(pg)^{1/p^{\infty}}$ -almost regular sequence on $g^{-1/p^{\infty}}T := \operatorname{Hom}((g^{1/p^{\infty}}), T)$

Proof. By Claim 0.2, we only need to check that $(g^{-1/p^{\infty}}T)/(p, x_2, \ldots, x_d)$ is not $(pg)^{1/p^{\infty}}$ almost zero. This comes down to show that $(pg)^{1/p^{\infty}}$ is not contained in $(p, x_2, \ldots, x_d)T$. Therefore it is enough to show that $S_{\infty}/(\mathfrak{m}S_{\infty} + \sqrt{PS_{\infty}})$ is not $(pg)^{1/p^{\infty}}$ -almost zero. Now S_{∞} is a $p^{1/p^{\infty}}$ -almost Cohen-Macaulay S-algebra by André's flatness lemma again, so we can use Hochster's algebra modification or Gabber's method (see [Gab18]) to map S_{∞} to a big Cohen-Macaulay S-algebra B. If $S_{\infty}/(\mathfrak{m}S_{\infty} + \sqrt{PS_{\infty}})$ is $(pg)^{1/p^{\infty}}$ -almost zero, then so is $B/(\mathfrak{m}B + \sqrt{PB})$. But the latter one is not $(pg)^{1/p^{\infty}}$ -almost zero thanks to [And20, Proposition 2.5.1 (2)] (applied to R = S and $\pi = pg$, note that we are using $pg \notin P$ to guarantee the conditions are satisfied).

¹We are using the fact that if y_1, y_2 is an almost regular sequence, then y_1 is always an almost nonzerodivisor mod y_2 (but y_2 may not be an almost nonzerodivisor itself).

Finally, since T is reduced, T is an $S/\sqrt{(f_1, \ldots, f_c)}$ -algebra, and thus gP = 0 in T. But then $g^{1/p^{\infty}}P = 0$ in T and thus $g^{-1/p^{\infty}}T$ is an R = S/P-algebra. By Claim 0.3 above, $g^{-1/p^{\infty}}T$ is a $(pg)^{1/p^{\infty}}$ -almost Cohen-Macalay R-algebra. So we can use Hochster's algebra modification or Gabber's method to map $g^{-1/p^{\infty}}T$ to a big Cohen-Macaulay algebra.

- *Remark* 0.4. (a) By Gabber's refinement of the flatness lemma [GR04, 16.9.17], if we instead let S_{∞} be the *p*-root closure of $S_{\infty,0}[f_1^{1/p^{\infty}}, \ldots, f_c^{1/p^{\infty}}, g^{1/p^{\infty}}]$, then S_{∞} is honestly faithfully flat over $S_{\infty,0}$. Therefore in Claim 0.2, p, x_2, \ldots, x_d is an honest regular sequence in *T*, and Claim 0.3 follows directly from [And20, Proposition 2.5.1 (2)].
 - (b) There is an elementary and self-contained proof of (a generalization of) André's flatness lemma in [CS19, Section 2.3], and recently Bhatt–Scholze proved a general form of the purity theorem using the flatness lemma, see [BS19, Theorem 10.9].

References

- [And18] Y. ANDRÉ: La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93. 3814651
- [And20] Y. ANDRÉ: Weak functoriality of Cohen-Macaulay algebras, J. Amer. Math. Soc. 33 (2020), no. 2, 363–380. 4073864
- [Bha18] B. BHATT: On the direct summand conjecture and its derived variant, Invent. Math. 212 (2018), no. 2, 297–317. 3787829
- [BS19] B. BHATT AND P. SCHOLZE: Prisms and prismatic cohomology, arXiv:1905.08229.
- [CS19] K. CESNAVICIUS AND P. SCHOLZE: Purity for flat cohomology, arXiv:1912.10932.
- [Gab18] O. GABBER: Observations made after the MSRI workshop on homological conjectures, https://docs.google.com/viewer?url=

https://www.msri.org/workshops/842/schedules/23854/documents/3322/assets/31362.

[GR04] O. GABBER AND L. RAMERO: Foundations for almost ring theory, arXiv:0409584.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907 Email address: ma3260purdue.edu