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F-SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 3
INTRODUCTION

The local theory of prime characteristic singularities is a beautiful and historied subject.
Singularities which are defined in terms of the behavior of the Frobenius endomorphism
have been labeled “F-singularities”. We give an introduction on the four most prominent F-
singularity classes; F-pure, F-injective, strongly F-regular, and F-rational singularities. Our
approach is algebraic and we assume the reader is familiar with the basics of commutative
algebra, see [Mat89] and Part I of [BH93].

Our treatment of prime characteristic singularities starts with Kunz’s fundamental theo-
rem from the 1960’s, a point on a variety defined over a prime characteristic field is non-
singular if and only if the Frobenius map is flat at that point, [Kun69]. We then begin our
treatment of F-singularities with the first F-singularity class to be considered historically.
The class of F-pure rings were born out of Hochster—Roberts’s study of rings of invariants in
the 1970’s, [HR74, HR76]. Our initial presentation of F-pure rings in Chapter 2 is centered
around Fedder’s criterion, [Fed83], a containment test to determine if a homomorphic image
of a regular ring is F-pure.

We deviate from the historical development of F-singularities in Chapter 3 and introduce
the basic theory of strongly F-regular singularities, a singularity class that emerged from
Hochster—-Huneke’s tight closure theory, [HH90, HH91, HH94a, HH94c]. Strongly F-regular
rings are naturally studied in this text without the knowledge of tight closure theory.

We overlap the theory of F-injective and F-rational singularities in Chapter 4 through the
study of Frobenius actions on local cohomology modules. In the 1980’s, F-injective singular-
ities came from the study of F-pure rings by Fedder, [Fed83], and the theory of F-rational
singularities appeared alongside strongly F-regular singularities in tight closure theory. Sim-
ilar to the theory of strongly F-regular singularities, the theory of F-rational singularities
can be approached naturally without the knowledge of tight closure. Moreover, our study
of F-rational rings through local cohomology gives valuable insight to more advanced topics
treated in later chapters.

The problems of deforming the four fundamental F-singularity classes is presented in
Chapter 5. We give self-contained treatments of the deformation problems as it pertains
to F-rational singularities, Q-Gorenstein strongly F-regular singularities, and Q-Gorenstein
F-pure singularities. We present and record some partial progress on the currently open prob-
lem of deforming F-injective singularities. Counterexamples to the deformation of strongly
F-regular and F-pure singularities in non-Q-Gorenstein rings are given in Chapter 8, among

many other examples. The study of F-singularities under local ring maps R — S given by
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[-constructions, completions, and other faithfully flat maps is the content of Chapter 6 and
Chapter 7. Fundamentals of F-signature theory are presented in Chapter 9.

In Chapter 10 we give self-contained and elementary proofs of: the Radu-André Theorem
(a significant generalization of Kunz’s theorem concerning the flatness of the Frobenius);
another theorem of Kunz that F-finite rings are excellent, and Gabber’s result that F-finite
rings are homomorphic image of regular rings. In Chapter 11 we discuss the relation between
Frobenius and module of differentials and we provide proofs of theorems of Fogarty and Tyc.

Chapter 12 offers an unconventional introduction to tight closure theory. Foundational
results, such as the existence of test elements, the Briancon-Skoda Theorem, and the exis-
tence of balanced big Cohen-Macaulay algebras, are derived in part as consequences of the
F-singularity theory developed in earlier chapters. In Chapter 13, we provide applications of
prime characteristic methods to ideal topologies. In particular, we gave new and streamlined
proofs of celebrated results of Swanson and Izumi-Rees for F-finite rings. At the end of ev-
ery chapter we provide several supplemental exercises. Several open problems are presented
throughout the text.

This manuscript began as a collection of notes and exercises used at an RT'G minicourse
in Commutative Algebra taught by the two authors at University of Utah in the Summer of
2018, and at an MSRI graduate course taught by the first author with assists by the second
author and Ilya Smirnov at University of Notre Dame in the Summer of 2019 (which is
part of the Thematic program in Commutative Algebra and its Interactions with Algebraic
Geometry). The first author also used a preliminary version of this manuscript as the main
reference for a graduate course taught at Purdue University in the Spring 2021 semester.
We are grateful for the feedbacks we received from the students who participated in these
workshops and classes. During the preparation of this manuscript, we are benefited from
numerous conversations with Rankeya Datta and Karl Schwede, and we wish to thank them
for all their comments. We would also like to thank Alessandro De Stefani, Adrian Langer,
Shiji Lyu, Cheng Meng, and Ilya Smirnov for their feedbacks on preliminary versions of this

manuscript.

Unless otherwise stated, all rings are assumed to be commutative, Noetherian and with
multiplicative identity 1. We will use the convention that (R,m, k) is a (Noetherian) local

ring with unique mazimal ideal m and residue field k = R/m.
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1. KUNZ’S THEOREM AND F'-FINITE RINGS

Rings of prime characteristic p > 0 come equipped with a special endomorphism, namely
the Frobenius endomorphism F' : R — R defined by F(r) = r?. For each e € N we can
iterate the Frobenius endomorphism e times and obtain the e-th Frobenius endomorphism
F¢: R — R defined by F(r) = r”". Roughly speaking, the study of prime characteristic
rings is the study of algebraic and geometric properties of the Frobenius endomorphism.

Throughout this text, we often need to distinguish the source and target of the Frobenius
map. We adopt the commonly used notation FfR to denote the target of the Frobenius
as a module over the source, that is, F°: R — FfR. Under this notation, elements in
F?R are denoted by F¢r where r € R, and the R-module structure on Ff{R is defined via
1 - Féry = Fe(r¥"ry). On the other hand, F*R = R via Fr ¢ r as rings.

Suppose that R is reduced and let K be the total ring of fractions of R, thus K = [[ K;
is a product of fields. Let K := [[ K;. There are inclusions R C K C K. We let

RY" .= {sc K | s" € R}.

In other words, R'/? is the collection of p°-th roots of elements of R. Then R'?" is unique
up to non-unique isomorphism, and RY?° 2 R via 7'/?° < r as rings. In this setup, we can
view the Frobenius map as the natural inclusion R — RY?°, see Exercise 3.

As we already mentioned, the singularities of R are often studied via the behavior of the

Frobenius map. A fundamental result in this direction is proved by Kunz [Kun69].

Theorem 1.1 (Kunz’s Theorem). A ring R of prime characteristic p > 0 is reqular if and
only if the Frobenius map F°: R — FER is flat for some (or equivalently, all) e > 0.

Proof. First assume that R is regular, we want to show that F¢R is a flat R-module. Since
flatness can be checked locally and we have (FfR)p = Ff(Rp) as Rp-modules for all P €

Spec(R), we may assume (R, m, k) is local. We next consider the commutative diagram:

R——~F°R

L

R——> F°R
Since both vertical maps are faithfully flat, if we can show the bottom map is flat, then it
will imply that the top map is flat. Therefore we may replace R by R to assume (R,m, k) is

a complete regular local ring. By Cohen’s structure theorem, R = k[[z1,...,x4]]. Let R:=
E[[x1,...,x4] and note that R — R is faithfully flat. Thus by the following commutative
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diagram

R——~ F°R

R ——> F°R
and the same reasoning as above (both vertical maps are faithfully flat), we may replace R

by R to assume that R = E[[z1, ..., z4]]. In this case, it is straightforward to check that F°R

is a free R-module with basis
{Fe(aft - ay) |0 <y < pl.

Now we prove the converse. Note that if F7R is flat over R for some e > 0, then after
iterating we see that F]'°R is flat over R for all n. In particular, we can assume FZR is flat
over R for infinitely many e > 0. Since regularity and flatness are local conditions, we may
again assume that (R,m, k) is a local ring. Let g = depth R. We pick a regular sequence
in m of maximal length: z;,...,z,. It follows that R/(z1,...,z,) has depth 0 and thus
0 # N = Soc(R/(z1,...,24)) = Hompg(R/m,R/(x1,...,2,)). Hence there exists n such
that N € m™(R/(z1,...,x,)).

Claim 1.2. For any finitely generated R-module M of infinite projective dimension with
minimal free resolution

coo oy Rrewr 202 prga G0t png oy Rm_y BMO N (),

the entries in the matriz representing @442 are not all contained in m™.

Proof of Claim. Since pdz R/(z1,...,24) = g, we have Toer(M, R/(z1,...,x4)) = 0.
Therefore tensoring the above minimal free resolution with R/(z1,...,x,), we know that

(R/(z1,...,29))"* 25 (R (21, ..., 2))" " 225 (R/(x1, ..., 3,))"

is exact in the middle. Since the resolution is minimal, the socle N™ot1 C (R/(z1,...,z4))" "
is contained in Ker ¢441 = Im ¢p449. If all entries in the matrix representing ¢, are contained
in m”, then N+t C m"(R/(z1,...,2,))"*" and thus N C m"(R/(z1,...,z,)). This is a
contradiction. O

We now continue the proof of the theorem. Suppose pdy R/m = oo. Since the Frobenius
map is flat, tensoring a minimal free resolution of R/m with F¢R and identifying F¢R
with R, we obtain a minimal free resolution of R/mP‘l such that the entries in the matrix

representing each differential (in particular the (g + 2)-th differential) are all contained in
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ml”), the ideal generated by p°-th powers of elements of m. But for e > 0 this contradicts
Claim 1.2 because n is independent of e. Therefore pd, R/m < oo and thus R is regular. [

Remark 1.3. Since the Frobenius map F*° induces a bijection on Spec(R), F° is flat if and
only if it is faithfully flat. Hence Theorem 1.1 implies that a ring R of prime characteristic
p > 0 is regular if and only if F* is faithfully flat for some (or equivalently, all) e > 0.

Remark 1.4. Our proof of the converse direction in Theorem 1.1 follows from [X1.98] (which

originates from ideas in [Her74]).
We next introduce a rather “mild” condition on the Frobenius map.

Definition 1.5. A ring R of prime characteristic p > 0 is called F-finite if for some (or
equivalently, all) e > 0, the Frobenius map F'*: R — R is a finite morphism, i.e., FR is a
finitely generated R-module.

For example, a field k of prime characteristic p > 0 is F-finite if and only if [k*/? : k] < oc.
More generally, it follows from Exercise 5 below (and Cohen’s structure theorem) that rings
essentially finite type over F-finite fields are F-finite, and complete local rings of prime
characteristic p > 0 with F-finite residue fields are F-finite.

The F-finite property turns out to imply that the rings are not pathological. We will
sometimes implicitly use the following two results, due to Gabber [Gab04] and Kunz [Kun76]

respectively, throughout. We will give proofs of these results in Chapter 10.

Theorem 1.6. Let R be an F'-finite ring of prime characteristic p > 0. Then R is a
homomorphic image of an F'-finite reqular ring. In particular, F-finite rings admit canonical

modules.

Theorem 1.7. If R is an F'-finite ring of prime characteristic p > 0, then R is excellent.
Moreover, if (R, m, k) is a local ring of prime characteristic p > 0, then R is F-finite if and
only if R is excellent and R/m is F-finite.

Recall that a ring R is called excellent if R satisfies the following:

(1) R is universally catenary.

(2) If S is an R-algebra of finite type, then the regular locus of S is open in Spec(S).

(3) For all P € Spec(R), the map Rp — Rp has geometrically regular fibers. That is,
for all Q € Spec(R) such that Q C P, k(Q) ®gr, Rp is regular for all finite (or
equivalently, finite and purely inseparable) field extensions k(Q)" of k(Q).

Excellent rings include most examples arising from algebraic geometry. For example, all

rings essentially finite type over a field and all complete local rings are excellent.
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Exercise 1. Let R be a ring of prime characteristic p > 0. Verify that if FSR is finitely
generated for one e > 0, then F¢R is finitely generated for all e > 0.

Exercise 2. Let R be a ring of prime characteristic p > 0. Prove that R is reduced if and

only if R — FFR is injective for one (or equivalently, all) e > 0.

Exercise 3. Let R be a reduced ring of prime characteristic p > 0. Show that the eth iterate
of the Frobenius map F°: R — F°R is isomorphic to the inclusion of algebras R C R'/P".

Exercise 4. Let R be a ring of prime characteristic p > 0. Prove that R is F-finite if and
only if R.q := R/+/0 is F-finite. (Hint: First show that R — F°R factors through R,eq for
e > 0. Then consider a filtration 0 = J* C J* 1 C ... C J = /0 C R and show that each
Fe(J'/J"1) is finitely generated over Rieq.)

Exercise 5. Let R be an F-finite ring of prime characteristic p > 0. Prove the following:

(1) If I C R an ideal then R/I is F-finite.
(2) If W a multiplicative subset of R then W~!R is F-finite.
(3) If x an indeterminate then R[x] and R[[z]] are F-finite.

Conclude that rings essentially of finite type over F-finite rings are F-finite.
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2. F-PURE RINGS AND FEDDER’S CRITERION

An F-singularity is a class of prime characteristic singularities defined in terms of the be-
havior of Frobenius endomorphism. Theorem 1.1 equates flatness of the Frobenius endomor-
phism with non-singularity of the ambient ring. Therefore non-singularity is an F-singularity
and thus it motivates the study of other F-singularities. Our first class of F-singularities are

F-pure and F-split singularities.

Definition 2.1. A map of R-modules M; — Ms is pure if M; @ g N — M, ®@pr N is injective
for every R-module N. A ring R of prime characteristic p > 0 is called F-pure (resp., F'-
split) if the Frobenius map F°: R — F¢R is pure (resp., split) for some (or equivalently, all)
e> 0.

Clearly, a split map is always pure, hence F-split implies F-pure. Moreover, if R is F'-pure
then the Frobenius map is injective and thus R is reduced, see Exercise 2. So in this case
we can always view the Frobenius map as the natural inclusion R — RY?°. Therefore R
is F-pure if and only if R is reduced and the natural map R — R'P" is pure for some (or
equivalently, all) e > 0. Similarly, R is F-split if R is reduced and R — RY?" is split for
some (or equivalently, all) e > 0.

We will prove that F-singularity classes of F-pure and F-split singularities are equivalent
for F-finite rings and complete local rings. To establish this we prove a general criterion for

purity of maps.

Proposition 2.2. Let (R,m, k) be a local ring and M an R-module. Then a map R — M
is pure if and only if the induced map E — E ®r M s injective where E := Eg(k) denotes
the injective hull of the residue field.

Proof. One direction is obvious. So suppose R — M is not pure, then there exists an R-
module N such that N — N ®g M is not injective. Since N is a directed union of its finitely
generated submodules and injectivity is preserved under direct limit, we may assume N is
finitely generated. Now we pick u € Ker(N — N ®pg M), there exists n such that u ¢ m"N.

Consider the commutative diagram:

N N ®r M

| |

N/m"N — (N/m"N) @p M
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Since the image of w € N/m"N is nonzero, the bottom map is not injective. Now N/m" N

has finite length, so it embeds in E®" for some r. The commutative diagram

N/m"N — (N/m"N) @r M

| |

EEBT E@r ®R M

then shows that the bottom map is not injective. Thus £ — E ®g M is not injective. [

Corollary 2.3. Let (R, m, k) be a local ring of prime characteristic p > 0. Then R is F-pure
if and only z'fR is F-pure.

Proof. We have canonical isomorphisms E := Eg(k) = Ep(k) @z R = E5(k). Thus we have
E—E®pF'R—> E®p FFR= E®; F{R.

Since FR — FCR is faithfully flat and hence pure (see Exercise 10) and thus also pure as
an R-module map, the second map is injective. Hence the composition is injective if and

only if the first map is injective. Therefore the conclusion follows from Proposition 2.2. [

Corollary 2.4. Let R — M be a pure map. If either R is complete local or M is finitely
generated, then R — M 1is split. In particular, if R is a ring of prime characteristic p > 0,
F-pure, and is either complete local or F-finite, then R is F'-split.

Proof. 1f (R, m, k) is complete local, then taking the Matlis dual of the injection £ < E®gM
yields a surjection Homg(E ®r M, E) — Homg(F, E) = R. By adjunction we have

Hompg(E ®r M, E) = Homg(M,Hompg(F, E)) = Homg(M, R).

Thus we have a surjection Homg(M, R) — R, one can check that this is precisely the natural
map induced by applying Homg(—, R) to R — M. Thus R — M is split.

Next we assume M is finitely generated. We want to show that the map Homgz(M, R) — R
is surjective. It is enough to check this locally on Spec(R). Since M is finitely genrated, we
have

Rp @ Hompg(M, R) = Hompg, (Mp, Rp).

Since R — M is pure, Rp — Mp is pure for all P € Spec(R), we may thus assume that R
is local. But then the surjectivity of Homgz(M, R) — R can be checked after base change to

~

R. Since M is finitely generated, we know that

R ®p Hompg(M, R) = Homs(M ® R, R).
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Therefore it remains to show that Homz(M ®r R, ﬁ) — R is surjective. But since R — M is
pure, R — M®prR is pure, and hence split by the first conclusion. So HomE(M®Rfi, f?) —R

is surjective as wanted. (|

Since faithfully flat maps are always pure (see Exercise 10 below), regular rings of prime
characteristic p > 0 are F-pure by Theorem 1.1, and thus by Corollary 2.4, complete regular
local rings and F-finite regular rings are F-split. However, we warn the reader that there
are examples of regular local rings (even DVRs) of prime characteristic p > 0 that are not
F-split. The first such example was discovered by Datta—Smith [DS16] who constructed
a non-excellent DVR of prime characteristic p > 0 that is not F-split. Datta—Murayama
[DM23] have constructed an excellent, local, henselian DVR of prime characteristic p > 0
that is not F-split. Thus without the assumptions of Corollary 2.4, it frequently happens
that F-pure rings fail to be F-split. We will not treat these examples in this text though: for
most questions that we will study, one can first localize and then complete (one can further
pass to F-finite rings, see Chapter 6) so Corollary 2.4 can be applied to tell us that we do
not need to distinguish between F-pure and F-split.

We next state and prove a fundamental result of Fedder [Fed83].

Theorem 2.5 (Fedder’s criterion). Let (S, m, k) be a regular local ring of prime characteristic
p >0 and let I C S be an ideal. Then R := S/I is F-pure if and only if (I : I) ¢ mlP!
where IP) is the ideal generated by p-th powers of elements of I.

Proof. We first assume (S, m, k) is a complete regular local ring with perfect residue field.
By Cohen’s structure theorem, S = k[[z1,...,24]] and we know that F.S is a finite free
S-module with basis {F, (2% ---2%) | 0 < i; < p}.

Claim 2.6. For each tuple (iy,...,iq) with 0 < dy,...,iq < p there is an S-linear map
Oin,ig)” FxS — S which is defined on basis elements as follows:

1 1,y da) = (i1, .-, 1q)

0 (Jiy.--yda) # (i1, ..., 0q)

Moreover, Homg(F.,S,S) = (F.S) - ® where ® = @1, p-1)-

@(il,--.,id)(F*(${l U l'gld)) =

Proof of Claim. The first assertion is clear and we only prove the second assertion. Since all

..... i,)s generate Homg(F.S, S) as an S-module, it is enough to observe that

Plinmia) (B =) = QP a7 =) = B2 a7 ) -

Therefore ® generates Homg(F.S, S) as an F,S-module as wanted. O
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Since F.S is a finite free S-module, every map F.(S/I) — S/I can be lifted to a map
F.S — S, and thus can be written as ®(F,(s- —)) for some s € S by Claim 2.6.

Claim 2.7. ®(F.(s-—)) induces a map F.(S/I) — S/I if and only if s € (1P : I).

Proof of Claim. 1f s € (I : I), then ®(F,(s- —)) sends F,I to I hence it induces a map
F.(S/I) — S/I. To prove the converse, suppose r = sr’ € sI such that r ¢ IPl. Since
{F.(2f -+ 2%) | 0 < i; < p}is a free basis of F.S over S, F,r can be written uniquely
as Y 1iiy.i, Fu(xi - 2') where 75,4, ;, € S. Since F,r ¢ F,I" by our choice, there exists
Tivig.iy ¢ I and by Claim 2.6 ¢, ) (Fr) ¢ I. But then ®(F,(raf " ..ol 7)) ¢ T
and thus ®(F,(s - 'zt 7" ... 2871 7)) ¢ . Therefore ®(F,(s - —)) does not send F,I to I
so it does not induce a map F,(S/I) — S/I. O

By Claim 2.7, S/I is F-pure (equivalently, F-split in this case by Corollary 2.4) if and
only if there exists s € (I”) : I) such that ®(F,(s-—)) is surjective. But it is easy to see that
®(F,(s-—)) is surjective if and only if s ¢ mPPl: if s € m/? then the image of ®(F,(s - —))
is contained in m so it cannot be surjective, while if s ¢ mlP! then s contains a monomial
2t - 2’ with nonzero coefficient for some 0 < iy, ..., ig < p, s0 ®(F,(s-af " ... gh~1 7))
is a unit and thus ®(F,(s - —)) is surjective. Putting all these together, we see that S/I is
F-pure if and only if (I : ) ¢ mll.

We next treat the general case. Consider the following commutative diagram:

S ———= S k[[xy,..., 2] — S =[x, ..., 24]]
R=38/I R=35/18 R:=3§/IS

It is clear that all the maps in the horizontal rows are faithfully flat. Moreover, since
Eg(k) = k[z7Y, ..., 2;'] and similarly for S, we have Es(k) = Eg(k) ®s S. Tt follows that

ER(]C) QR R = (AnnEs(k) ]) Xg 5 = AnnEg(E) ]5 = EE(E)

Therefore we have the following commutative diagram:

Eg(k) Er(k) ®@r F.R

! l

Ex(k) 2 Ep(k) ©r R — Ex(k) ®5 F.R = Ep(k) ®r F.R

Note that a socle representative u € Er(k) maps to a socle representative u ® 1 € Ez(k).
Thus u maps to zero in Er(k) @ F, R if and only if ©® 1 maps to zero in Ex(k) ®5 F.R (the
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right vertical map is injective as F, R — F, R is faithfully flat and hence pure, see Exercise 10).
Thus the top map is injective if and only if the bottom map is injective. By Proposition 2.2,
R is F-pure if and only if R is F-pure. Now R =S /1 S and S is complete local with perfect
residue field, so by what we have proved, R is F-pure if and only if (1 S gl S ) ¢ mllS.
But since S — S is faithfully flat, the latter holds if and only if (I : 1) ¢ ml). O

Remark 2.8. There is a graded version of Fedder’s criterion: let S = k[xy,...,z4] be a
polynomial ring over a field k£ and let I C S be a homogeneous ideal. Then R := S/I is
F-pure if and only if (/! : I) € mlPl where m = (zy,...,24). The proof follows from the
same line as in Theorem 2.5: the key point is that, when k is perfect, Homg(F.,S,S) & F.S
still holds and we have a graded version of Proposition 2.2 (with graded injective hull of k
in place of the injective hull of k). We leave the details to the interested reader.

Remark 2.9. With the same setup as in Theorem 2.5 or Remark 2.8, it follows from the
same argument that R is F-pure if and only if ("1 : I) ¢ mPl for some (or equivalently,
all) e > 0. We leave the details to the interested reader.

Fedder’s criterion is extremely useful as it allows us to determine if a particular ring is

F-pure.

Example 2.10. Let k be a field of prime characteristic p > 0.
(1) Let S be k[[z1,...,xq4)] or k[z1,...,24) and let R = S/I be a Stanley-Reisner ring

(i.e., I is generated by square free monomials). Then R is F-pure. The point is that
T1To - - - g is a multiple of every square free monomial, thus (zy---z4)?"! - f € (f?)
for any square free monomial f. Hence (x1---x4)P~" € (I} : I) since I is generated
by square free monomials, but (z; ---z4)?~" ¢ m/P.,

(2) Let R denote either k[[z, v, 2]]/(z® +y* + 2%) or k[x,y, 2]/(2* 4+ 3> + 23). Then (I :
I)= (x> +1y>+23)P~L. If p = 1 mod 3, then there is a term (zyz)P~! in the monomial
expansion of (z3 41+ 2%)P~! with nonzero coefficient thus R is F-pure. On the other
hand, if p = 2 mod 3, then one checks that (2% + 3% + 2%)P~! € mlPl = (2P P, 2P) so
R is not F-pure.

Exercise 6. Let R be a ring of prime characteristic p > 0. Verify that R — F{R is pure
(resp., split) for one e > 0, then R — F¢R is pure (resp., split) for all e > 0.

Exercise 7. Suppose that R is an F-finite ring of prime characteristic p > 0 and F¢R admits
a free summand. Show that the Frobenius map R — FFR is split. (Assuming FR admits
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a free summand is equivalent to assuming that there exists Ffr € F¢R and ¢ : FFR — R so

that ¢(Ffr) = 1. We are asking you to show the existence of a map ¢ : FFR — R so that
Y(Fe1) = 1.)

Exercise 8. Let k£ be a field of prime characteristic p > 0. Use Fedder’s criterion to show
that R = k[[z,y, 2]]/(2* + y* + 27) is not F-pure.

Exercise 9. Prove that if R — S is pure (resp., split) map of rings of prime characteristic

p >0 and S is F-pure (resp., F-split), then R is F-pure (resp., F-split).

Exercise 10. Prove that if R — S is faithfully flat, then R — S is pure. Give an example
of a faithfully flat ring extension that is not split.

Exercise 11. Show that a map of R-modules N — M is pure if and only if Np — Mp is
pure for all P € Spec(R). In particular, if R is a ring of prime characteristic p > 0, then R
is F-pure if and only if Rp is F-pure for all P € Spec(R), also prove that if R is F-split,
then Rp is F-split for all P € Spec(R).!

Tt turns out that being F-split is not a local property in general, see Remark 10.16. However, the authors
do not know that for an excellent ring R, whether Rp is F-split for all P € Spec(R) implies R is F-split.
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3. F-REGULAR RINGS: SPLITTING FINITE EXTENSIONS

In this chapter, we introduce and study the arguably most important class of F-singularities:
strongly F-regular rings, [HH90, HH94a].

Definition 3.1. An F-finite ring R of prime characteristic p > 0 is called strongly F-reqular
if for every ¢ € R that is not in any minimal prime of R, there exists e > 0 such that the

map R — F¢R sending 1 to Ffc splits as a map of R-modules.

Clearly, strongly F-regular rings are F-split and in particular reduced. For local rings, we

can say maore.

Lemma 3.2. Let (R,m, k) be an F-finite and strongly F-regqular local ring of prime charac-
teristic p > 0. Then R is a domain.

Proof. Since R is reduced, it is enough to show that R has only one minimal prime. Let
Py, ..., P, be the minimal primes of R. Suppose n > 2, we pick f; € N;.;P; — F;. Then we
have -7 ; f; is not contained in any minimal prime of R. Thus as R is strongly F-regular,
there exists e > 0 and an R-linear map ¢: FfR — R such that ¢(F¢(> 1, f;)) = 1 and thus
St o(Fef;) = 1. Since (R, m, k) is local, at least one of ¢(Ff f;) is a unit. Without loss of
generality, we may assume ¢(F¢f1) = u € R is a unit. But then as fifo = 0 (since fifs is
contained in all minimal primes of R and R is reduced), we have

ufs = ¢(fa- Fifr) = 0(FL(ff fr)) = 6(F70) =0
which is a contradiction. U
Like F-purity, strong F-regularity is a local property.

Lemma 3.3. Let R be an F-finite ring of prime characteristic p > 0. Then R is strongly
F-regular if and only if Rp is strongly F-reqular for every P € Spec(R).

Proof. First suppose R is strongly F-regular. Let Py, ..., P, be the minimal primes of R. It
is enough to show that for any ¢ € R whose image in Rp is not contained in any minimal
prime of Rp, we can find e > 0 and an Rp-linear map F°Rp — Rp sending Ffc to 1. We
may assume c is not in any minimal prime of R: for suppose c is contained in Py, ..., P; but
not in the other minimal primes of R, then we can pick ¢ € N}_;,, P; — U;ZlP,- and replace ¢
by ¢+ ¢ (the image of ¢ in Rp is 0 since P; € P for each j = 1,...,i). But then since R is
strongly F'-regular, there exists e > 0 such that the map R — F¢R sending 1 to Ffc splits
as a map of R-modules. So after localizing the splitting we get the desired Rp-linear map
FfRp — Rp sending Ffc to 1.
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We next prove the converse. We fix ¢ € R not in any minimal prime of R. We know that for
every P € Spec(R), there exists e (which may depend on P) such that Rp — F¢Rp sending
1 to Ffe splits. Since R is F-finite, Hompg, (FSRp, Rp) = Rp @g Hompg(F¢R, R) hence there
exists a map ¢ € Hompg(FSR, R) sending Ffc to f ¢ P. But then Ry — FfRy sending
1 to Ffe splits. Now for every P € Spec R we can find such f thus UD(f) = Spec(R).
Hence there exists fi,..., f, such that U, D(f;) = Spec(R) and for each f; there exists
e; > 0 such that Ry — F{ Ry, sending 1 to Ffic splits. It is then easy to check that, for
ep = max{ey,...,e,}, the map R — FR sending 1 to Fcc splits. O

The following is a consequence of Kunz’s theorem, Theorem 1.1.
Theorem 3.4. An F-finite reqular ring of prime characteristic p > 0 is strongly F-reqular.

Proof. By Lemma 3.3, we may assume that (R, m, k) is an F-finite regular local ring. By
Theorem 1.1, F¢R is a finite free R-module. For any 0 # ¢ € R, there exists e > 0 such that
Ffc € F°R is part of a minimal basis of F°R over R: otherwise Fc € m - F*R = F¢(mlP])
for all e which implies that ¢ € N.m?") = 0 which is a contradiction. Since Ffc € FCR is
part of a minimal basis of FfR over R, the map R — F?R sending 1 to Fc splits as a map
of R-modules. ([l

We next prove that every strongly F-regular ring R splits out of every finite extension of

R, a crucial property of strongly F-regular rings.

Theorem 3.5. Let R be an F-finite and strongly F-regular ring of prime characteristic
p > 0. Then R — S splits for any module-finite extension S of R.

Proof. Since S is module-finite over R, it is enough to show Rp — (R — P)~'S is split
for every prime P € Spec(R). Thus by Lemma 3.3, we may assume (R, m, k) is a strongly
F-regular local ring and hence a domain by Lemma 3.2. By killing a minimal prime of S, we
may further assume that S is also a domain. Now S is a torsion-free R-module, thus there
exists an R-linear map 6: S — R such that (1) = ¢ # 0. Since R is strongly F-regular, we
can find e such that R — F¢R sending 1 to F¢c splits, call the splitting ¢. Now we consider

the following commutative diagram with natural maps:

R S

L

F°R ——> F°S.
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We know that Ff0: F¢S — FSR sends FP1 to Ffc, thus ¢ o Ff0 sends FP1 € FES to
1 € R. Therefore, R — F¢S splits, this clearly implies R — S splits by the commutative
diagram. 0

Combining the results we have so far, we obtain:

Corollary 3.6. If R is a reqular ring of characteristic p > 0, then R — S splits for any

module-finite extension S of R.

Proof. Since S is module-finite over R, it is enough to show Rp — (R — P)~1S is split for
every prime P € Spec(R) thus we may assume R is a regular local ring. We then consider
the faithfully flat extensions R — R = k[[z1, ..., x4)] = R = E[[z1,...,24]]. Again since S
is module-finite over R, it is enough to show R — R ®pg S is split. Now R is F-finite and
regular thus strongly F-regular by Theorem 3.4. So R — R®p S splits by Theorem 3.5. [

Remark 3.7. Corollary 3.6 holds without assuming the regular ring R has prime charac-
teristic p > 0, see [And18].

Another consequence of Theorem 3.5 is the following:

Corollary 3.8. Let R be an F-finite and strongly F-regqular ring of prime characteristic
p > 0. Then R is normal. In particular, one-dimensional strongly F'-reqular rings are

reqular.

Proof. Suppose R is not normal, then there exists § integral over R (with b a nonzerodivisor
in R) but § ¢ R. Let R = R[}]. Since R — R’ is a finite extension, by Theorem 3.5, there
exists an R-linear map #: R’ — R such that 6(1) = 1. Thus

b- 9(%) = 0(a) = a.
But then § = 60(%) € R, which is a contradiction. O

Another important property of strongly F-regular rings is the following:

Theorem 3.9. Let R and S be F'-finite rings of prime characteristic p > 0. If R is a direct
summand of S and S is strongly F-reqular (e.g., S is reqular), then R is strongly F-regular.

Proof. By Lemma 3.3, it is enough to show Rp is strongly F-regular for each P € Spec(R).
Now Rp is a direct summand of (R — P)~'S and the latter is strongly F-regular by Lemma
3.3 again. Thus we may assume (R, m, k) is local. Since S is strongly F-regular, it is normal
by Corollary 3.8 and hence a product of normal domains S = S; X Sy x --- x S, = [[S;e;
where e; is the i-th idempotent corresponding to S; (e.g., e = (1,0,...,0)). Now a splitting
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¢:S— Rsends 1 =(1,...,1) = > e; to 1. Since (R, m, k) is local, there exists i such that
¢(e;) is a unit in R. But then the induced map ¢: S; — R defined via ¢(s;) := ¢(s;e;) for
all s; € S; is an R-linear surjection S; — R. Therefore R — S; is split (i.e., R is a direct
summand of S;). Note that, as S; can be viewed as a localization of S, S; is still strongly
F-regular by Lemma 3.3.

Thus replacing S by S;, we may assume that both R and S are domains. Let 0 # ¢ € R
be given. Since S is strongly F-regular, there exists e > 0 and an S-linear map ¢: F¢S — S
such that ¢(Ffc) = 1. Let §: S — R be a splitting. Then 6§ o ¢: FS — R is an R-linear
map sending Ffc to 1. Restricting this map to FR then yields an R-linear map FfR — R
sending Ffc to 1. O

Theorem 3.9 allows us to write many examples of strongly F-regular rings:

Example 3.10. Let k be an F-finite field of prime characteristic p > 0.
(1) Let R = k[z,y, 2]/(zy—2*). Then R = k[s?, st, t?] is a direct summand of S = ks, t].
Hence R is strongly F'-regular. More generally, Veronese subrings of polynomial rings
(over F-finite fields) are strongly F-regular.
(2) Let R = k[x,y,u,v]/(zy —uv). Then R = k[a, b]#k[c, d] = k[ac, ad, be, bd] is a direct
summand of S = k[a,b,¢,d]. Hence R is strongly F-regular. More generally, Segre

product of polynomial rings (over F-finite fields) are strongly F-regular.

Finally, we point out that to check strong F-regularity, one actually only needs to check
the splitting condition in the definition for one single ¢. This will be very useful in later

chapters.

Theorem 3.11. Let R be an F-finite ring of prime characteristic p > 0. Suppose there exists
¢ not in any minimal prime of R such that R. is strongly F-reqular (e.g., R. is reqular).
Then R is strongly F'-reqular if and only if there exists e > 0 such that the map R — F‘R

sending 1 to F¢c splits as a map of R-modules.

Proof. Given any d € R that is not in any minimal prime of R, the image of d is not in
any minimal prime of R.. Therefore, since R. is strongly F-regular, there exists ¢y > 0
and a map ¢ € Hompg, (F°R,., R.) such that ¢(Ff°d) = 1. Since R is F-finite, we have
Homp, (F°R., R.) = R. ®r Homp(F°R, R) and thus ¢ = % for some n > 0 and some
¢ € Homg(FR, R). It follows that p(F°d) = ¢". Next we pick e; > 0 such that n < p®~¢,
so (the image of) Ffc in F&' R is a multiple of Ff'¢". Since R — FfR sending 1 to Ffc
splits, it follows that R — Ff' R sending 1 to F¢'¢” splits (since R is F-pure). We pick such
a splitting 6 and consider the map 6 o (Fp): FTR — R. Tt is straighforward to check
that this map sends Fé1ted to 1. O
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Corollary 3.12. An F-finite local ring (R, m, k) of prime characteristic p > 0 is strongly
F-reqular if and only if R is strongly F'-reqular.

Proof. We may assume R is a domain by Lemma 3.2. Since R is excellent, there exists
0 # ¢ € R such that R, is regular and then R, is also regular. Consider the following
commutative diagram:

E— FE®pFSR

-

E——> E®;FR

where I/ = Eg(k) = Eg(k) and the horizontal maps are induced by R — FfR (resp.,
R — Fffi) sending 1 to Ffc. It is easy to see that the first row is injective if and only if
the second row is injective. Since R and R are F-finite, by Corollary 2.4 and Proposition
2.2, R — F¢R sending 1 — F¢c splits if and only if R — Fff% sending 1 — F¢c splits. By
Theorem 3.11, R is strongly F-regular if and only if R is strongly F-regular. U

Exercise 12. Let R be an F-finite ring of prime characteristic p > 0. Suppose that M is a
finitely generated module, m € M, and that there exists eg € N and ¢ € Hompg(FM, R)
such that p(Fm) = 1. Show that R is F-pure and that for all e > ¢y there exists a
¥ € Hompg(F¢M, R) such that ¢(Ffm) = 1.

Exercise 13. Let R — S be a faithfully flat extension of F'-finite rings of prime characteristic
p > 0. Prove that if S is strongly F-regular, then R is strongly F-regular.

Exercise 14. Let R be an F-finite and strongly F-regular domain of prime characteristic
p > 0. Show that for each nonzero element g € R that there exists an e € N so that
R — FfR C FfR[1/g] = FfR(Div(g)) splits. (Hint: Show that R — FfR C FfR[1/g] is
. . Fig

isomorphic to R — FfR.)

Exercise 15. Let R be an F-finite and strongly F-regular ring of prime characteristic p > 0.
Prove that for all effective divisors D (see Appendix A), there exists ey (depending on D)
such that for all e > ej, the composition R — FfR — FfR(D) splits. (Hint: Show that

there exists a nonzero element g € R such that D < Div(g) and use Exercise 14.)

Exercise 16 (Glassbrenner [Gla96]). Let (S, m, k) be an F-finite regular local ring of prime
characteristic p > 0 (resp., a polynomial ring over an F-finite field of prime characteristic
p > 0) and let I C S be an ideal (resp., a homogeneous ideal). Then the following are
equivalent for R = S/1I:
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(1) R is strongly F-regular.

(2) For every ¢ € S not in any minimal prime of I, there exists e > 0 such that c(/P] :
I) ¢ mll.

(3) For some ¢ € S not in any minimal prime of I such that R, is strongly F-regular,
there exists e > 0 such that ¢(I?7: T) ¢ mlFl.

(Hint: Mimic the strategy of the proof of Theorem 2.5.)

Exercise 17. Let k be an F-finite field of prime characteristic p > 0 and R = k[z1, ..., x4)/(2}
-+ al). Use Exercise 16 to show that R is strongly F-regular if n < d and p > 0, and R
is not strongly F-regular if n > d > 2.

Exercise 18. Let R be an N-graded ring over a field £ of prime characteristic p > 0 with
homogenous maximal ideal m. Use Theorem 2.5 and Exercise 16 to prove that R is F-pure

(resp., F-finite and strongly F-regular) if and only if so is Ry,.

A wery big open question in F-singularity theory, and tight closure theory, is whether the

converse of Theorem 3.5 holds.

Open Problem 1. Let R be an F-finite domain of prime characteristic p > 0. If R — S
splits for any module-finite extension S of R, then is R strongly F-reqular?

This has an affirmative answer in the following cases:

(1) If R is Gorenstein by [HH94c].

(2) If R is Q-Gorenstein by [Sin99a].

(3) If the anti-canonical cover of R is a Noetherian ring by an unpublished result of
Singh, see also [CEMS18] for more general results. (Recall that the condition means,
with Ky a choice of the canonical divisor of X = Spec(R), S := @,>0R(—nKx) is a
finitely generated R-algebra).

We refer the readers to Appendix A for basics on divisors and Q-Gorenstein rings. Here we
just point out that there are (obvious) implications (3) = (2) = (1) since every Gorenstein

ring is Q-Gorenstein and every Q-Gorenstein ring has Noetherian anti-canonical cover.

Discussion 3.13. In Hochster—Huneke’s foundational work [HH90, HH94a], there are three
notions of F-regularity: weakly F-regular, F-regular, and strongly F-regular. The former
two are defined using tight closure (see Appendix 12). Conjecturally all these notions are
equivalent (at least for F-finite rings), but to this date this is still not proven. It turns
out that even weakly F-regular rings split from all their module-finite extensions, see Ex-

ercise 9. Thus an affirmative answer to Open Problem 1 will imply that all these notions
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are equivalent. For related results on the equivalence of different notions of F-regularity, see
[HH94a, Wil95, Mac96, 1.599, LS01, AP22, AHP24]. On the other hand, it has become appar-
ent that strong F-regularity is the most useful concept and has most applications/connections
to algebraic geometry.

Discussion 3.14. We can define strongly F-regular rings beyond the F-finite setting, there
are actually several ways to extend the definition, for example see [HH94a] or [DS16]. For
technical reasons, and also because it will be quite technical to define F-signature without
F-finite assumptions, we decide to keep the F-finite assumption in the definition of strong

F-regularity in this text.
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4. F-RATIONAL AND F-INJECTIVE RINGS

In this chapter we discuss F-rational and F-injective rings [Fed83, HH94a, HH94c|. We
begin by collecting some basic facts about Frobenius structure on local cohomology modules.
Let I = (f1,..., fn) be an ideal of R, then we have the Cech complex:

C'(fl, .. .,fn;R) =0—>R— @zsz — s —> Rf1f2"'fn — 0.

The i-th local cohomology module H:(R) is the i-th cohomology of C*(fy,..., fu; R). The
local cohomology modules Hi(R) only depends on the radical of I. Since the Frobenius
endomorphism on R naturally induces the Frobenius endomorphism on all localizations of
R, it induces a natural Frobenius action on C*(fi, ..., f,; R), and hence it induces a natural
Frobenius action on each Hi(R).

We know from the definition that a ring homomorphism R — S induces a map H}(R) —

Hig(S). The natural Frobenius action on Hi(R) discussed above can be alternatively de-
scribed as H(R) — Hj . g(FLR) = H}, ;,(F.R) and then identify H}, ,,(F.R) with H}(R),
where the last identification is induced by Fi.R = R as rings (note that Hi, (R) = H}(R)).
We will be mostly interested in the case that (R, m, k) is local and I = m. In this case, we
can compute Hi (R) using the Cech complex on a system of parameters x1,...,xq of R. For
example, the top local cohomology module Hé(R) is isomorphic to
Ry,
> Im(R

1 Tiy)
and with this description, the natural Frobenius action on H¢(R) is given by
r rP

— .
2P

n n
xl...xd

Definition 4.1. A local ring (R, m, k) of dimension d and of prime characteristic p > 0 is
called F'-rational if R is Cohen-Macaulay and for every ¢ € R that is not in any minimal

prime of R, there exists e > 0 such that the composition
H(R) = H(F{R) == Hy(FSR)
is injective. Equivalently, using F': HZ(R) — HZ(R) to denote the e-th Frobenius action,

this is saying that c- F¢(—) is injective on H%(R). An arbitrary ring R of prime characteristic

p > 0 is called F-rational if and only if R,, is F-rational for all maximal ideals m C R.

Remark 4.2. Our definition of F-rational rings is not the original one as in [HH94a, HH94c],
but it is an equivalent definition for all rings that are homomorphic images of Cohen-

Macaulay rings. This is a very mild assumption: for example, all excellent local rings
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satisfy this condition [Kaw02]. In fact, in Hochster’s 2007 lecture notes on tight closure
[Hoc07], being a homomorphic image of a Cohen-Macaulay ring is built into the definition

of F-rationality, thus almost nothing is lost.

Example 4.3. Suppose (R, m, k) is a regular local ring of dimension d and of prime char-

acteristic p > 0. We will show that R is F-rational. Note that a socle representative of

HY(R) is n = xl}.xd where x1,...,x4 is a regular system of parameters of R. If ¢ # 0

such that ¢ - Fé(n) = 0 for all e > 0, then —=%— = 0 in H.(R) for all ¢ > 0. But then
Ty Ty

ceN(x,...,2h) =0, a contradiction.

Proposition 4.4. Suppose R is an F-rational ring of prime characteristic p > 0, then R is

normal. In particular, one-dimensional F'-rational rings are reqular.

Proof. We may assume (R, m, k) is local. In order to show R is normal, it is enough to prove
that every principal ideal of height one is integrally closed by [SHOG, Proposition 1.5.2] (if
dim(R) = 0, then the condition implies R is a field so R is trivially normal). Suppose

y € (r) where x is not in any minimal prime of R, then there exists m > 0 such that

(y,z)" = (y,z)™(x)"™ for all n > m. Thus 2™y" € (x)" for every n. We can extend = to a

full system of parameters x,z%, ... x% of R. Then the Cech class n = —’— satisfies
2 d
m F6< ) m ype O
€T . =X —————— =
" ijeajép “o xflp

for all e > 0 since z™y?" € (2P") by construction. So by the definition of F-rationality, n = 0
in HZ(R). But since R is Cohen-Macaulay, we know that y € (x, %, ..., 2%). As this is true
for every t > 0, y € Ny(z, 25, ..., 2%) = (x). Thus (x) is integrally closed. O

An important result we want to prove next is that strongly F-regular rings are F-rational.

We need a well-known lemma.

Lemma 4.5. Let (R,m, k) be a complete and equidimensional local ring of dimension d.
Suppose Rp is Cohen-Macaulay for all P € Spec(R) — {m}. Then H.(R) has finite length
for all v < d.

Proof. By Cohen’s structure theorem, we can write R = S/I where S is a complete regular
local ring. By local duality, H:(R)" = Ext% '(R, S) where n = dim(S). It follows that

Eth_i(R, S)P ~ Eth;i(RP, SP) _ EXt(;i;n(SP)_(i_dim(R/P))(RP, SP),
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where we abuse notation and also use P to denote the pre-image of P in S. Now by local

duality over Sp,
Eb(tdsi}r)n(sp)*(i*dim(R/P))(RP7 Sp)Y =2 H;f;m(R/P)(Rp).

Since R is equidimensional, dim(R/P) + dim(Rp) = d hence if i < d then i — dim(R/P) <
dim(Rp). Thus if P € Spec(R) — {m} and i < d, then H}f;m(R/P)(Rp) = 0 since Rp is
Cohen-Macaulay, which gives Ext’ (R, S)p = 0. Thus Ext® (R, S) is supported only at
{m} when i < d. By local duality, H.(R) has finite length whenever i < d. O

We can now prove the following result.

Theorem 4.6. Let (R,m, k) be an F-finite and strongly F-regular local ring of prime char-
acteristic p > 0. Then R is F-rational (and hence Cohen-Macaulay).

Proof. Note that H%(R) = H%(R) and if ¢ € R is not in any minimal prime of R, then ¢ is
not in any minimal prime of R. Thus it is clear that R is F-rational implies R is F-rational.
Therefore we may assume R is a complete local domain by Corollary 3.12 and Lemma 3.2.
Since strong F-regularity is preserved under localization by Lemma 3.3, by induction on
dim(R) we may further assume Rp is Cohen-Macaulay for all P € Spec(R) — {m}. Thus by
Lemma 4.5, H’ (R) has finite length whenever i < d = dim(R).

Let 0 # ¢ € m. Since H.(R) has finite length for i < d, there exists n such that
¢"H! (R) = 0. Replacing ¢ with ¢" we may assume cH¢ (R) = 0. Thus (F¢c)- H: (F¢R) = 0.
Since R is strongly F-regular, there exists e > 0 and an R-linear map F°R — R such that

the composition of the following maps is the identity map on R:
R— F°RIZSFR 5 R

Applying the i-th local cohomology functor H:(—) to the above composition of maps we
see that the identity map on H!(R) factors through the zero map on H:(F°R) and thus
H:(R) = 0 whenever i < d. This proves that R is Cohen-Macaulay. Finally, applying the
d-th local cohomology functor HZ(—) to the same composition of maps, we see that the

identity map on HZ(R) factors through
HZ(R) — HA(FER) =% HL(FER).
In particular, the above map is injective and thus R is F-rational. 0
As a consequence of the results we proved so far, we can prove the following.

Corollary 4.7. Let R — S be a pure map of rings of prime characteristic p > 0. If S is
reqular, then R is Cohen-Macaulay.
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Proof. We first observe that if R and S are both F-finite and the map R — S is split (this
includes most cases of interest). Then the conclusion follows by combining Theorem 3.4,
Theorem 3.9, and Theorem 4.6.

But with a careful examination of the methods we used in proving these results, we can
prove the general case of the corollary. We now give the details. First of all we may assume
(R,m, k) is a local ring. Since R — S is pure, £ — E ®pr S is injective so u ® 1 # 0 in
E ®gr S, where E = Eg(k) and u is a socle representative of E. But then u ® 1 # 0 in
E ®pr Sq for some @ € Spec(S), and thus £ — E ®p Sg is injective. This implies R — Sg
is pure by Proposition 2.2. So we may assume S is also a local ring. We may then replace R
by R and S by S = k[[zy,...,x,]] and further replace S by S := E[[21, ..., x,]]. Therefore
we may assume (R, m, k) — (5, n,¢) is pure where S is a complete and F-finite regular local
ring and (R, m, k) is a complete local domain. Furthemore, by induction on dim(R) we may
assume Rp is Cohen-Macaulay for all P € Spec(R) — {m}. By Lemma 4.5, H’ (R) has finite
length for all i < dim(R).

For each i < dim(R), let 0 # ¢ € R that annihilates H’ (R). By Theorem 3.4, S is strongly
F-regular so there exists e > 0 such that S — F¢S sending 1 to F¢c splits. We consider the
following commutative diagram:

e

H}(R) — Hy(FfR) — Hy(FIR)

N

HL(S) — HL(F*S) — > Hi(FeS)

From the bottom row, we see that the map from top left H.(R) to bottom right H (F¢S)
is injective, while from the first row, we see that the same map is the zero map from H'(R)
to H.(F¢S) as ¢ annihilates H! (R). This shows that H:(R) = 0 and hence R is Cohen-
Macaulay. O

Remark 4.8. Corollary 4.7 holds without assuming the rings R, S have prime characteristic
p > 0, see [HHI5] and [HM18].

The converse of Theorem 4.6 holds if R is Gorenstein.

Proposition 4.9. Suppose R is an F-finite ring of prime characteristic p > 0 which is

Gorenstein and F-rational, then R is strongly F-regular.

Proof. By Lemma 3.3, we may assume (R, m, k) is local. It is enough to show that for any
¢ € R not in any minimal prime of R, there exists e > 0 such that the map £ — F®g F'R

induced by sending 1 to Ffc is injective (see Proposition 2.2 and Corollary 2.4), where
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E = Eg(k) denotes the injective hull of the residue field as usual. Since R is Gorenstein,
E = HY(R). Thus the map E — F ®p F°R can be identified with the map Hi(R) —
HI(FeR) LN HZ(F¢R), which is injective by the F-rationality of R. O

We next give an alternative but important characterization of F-rationality (up to com-

pletion), see [Smi97] for more details. We need a definition.

Definition 4.10. Let R be a ring of prime characteristic p > 0 and let M be an R-module
with a Frobenius action F' (i.e., F(rm) = r?F(m) for all r € R and m € M). An R-
submodule N C M is called F'-stable if F(N) C N.

Proposition 4.11. Let (R,m, k) be a local ring of prime characteristic p > 0. Then the
following are equivalent:

(1) R is F-rational.

(2) R is Cohen-Macaulay and the only F-stable submodules of HL(R) are 0 and HZ(R),

i.e., HI(R) is a simple object in the category of R-modules with a Frobenius action.

Proof. Since H%(R) is Artinian, any R-submodule of H%(R) carries a canonical R-module
structure, and the Frobenius structure on HZ(R) is unaffected by considering it as a module
over R. Thus all conditions in (2) are unaffected by replacing R by R and so we may assume
(R, m, k) is complete.

Suppose (1) holds. By Proposition 4.4, we may assume (R, m, k) is a complete normal local
domain. Let N G HZ(R) be a proper F-stable submodule. By Matlis duality, H¢(R)Y =
wr — NV is a proper quotient. Since wg is a rank one torsion-free R-module, it follows
that NV (and hence N) is annihilated by some ¢ # 0 since NV # wg. If N # 0, then any
0 # n € N satisfies ¢ - F¢(n) = 0 for all e, which contradicts that ¢ - F¢(—) is injective for
some e.

Suppose (2) holds. First notice that the Frobenius is injective on HS(R): otherwise the
kernel is a nonzero and proper submodule (see Exercise 23) of H%(R) which contradicts (2).

Now for any ¢ € R not in any minimal prime of R, it is easy to check that
{ne HYR) | c- F°(n) =0 for all e > 0}

is an F-stable submodule of HS(R). Since it is annihilated by ¢, it cannot be HZ(R) so it
must be 0 by the conditions of (2). But this is saying that for any € H.(R), there exists
e > 0 such that c- F¢(n) # 0. Let N, := {n € HL(R) | ¢-F*(n) = 0}. Since the Frobenius is
injective on HZ(R), it is easy to check that Ny 2 Ny D Ny D ---. Since Hi(R) is Artinian
and N.N, = 0, there exists e such that N, = 0, which is precisely saying that ¢ - F'°(—) is
injective on HZ(R). O
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A natural question one might ask at this point is that whether (R, m,k) is F-rational
implies R is F-rational (it is easy to see that if R is F-rational then R is F -rational). It
turns out that this is not always true, but it holds if R is excellent. We will come back to this
question in Chapter 6. In the proof of Proposition 4.11, we crucially used the fact that the

Frobenius action is injective on H4(R). We now formally introduce F-injective singularities.

Definition 4.12. A local ring (R, m, k) of prime characteristic p > 0 is called F-injective if
the natural Frobenius action on H{(R) is injective for all i. An arbitrary ring R of prime

characteristic p > 0 is called F-injective if R, is F-injective for all maximal ideals m C R.

It is straightforward from the definition that if R is F-rational, then R is F-injective.
Since the Frobenius structure on H (R) is the same when we consider it as a module over R,
we also know that a local ring (R, m, k) is F-injective if and only if Ris F -injective. We next
show that F-injectivity and F'-rationality are preserved under localization. For F-injectivity,

the strategy is taken from [DM24], where the result is proved in its most general form.

Theorem 4.13. Let R be a ring of prime characteristic p > 0. If R is F-injective then Rp
is F-injective for all P € Spec(R).

Proof. We may assume (R, m, k) is local with dim(R) = d. First we claim that we may
assume R is complete. Let P € Spec(R), pick a minimal prime @ of PR, then Rp — EQ is
faithfully flat with dim(Rp) = dim(Rg). Thus Hj(Rq) & Hp(Rp) ®g, Rq for all i and it
is easy to see that the isomorphism is compatible with the Frobenius actions. Hence if we
can show }A%Q is F-injective, then Rp is F-injective.

Now we assume (R, m, k) is complete, by Cohen’s structure theorem we can write R = S/I
where (S, n, k) is a complete regular local ring of dimension n. We can write F,R = ligj R;
such that each R; is module-finite over R, thus F,(Rp) = hﬂj(Rj) p. We have the following

(abusing notations a bit, we still use P to denote the corresponding prime ideal in S):
R is F-injective = H.(R) — H.(F,R) is injective for all i
= H.(R) — H.L(R;) is injective for all i, j

Ext?™’ R;,S) — Ext? (R, S) is surjective for all 4, j

~i(
Ext? '((R;)p, Sp) — Ext% *(Rp, Sp) is surjective for all 4, j
)

HEmEP = (RY) — HE™SP) T (R p) s injective for all 4, j

H}(iim(SP)_n"Fi(RP) - H}%im(SP)_"H(F*(RP)) is injective for all ¢

I R

Y

Rp is F-injective.

where the third and fifth implications are due to local duality over S and Sp respectively. [
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Finally, we show that F-rationality localizes.

Theorem 4.14. Let R be a ring of prime characteristic p > 0. If R is F-rational then Rp
is F-rational for all P € Spec(R).

Proof. We may assume (R, m, k) is local with dim(R) = d. By Proposition 4.4, R is a Cohen-
Macaulay normal domain, and hence so is Rp. Suppose P has height h, it is then enough
to show that for any 0 # ¢ € R, there exists e > 0 such that cF(—) is injective on H%(Rp).
Suppose on the contrary, there exists 0 # ¢ € R such that ¢F°(—) is not injective for all
e > 0. Then for all e > 0, we have
0 # K, := Ker(Hp(Rp) = HA(Rp)).
We claim that K., C K.: if cF*"(n) = 0, then F(cF¢(n)) = ?F**(n) = 0, but we know
that Rp is F-injective by Theorem 4.13, thus cF¢(n) = 0. Therefore we have a descending
chain of Rp-modules:
KiD DK DKeyD---.

Since Hp(Rp) is an Artinian Rp-module, this chain stabilizes and so there exists 0 # n €

Ne K. Next we pick a system of parameters x1, ..., 2, pi1, ..., 24 of R such that the image
of x1,...,x, is a system of parameters on Rp. Note that
Rp
HY(Rp) =1i - T
PUle) = o TR
where the connection maps are multiplication by (z - - - xh)peH*pE. By replacing z1, ..., x, by
their powers if necessary, we may assume that 7 # 0 is the image of ¥ € Rp/(x1,...,z5)Rp

in H%(Rp). Multiplying n and y by elements in R — P (which are units in Rp), we may
assume that y € R. We consider the following commutative diagram

cFe(-)
HE(Rp) HE(Rp)

J ]

Rp TP’ Rp
(x1,....xp)Rp (2.2’ )Rp

where the vertical maps are injections since Rp is Cohen-Macaulay. Chasing the image of
7 € Rp/(x1,...,24)Rp, we find that for all e > 0, ¢g?* = 0 in Rp/(xzfe, o ,l’ZC)RP. That is,
for every e > 0, there exists z. ¢ P such that czy?" € (z8",...,20).

Let (z1,...,2,) = Q1N ---N Qs be an irredundant primary decomposition of (z1, ..., xp),
with P, = /Q; the corresponding associated primes. We may assume P = P,. Since

R is Cohen-Macaulay and x1,...,xy is a regular sequence, each P; is a minimal prime of
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(21,...,23) and we have Ass(R/(x1,...,xn)) = Ass(R/(a} ,--- ,22")) for all e > 0. Let
(2. . 2%) = Qe N---Qs. be the irredundant primary decomposition with P, = /Q;..
We know that Q. is the contraction of (2} ,... % )Rp to R. Since (z1,...,x,)" C
(2%, ..., 2%"), we have QEW) C Qie. Now we fix 2 € (QaN---N Q)" — Py, it follows that
e QM C Qi for all i > 2. Since czy” € (z¥,...,20) C Qi and 2z, ¢ P = Py, we
know that cy?* € Q1 .. Thus we have z € R — P such that for all e > 0,

Y P € Qe NQoeN NQye = (2, ... ).
Therefore for all e > 0 and all n > 0, we have

clzy) € (F ... 2l ) C (b, a2l ).

Since R is F-rational, there exists e > 0 such that ¢F¢(—) is injective on H4(R). Fix this e,

we consider the following commutative diagram

d C cFe(-) d
H(R) HL(R)
J}: TP’ J;
(T1, @R TR g5, T) (le,e ..... zze ,$Ziel ..... zzpe)

where the vertical maps are injective since R is Cohen-Macaulay. Chasing the diagram we

find that the bottom map is injective. Since zy € R/(z1,...,ZTn, T} 4, ..., 2}) maps to zero in
R/(z2 ... ,xﬁe,xzzfl, ..., xy” ), we obtain that zy € (z1,..., 25, 2], q,...,2)) for all n > 0.
Thus

2y € (1, o, Thy Thyqs -5 Tg) = (21, .., Tn),

which implies y € (x1,...,2,)Rp. Therefore 0 =35 € Rp/(x1,...,2,)Rp and thus n = 0,

which is a contradiction. O

Exercise 19. Prove that if a ring R of prime characteristic p > 0 is F-injective, then R is
reduced. (Hint: Use the fact that reduced is characterized by (Ry) and (S;), and then use
Theorem 4.13.)

Exercise 20. Let R — S be a faithfully flat extension of rings of prime characteristic p > 0.
Prove that if S is F-rational (resp., F-injective), then R is F-rational (resp., F-injective).
(Hint: Use Theorem 4.14 (resp., Theorem 4.13) to reduce to the case that dim(R) = dim(5).)
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Exercise 21. Show that if R is an F-pure ring of prime characteristic p > 0, then R is
F-injective. Conversely, show that if (R, m, k) is a quasi-Gorenstein and F-injective ring of

prime characteristic p > 0, then R is F-pure.

Exercise 22. Let R be an N-graded ring over a field of prime characteristic p > 0 with

homogeneous maximal ideal m. Show that

(1) If R is F-injective, then [HE (R)]so = 0 for each i.

m

(2) If R is F-rational, then [HZ(R)]>o = 0.

Exercise 23. Let (R, m, k) be a local ring of prime characteristic p > 0 and dimension d.
Show that the kernel of the natural Frobenius action on H¢(R) is a proper submodule of
HI(R).

Exercise 24. Prove the following strengthening of Corollary 4.7: Suppose R — S is a pure

map of rings of prime characteristic p > 0. If S is regular, then R is F-rational.

Discussion 4.15. We have seen that direct summands of F-regular rings (respectively F-pure
ring) are F-regular (respectively F-pure). One can ask if a direct summand of F-rational
or F-injective ring is F-rational or F-injective. This is not the case. Watanabe [Wat97]
constructed an example of a direct summand of an F-rational ring that is not even F-
injective. The example will be examined in Chapter 8, where we also give an example of a

direct summand of an F-rational ring that is not Cohen-Macaulay.
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5. THE DEFORMATION PROBLEM

An interesting question in the study of singularities is how they behave under deformation.
Roughly speaking, if Spec(R) is the total space of a fibration over a curve, then the special
fiber of this fibration is a variety with coordinate ring R/xR for a nonzerodivisor x of R.
The question is whether the singularity type of the total space Spec(R) is no worse than the
singularity type as the special fiber Spec(R/xR).

This deformation question has been studied in details for F-singularities. The following

list summarizes the best known progress.

(1) Strong F-regularity fails to deform in general [Sin99¢|, but it deforms for normal
Q-Gorenstein rings [AKMO8].

(2) F-purity fails to deform in general [Fed83, Sin99b], but it deforms for normal Q-
Gorenstein rings [HW02, Sch09, PS23].

(3) F-rationality always deforms [HH94a].

(4) Deformation of F-injectivity remains an open problem in general. But it is known
that F-injectivity deforms for Cohen-Macaulay rings [Fed83], and that F-purity al-
ways deforms to F-injectivity [HMS14].

Counterexamples to the deformation of strongly F-regular and F-pure singularities will
be examined in Chapter 8, see Example 8.9. In this chapter we present the (partial) positive

results on deformation of F-singularities mentioned above.

5.1. Deformation of F-rational and F-injective singularities. We begin by proving de-

formation of F-injectivity in the Cohen-Macaulay case and the deformation of F-rationality.

Theorem 5.1. Let (R,m, k) be a local ring of prime characteristic p > 0 and x € m a
nonzerodivisor on R. Then

(1) If R/xR is Cohen-Macaulay and F-injective, then R is Cohen-Macaulay and F-
injective.
(2) If R/xR is F-rational, then R is F-rational.

Proof. We first prove (1). It is clear that R is Cohen-Macaulay. It is enough to show that

the natural Frobenius action on H¢(R) is injective. The commutative diagram:

T

0 R R R/zR ——=0

xT

0 R—2-R R/zR —>0
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induces a commutative diagram:

0 —— Hi ' (R/2R) — Hy(R) —— Hg(R) — 0
(

Fe

J/Fe lxpelFe

0 —= H"Y(R/2R) — H%(R) —=> H%(R) — 0

If the middle map is not injective, then we pick n € Soc(HZ(R)) N Ker(zP"~1F¢) and it is
easy to see that n comes from H¢ '(R/xR). But this contradicts the injectivity of F on
HI"Y(R/zR). Thus 2" ~'F° and hence F*° is injective on HZ(R).

We next prove (2). Suppose we have ¢ € R not in any minimal prime of R. It is enough
to show that the F-stable submodule {n € HZ(R) | ¢ F¢(n) = 0 for all e > 0} is 0 (see
the proof of Proposition 4.11, here we need to use that R is injective, which we just proved
in (1)). If this submodule is nonzero, then it intersects Soc(HZ(R)) nontrivially so we may
assume there exists 0 # n € He(R) such that ¢- F¢(n) = 0 for all e > 0 and zn = 0. We can
write ¢ = "¢ where ¢ ¢ (z) and pick any e > 0 such that p* — 1 > n. Since ¢- F*(n) =0,
daP*71Fe(n) = 0. Since zn = 0 we know that 1 comes from HZ"'(R/xR) and chasing the
diagram we find that ¢/F¢(n) = 0 in HSY(R/xR). But since R/xR is F-rational, it is a
normal domain by Proposition 4.4 and hence the image of ¢ is nonzero in R/xzR. So the
F-rationality of R/zR implies that ¢ F¢(—) is injective on HS™1(R/zR) for all e > 0. Thus

n = 0, a contradiction. B

Recall that the notions of strong F-regularity and F-rationality coincide in Gorenstein
rings, Proposition 4.9. Therefore we have the following result on deformation of strong

F-regularity (we will generalize this result in section 5.2).

Corollary 5.2. Let (R,m,k) be an F-finite Gorenstein local ring of prime characteristic
p > 0 and © € m a nonzerodivisor on R. If R/xR is strongly F-regular, then R is strongly
F'-reqular.

Proof. By Theorem 5.1, R is F-rational and thus strongly F-regular by Proposition 4.9. [

The deformation question for F-injectivity is not solved completely. To this date, the best
partial result towards this question is obtained in [HMS14], where it is shown that F-purity
deforms to F-injectivity (note that F-purity itself does not deform in general by Example
8.9, unless we invoke the Q-Gorenstein hypothesis, see Theorem 5.19 or [PS23]). To prove
this result, we need a result from [Mal4].
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Theorem 5.3. If (R,m, k) is an F-pure local ring of prime characteristic p > 0, then for
all i and all F-stable submodules N C H'(R), the natural Frobenius action on H.(R)/N is

njective.

Proof. We may replace R by R to assume R is F-split (see Corollary 2.4). We then observe
the following quite general claim:

Claim 5.4. If R — S is split, 1 is an element of H.(R), and N is a submodule of H:(R),
then n € N provided that the image of n in H: 4(S) is contained in the S-span of the image
of N in H!4(S).

Proof. Let ¢: S — R be a splitting. It is easy to check that we have the following commu-
tative diagram
S ®p Hy(R) — Hyo(5)

\ l 1 (9)
PRid

Hy(R).
Thus if the image of 1 is in the S-span of the image of N, say Im(1 ®n) =3 s; - Im(1 ® ;)
where 7; € N. Then by the above commutative diagram, n = > ¢(s;)n; € N. O

We now continue the proof of the theorem. Suppose N is an F-stable submodule such
that the Frobenius action on H{(R)/N is not injective, then there exists n ¢ N such that
F(n) € N. Let N, be the R-span of F¢(N). Since N is F-stable, we have a descending
chain Ny O N; 2 N, D ---. This chain stabilizes since HE(R) is Artinian. Therefore, as
F(n) € N, F*'(n) € N, = N.4 for e > 0. Finally we apply Claim 5.4 to the (e + 1)-th
Frobenius map F**': R — R (which is split by assumption) and note that the R-span of
the image of N is precisely N1, hence we know that n € N, a contradiction. O

We now prove the aforementioned result in [HMS14], our proof proceeds very similarly as

in the Cohen-Macaulay case and it differs from the original argument.

Theorem 5.5. Let (R, m, k) be a local ring of prime characteristic p > 0 and v € m a
nonzerodivisor on R. If R/xR is F-pure, then R is F-injective.

Proof. The commutative diagram:

T

0 R R R/zR ——=0

0 R—~R R/zR —= 0
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induces a commutative diagram:

T

0 — H 7 (R/xR)/Im(H 7 (R)) — Hy(R) — Hy(R) — -

iFe lxpe_lF& lFe

0 — Hy ' (R/xR)/Im(H, N (R)) — Hy(R) —— Hy(R) — -

Note that Im(HL '(R)) is an F-stable submodule of H.'(R/xR). So by Theorem 5.3, F*
is injective on H:'(R/xR)/Im(H. ' (R)). Now by the same argument as in Theorem 5.1,
this implies that 27" ~'F** and hence F° is injective on H.(R). O

In fact, it can be shown that Im(H '(R)) = 0 in the proof of Theorem 5.5. This was
observed in [MQ18], and we leave it as an exercise, see Exercise 25.
Since quasi-Gorenstein F-injective rings are F-pure (see Exercise 21), we have the following

result on deformation of F-purity (we will generalize this result in section 5.2).

Corollary 5.6. Let (R,m, k) be a quasi-Gorenstein F-pure local ring of prime characteristic
p >0 and x € m a nonzerodivisor on R. If R/xR is F-pure, then R is F-pure.

Proof. By Theorem 5.5, R is F-injective and thus F-pure by and Exercise 21. 0

5.2. Deformation of strongly F-regular and F-pure singularities. Our approach to
the deformation problem of strong F-regularity and F-purity essentially follows from [PS23],
and it involves the study of cyclic covers of R. To this end, we suggest that the reader who
is not familiar with divisor class groups, divisorial ideals, reflexification, and the theory of
(S2)-modules over a ring which is (5;) and (Gy), i.e., Gorenstein in codimension 1, consult
Appendix A for the basic theory, notation, and language.

Before continuing forward we want to introduce the idea of the proof informally. Suppose
that R is Q-Gorenstein, z € R a nonzerodivisor such that R/xR is strongly F-regular or
F-pure, and let R — S be a cyclic cover of R with respect to the canonical divisor. Consider

the following commutative diagram:

R S
| |
R/zR S/xS

A result of Carvajal-Rojas [CR22, Theorem C], which generalizes a theorem of Watanabe
[Wat91], asserts that R is strongly F-regular (resp., F-pure) if and only if a cyclic cover of R is
strongly F-regular (resp., F-pure). Therefore to show R is strongly F-regular (resp., F-pure),
it suffices to show that R/xR — S/xS is a cyclic cover of R/xR and that S is Gorenstein
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(resp., quasi-Gorenstein), since then we can invoke Corollary 5.2 (resp., Corollary 5.6) to
conclude the proof.

In fact, the proof strategy in the strongly F-regular case follows exactly as outlined above,
while in the F-pure case we need some modifications. We begin by presenting a self-contained
and elementary proof of [CR22, Theorem C] mentioned above. We first prove a general fact
on extending R-linear maps FYR — R to the cyclic cover.

Proposition 5.7. Let (R, m, k) be an (S3) and (Gy) local ring of prime characteristic p > 0
and D a torsion divisor of index N. Let S = @Y ' R(iD)t' be a cyclic cover of R with
respect to D and let w: .S — R be the projection of S onto R. If ¢ : FFR — R is an R-linear

map then there exists an S-linear map v : F¢S — S so that the following diagram commutes:

Fes ls s
“
FFR-2 - R

Proof. Let e; : Hompg(S, R) — R be the evaluation-at-1 map defined by 1 +— 1 (1). To find a
map 1 making the above diagram commutative we utilize Proposition A.5 and instead show
the existence of an S-linear map ¢ : Ff Hompg(S, R) — Hompg(S, R) so that the following

diagram commutes:

F* Homp(S, R) * > Homg(S, R)

Ffer i la

©

F°R R

Given an element p € Hompg(S, R) and its corresponding element Ffp € F¢ Hompg(S, R) we
let ¥(F¢p) be the element of Hompg(S, R) which maps an element s to

D(Fep)(s) = p(Fiei(sFip)) = p(Fiei(Fip(s™ - —)))
= @(Fea(p(s” - —)))
p(Fep(s™ - 1))
P(Fip(s)).

We leave it to the reader to verify that v is S-linear and makes the diagram commute. [

We are now ready to prove [CR22, Theorem C.
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Theorem 5.8. Let (R, m, k) be an F-finite (S2) and (Gy) local ring of prime characteristic
p >0, D a torsion divisor of index N, and S = @N,' R(iD) a cyclic cover of R with respect
to D.

(1) R is strongly F-regular if and only if S is strongly F-reqular;
(2) R is F-pure if and only if S is F-pure.

Proof. The ring R is a direct summand of S. Hence if S is strongly F-regular then so is R
by Theorem 3.9 and if S is F-pure then R is F-pure by Exercise 9.

Suppose that R is strongly F-regular and let ¢ be a nonzero element of S. We aim to
show the existence of an e € N and an S-linear map ¢ : F£S — S so that ¢(Ffc) = 1.

Consider the projection 7 : S — R. We claim that there exists an element s € S so that
m(sc) # 0. Suppose that R(ND) = R- f. Write ¢ = SN e;t’ with ¢; € R(iD). If ¢g # 0
then 7(c) = ¢y # 0. If ¢; # 0 for some ¢ > 0 then choose nonzero element z € R((N —i)D)
and observe that m(ztV¥~c) = % # 0. If there exists an S-linear map ¢ : F¢S — S so that
(F¢sc) =1 then the map ¢ := ¢(Ffs—) is such that p(F¢c) = 1. Therefore we can replace
¢ by sc and assume that ¢y := 7(c) # 0.

Since R is strongly F-regular, there exists an e € N and an R-linear map ¢ : FFR — R
such that ¢(Ffco) = 1. By Proposition 5.7 there exists an S-linear map ¢ : F¢S — S so

that the following diagram is commutative:

Fes Lo s

F'R--+R

Observe that (m o ¢)(Ffc) = (p o Ffn)(Ffc) = ¢(Ffco) = 1. Moreover, by Lemma A .4,
mg = m @ @Y, R(—iD) is the unique maximal ideal of S, and we have 7(mg) = m. In
particular, ¥)(Ffc) must be a unit of S and thus the element Ffc can be split out of FS as
desired.

The proof technique above also shows that S is F-pure provided R is F-pure. One starts
with a map F,R — R sending F,1 — 1. One can then lift this map to a map of S-modules
¥ : F.S — S and then argue as above to claim that ¢(F,1) must be a unit of S. U

Recall that there is a one-to-one correspondence between divisorial ideals of a normal
domain R and isomorphism classes of finitely generated rank 1 modules satisfying Serre’s
condition (S3), see Appendix A for more general situation. It is atypical for the depth

of a divisorial ideal of a normal domain to exceed 2. An exception to this “rule” is that
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divisorial ideals corresponding to torsion divisors in a strongly F-regular ring are Cohen-
Macaulay, which follows directly from Theorem 5.8. Here we record another proof of this
fact? following [Mar22, Proposition 2.6] which we find to be more direct, elementary, and

transparent, though we will not use this result explicitly in the sequel.

Lemma 5.9. Let (R,m, k) be an F-finite and strongly F-regular local ring of prime char-
acteristic p > 0 and M a finitely generated torsion-free R-module. If m € M is a nonzero
element then for all e > 0 there exists ¢ € Homg(F¢M, R) such that p(Ffm) = 1.

Proof. By Exercise 12, it is enough to show that there exists a single natural number e and
¢ € Hompg(FfM, R) so that p(Ffm) = 1. Because M is torsion-free and finitely generated
there exists an inclusion of M into a free module R®Y. Let m € M be a non-zero element. By
mapping onto an appropriate summand of R®Y we find that there exists a map ¢ : M — R
so that ¢(m) = r # 0. We are assuming R is strongly F-regular. So for all e > 0 there
exists ¥ : FCR — R so that ¢(Ffr) = 1. In particular, ¢ o Ffp € Hompg(FfM, R) and
B(Fep(m)) = 1. =
Proposition 5.10. Let (R,m,k) be an F-finite and strongly F-regular local ring of prime

characteristic p > 0. If D is a torsion divisor then there ezists an e € N so that R(D) is a
direct summand of FER. In particular, R(D) is a Cohen-Macaulay R-module.

Proof. Up to isomorphism, the set of R-modules {R(iD)};cz is a finite list as D is a torsion
divisor. By Lemma 5.9 there exists an e € N so that FSR(iD) has a free R-summand for all
i € Z. In particular, there exists an e € N so that FfR(—p°D) has a free summand, say

F¢R(—p°D) = R® M.
If we apply — ®g R(D), reflexify, and utilize part (3) of Exercise 79 we see that
(FYR(=p°D) ®@r R(D))™ = FYR(—p°D + p°D) = F{R = R(D) ® (M @r R(D))™,
i.e., R(D) is a (finite) direct summand of FfR as claimed. It follows that R(D) is a Cohen-
Macaulay since R (and hence F¢R) is Cohen-Macaulay by Theorem 4.6. U

Now we are ready to prove the deformation of strong F-regularity when the ambient ring

is Q-Gorenstein.

Theorem 5.11. Let (R, m, k) be an F-finite Q-Gorenstein local ring of prime characteristic
p > 0 and x € m a nonzerodivisor on R. If R/xR is strongly F-regqular then R is strongly

F-reqular.

2This fact was observed in several locations in the literature, for example see [Wat91, Corollary 2.9] and
[PS14, Corollary 3.3].
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Proof. First of all, since R/zR is strongly F-regular, R/xR is normal by Corollary 3.8. By
Lemma A.8, we can choose an effective canonical divisor Ky of X = Spec(R) that has no
component in V := V(z) = Spec(R/xR) and Kx restricts to an (effective) canonical divisor
Ky of V by Lemma A.10. Suppose Kx has index N, we set S = @' R(iKx)t' to be the

cyclic cover of R with respect to K.
Claim 5.12. R/zR — S/xS is the cyclic cover of R/xR with respect to Ky .

Proof of Claim. Fix an 1 < ¢ < N and consider the divisor D = iKx. We will show
that R(D)/xR(D) is an (S2) module over R/xR, which will imply that R(D)/zR(D) =
(R/xR)(iKy) by Lemma A.9 and thus S/zS will indeed be a cyclic cover of R/xR with
respect to the canonical divisor Ky . Note that if dim(R) < 2, then R(D) is Cohen-Macaulay
over R and hence R(D)/xR(D) is Cohen-Macaulay over R/xR. Thus we may assume that
dim(R) > 3 in what follows.

Let D|y denote the pull back of the divisor D from X = Spec(R) to V' = Spec(R/zR), see
Discussion A.6. By Lemma A.9, we know that D|y is torsion of index at most N. Now for
every 1 < j < N, tensoring the canonical map R(D) — (R/xR)(D|y) with the composition
R — FfR — FfR(jD) and reflexify we obtain (see Exercise 79):

R(D) F°R(jD + p°D)

l |

(R/zR)(Dy) Fi(R/zR)(jDlv + p°Dlv)

Since R/xR is strongly F-regular, by Exercise 15, the bottom map above splits for e > 0
for every 1 < j < N. Now we fix such an e > 0 and pick 1 < j < N such that N divides
J+ p°. Tt follows that FER(jD + p*D) = F¢R and F¢(R/xR)(jD|y + p°Dly) = R/xR, and

thus we obtain a commutative diagram:

(1) R(D) FeR

| l

(R/zR)(Dlv) F{(R/xR)

where the map ¢ is split.
By induction on the dimension of R, we may assume that R(D)/zR(D) is (S2) on the
punctured spectrum of R/zR and hence R(D)/xR(D) — (R/xR)(D|y) is an isomorphism

on the punctured spectrum. It follows that the induced maps of local cohomology modules

Hy (R(D)/xR(D)) — Hy((R/2R)(Dlv))
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is an isomorphism for all 7 > 2 and thus the following composition
i i Hy () 77 (e
Ai Ho(R(D)/xR(D)) = Hy(R/xR)(Dlv)) ——— Hy(F{(R/xzR))

is (split) injective for all i > 2, since 9 is split.
Now consider the following commutative diagram:

T

0 R(D) R(D) R(D)/«zR(D) 0.
FeR F(R/xR)

There is an induced commutative diagram of local cohomology modules:

0 —= Hy(R(D)/xR(D)) — Hy(R(D)) — = H3(R(D)) —— Hy(R(D)/zR(D)) .

| |

0 = H2(FfR) — H2(F(R/zR))

Since R/xR is (S3), = is a nonzerodivisor of R and dim(R) > 3, we know that depth(R) > 3
and thus H2(F¢R) = 0. Since )\, is injective, chasing the diagram shows that the map 7
is the 0-map and so H2(R(D)) = zH2(R(D)). The module R(D) is (S5) and therefore
H2(R(D)) is a finitely generated R-module, see Exercise 29, by Nakayama’s lemma we have
H2(R(D)) =0, and therefore H.(R(D)/zR(D)) = 0.

Since R(D)/xR(D) is (S3) on the punctured spectrum and that H}(R(D)/zR(D)) = 0,
it follows that R(D)/zR(D) is an (S2) module over R/xR as wanted. O

Finally, by Claim 5.12 and Theorem 5.8, S/xS is strongly F-regular and thus Cohen-
Macaulay. It follows that S is Cohen-Macaulay. But then since S is quasi-Gorenstein by
Lemma A.7, S is Gorenstein and so S is strongly F-regular by Corollary 5.2 and thus R is
strongly F-regular by Theorem 5.8. U

Finally, we turn to the deformation problem of F-purity in Q-Gorenstein rings. Indeed,
Hara and Watanabe were able to notice through their efforts to compare log terminal and
log canonical singularities with F-regular and F-pure singularities in [HW02] that F-purity
deforms provided R is Q-Gorenstein of index not divisible by the characteristic of R, a proof
that was eventually recorded in full generality by Schwede in [Sch09]. The deformation
of Q-Gorenstein F-pure singularities was completely solved in [PS23]. We begin with the

following observation of Fedder.
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Lemma 5.13. Let (R, m, k) be an F-finite local ring of prime characteristicp > 0 and x € m
a nonzerodivisor. Then for each e € N the R-linear maps R = R/xR and F¢(R/zR) m
F¢(R/zP" R) induce R-linear maps

(1) ¥¢ : Homp(F¢R, R) = Homp/,r(FS(R/2P" R), R/xR)

(2) W5 : Hompor(FE(R/a? R), RjR) =y Hompon(F*(R/2R), R/2R).

If R is Gorenstein, then the maps ¥§ and V§ are onto for every e € N.

Proof. The map ¥{: Homg(F¢R, R) — Hompg(FSR, R/xR) is obtained by applying Homg(F¢ R, —)
to the natural surjection R ©» R/xR and observing that

Hompg(FR, R/xR) = Hompg/,r(FSR/2F R, R/xR) = Homp/,r(FS(R/2" R), R/xR).
The map ¥§ : Homg(FFR, R/xR) — Hompg/r(Ff(R/xR), R/TR) is given by applying
Homp(—, R/xR) to the map Ff(R/zR) L F¢(R/zP"R).

Suppose that R is Gorenstein. To show that W is onto consider the short exact sequence

0+ RS5R— R/zR—0.

Then Extp(F°R, R) = 0 as FR is a Cohen-Macaulay R-module and R is Gorenstein (see
[BH93, Theorem 3.3.10]). Thus ¥{ is onto. Similarly, to show that W¥§ is onto consider the

short exact sequence
0 — F(R/zR) ="y F(R/a" R) — FS(R/2" ' R) — 0.

Then Extp,q(FS(R/z" 'R),R/zR) = 0 as Ff(R/2*""'R) is a Cohen-Macaulay R/xzR-
module (see Exercise 28) and R/xR is Gorenstein (again, use [BH93, Theorem 3.3.10]).
Thus the induced map ¢ is onto. U

If R/xR is F-pure but not strongly F-regular, then the cyclic cover R — S with respect
to the canonical divisor of R will produce a quasi-Gorenstein ring, where deformation of
F-purity is known to hold, see Corollary 5.6. However, it is no longer reasonable to expect
a divisorial ideal associated to a torsion divisor to be of high depth and we do not expect
R/xR — S/xS to remain a cyclic cover of R/xzR. Our adjustment will still come in the form
of expecting certain divisorial ideals to be of high depth: not all divisorial ideals associated

to torsion divisors will have high depth, but those with index p to a power do.

Lemma 5.14. Let (R, m, k) be an (S3) and (G1) local ring which is F-finite and F-pure of
prime characteristic p > 0. Suppose that D is a torsion divisor of index p® for some eq.
Then R(D) is a direct summand of FE°R.
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Proof. Consider a direct sum decomposition of F°R,
FR= R& M.
If we tensor with R(D) and reflexify we find that
FOR(p™D) = FR= R(D) @ (M @ R(D))™

where (—)* = Homg(—, R). O

Let us return to the problem of deforming F-purity in a Q-Gorenstein ring. Let z € R be
a nonzerodivisor such that R/xR is (Ss), (G1), and F-pure. Let Kx be a choice of canonical
divisor on X = Spec(R) that has no component in V' (z). Suppose that Np®Kx ~ 0 and p
does not divide N. Let D = N Kx. Observe that not only is p®D ~ 0 but for any integer m
we have that p®®mD ~ 0. In particular, if we consider the cyclic cover S = @N,! R(iD)t',
then we expect each of the divisorial ideals R(iD) to have good enough depth properties
(since this will be the case if we know R is F-pure, see Lemma 5.14) so that R/zR — S/xS
is the induced cyclic cover of R/xR. This will allow us to replicate the deformation of strong
F-regularity proof to the deformation of F-purity problem, provided we can establish the
deformation of F-purity in Q-Gorenstein rings whose index is relatively prime p. To this
end, we should try to understand the cyclic cover S associated to the divisor D = NKy.

We begin with a well-known lemma.

Lemma 5.15. Let R — S be a module-finite extension of (S2) and (G1) rings with choice
of canonical divisor Kx on X = Spec(R) and Ky on'Y = Spec(S). Then we have

HOHIR(S, R) = S(KY — W*Kx).

In particular, if R is an (Sz2), (G1), and F-finite ring of prime characteristic p > 0, then for

each e € N there is an isomorphism

Hompg(FR, R) = F{R((1 - p°) Kx).

Proof. First note that we have R(Kx) = wg, S(Ky) = ws = Homg(S,wgr). Now we have
Hompg(S, R) = Hompg(S ®g wg,wr) = Homg(S ®g wr, Homg(S,wr))
= Homg (S ®g wr,ws) = Homg(S ®@r R(Kx), S(Ky))
= Homs((S ®@r R(Kx))™, S(Ky)) = Homg(S(m" Kx), S(Ky))
~ S(Ky — 7 Ky)
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where the first isomorphism on the third line follows from the fact that S(Ky) is reflexive.
This proves the first assertion, the second assertion follows from the first by observing that
the pull back of Kx under the e-th Frobenius map is p°Kx. 0J

Lemma 5.15 implies that Homg(F€ R, R) is a cyclic F¢ R-module for infinitely many choices

of e, provided R is Q-Gorenstein of index not divisible by the characteristic of R.

Corollary 5.16. Let (R,m,k) be a normal F-finite domain of prime characteristic p > 0
with choice of canonical divisor Kx on X = Spec(R). Then the following are equivalent:
(1) R is Q-Gorenstein of index not divisible by p;
(2) Homg(FER, R) = FER for all e sufficiently divisible.

Proof. It NKx ~ 0 and p does not divide N then Fermat’s Little Theorem allows us to
conclude that N divides 1 —p® for all integers e € N which are sufficiently divisible. For such
an e € N we use Lemma 5.15 and find that

Homp(FSR, R) & FCR((1 - p*)Kx) = F{R.

Conversely, if Homg(FSR, R) = FSR is a cyclic F? R-module then we have that (1—p°) Ky ~
0 by Lemma 5.15 again and so Ky is torsion of index not divisible by p. U

Proposition 5.17. Let (R, m, k) be an F-finite Q-Gorenstein ring of prime characteristic
p > 0 and of Q-Gorenstein index not divisible by p. Suppose that x € m is a nonzerodivisor
such that R/x R is (S2) and (Gy). Then the composition of the natural maps V5oV described

in Lemma 5.13 is onto for infinitely many integers e € N.

Proof. Fix an integer e € N so that the index of Kx divides 1 — p® and so Homg(F¢R, R) =
FfR((1 —p°)Kx) is a cyclic FfR-module, see Corollary 5.16.
Consider the maps ¥{ and ¥§ described in Lemma 5.13 and let

V¢ = U5 o W : Homp(FY R, R) — Hompg/or(Fi(R/2R), R/TR)

be the composition of ¥{ and ¥§. Because Homg(FER, R) = F¢R we have that the image of
U in Homp/,r(FS(R/xR), R/xR) is abstractly isomorphic to Ff(R/xR), in particular the
image of W* is an (S3)-module over F¢(R/xR). The module Homp/,r(FS(R/xR), R/TR) =
F¢(R/xR) is an (S3)-module as well. By Proposition A.2 we can check that the image of
Ve agrees with Homp,,r(F¢(R/xR), R/xR) by checking equality when localized at a height
one prime. This will indeed be the case since R/xR is (G1) and the map W€ is onto under

the Gorenstein hypothesis by Lemma 5.13. 0

We are ready to prove F-purity deforms in Q-Gorenstein rings whose Q-Gorenstein index

is not divisible by p.
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Corollary 5.18. Let (R, m, k) be an F-finite Q-Gorenstein ring of prime characteristic p > 0
and of Q-Gorenstein index not divisible by p. Suppose that x € m is a nonzerodivisor such

that R/xR is (S2), (G1), and F-pure. Then R is F-pure.
Proof. By Proposition 5.17, we can choose e such that
V¢ Homp(FYR, R) — Hompg/ur(F;(R/2R), R/TR)

is onto. It follows that for each R/zR-linear map ¢ : F¢(R/xR) — R/zR there is a

commutative diagram

Fe(R/xR) —— R/xR

l Feap 1 i=

Fe(R/2*R) *—~ R/«R

o,

F°R—" R.

In particular, since R/zR is F-pure, we can choose ¢ to be an onto map, but then an easy

diagram chasing shows that ¢’ is also onto and thus R is F-pure. 0
We now have the tools necessary to prove that F-purity deforms in Q-Gorenstein rings.

Theorem 5.19. Let (R, m, k) be a Q-Gorenstein F-finite ring of prime characteristic p > 0.
Suppose that x € m is a nonzerodivisor such that R/xR is (S2), (G1), and F-pure. Then R

1s F'-pure.

Proof. By Lemma A.8, we can choose a canonical divisor Ky of X = Spec(R) that has no
component in V' := V(x) = Spec(R/xzR) and K x restricts to a canonical divisor Ky of R/zR
by Lemma A.10. Suppose that p® NKx ~ 0 and p does not divide N. Consider the cyclic
cover R — S associated to the divisor NKx. The ring R is a direct summand of S and thus
R will be F-pure provided S is F-pure. By Lemma A.7, S is Q-Gorenstein with index N
not divisible by p and so by Corollary 5.18 it is enough to show that S/xS is F-pure.
Suppose we can show that R/zR — S/xS is a cyclic cover of R/xR with respect to
NKy, then S/xS will be F-pure by Theorem 5.8. To show that R/zR — S/xS is a cyclic
cover it is enough to show that if D = iNKy for some 1 < i < p® then R(iD)/xR(iD)
is an (S2) R/xR-module. Now an almost identical argument as in the proof of Claim 5.12
works: to obtain the commutative diagram (1), one just need to tensor the canonical map
R(D) — (R/xzR)(D|y) with the natural map R — F¢R for any e > ¢, and note that the
divisor D, and hence D|y, has torsion index divisible by p¢ (see Lemma A.9), thus it follows
that R(p°D) = R and (R/xR)(p°D|y) = R/xR. O
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Exercise 25. Let (R,m, k) be a local ring of prime characteristic p > 0 and x € m a
nonzerodivisor on R such that R/xR is F-pure. Use Theorem 5.3 to show that the natural
map H!(R/x"R) — H.(R/xR) is surjective for all n > 1 and all 7. Then use this to
show that multiplication by x on H{(R) is surjective for all 7. (Hint: Consider the long
exact sequence of local cohomology induced by 0 — R =% R — R/xR — 0 and show the

connection maps are injective.)

Exercise 26. Let (R, m,k) be a local ring of prime characteristic p > 0 and x € m a
nonzerodivisor on R such that R/xR is quasi-Gorenstein and F-pure. Use Exercise 25 to
prove that R is quasi-Gorenstein and F-pure. (We caution the reader that, in general, the

quasi-Gorenstein property does not deform [STT20, Theorem 4.2].)

Exercise 27. Let (R,m,k) be a Q-Gorenstein, F-finite, and F-pure local ring of prime
characteristic p > 0. Let Kx be a choice of canonical divisor of X = Spec(R). Show
that there exists integer e € N so that R(p®®Kx) is a direct summand of FfR(K ) for all
eo > 0 sufficiently divisible. Prove that for all ey > 0 sufficiently divisible the divisorial
ideal R(p® K x) satisfies (S,) provided R satisfies (.S,). (Hint: Suppose that Np*Kx ~ 0 and
p is relatively prime to N. Show that R(Kx) is a direct summand of F¢R(Kx) and consider
what happens to this direct sum decomposition when you apply — ®g (R((p® —1)Kx)) and
reflexify for all ey > 0.)

Exercise 28. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0 and depth
g > 1. Suppose that x € m is a nonzerodivisor of R. Show that F*(R/z'R) has depth g — 1
as an R/xR-module for all 1 <7 < p°.

Exercise 29. Let (R, m, k) be a local ring of dimension d that admits a canonical module
(i.e., R is a homomorphic image of a Gorenstein local ring). Let M be a finitely generated
R-module such that dim(R/P) = d for all minimal primes P of M, and such that M satisfies
Serre’s condition (S;) for some i < d. Show that H{ (M) is a finitely generated R-module.
(Hint: Mimic the proof of Lemma 4.5.)

As we already mentioned, whether F-injectivity deforms in general remains an open ques-
tion. We refer the reader to [MSS17, MQ18, DSM22] for further progress.

Open Problem 2. Let (R, m, k) be a local ring of prime characteristic p > 0 and x € m a

nonzerodivisor on R. If R/xR is F-injective, then is R also F-injective?
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6. THE ['-CONSTRUCTION AND COMPLETION OF F-RATIONALITY

Our goal of this chapter is to show that completion of excellent local F-rational rings
are F-rational. To establish this, we need to show that in the definition of F-rationality,
we actually only need to consider one (special) ¢. This is not difficult to prove if R is F-
finite. To reduce the general case to the F-finite case, we need a powerful tool introduced
by Hochster-Huneke [HH94a]: the I'-construction.

Discussion 6.1 (Trace map). Let (R,m,k) — (S5,n,¢) be a module-finite extension of local

rings of dimension d. Suppose wg is a canonical module of R (recall that this means wj, =
HZ(R)). Then the canonical map R — S induces a trace map:

ws = HOIIlR(S, wR) Er_) WR.
The Matlis dual of this map yields
Hﬁ(R) — HOHIR(ws, ER(IC)) = Homg(wg, HOIHR(S, ER(I{Z))) = Homg(wg, Es(g)) = Hg(S),

which is precisely the natural map on top local cohomology modules induced by R — S.
In particular, if R is F-finite of prime characteristic p > 0, then the natural e-th Frobenius
action HY(R) — F¢H%(R) corresponds to the trace map Fwp — wpg, and it can be
checked that Tr' "2 = Tr® o 1 (Tr*?). Note that here we are implicitly using that F-finite
rings admit canonical modules (see Theorem 1.6). Moreover, if, in addition, (wg)p = wg,
(this holds for all P € Spec(R) if R is equidimensional, see Remark A.1), then (Tr®)p is the

corresponding trace map for Rp.

Proposition 6.2. Let (R,m, k) be an F-finite Cohen-Macaulay local ring of prime char-
acteristic p > 0. Then R is F-rational if and only if for every ¢ € R that is not in any
minimal prime of R, there exists e > 0 such that the composition Ffwg e, Ffwp LN WR

is surjective (i.e., Tr® : F¢(cwr) — wr 1s surjective).
Proof. This follows immediately from Discussion 6.1 and the definition of F-rationality. [

Proposition 6.2 implies that if R is F-finite and F-rational, then Rp is F-rational for all
P € Spec(R). Of course, we have already proved a more general Theorem 4.14 without
assuming R is F-finite.

The next result is an analog of Theorem 3.11 for F-rationality. We will eventually extend
this result to excellent Cohen-Macaulay local rings in Chapter 7. But at this point, we only
prove it when R is F-finite.

Proposition 6.3. Let (R, m, k) be an F-finite Cohen-Macaulay local ring of prime charac-

teristic p > 0 and of dimension d. Suppose there exists ¢ not in any minimal prime of R
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such that R. is F-rational (e.g., R. is reqular). Then R is F-rational if and only if there

exists e > 0 such that the composition
Hy(R) = Hy(F{R) =5 Hy(FR)

is injective, or equivalently,
e F:’C e Ty€
Fiwp — Fiwr — wp

18 surjective.

Proof. Suppose z is not in any minimal prime of R. Then z is not in any minimal prime of R,
and thus by Proposition 6.2, there exists ey such that Tr*: F¢(zwg,) — wg, is surjective.?
Since R is F-finite, we know that

Hompg, (F°(zwg,),wr,) = Homg(F°(2wRr), WR)e-

Therefore we know that there exists n > 0 such that the image of Tr**: F¢(zwg) — wgr
contains c"wg.

Our assumption says that there exists e > 0 such that ¢ - F° is injective on HS(R). If
we compose this map n times we get that ¢! 2"V . fme is injective on HZ(R), in

particular, ¢" - F¢ is injective on H¢(R). That is, the composition
Hy\(R) = Hp(FI“R) = Hy(FI“R)

is injective. But then by Discussion 6.1, we see that Tr": FI'*(c"wg) — wg is surjective.
Now the composition

Trne+eo : Ffe+eo(sz) Fme Tro FfewR Tr"e or
is surjective and so by Proposition 6.2, R is F-rational. 0

As a consequence, we prove the following result on openness of F-rational locus for F-finite

local rings. We will eventually extend this result to excellent local rings.

Proposition 6.4. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0. Then
the F-rational locus of Spec(R) is open.

Proof. Suppose Rp is F-rational, it is enough to show that there exists f ¢ P such that Ry is
F-rational. Since Rp is a domain by Proposition 4.4, there is a unique minimal prime P’ of
R that is contained in P. Suppose we can find f ¢ P such that (R/P’)y is F-rational, then

3Here we are using Proposition 6.2 for an F-finite but not necessarily local ring R, we leave it to the reader
to check that the proposition is still valid in our context: the point is that the trace map is Tr® is globally
defined and it localizes to the corresponding trace map for Rp for all P € Spec(R,.).



F-SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 47

after replacing f by a multiple not in P so that P'"R; = 0, we have that Ry = (R/P’); is
F-rational. Thus we may replace R by R/P’ to assume that (R, m, k) is an F-finite domain.

Since R is excellent by Theorem 1.7, there exists ¢ # 0 such that R, is regular. Since Rp
is F-finite and F-rational, by Proposition 6.2 we know that there exists e > 0 such that Tr*:
Ff(cwg,) — wg, is surjective, where Tr® can be viewed as the trace map of wg localized
at P, see Discussion 6.1 (here R is a local domain and hence equidimensional). It follows
that there exists f ¢ P such that Tr®: Ff(cwg,) — wg, is surjective. Since Rp is Cohen-
Macaulay, we can replace f by a multiple to assume that Ry is Cohen-Macaulay.* Now by
Proposition 6.3 (applied to each Rg such that () € D(f)), we see that R is F-rational. [

Remark 6.5. In the proof of Proposition 6.3, we are implicitly using R is local since we
need a global trace map Tr: Ffwr — wg. It is well-known that this holds as long as R is
F-finite and “sufficiently affine” (see [BB11], we will not make this precise here).” Now for
any F-finite ring R, we can find a finite cover of Spec(R) by sufficiently affine open subsets
UD(fi), then a small modification of the proof of Proposition 6.3 works for each Ry,. But a
subset of Spec(R) is open if and only if its intersection with each D(f;) is open. Therefore

for any F-finite (not necessarily local) ring R, the F-rational locus of Spec(R) is open.

We next introduce the I'-construction of Hochster—-Huneke [HH94a] — a very useful tech-
nique to reduce questions from complete local rings to the case of F-finite local rings. The
results presented here: Lemma 6.9 — Lemma 6.14, originate from [HH94a] and [EHOS].

Let k be a field of prime characteristic p > 0 with a p-basis A. Let I' be a fixed cofinite
subset of A. For e € N we denote by k"¢ the purely inseparable field extension of k that is

the result of adjoining p°-th roots of all elements in I to k.

Discussion 6.6 (The I'-construction). Let (R, m, k) be a complete local ring of prime charac-
teristic p > 0. Abusing notations a bit, we also fix K C R to be a coefficient field of R. Let
x1,...,xq be a system of parameters for R. By Cohen’s structure theorem we know that R
is module-finite over A = k[[z1,...,z4]] € R. We define

A" = K[, - 2],

eeN

1t is well-known that the Cohen-Macaulay locus is open for excellent rings. In our context, we can argue
as follows: Since (R, m, k) is F-finite, we know that (R, m, k) is a homomorphic image of a regular local ring
(S,n, k) by Theorem 1.6, it is easy to check that Rp is Cohen-Macaulay if and only if Extfg(R, S)p =0 for
all j # n — d where n = dim(S) and d = dim(R), but if these Ext groups vanish when localized at P, then
they vanish when inverting f for some f ¢ P.

SIn fact, it is true that there exists a global trace map Tr: Ffwr — wpg for all F-finite rings.
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which is a regular local ring faithfully flat and purely inseparable over A (note that Al is
Noetherian, we leave this as Exercise 31). The maximal ideal of A expands to that of AT. Set
R' := AV ®4 R. Then R is module-finite over the regular local ring A", and R' is faithfully
flat and purely inseparable over R. The maximal ideal of R expands to the maximal ideal
of R and the residue field of R is k' := U.cn k¢, Note that, since R — R is purely
inseparable, Spec(R") can be identified with Spec(R). For every Q € Spec(R), we use Q"

to denote the unique prime ideal in R' corresponds to @, i.e., Q' = \/QRL.

Remark 6.7. With notation as in Discussion 6.6, it is easy to see that R = J.cy ROLETC.
In particular, the definition of R depends only on the choice of the coefficient field & (and

the choice of p-base of k), but not on the choice of z1, ..., z4.

Remark 6.8. With notation as in Discussion 6.6, we have depth Rg = depth Rgr since
Ro — Rgr is purely inseparable. In particular, R is Cohen-Macaulay if and only if Rgr is
Cohen-Macaulay.

Lemma 6.9. With notation as in Discussion 6.6, R' is F-finite.

Proof. Tt is enough to show that A" is F-finite, that is, F,A" is finitely generated as an
Al-module. Let 6,,...,6, be the finitely many elements in A — I". Then we claim that the
following finite set

O :={F. (01 --- 0 - 2] - 270 < iy, j, < p— 1}
is a generating set of F,A! over A'. To see this, note that

FAT = [ ([, 2],

eeN
and it is easy to check that F,(kU¢[[x1,...,24]]) is generated over kMet[[zy, ..., z4]] by ©.
Thus after passing to the union, we see that O is a generating set of F, A" over A" O

Lemma 6.10. With notation as in Discussion 6.6, if () is a prime ideal of R, then for all
sufficiently small choices of I', we have Q¥ = QR'.

Proof. Replacing R by R/Q, it is enough to show that if R is a complete local domain, then
R is a domain for all sufficiently small choices of T’ (see Remark 6.7).

We let L, L', Lr denote the fraction field of A, A", R respectively. Since Al is purely
inseparable over A, we know that L' = L ®4 A". Also note that Ly is a finite extension of
L. We first observe that it suffices to show Ly ®;, L' is a field for sufficiently small choices

of I': for if this is true, then we have

RFIR@AAF‘—}LR(@AAF:LR®LL®AAFILR®LLF
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and hence R' is a domain as desired (the injection above follows because A is flat over A).
We next note that, since AU < kU'[[xy, ..., z4]], we have L' C Frac(k"[[z1,. .., 74]]) and thus
N L'<C () Frack[[21,...,24)])) = Frac(k[[z1,...,24]) = L
I'CA cofinite I'CA cofinite
where the middle equality follows from [Mat70, 30.E] since N k" = k. Thus we have N L' = L.
Let {\1,..., A} be a basis of Lg over L. To show Lp @y, L' is a field, it is enough to show
{1, ..., A\, } are linearly independent over L' (view all fields in a fixed ambient L). We pick
I such that the number of linearly independent vectors of {\1,...,\,} over L' is maximum
among all the L''. If this number is h < n, then without loss of generality we can assume
{\1,..., A} are linearly independent over L' but A\p 1 = €3\ + -+ - €y N\, where ¢; € LT and
at least one of the ¢;, say ¢y, is not in L. Since L' = L, we can pick I'' C I' such that
l ¢ LY. But then Ant1 cannot be written as a linear combination of Ay,..., A\, over v (if
so then we have two expressions of A, as linear combinations of A, ..., \, over L' which
contradict the linear independency of {\1,...,\,} over L), it follows that {\;,..., A\pi1}
are linearly independent over LI contradicting our choice of I'. Therefore, for all sufficiently
small choices of I', Lr ®;, L is a field. O

Remark 6.11. With notation as in Discussion 6.6, if R is a domain, then we have Frac(R) =
N Frac(R") where the intersection is taken over all sufficiently small T’ such that R' is a

domain. In fact, following the notation as in the proof of Lemma 6.10, we have
N Frac(R") =((Lr®r L") = Lr®, (L' = Lg ® L = Ly = Frac(R)

where the second equality is because L is a finite field extension of L and the third equality

uses L' = L as in the proof of Lemma 6.10.

Lemma 6.12. With notation as in Discussion 6.0, if Rq is reqular then Rgp is reqular for
all sufficiently small choices of T'. In fact, the reqular locus of Spec(R) can be identified with
the regular locus of Spec(RY) for all sufficiently small choices of T.

Proof. By Lemma 6.10, for sufficiently small ', QR" = Q" is a prime ideal. Thus Rg — Rf,r
is a faithfully flat extension whose closed fiber is a field, so it follows that Rgp is regular.
We use Reg(R) to denote the regular locus of Spec(R). For any I'Y C T' two cofinite

subsets of A, we have a faithfully flat purely inseparable extension R — R' which induces

a faithfully flat extension RV, — RLr. Thus if P € Reg(R"), then P € Reg(R"). Thus
after we identify Spec(R") with Spec(R), we have Reg(R") C Reg(R") (note that these are
open subsets of Spec(R) since all RT' are F-finite by Lemma 6.9 and hence excellent). Since

open subsets of Spec(R) satisfy ascending chain condition, we know that for all sufficiently
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small choices of I', Reg(R") = Reg(R") for all IY C I'. Fix such a T, we will show that
Reg(R) = Reg(R"). Clearly Reg(RY) C Reg(R). Suppose there exists Q@ € Reg(R) but
Q" ¢ Reg(RY). Then by the first part of the lemma we can pick a sufficiently small IV C T
such that Q" € Reg(R""), but then Reg(R") # Reg(R") which is a contradiction. O

Lemma 6.13. With notation as in Discussion 6.6, if Q) € Spec(R) and W is an Artinian
Rg-module with an injective Frobenius action, then for all sufficiently small choices of I' the

induced Frobenius action is injective on W' :== W ®Rg RCSF.

Proof. By Lemma 6.10, we may assume I is small enough such that Q' = QR". Then we
have k(Q') = Frac(R"/QR") and Nk(Q") = k(Q) (see Remark 6.11).

Let V be the socle of W. Since W is Artinian, V is a finite dimensional vector space over
#(Q) and VI :=V @p, Riyr = V ®yq) £(Q) is the socle of W (as a module over Ryr).
Let F' be the given Frobenius action on W and let F' be the induced Frobenius action on
WT. Set UT := VI nKer(F") which is a k(Q")-subspace of VT.

Note that U™ C U' whenever IV C T and F' is injective on W' if and only if UT = 0. We
pick I' sufficiently small such that dim(U") is the smallest. We next fix a basis vy, ..., v, of
V over x(Q). If dim(U") > 0, then we choose a basis of Ul over k(Q") and write each basis
vector as Y a;;v; where a;; € (Q"). Now the reduced row echelon form of (a;;) is uniquely
determined by U', and in this reduced row echelon form, each row must contain an entry not
in k(Q) since U NV =0 (as F is injective on W). But since Nx(Q") = x(Q), there exists
IV C T such that at least one of these entries is not in £(Q"), it follows that U must have
dimension strictly smaller than dim(U") (choose a basis of U™ and look at the reduced row
echelon form with respect to vy, ..., v, again, it must have fewer rows). This contradicts our

choice of I'. Thus for all sufficiently small I', U' = 0 and so F' is injective as desired. [

Lemma 6.14. With notation as in Discussion 6.6, if Rq is F-rational, then Rgp is F-
rational for all sufficiently small choices of T'. In fact, the F-rational locus of Spec(R) can
be identified with the F-rational locus of Spec(RY) for all sufficiently small choices of T.

Proof. Since R is an excellent local domain (by Proposition 4.4), there exists ¢ € R whose
image in Rg is nonzero such that (Rg). is regular. Since Reg(R) = Reg(R") for sufficiently
small choices of I' by Lemma 6.12, Reg(R.) = Reg(R.) and thus (RL;). is regular. Since
Rgp is F-finite and Cohen-Macaulay, by Proposition 6.3 it is enough to show there exists
e > 0 such that for all sufficiently small choices of I,

ng(RFF) — Fngr(RFF) & F:HgF(RFF)
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is injective, where h = ht(Q). This follows from Lemma 6.13 since R is F-rational and
H)(RGy) 2 HJ5 (Ro) ® g Ry

The rest of the proof is very similar to Lemma 6.12. We use Frat(R) to denote the F-
rational locus of Spec(R). For any IV C I" two cofinite subsets of A, we have a faithfully
flat extension R™ — R' which induces a faithfully flat extension RL,, — Rhr. Thus if
P € Frat(R"), then P € Frat(R") by Exercise 20. Thus after we identify Spec(R") with
Spec(R), we have Frat(R") C Frat(R") (note that these are open subsets of Spec(R) by
Proposition 6.4). Since open subsets of Spec(R) satisfy ascending chain condition, we know
that for all sufficiently small choices of T', Frat(R") = Frat(R") for all I C T. Fix such
a T, we will show that Frat(R) = Frat(R"). Clearly Frat(R') C Frat(R). Suppose there
exists ) € Frat(R) but Q" ¢ Frat(R'). Then by the first part of the lemma we can pick a
sufficiently small IV C T" such that Q" € Frat(R"), but then Frat(R"") # Frat(R") which is

a contradiction. |

Corollary 6.15. Let (R, m, k) be a complete local ring of prime characteristic p > 0. Then
the F-rational locus of Spec(R) is open.

Proof. By Lemma 6.9, for all sufficiently small choices of I, R' is F-finite. Thus by Propo-
sition 6.4, the F-rational locus of Spec(R') is open. Hence so is the F-rational locus of
Spec(R) by Lemma 6.14. O

We can now prove the following.

Theorem 6.16. Let (R,m, k) be an excellent Cohen-Macaulay local ring of prime char-
acteristic p > 0. Suppose there exists ¢ not in any minimal prime of R such that R, is
reqular. Then R is F-rational (and hence R is F'-rational) if there exists e > 0 such that the
composition

HY(R) — HA(FER) =5 H(F<R)

is injective. In particular, if R is excellent, then R is F'-rational if and only Zfﬁ s F'-rational.

Proof. We first note that H(R) = H%(R) and if ¢ € R is not in any minimal prime of R,
then ¢ is not in any minimal prime of R. Thus it is clear that R is F-rational implies R
is F-rational (this is also a special case of Exercise 20, and we do not need to assume R is
excellent).

Since R is excellent, R — R has geometrically regular fibers and hence we know that R,
is also regular. By Lemma 6.12, RE is regular for sufficiently small choices of I'. Moreover,
since

HY(R) — HL(FR) 5 H(FER)



52 LINQUAN MA AND THOMAS POLSTRA
is injective, By Lemma 6.13, it follows that for sufficiently small choices of T,
Ha(R) = FEH(R) =5 FEHG(R)
is injective.
Since R' is F-finite and Cohen-Macaulay, and }A*ZE is regular (note that c¢ is not in any
minimal prime of RY since R — RY is flat), Proposition 6.3 shows that RY is F-rational.

But then since R — RY is faithfully flat, R is F-rational by Exercise 20. The last conclusion

follows since the assumptions are clearly satisfied if R is F-rational. O

Remark 6.17. There are examples of non-excellent F-rational local rings (R, m, k) of prime
characteristic p > 0 such that R is not F-rational, see [LRO1].

Exercise 30. Let R be an F-finite ring of prime characteristic p > 0. Prove that the

F-injective, F-pure and strongly F-regular locus of Spec(R) are open.

Exercise 31. With notation as in Discussion 6.6, prove that A" — k'[[zy,...,z4]] is faith-
fully flat, and use this to show that A' is Noetherian. (Hint: Prove the more general fact
that if A — B is a faithfully flat extension of rings such that B is Noetherian, then A is
Noetherian.)

Exercise 32. With notation as in Discussion 6.6, use Lemma 6.10 to prove that if J is a
radical ideal of R, then for all sufficiently small choices of I', we have JR' is radical (in

particular if R is reduced then R is reduced for all sufficiently small T').

In Proposition 6.3, Remark 6.5, and Exercise 30, we have seen that for F-finite rings, the
loci of Spec(R) such that R is F-rational (resp., F-injective, F-pure) is open. In Chapter 7,
we will show that the same holds for excellent local rings, and with some further work this
can be shown to hold for all rings essentially of finite type over excellent local rings — this is
basically because the theory of I'-construction can extended to this set up (see [HH94a] or

[Mur21]). It is thus natural to ask the following question.

Open Problem 3. Let R be an excellent ring of prime characteristic p > 0. Is the F-
rational (resp., F-injective, F-pure) locus of Spec(R) open?®

6We caution the reader that, one cannot expect the openness of loci for these F-singularities without the
excellent assumption, for example see [DM24, Theorem 5.10] (which is based on [Hoc73a]).



F-SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 53
7. F-SINGULARITIES UNDER FAITHFULLY FLAT BASE CHANGE

The goal of this chapter is to study F-singularities under faithfully flat base change. The
general question we are interested is the following : Suppose (R,m, k) — (S,n,¢) is a flat
local extension such that the base ring R and the closed fiber S/mS have certain type of
F-singularities, then whether S has the same type of F-singularities? For example, if R is
a DVR with uniformizer ¢, then S/mS = S/tS where ¢ is a nonozerodivisor of S, and this is
precisely the deformation question we studied in Chapter 5.

Since even the deformation question has a negative answer in general (e.g., for F-pure and
strongly F-regular singularities, see Chapter 8, Example 8.9), one cannot expect the general
question hold without additional assumptions. We will present what is known in this area.

We first recall a well-known lemma.

Lemma 7.1 ([Mat70, Section 21]). Let (R, m, k) — (S,n,¢) be a flat local extension such that
S/mS is Cohen-Macaulay. Let x := x1,...,x4 be a system of parameters of S/mS. Then
T1,...,%q 1S a reqular sequence on S and S/(z)S is faithfully flat over R. In particular,
Hé)(S) is faithfully flat over R.

We also recall the following result on the behavior of injective hull under faithfully flat
extension with Gorenstein closed fiber, which is due to Hochster—Huneke [HH94a, Lemma

7.10] in the generality we need.

Lemma 7.2. Let (R, m, k) — (S,n,{) be a flat local extension such that S/mS is Gorenstein.
Let x := x1,...,2q be a system of parameters of S/mS. Then Es(f) = Eg(k) ®@r H{,(S).
€ H&)(S) in

s a socle representative

v

Moreover, if u is a socle representative of Egr(k) and the image of P

H&)(S/mS) is a socle representative of H&)(S/mS), then u ®
of Es(0) = Er(k) ®r H,y(S).

Zd

T1-%q

Proof. We have Eg(k) = Uy Anng, ) m" = U, Eg jmn (k) and similarly Es(€) = Uy Eg/mng(£).
Thus we can replace R — S by R/m" — S/m"S to assume that (R, m, k) is Artinian (note
that the socle representative doesn’t change when we do this replacement).

By Lemma 7.1, we know that S; := S/(zt,...,2%)S is faithfully flat over R with S;/mS;
Gorenstein. If we can show that Er(k) ®g S: = Es,(£), then we would have

Eg(k) @r H{,)(S) = Eg(k) @glim S, = lim Bg, (¢) = Es(().

Note that —— € H{,(S) is the image of v(z---x4)'"" € S; whose image in S;/mS; is a

T1%q

by U($17 s 7md)t71

socle representative of S;/mS;. Therefore, replacing S by S; and

T1Tq
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and noting that for Artinian local rings, the injective hull of the residue field coincides with

the canonical module, it is enough to establish the following claim:

Claim 7.3. Let (R,m, k) — (S,n,¢) be a flat local extension of Artinian local rings such that
S/mS is Gorenstein. Then we have wg ®r S = wg. Moreover, if u is a socle representative
of wg and v € S whose image in S/mS is a socle representative of S/mS, then u®@ v is a

socle representative of wgr ®r S = wg.

Proof of Claim. Since R — S is flat local, we have (g(wr®r S) = ls(R®grS) = l5(S). Thus
to show wg ®g S = wg, it is enough to show that wr ®g S has a one-dimensional socle. But
note that

Homg(f, WRr @R S) = Homg(ﬁ, HomS(S/mS’ Wr QR S))
= Homg (¢, Homg(k,wr) ®g S)
>~ Homg((, k ®r S) = Homg((, S/mS) = ¢,

which is exactly what we want to show. We leave it to the reader to check through the above

isomorphisms that the socle elements are matched as in the claim. 0

O

7.1. The case of strongly F-regular and F-pure singularities. We first prove the
base change results on F-pure and strongly F-regular singularities. These results, in the
generality we presented, are originally due to Aberbach [Abe01] using methods from tight
closure theory. Our arguments are more streamlined and do not depend on the knowledge
of tight closure. In what follows, we will use EFr and Eg to denote the injective hull of the

residue field of R and S respectively. We begin with the F-pure case.

Theorem 7.4. Let (R,m, k) — (S,n,¢) be a flat local extension of rings of prime char-
acteristic p > 0 such that R is F-pure and S/mS is Gorenstein and F-pure.” Then S is
F-pure.

Proof. By Lemma 7.2 and Proposition 2.2, it is enough to show that

ER ®R Hé)(S) — ER ®R Hé)(S) ®S F*eS = ER ®R F:R ®FfR F:Hé)<5)

is injective for all e > 0. Now the image of the socle representative u ® P under the
map is u ® Ff1 ® Ff(ﬁ) Thus it is enough to show this element is nonzero in Er Qg
1 e

"Note that if R is a DVR (or more generally, a regular local ring), then we only need to assume S/mS is quasi-
Gorenstein and F-pure, see Exercise 26. The authors do not know whether one can relax the Gorenstein
hypothesis to quasi-Gorenstein in general.
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FfR Qper FfH(d@(S). Since R is F-pure, u ® Ff1 # 0 in Er ®@r FSR. Thus there exists a

nonzero (F¢R)-linear map FfR — Er ®r FR sending F¢1 to u ®pg F£f1, say with kernel
F¢J. Since FfHé)(S) is faithfully flat over F°R by Lemma 7.1, we have an injection:

(F:R/F:J) Rrer F:Hé)(5> — Er ®r FfR QFrer FEH&)(S)

The image of Ff1 ® Fe(L) under this map is precisely u ® F¢1 ® Fe(%) Thus to

d

show the latter one is nonzero, it is enough to show FY1 @ F{(——= ol ) # 0. But
.
(FER/FLT) ®per FEH{ (S) —» (FER/Fim) ®pep FLH( (S) = Fe( (o (S/mS)),

thus it is enough to show that Fe(L) # 0 in Fe(H(x)(S/mS)), that is, - = = # 0

in H »(S/mS). But S/mS is F-pure, in particular F- mJectlve by Exercise 21, hence the

= 70, 5 e—Fe(x“ ) # 0 in
b 1°Tg

g, (S/mS). O

Frobemus action on H é)(S /mS) is injective. Since _—

We next prove the general base change result for strong F-regularity. One difficulty in
establishing this compared with the F-pure case is that we need to choose ¢ carefully to

detect the strong F-regularity of the target ring.

Theorem 7.5. Let (R,m, k) — (S,n,{) be a flat local extension of F-finite rings of prime
characteristic p > 0 such that R is strongly F-regular and S/mS is Gorenstein and strongly
F-regular. Then S is strongly F-reqular.

Proof. Since S/mS is strongly F-regular, it is a normal domain by Proposition 3.8. Thus
mS is a prime ideal in S. We first show that S’ = Syg is strongly F-regular. We know that
R — S' is a flat local extension such that S’/mS’ is a field. Moreover, by Proposition 3.12,
we may replace R and S’ by their completion to assume R and S’ are both complete.
Suppose there exists ¢ € S’ not in any minimal prime of S’ such that for all e > 0, the
map S — F°5" sending 1 to F°c is not split, then by Corollary 2.4 and Proposition 2.2, the
map Es — Fg Qg F£S" induced by sending 1 to Ffc is not injective for all e > 0, thus
the socle of Es» maps to zero under this map. By Lemma 7.2, Eg = Er ®z S" and a socle

representative is © ® 1 where u is a socle representative of Er. It follows that
ES” ®S’ FES, = ER ®R S/ ®S’ F:S/ = ER ®R F*ER ®FfR F*ES,
and that u ® Ff1® Ffc=0in Er ®p FSR ®@peg FES' for all e > 0. Thus

Fic € Ap,g,reRepe pres (0 ® FY1 ® FY1) = (Annperer(u ® FY1)) @per FS'
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for all e > 0 where the isomorphism follows from that F£S’ is flat over FfR. However,
since R is strongly F-regular, we know that for all 0 # z € R, there exists e > 0 such that
the map R — F¢R sending 1 to Ffz is split, thus Ffz ¢ Anng, g, rer(u ® FF1) (again by
Corollary 2.4 and Proposition 2.2). Therefore, if we define FfI, := Anng,g,per(u ® F£1),
then N/, = 0 and 0 # ¢ € N(I. ®g S"). But by Chevalley’s lemma, for all n > 0, there
exists e(n) such that I,y € m”, thus N.(/. ®p S") € N,m"S" = 0 which is a contradiction.

So far we have proved that Syg is strongly F-regular. By Exercise 30, there exists ¢ ¢ mS
such that S, is strongly F-regular. Note that ¢ is a nonzerodivisor on S/mS and thus it is
a nonzerodivisor on S by Lemma 7.1, in particular, ¢ is not in any minimal prime of S. By
Theorem 3.11, it is enough to show that there exists e > 0 such that the map S — F¢S
sending 1 to F¢c is split. The rest of the proof is very similar to the proof of Theorem 7.4.
By Corollary 2.4 and Proposition 2.2, it is enough to show that the map Fg — Fg ®g F£S
induced by sending 1 to Ffc is injective for some e > 0. By Lemma 7.2, this is the same as

the map

Er ®p H{)(S) = Ep ®r H(,)(S) ®s FES = Ep O FCR @peg FLHE(S).

— under the map is u® Fy1 ®F€( S”_p ).
Thus it is enough to show this element is nonzero in EFr ®g FYR Qper FY H (S ). Smcé R
is strongly F-regular (in particular F-pure), u ® F¢1 # 0 in Er @ FER. Thus there exists
a nonzero (FfR)-linear map FfR — Fr @ FFR sending F¢1 to u ®g F*1, say with kernel

F¢J. Since FfH&)(S) is faithfully flat over F?R by Lemma 7.1, we have an injection:

Now the image of the socle representative u ® -

(FER/F:J) @per FEH{,)(S) — Er ©r FYR ®per FLHE)(S).

The image of FY1® FY (- qr” =) under this map is precisely u ® Ff1 ® Fe( qur” —=). Thus to
@y md g

show the latter one is nonzero for some e > 0, it is enough to show Ff1 ® F '3( qor” ) #0

for some e > 0. But we have

(FER/FEJ) @pen FEHL)(S) — (FER/Fim) @ FEHL)(S) = FE(HL)(S/mS)).

Thus it is enough to show that F(— o ) # 0 in F(H( HE ) (S/mS)) for some e > 0, that is,

qur” —= # 0 in Hd )(S/mS) for some e > 0 But S/mS is strongly F-regular, and hence F-
351
= 70, p‘é”f] e = cF(;7%-) # 0in HY, (S/mS)

T1Tg

ratlonal by Theorem 4.6. Therefore since —

for some e > 0 as desired. OJ

7.2. The case of F-rational and F-injective singularities. We next prove the general

base change result on F-injective and F-rational singularities. We slightly deviate from the
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historical discoveries of these results: we first prove the F-injective case, which is due to
Datta—Murayama [DM24], and then we will make use of the F-injective case along with

other techniques to establish the result on base change of F-rationality.

Theorem 7.6. Let (R,m, k) — (S,n,{) be a flat local extension of rings of prime charac-
teristic p > 0 such that R is F-injective and S/mS is Cohen-Macaulay and geometrically
F-injective over k. Then S is F-injective.

Proof. Let x := x1,..., x4 be a system of parameters of S/mS. We first claim the following:

Claim 7.7. For any Artinian R-module M, the map FEM Qg Hé)(S) — F¢(M ®pg Hé)(S))
sending Ffm ®@ n — F¢(m ® F¢(n)) is injective for all e > 0, where F¢(—) is the natural
Frobenius action on H{,(S).

Proof. By taking a direct limit, it suffices to prove the claim for all R-modules of finite
length. Moreover, if 0 — M; — My — Mj3 — 0 is a short exact sequence, then since F¢(—)

and @pH é)(S) are both exact (by Lemma 7.1), we have a commutative diagram

0 —— FeM; @p HE\(S) —— FMy ©p HY)(S) —— FeMs @ HY)(S) — 0
0 —> Fe(My @ HY)(S)) — Fo(My @ HL)(S)) — Fo(M; @ HE\(S)) — 0.

Thus to prove the claim for Ms, it is enough to prove it for M; and Mjs. So by induction
on the length of M, it is enough to prove the claim for M = k. But we have the following

commutative diagram

Fek ®p HE(S) Fi(k ®r Hy)(9))

l: l:

Hé)(ka' ®k S/mS) —— Ff(H&)(S/mS)) — Ff(H&)(ka: ®y S/mS))

The composition map in the second row is injective, because it is a direct limit of the natural
Frobenius map H{,y (k' ®; S/mS) — Ff(H(d@(k’ ®y S/mS)) (where £ is a finite extension of
k in Ffk), which is injective since S/mS is geometrically F-injective over k. Thus the map

in the first row is injective as desired. O

Now Claim 7.7 implies that the natural map
FLH(R) ®r Hiy)(S) — Fi(Hy(R) @r H)(S)) = FLH(S)
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is injective (the last isomorphism follows from Lemma 7.1 and a simple computation using
the spectral sequence H;H(J'E)(S) = H!™(S)). But H.(R) — F¢H.(R) is injective since R
is injective, thus as H (d@(S ) is faithfully flat over R by Lemma 7.1, we know that

HI(S) = Hi(R) ®@r HL(S) — FCHL(R) @ HE)(S)

is injective. Composing the two maps we find that Hi*(S) — FeHT4(S) is injective for all
i (we leave it to the reader to check that this map is precisely the natural Frobenius action
on Hi*4(S)). Thus S is F-injective. O

It will take us considerable effort to prove the corresponding base change result for F-
rationality. We first prove a special case, that is, when S/mS is geometrically regular. This

result was originally obtained by Vélez [V¢l95] (which extended some results in [HH94a)).

Theorem 7.8. Let (R,m, k) — (S,n,¢) be a flat local extension of excellent rings of prime
characteristic p > 0 such that R is F-rational and S/mS is geometrically regular over k.
Then S is F-rational.

Proof. Since S/mS is geometrically regular over k (so clearly Cohen-Macaulay and geomet-

rically F-injective over k), by Claim 7.7 we know that
FHy(R) ©p Hy(S) = F(Hy(R) ©r Hy(S))

is injective for all e > 0, where n = dim(R) and d = dim(S/mS).

Furthermore, since R is excellent and (R, m, k) — (S, n, /) is flat local with S/mS geomet-
rically regular over k, k(P) ®g S is geometrically regular over x(P) for all P € Spec(R) by
[And74, Thm on page 297]. In particular, there exists 0 # ¢ € R such that R. and S, are
both regular (note that R is a domain by Proposition 4.4 and thus ¢ is not in any minimal

prime of S since R — S is flat). Now since R is F-rational, there exists e > 0 such that
Hy\(R) = FLHp(R) =5 FLHy(R)

is injective. This injection is preserved after tensoring with H &)(S ) since the latter is flat

over R by Lemma 7.1, and thus the composition
Fie eryn e n
HQ(R)(@RH&)(S) — FanTi(R)‘X)RHé)(S) — k] Hm(R)‘X’RHé)(S) — F (Hm(R)®RH(d£)(S))

is injective. After identifying H(R) ®g H&)(S) with H'T4(S) (again, this follows from

Lemma 7.1 and the spectral sequence Hy H, () = H;*7(S)), the above injection is precisely

HPH(S) = FEHI(S) 25 HPH(S).
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Since S is excellent Cohen-Macaulay and S, is regular (and ¢ is not in any minimal prime
of S), S is F-rational by Theorem 6.16. O

The above theorem allows us to prove the following criterion for F-rationality. This is a

full generalization of Proposition 6.3 and Theorem 6.16.

Theorem 7.9. Let (R,m, k) be an excellent Cohen-Macaulay local ring of prime character-
istic p > 0. Suppose there exists ¢ not in any minimal prime of R such that R, is F-rational.

Then R is F-rational if and only if there exists e > 0 such that the composition
HY(R) — HA(FER) 5 HA(F<R)
1S 1njective.

Proof. Since R, — R, has geometrically regular fibers (as R is excellent), we know that R, is
F-rational by Theorem 7.8. It follows that for sufficiently small choices of T, RE is F-rational

by Lemma 6.14. Moreover, since
HZ(R) — HA(FER) =5 HA(F<R)
is injective, it follows that for sufficiently small choices of T,
HE(RY) — FEHA(RT) =5 FEHA(RY)

is injective by Lemma 6.13. Since R' is F-finite and EE is F-rational (and ¢ is not in any
minimal prime of R' since R — R' is flat), Proposition 6.3 shows that R' is F-rational.
But then since R — R is faithfully flat, R is F-rational by Exercise 20. O

We can also extend Proposition 6.4 to the case of excellent local rings, this was also

originally proved by Vélez [Vél95].

Theorem 7.10. Let (R, m, k) be an excellent local ring of prime characteristic p > 0. Then
the F-rational locus of Spec(R) is open.

~

Proof. By Corollary 6.15, we know that the F-rational locus of Spec(R) is open. Let V(I) C
Spec(R) be the non-F-rational locus where I C R is a radical ideal. We claim that the
non-F-rational locus of Spec(R) is precisely V(I N R).

To see this, first note that if P € Spec(R) such that P does not contain I N R, then any
prime @) € Spec(ﬁ) lying over P does not contain I and thus }TZQ is F-rational, which implies
Rp is F-rational by Exercise 20 since Rp — RQ is faithfully flat.

Now suppose P € Spec(R) contains I N R, we want to show Rp is not F-rational. Write
I=0Q:N---NQ, where @y, ..., , are minimal primes of /. Then I NR=P N---NP,



60 LINQUAN MA AND THOMAS POLSTRA

where P, = ; N R. Since I N R C P, we know P, C P for some i. If Rp is F-rational,
then Rp, is F-rational by Theorem 4.14. But then as (); contracts to P, and R is excellent,
Rp, — EQi is a faithfully flat extension of excellent local rings with geometrically regular
fibers. Thus Theorem 7.8 implies that EQZ- is F-rational, which is a contradiction to I C Q);
(recall that V/(I) is the non-F-rational locus of Spec(R)). O

Remark 7.11. In fact, the idea behind the proof of Theorem 7.10 is a more general result:
if R — S is a faithfully flat extension and U C Spec(R), then U is open if and only if the
pre-image of U in Spec(S) is open, see [Sta, Lemma 29.25.12].

The behavior of F-rational singularities under flat local extension was studied exten-
sively by Enescu [Ene00] and Aberbach—Enescu [AE03] (which extends some results in
[HH94a, HH94c, Vél95]). The theorem we present here seems to be most general version,
and was originally proved in [AE03] using sophisticated arguments involving tight closure.

Our treatment, based on similar ideas, is more streamlined.

Theorem 7.12. Let (R, m, k) — (S,n,{) be a flat local extension of excellent rings of prime
characteristic p > 0 such that R is F-rational and S/mS is geometrically F-rational over k.
Then S is F-rational.

Proof. Since S/mS is F-rational, it is a normal domain by Proposition 4.4. Thus mS is a
prime ideal in S. We first show that S’ := Sy¢ is F-rational: since S/mS is geometrically
F-rational over k, we know that R — S’ is a flat local extension such that S'/mS’ is
geometrically F-rational and thus geometrically regular over k (since dim(S’/mS’)=0) and
so by Theorem 7.8, S’ is F-rational.

Since S is an excellent local domain and Sy is F-rational, by Theorem 7.10 we know that
there exists ¢ ¢ mS such that S, is F-rational. Note that ¢ is a nonzerodivisor on S/mS and
thus it is a nonzerodivisor on S by Lemma 7.1, in particular, ¢ is not in any minimal prime
of S. Let & := x1,...,x4 be a system of parameters of S/mS. In analogy with Claim 7.7,

we have the following.

Claim 7.13. For any Artinian R-module M, the map FfM@RHé)(S) — Ff(M@RH&)(S))
sending Ffm @n — FS(m ® cF¢(n)) is injective for some e > 0, where F'*(—) is the natural

Frobenius action on H&)(S).

Proof. This follows from the same argument as in Claim 7.7, using S/mS is geometrically

F-rational instead of geometrically F-injective. U
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As a consequence, we see that there exists e > 0 such that the map FfH'(R) ®RH(d£)(S) —
F¢(HY(R) ®r H(d@(S)) sending Ffn @ n — F¢(n' @ cF°(n)) is injective. But since R is F-
injective and H é) () is faithfully flat over R (see Lemma 7.1), composing this injection with
the injection

Hy(R) ®r H(dg)<s> — F{HL(R) ®r Hé)(S)
and using that Hi(R) @r H,(S) = Hy(S), we find that Hy™(S) — FH(S) sending
n to F¢(cF¢(n)) is injective. Since S is excellent Cohen-Macaulay and S, is F-rational (and

¢ is not in any minimal prime of S), by Theorem 7.9, we see that S is F-rational. U

It is natural to ask whether we can drop “geometrically” in Theorem 7.6 or Theorem 7.12.
It turns out that both answers are no: the F-injective case was settled by Enescu [Ene09,
Proposition 4.2], which was based on [EH08, Example 2.16] (we leave the details in Exer-
cise 36); the F-rational case was settled by Quinlan-Gallego—Simpson—Singh [QGSS24]: they
constructed examples of flat local extensions of excellent rings (R, m, k) — (S, n,¢) of prime
characteristic p > 0 such that R is F-rational and S/mS is regular (in fact a field), but S is
not even F-injective [QGSS24, Theorem 1.1].

Remark 7.14. Though the results in this chapter are stated for local rings, one can immedi-
ately deduce the corresponding global results (as these F-singularities are local properties).
Namely, if R — S is a faithfully flat extension such that R is F-pure (resp., F-injective, excel-
lent and F-rational, F-finite and strongly F-regular) and all fibers of R — S are Gorenstein
and F-pure (resp., Cohen-Macaulay and geometrically F-injective, geometrically F-rational,
Gorenstein F-finite and strongly F-regular), then S is F-pure (resp., F-injective, F-rational
if S is excellent, strongly F-regular if S is F-finite).

Exercise 33. With notation as in Discussion 6.6, prove that if R is F-injective (resp.,
F-pure), then Rgp is F-injective (resp., F-pure) for all sufficiently small choices of T". Fur-
thermore, prove that the F-injective (resp., F-pure) locus of Spec(R) can be identified with
the F-injective (resp., F-pure) locus of Spec(R") for all sufficiently small choices of I'. (Hint:
Mimic the proof of Lemma 6.14: in the F-injective case use Lemma 6.13, while in the F-pure
case, Theorem 7.4 could be helpful.)

Exercise 34. Let (R, m, k) be an excellent local ring of prime characteristic p > 0. Prove
that the F-pure and F-injective locus of Spec(R) are open. (Hint: First mimic the proof
of Theorem 7.10, replacing the use of Theorem 7.8 by using Theorem 7.4 and Theorem 7.6,
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to reduce to the case that R is complete. Then mimic the proof of Corollary 6.15 by using

Exercise 30 and Exercise 33.)

The ideal I, that shows up in the proof of Theorem 7.5 plays an important role in the
study of F-singularities (e.g., see Chapter 9).

Exercise 35. Let (R,m,k) be an F-finite ring of prime characteristic p > 0. Let Eg
be the injective hull of the residue field and let u be a socle representative. Recall that
Fel, := Anng.g,rer(u ® FE1). Prove that

I, ={r € R | for all ¢ € Homp(F{R, R), $(Fir) € m}.

Exercise 36. Let K be an F-finite field of prime characteristic p > 0 and let K — L be a
finite field extension that is not separable such that LPN K = KP. Let x be an indeterminate
and let R = K + zL[[z]] C L[[z]]. Prove the following:

(1) R is a (Noetherian) complete local domain with dim(R) = 1.

(2) R is F-injective.

(3) K" @k R is not reduced, and hence not F-injective.
In particular, R — S := K'? @ R is a flat local extension such that R is F-injective and
the closed fiber is a field, but S is not F-injective.

Exercise 37. Let k be a perfect field of prime characteristic p > 0. Set K = k(u,v) and
L = K[y]/(y* + uy? + v). Prove that K, L satisfy the assumptions of Exercise 36.
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8. EXAMPLES

We start this chapter with a quick summary of the relations between the F-singularities
we have introduced so far (all the arrows that go to strongly F-regular also require F-finite

assumption as usual):

+Gorenstein

=

regular —=> strongly F-regular ——= F'-rational =——= normal

ﬂ +quasi-Gorenstein H/

F-pure =———= F-injective ——= reduced

A natural question one might ask is that whether there are other implications between
these F-singularities: for example, whether there are relations between F-rational and F-
pure singularities. However, Watanabe [Wat91] constructed examples of F-rational rings
that are not F-pure, and examples of F-rational and F-pure rings that are not strongly
F-regular. To study these examples, we first prove a very useful criterion of F-rationality
for graded rings [FW89] (the analogous criterion for rational singularities in characteristic 0
was proved by Watanabe [Wat83]).

Theorem 8.1 (Fedder—Watanabe’s criterion). Let R be an N-graded ring over a field k of
prime characteristic p > 0 with homogeneous mazimal ideal m. Suppose dim(R) > 1. Then

R is F-rational if and only if

(1) R is Cohen-Macaulay.

(2) Rp is F-rational for all homogeneous prime P # m.
(3) a(R) := max{n|H.(R), # 0} < 0.

(4) R is F-injective.

Proof. If R is F-rational, then (1) and (4) clearly hold, (2) holds since F-rationality localizes
by Theorem 4.14, and (3) holds by Exercise 22.

Now we suppose R satisfies (1) — (4) and we want to prove R is F-rational. We first assume
R is F-finite, that is, k£ is an F-finite field. Note that R has a canonical module wg such that
(wWr)p = wg, for all P € Spec(R). Moreover we can choose wg such that it is graded (see
[BS98, Chapter 14]). Similar to Discussion 6.1, we have a graded trace map Ffwg LN WR,
and it is easy to verify that the graded analogs of Proposition 6.2 and Proposition 6.3 (the
statments involving wg) hold in this set up.

Condition (2) implies Rp is a field for all minimal primes of R, so there exists a homo-
geneous ¢ € R not in any minimal prime of R such that R, is regular. By condition (2)

again, for each homogenous prime P # m, there exists e > 0 such that F¢(cwg)p LN (wr)p
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is surjective. Thus there exists a homogenous fp ¢ P such that Ff(cwg)y, LN (wr)fp 18
surjective. At this point, we note that UD(fp) = Spec(R) — {m} where the union is taken
over all homogenous primes P # m. Since Spec(R) — {m} is quasi-compact, there exists a
finite collection { f1,..., fu} that generates m up to radical such that for each f; there is an
associated e; such that F(cwg)y, RLEN (wr)y, is surjective. Pick e > e; for all ¢, it follows

Tre

that F¢(cwgr)s, — (wr)y, is surjective for all f;.* But then we know that
Coker(F¢ (cwg) LN WR)

is a graded finite length module supported only at m. It is enough to show that this cokernel
is 0, since then F¢(cwg) I, wpg is surjective, and by the graded analog of Proposition 6.3
we will be done.

But the graded Matlis dual of this cokernel is N, = {n € H4(R) | cF¢(n) = 0}. For e > 0,
we know that N, is a graded F-stable submodule of HZ(R), see the proof of Proposition 4.11,
where we need to use the Artinianness of H4(R) and that R is F-injective by (4). But then
by (4) again, any graded F-stable submodule of finite length must concentrate in degree 0,
but then it vanishes by (3). We have completed the proof when £ is an F-finite field.

Finally, if k is not F-finite, we can replace k by k' (and R by R' := R ®; k') for T
sufficiently small and run the above argument for R' (it can be shown, in analogy with the
local case, that (1) — (4) are preserved’). The outcome is that R' is F-rational and hence R

is F-rational by Exercise 20. U

The rest of this chapter requires some knowledge of algebraic geometry, see [Har77, Chap-
ter II and III]. We will present Watanabe’s examples and we give more details than [Wat91].
We first collect some basic facts about section rings of divisors with rational coefficients. Let
X be a normal projective variety over an algebraically closed field k = k and let D be an

effective Q-divisor such that mD is an ample Cartier divisor on X. Then
R=R(X,D) := ®,50H"(X,0x(|nD])) - t"

is a normal N-graded ring over k. We can explicitly describe the graded canonical module

of R and its symbolic powers using sheaf cohomology as follows (see [Wat91], which follows

8We leave it to the readers to check this carefully, the point is that Tr® : F¢(wg) s, — (wr)y, is surjective for all

e since Ry, is F-injective, so we can enlarge the e; while preserving the surjectivity of F¢' (cwr)y, LN (WR)f, -
90nly (2) requires some work and we omit the details, as the argument is entirely similar as in the local case
we carried out in Chapter 6. In fact, as we already mentioned before, the theory of I'-construction can be
extended to all rings essentially finite type over a complete local ring (e.g., a field), see [HH94a] for details.
In the sequel we will apply Theorem 8.1 mainly in the case that k is perfect or algebraically closed.
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from [Wat81] and [Dem88]):
(8.1) Wi = Pnez H(X,0x(|Kx + D' +nD])) - t*,
wif! = @ues HOX, Ox(La(Kx + D') +nD])) 1",

where Ky is the canonical divisor of X and D’ is defined as follows: if D = 3 7 E; such that
(a;,b;) = 1 and E;’s are prime divisors, then D' = Y- b(; LE..

Example 8.2. Let R = R(P}, D) where k is an algebraically closed field of prime charac-
teristic p > 0 and let D = %Pl + %Pg + %Pg be an effective Q-divisor where P, P5, P3 are

distinct points on P!. Then we have

(1) R is F-rational for all a,b,c > 1.
(2) Risnot F-pureif 1 + 7 +2 <1.
(3) If a=b=c=3, then R is F-pure if p =1 mod 3 but R is not strongly F-regular.

Proof. We first prove (1). We use Theorem 8.1. R is a two-dimensional normal N-graded
ring so it is Cohen-Macaulay and Rp is regular for all P # m. To see a(R) < 0, it is enough

to show that [wgr|<o = 0, which follows from (8.1) as
[wrl, = H'(P',0(=2) ® O(| D' +nD])) - t" =0

for n < 0. Finally we show R is F-injective. Let = be the parameter of P! and let Py, P, P
correspond to (z — «), (z — ), (x — ). It is straightforward to check that R is generated
by t, y1 1= ——t%, yy := ﬁtb, Y3 = ﬁtc. But then we observe that

R/tR = k[ylu Y2, y3]/<y1y27 Y1Ys3, ?/23/3)-

To see this, note that mod ¢, 1,7, = m 1t = (o — ) - (ﬁt““’ — Lttty =0
and similarly y193 = yoys = 0. Hence R/tR is Cohen-Macaulay and F-pure and thus R is
F-injective by Theorem 5.1. This completes the proof that R is F-rational.

We next prove (2) and (3). We note that the canonical map Fr(k) — FfR® Egr(k) can be
identified with H2(wg) — F°R ®p H2(wg) = H2(Few?"), where the isomorphism results
from the fact that the natural map FfR®@pwr — Ffwge) is an isomorphism in codimension
1 (after we localize at height one primes, wg is a rank one free module). We then have the

degree-preserving identifications:

Er(k) & Hy(wr) F'R® En(k) = H2(Few®)

- |

@nezHl(]Pﬂ, OIP’I(LKIP’I -+ .D/ + nDJ)) A —— @nngl(Pl, F:OPI(Lpe<KP1 + D/> -+ TLDJ)) AL

IR
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It is easy to check that the socle of Er(k) corresponds to H' (P!, Opi (| Kpr + D'])) = k (the
point is that all the degree > 0 piece vanish by a simple computation). Thus by Proposition
2.2, R is F-pure if and only if the map

HI(PI, OIPI(LK[FDI + D/J)) — Hl(Pl, F*Op(Lp(Kpl + D/)J))

is injective. But if % + % + % < 1, then a simple computation shows that

den(lp(Ker + D)) = ~2p+ [p- 4 [p- 25+ [

and thus H' (P!, F,Op (| p(Kp: + D')|)) = H (P!, Op: (| p(Kpr + D')])) = 0. Hence R is not
F-pure if 1 + 3 +1 < 1, which proves (2).

Finally, the same analysis (via Proposition 2.2) shows that R is strongly F-regular if and
only if for any 0 # f € H*(P', Opi (|nD])), there exists e > 0 such that the composition:

a—1

]>-1

H' (P, Op1 (| Kpi +D' ) = H' (B, F£Opr (|p(Kpi +D') ) L H' (P, F<Opa (|p° (K1 +-D')+nD)))
is injective. Now if a = b = ¢ = 3, then again a simple computation shows that for n large,

2 1
deg([p(Kpr + D) +nD]) = =2p" +3[ 30" + on] > —1
for all e > 0 and thus H*(P', F¢Op: (| p*(Kpr + D') + nD|)) = 0. Hence R is not strongly

F-regular. On the other hand, if p =1 mod 3, then one checks that
HY(P', F,Op (| p(Kp + D" ])) = HY(P*, F.Op (—2)),

and if we use [z : 21] to denote the coordinate of P!, then the induced map H' (P!, Op1 (—2)) —
HY(PY, F,Op (|p(Kp1 + D')|)) can be described as

1 _ P25t (5 — Lo 25 ) (5 — lp-<52 ]
S Bemem) e G Z BT B mv) T U gyt g o (<2)
2021 2021 2021
where 0 # u € k. Thus the map is injective and hence R is F-pure. U

Remark 8.3. One can write some concrete examples: for instance let P, = oo, P, = 0,
Py=1and a=0=c=4, then R k[t, zt*, z7't* (x —1)~'t*] is F-rational but not F-pure,
while if we take @ = b = ¢ = 3 and p = 1 mod 3, then R = k[t,xt3 2713 (z — 1)~ 7]
is F-rational and F-pure but not strongly F-regular. We can complete at the homogenous

maximal ideal to obtain examples of complete local domains.

We next give Watanabe’s example that direct summand of F-rational rings are not neces-
sarily F-injective. Our construction slightly differs from [Wat97], and in fact, we will adapt

our construction with work of Kovacs [Kov18] (which originates from [LR97]) to obtain also
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an example of a direct summand of F-rational ring that is not Cohen-Macaulay. We begin

with the following proposition.

Proposition 8.4. Let R be an N-graded ring over a field k of prime characteristic p > 0

with homogeneous mazximal ideal m such that
(1) Rp is regular for all homogeneous prime P # m.
(2) a;(R) := max{n|H.(R), # 0} <0 for each i.
(3) Hy(R) = Hy(R) =0.

Then R is a direct summand of an F-rational ring.

Proof. First note that the first and third assumptions imply that dim(R) > 2 and that R
satisfies Serre’s conditions (S3) and (Ry), it follows that R is normal. Let S, = k[z1, ..., z,)]
be a standard graded (i.e., deg(z;) = 1) polynomial ring and let T,, = R#S,, be the Segre
product, that is, T}, = @;>0(R; @k (55);j). Then R is a direct summand of T,,: we can map
R to T, by sending r € [R]; to r#x] and the map S, — k[z)] sending z; to 0 for all i > 2
induces a splitting 7,, — R#k[x1] = R.

We claim that T), is F-rational for all n > 0 and we use Theorem 8.1. We use the following
formula to compute the local cohomology of Segre product [GW78, Theorem 4.1.5.]:

Hi(T,) = Hi(R#S,) = R#H(S)) ® Hy(R)#Sn & (Dasbmiss Ha(R)#HA(S,))

where we abuse notation and use m to denote the corresponding homogeneous maximal
ideals of R, S,, and T, respectively. Set d = dim(R). By assumption (2), we know that
[H!(R)]>0 = 0 for all j and therefore R#H} (S,) = H.(R)#S, = 0 for all i and n. Therefore
the only possible nonzero contributions for the local cohomology modules of T,, are the
modules of the form HE(R)#H2(S,). In particular, H;™" Y(T,) = Hi(R)#H2(S,) for
all integers i as HJ(S,) = 0 for all j # n. Since R is normal and Rp is regular for all
homogeneous primes P # m by assumption (1), we know that H:(R) has finite length for
all i < d by the graded version of Lemma 4.5. Hence H{(R) only lives in finitely many
(negative) degrees. Even further, the module H}(.S,) is supported in degrees no more than

—n and so for each i < d and n > 0,
H,"U(T,) = Hy(R)#H(S,) =0

and thus 7' is Cohen-Macaulay. Moreover, since HIt"~Y(T) = HI(R)#H"(S), we have
a(T) < min{a(R),a(S)} < 0.

We next show that T is F-rational for all homogeneous primes P # my. If we invert
a homogenous element r#s € myp, then 7,4, is a direct summand of (R ®j, S),gs (since

T is a direct summand of R ®; S). But (R ®k S)res = R[z1,..., 2, is a localization of
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R,[1,...,x,], hence regular (because R, is regular by assumption (1)). Therefore T4, is a
direct summand of a regular ring and thus F-rational by Exercise 24.

Finally we show that 7" is F-injective. Our assumptions on R imply (see the proof of
Theorem 8.1) that the largest proper F-stable submodule of H(R) has finite length. In
particular, there exists m > 0 such that the Frobenius action on [HZ(R)]<,, is injective. Now
for n > m, the Frobenius action on HE™"YT) = HL(R)#H?(S) = [HL(R)|<m#[H(S)] <m

is injective. 0

Remark 8.5. Suppose that the field £ in Proposition 8.4 is assumed to be an F-finite field.
Then the hypothesis that Rp is a regular ring for all P # m can be relaxed to the milder
assumption that Rp is a strongly F-regular ring for all P # m. The proof would not need

to be significantly altered and we encourage the reader to verify our claim.

Example 8.6. Perhaps the simplest example of a non-F-rational ring that is a direct sum-
mand of an F-rational ring is R = Fa[z, vy, 2]/(2? + y* + 2°) with deg(z) = 15, deg(y) = 10,
and deg(z) = 6. Since R is a two-dimensional normal domain with a(R) = —1, it satisfies all
the conditions in Proposition 8.4 and thus R is a direct summand of an F'-rational ring. How-
ever, it is a straightforward computation that the Cech class [5] € H2(R) is nonzero, but
F(z) = [yé%] = 0 since 2 € (y%, 2%)R. Hence R is not F-injective (thus not F-rational).
Again, we can complete at m to obtain examples of complete local domains.

We next exhibit an example of a direct summand of F-rational ring that is not Cohen-

Macaulay.

Example 8.7. In [Kov18, Theorem 1.1 and Theorem 4.7], Kovacs proved that there exists
a smooth projective Fano variety X over a field of characteristic 2 such that dim(X) = 6,
wy' is very ample, H'(X,wy') = H%(X,w?%)" # 0 (so wy? violates Kodaira vanishing), and
H'(X,0x) =0forall 1 <i <6."9 Now we let S = @,50H(X,wy"). Since wy' is very
ample, we know that S is a standard graded normal domain of dimension 7 with homogenous

maximal ideal m such that
[H(S)], = H (X, wy") foralln € Z and all 1 < i < 6.

Set t = max{n|[H:(S)], # 0 for some 1 <i < 6}. Then as H'(X,wy') # 0, we know that
t > 1. Let R = S be the (t + 1)-th Veronese subring of S.

Claim 8.8. We have a;(R) < 0 for all i and R is not Cohen-Macaulay.

0The fact that HY(X,0x) = 0 for all 1 < i < 6 is mentioned on [Kov18, top of page 2], and can be
easily verified since the X constructed in [Kov18, Theorem 1.1] is certain P"-bundle over a P"-bundle over
a projective space, so H>°(X,Ox) = 0 follows as the same is true for projective space.
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Proof. Since R is the (¢ 4+ 1)-th Veronese subring of S, it is easy to check that

0 if (t+1)1n

Hxﬁx R)|, = .
Hn(R) [HL ()], if (t+1)|n.

It follows that a;(R) < 0 for all i by our choice of ¢ (note that H2(R) = HL(R) = 0
and [H.(R)]o = [HL(S)]o = H™Y(X,0x) = 0 for i > 2). To see that R is not Cohen-
Macaulay, note that by our choice of ¢, H/(X,wy') # 0 for some 1 < i <5 (H%(X,wy") =
HO(X, W)Y = 0 since wy is anti-ample and ¢ > 1), which implies that H5~/(X,wi{™) # 0.
Thus

[HL(R)| -1y = [HL(S)] -1y = H 71X, wiT") # 0 for some 2 < j < 6.

m

As dim(R) = dim(S) = 7, this shows that R is not Cohen-Macaulay. O

Finally, since Proj(R) = Proj(S) = X is nonsingular and R can be viewed as a standard
graded ring (as it is a Veronese subring of a standard graded ring), we know that Rp is
regular for all P # m. This combined with Claim 8.8 shows that R satisfies the conditions
of Proposition 8.4 and thus is R a direct summand of F-rational ring that is not Cohen-

Macaulay.

We next give Singh’s example [Sin99¢| showing that if we drop the Q-Gorenstein assump-
tion on R, then R/zR is strongly F-regular does not even imply R is F-pure.

Example 8.9. Let m and n be positive integers satisfying m —m/n > 2. Consider the ring
R = kla,b,c,d,t]/I where k is an F-finite field of characteristic p > 2 and [ is generated by

the 2 x 2 minors of the matrix
a’?+t™ b d
c a? b —d]’

Then t is a nonzerodivisor on R and the ring R/tR is strongly F-regular. But if p and m

are relatively prime, then R is not F-pure.

Proof. Let S = k[a,b,c,d,V,c,d' t]/J where J is the generic 2 x 3 matrix

d b d
c bV d/]
Obviously we have R = S/(d—a?—t™, 1/ —a?,d'—b"+d) and R/(t, c,d) = k|a,b]/(a*, a®b", b"T1)

is Artinian. Since S is Cohen-Macaulay of dimension 6, it follows that R is Cohen-Macaulay

and t, ¢, d is a system of parameters of R. In particular, ¢ is a nonzerodivisor on R. We note



70 LINQUAN MA AND THOMAS POLSTRA

that
R/tR = kla,b,c,d]/(a* — be,a®(b" — d) — cd, b(b" — d) — a*d).

Note that we can assign weights to the variables to make R/tR N-graded. We first claim
that R/tR is normal, and hence a domain because it is N-graded. We know that R/tR is
Cohen-Macaulay of dimension 2 and ¢, d is a homogeneous system of parameters, thus it is
enough to show that (R/tR). and (R/tR), are regular. These are straightforward to check:

bn+1

(R/tR)a = kla,b,d][1]/ (Y5> — b — a?) and (R/tR). = kla, ¢, d|[1]/(%er — %4 — d) are both

[

regular.
We next claim that R/tR is isomorphic to the (2n+1)-th Veronese subring of k[a, z, y|/(a®—
xy(x™ — y)) where the variables a,z,y have weights 2n + 1,2, 2n respectively. To see this,

we define a map

kla, b, c,d| ( kla, z,y] @)
(a* — be,a?(b” — d) — ed, b(b* — d) — a?d) (a? — zy(azm —y))

2nt1 respectively. One easily checks that the map is well-
201 4 2nt1

and it is straightforward to check that all these generators are in the image (modulo the equa-
2

RJtR

by sending b, ¢, d to zy?, x(z"—y)%,y
defined and is surjective: the Veronese subring is generated over k by a, y?z, 2"y, x
tion a® —xy(2™ —y)). Now both rings have dimension 2 and we know that R/tR is a domain,
it follows that the map is injective and hence an isomorphism.

To prove R/tR is strongly F-regular, it is enough to show that k[a, z, y]/(a® — xy(z™ —y))
is strongly F-regular by Theorem 3.9. We now apply Exercise 16 with ¢ = « (since x is part
of a system of parameters and after inverting x the ring becomes regular), it is enough to
show that there exists e > 0 such that z(a® — zy(z" — y))?" ' & (a*", 27", y*"). Since p > 2,

2 — gy(2™ — y))P~! with nonzero coefficient,

for e = 1, the term ap_lx%yp_l appears in z(a
this term is not in (a?, z?, y?).
It remains to prove that R is not F-pure if p and m are relatively prime. The key is the

following elementary but tricky computation.

Claim 8.10 ([Sin99¢c, Lemma 4.2]). If s is a positive integer such that s(m —m/n—2) > 1,

then
(bntm—l)Qms—i-l c (a2ms+1’d2m5+1)'

Proof. Let 7 = a* +t™ and o = a®. Tt suffices to work in the polynomial ring k[, a, b, ¢, d]
and establish that
bn(2ms+1) (7_ . Oé)Qs(mfl) c (ams+1,d2ms+1) + )i



F-SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 71

where I’ is the ideal generated by 2 x 2 minors of the matrix

T b d
c a b—dJ’

Taking the binomial expansion of (7 — a)?*(™~1 it is enough to show that for all 1 < i <

ms + 1, we have

bn(2ms+1)ams+17i7_msf2s+ifl c (ams+1’d2ms+1) + I
Thus it is enough to show that

prlams ) pms=2sti=1 ¢ (i gmstly |7

Since ad — b(b™ — d) and b"1 — d(c+ 7) belongs to I’, it suffices to establish that
prEms D) pms=2s =1 ¢ (i q)i| @S e d(e 4 7).

Now we work modulo the element b*(b" — d)?, we may reduce b"(>ms+1)

and d such that the highest power of b that occurs is less than i(n + 1). Thus it suffices to
show that

to a polynomial in b

bn(2ms+1—j)7_ms—25+i—1dj c (d2ms+1’ b — d(C + 7_))
where n(2ms +1—j) <i(n+1),ie,j>2ms+ (1 —¢)(1+1/n). So it is enough to check
bn(2ms+1fj)7_m572s+i71 c (d2m5+1fj, b — d(C + 7_))

At this point, it only needs to check that ms — 2s +7 —1 > 2ms 4+ 1 — 7, since modulo

b"1 — d(c+ 7), we can then express b"(2mst1=0)zms=2s+i=1 a9 3 multiple of d>™+1~7. But

ms—2s+i—1—02ms+1—j) = j—ms—2s+1—2

> ms+ (1—i)(1+1/n) — 25 +i— 2
= ms—2s+(1—i)/n—1
> ms—2s—(ms)/n—1

stm—m/n—2)—1>0

where the second > is because ¢ < ms + 1 and the last > follows from our assumption that
s(m—m/n —2) > 1. O

Finally, since p and m are relatively prime, p > 2, and m — m/n > 2 by our assumptions,
there exists e > 0 and s > 0 such that p® = 2ms + 1 and s(m —m/n —2) > 1. Claim 8.10
then shows that (b"t™ )" € (a?",d""). If R is F-pure, then R — F°R is pure and hence the
induced Frobenius map R/(a,d) — F¢(R/(a?",d"")) is injective. Thus (b"t™~1)P" € (a?", dP")
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implies "t"! € (a,d). But R/(a,d) = kb, c,t]/(b",0"t™, bc) and it is clear that b"t™~! £
0 in this ring, which is a contradiction. ([l
Remark 8.11. Take m =5, n = 2, k = F3 in Example 8.9, we have

Fsla, b, c,d, t]
((a®> + t4)a? — be, (a? + 12)(b% — d) — cd, b(b?> — d) — a?d)

is not F-pure, but R/tR is strongly F-regular. We leave the interested and diligent reader

R:

to check these using Theorem 2.5 and Exercise 16.

Finally, we explain that generic determinantal rings over a field k are F-rational [HH94c],

in fact strongly F-regular if k is F-finite.

Example 8.12. Let S = k[z;;|1 <i <m,1 < j < n| be a polynomial ring in m x n variables
with m < n. Let I; be the ideal of S generated by ¢ x t minors of the matrix [2;;]1<i<m.1<j<n-
Then R = S/I; is F-rational. Moreover, if k is F-finite then R is strongly F-regular.

Proof. We will use Theorem 8.1 to show R is F-rational. First of all, property (1) and (3)
are well-known: for example see [HE71], [Gra88] and [BH92].

We now prove (2). For any homogeneous prime P # m, there exists x;; ¢ P. Without
loss of generality we may assume x1; ¢ P. After inverting the element x;;, we may perform

row and column operations to transform our matrix:

T11 12 ... T1n T11 0 0
To1 X292 ... Tapn 0 .213/22 c. x/Qn
—

Tl Tm2 oo Tmn 0 a2, ... .
where z}; = x;; — =2, The ideal ,S;,, is generated by (¢ —1) x (£ — 1) minors of the second
displayed matrix. Therefore,

_ [ ~J !/ I/ ]'
Rwll - Sﬂcll/ tSIll = (S / tfl)['rllv T y X125 - -+ 5 L1ns T215 - - - 7xm1]
11

where S" = k[z};|2 < i < m,2 < j < n] and [;_; denotes the ideal generated by the
(t—1) x (t — 1) minors of the matrix [z};]. By induction, we know that S’/I; , is F-rational,
thus so is R,,, by Theorem 7.8. Since Rp can be viewed as a localization of R,,,, Rp is
F-rational by Theorem 4.14 again.

It remains to prove (4). In fact the method below will also reprove (1) along the way we

prove (4). We need the following result from combinatorial commutative algebra:

Theorem 8.13 ([Stu90]). The t x t minors of [Tijl1<i<m.i<j<n form a Grébner basis of I

with respect to the term order x11 > T19 > -++ > Ty, > Top > v - - > Tom-
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At this point we follow the standard construction as in [Eis95, 15.16 and 15.17]. We choose
an appropriate weight function X such that iny(I;) = ins (I;). Let I be the A-homogenization
of I in S[z]. We have

(S[2)/1) Q2 k(2) = R ®y, k(z) and (S[2]/1)/z = S/ ins(L).
Therefore if we can show that S/in- (/;) is Cohen-Macaulay and F-injective, then so is
S[2]/I by the graded version of Theorem 5.1. But then R ®; k(z) is Cohen-Macaulay and
F-injective by Theorem 4.13 and so R is Cohen-Macaulay and F-injective by Exercise 20.

But since the ¢ x t minors form a Grobner basis by Theorem 8.13,
in>(]t) = (:Eiljlxm? "'[Eitjt“_ <n<ig<---<uuy <m,1 S]l <j2 < .- <jt < TL)

is a square-free monomial ideal. Thus S/ ins (1) is F-pure and hence F-injective, and one can
check that S/in- (1;) is Cohen-Macaulay using Hochster’s criterion [Hoc72] that a Stanley-
Reisner ring is Cohen-Macaulay if the corresponding simplicial complex is shellable (note
that even without knowing S/ins (I;) is Cohen-Macaulay, we can show that S[z]/T is F-
injective because we showed S/ in~ (I;) is F-pure and so we can invoke Theorem 5.5 instead
of Theorem 5.1). This completes the proof that R is F-rational.

Finally we prove that S/I; is strongly F-regular when k is F-finite. Note that we can
enlarge the m x n generic matrix to an n x n generic matrix and consider the corresponding
quotients S’/I; of t x t minors in the n x n matrix. Then S/I; — S’/1, splits (we can map the
new variables to zero to obtain a splitting), thus S/I; is strongly F-regular provided S’/I; is
strongly F-regular by Theorem 3.9. But S’/I; is F-finite and Gorenstein (see [BV88]) and
thus F-rationality of S’/I; implies the strong F-regularity of S’/I; by Proposition 4.9. [

The proof of Example 8.12 given above requires non-trivial inputs from combinatorial
commutative algebra (such as Theorem 8.13). Below we give an alternative, and completely
elementary approach to show that generic determinantal rings of maximal minors are strongly
F-regular (over F-finite fields). This approach is taken from [PT24] (see also [DSMNB24,
Theorem 6.7] for another elementary proof of a stronger statement). We begin with a simple

lemma.

Lemma 8.14. Let S be a regular ring of prime characteristic p > 0 and let I, J be ideals in
S. Then we have
P rc N 1.

Proof. Since R is regular, by the flatness of Frobenius (Theorem 1.1), we have (I : J)P =
IP . gl Take x € IP) : [ and y € I : J, it is thus enough to show that zy € I : JPI. But
this follows as a:'yJ[p] CayJ Cal C I, O
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Alternative proof of Example 8.12 for mazimal minors. We assume k is F-finite and ¢ = m,
and we aim to show that R = S/I,, is strongly F-regular. First of all, I,, C S is a perfect
ideal of height n — m + 1 by examining the Eagon-Northcott complex (see [Eis95, A2.6]),
which resolves S/I,, over S. In particular, this implies that S/I,, is Cohen-Macaulay (see
also [BV88, Theorem 2.7] for a short and direct proof that S/1,, is Cohen-Macaulay).

We next claim that Ap ), A m+is - - - Ap—m+1,7) is @ maximal regular sequence contained
in I,,, where A ,,) denotes the maximal minor corresponds to the first m columns, etc. To

see this, we observe that Ay ), A m+1), - - - » Ap—m+1,n) together with the following elements:
(T) . T21, 31,32y« Tmly Tm2; -+ -, Tmym—1

Tin—m+2; L1n—m+3y - -5 Lins L2n—m+35---,L2ny -+, Tmm—1n
T11 — L22,T11 — 335 -+, L11 — Tmm, L12 — X235+ - -, L1 n—m+1 — Tm,n

form a full system of parameters of S. This is because there are
m(m—1)+(m—-1)(n—m+1)=(m—1)(n—1)

elements in (1), and killing them corresponds to the following specialization of the matrix:

T11 12 ... T1n 11 T12 ... Tin—m+l1 0 ce e 0
T21 oo ... Ton 0 11 T12 Ce T1n—m+1 0 - 0
T31 32 ... Top | — 0 0 T11 Ce T1n—m Tin—m+1 -« 0
Iml Tm2 --- Tmn 0 0 0 Ce Ce ce e L1 n—m+1

But for the matrix on the right hand side, it is easy to check that the radical of the ideal
(At Amti]s - - - Dp—m+1,n)) agrees with (211, ..., 21 n—m+1), which is the maximal ideal.
This proves our claim. It also shows that each variable exhibited in (1) is a nonzerodivisor
on S/1I,,. In particular, xy, is a nonzerodivisor on S/I,,.

Let a:= (Apm), A1) - - > Apemt1n]) € I We next claim that

(8.2) a:(a:1ly,) =1,

This follows from basic linkage theory [PS74] and we give a short argument for completeness.
Clearly I, Ca: (a: I,). Toshowa: (a: I,) C I,, it is enough to check this after localizing
at each associated prime p of I,,,. Since S/I,, is Cohen-Macalay, p is a minimal prime of I,,

and also a minimal prime of a. Since S,/aS, is Artinian and Gorenstein,

Sy /ISy = Hom(Hom(S,/1,,,Sp, Sp/aSy), Sp/aS,) = Hom((a : 1,,)S,/aS,, Sp/asy).
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It follows that (a : (a : I,))Sy, which annihilates the right hand side, is contained in the
annihilator of the left hand side, which is I,,,S,. This establishes our claim.

We now proceed by induction on m. When m = 1 the conclusion is clear. Suppose the
statement is proved for m — 1 > 1. We apply Glassbrenner’s criterion (Exercise 16) with
¢ = x1p, which is a nonzerodivisor on (equivalently, not in any minimal prime of) S/I,,,.
Note that

1

R$1n = SJ:M/]meM = (S//]yln_l)[xlla L1253 L1ns Lop, - - . 7xmn][$7]
1n

where S = k[zj;[2 < i < m,1 < j < n— 1] with 7, = z;; — % are viewed as new
indeterminates and I;,_; is the corresponding ideal of maximal minors. Thus by the inductive
hypothesis, R,,, is strongly F-regular by Theorem 7.5. Therefore by Exercise 16, it is enough
to show that

21, (1P 2 1) & mll,

By (8.2) and Lemma 8.14, it suffices to prove that
21,(al? : a) ¢ mlP),

Since a = (A, Agmti]s - - - Dp—m+1,n)) is generated by a regular sequence, a simple com-
putation shows that (al” : a) = (Ap . Apmiy - Apomi1n)? ' Thus it is enough to prove
that
(A A1) A1)~ ¢ m,

Finally, we note that under the term order xyy > x19 > -+ > Ty, > 29 > ------ > Tyn, the
leading monomial of A ipm_1] IS T1T2 441" Tymsi—1, and thus the leading monomial in
1 (A mAemtt]  Dpnmmrn])? " 18 Z1n o<jicnm xfj_l ¢ mP?l. Since mlP! is a monomial
ideal, it follows that @1, (ApmApms1] - Apemt1,n)’ " ¢ ml). O

Exercise 38. With notation as in Example 8.2, prove that R is not F-pureifa =b=c=3
and p = 2 mod 3.

Exercise 39. With notation as in Example 8.9, prove that R is not strongly F-regular

without assuming p and m are relatively prime.

Exercise 40. Prove that if R is an F-pure ring of prime characteristic p > 0, then R/P is
F-pure for any minimal prime P € Spec(R). (Hint: Use Lemma 8.14.)

Exercise 41. Let k be a field of prime characteristic p = 2 mod 3. Let A = k[z,y, 2]/(2® +
y® + 23) and B = k[u, v], both with standard grading.
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(1) Prove that T':= A#B is not F-injective.
(2) Let q be the height one prime of T' generated by (zu,yu,zu). Prove that q is a
maximal Cohen-Macaulay T-module.
(3) Prove that the natural map H2(T) — H2(T/q) is injective, and that the induced
Frobenius action on the cokernel is injective.
(4) Let S = k[x1,...,z6] and consider the map S — T with 21 — zu, x5 — yu, r3 — zu,
Ty — U, x5 — Yu, x6 — 20, Let P = Ker(S — T') and @ = (21,29, 23) C S. Prove
that R := S/P N Q is Cohen-Macaulay and F-injective.
Thus this construction gives an example of an F-injective ring R with a minimal prime
P € Spec(R) such that R/P =T is not F-injective.
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9. F-SIGNATURE: MEASURING FROBENIUS SPLITTINGS

Let (R, m,k) be an F-finite local ring of prime characteristic p > 0. Kunz’s theorem,
Theorem 1.1, tells us that R is regular if and only if FER is a finite free R-module for some
(or equivalently, all) e € N. It is thus natural to consider the number of free summands the
R-modules F? R admit as e ranges through the natural numbers. In doing so, we develop the
theory of F-signature to numerically measure the severity of a strongly F-regular singularity.

Suppose M is a finitely generated R-module. We let frkz(M) denote the largest number
of free summands appearing in all various direct sum decompositions of M into irreducible
R-modules. Equivalently, frkr(M) is the largest rank of a free module F' so that there exists
a surjective R-linear map M — F. The free ranks of F¢R as e varies through the natural
numbers are called the Frobenius splitting numbers of R, denoted by a.(R) := frkr(FfR).
Observe that if R is a domain then a.(R) < rankgr(F¢R). The F-signature of R, s(R), is
defined to be

o ac(R)
s(R) := Jim, rankp(FER)

We will discuss more precise information of rankg(FfR) below. We point out that, since

0< % <1 for all e € N, we have 0 < s(R) < 1 provided s(R) exists as a limit.

The purpose of this chapter is to cover three fundamental theorems on F-signature:
(1) [Tucl2, Main Result]: F-signature exists, i.e., the sequence of numbers {%}%N
is a Cauchy sequence and s(R) is well-defined.
(2) [HLO2, Corollary 16]: F-signature detects regularity, i.e., s(R) = 1 if and only if R
is a regular local ring.
(3) [ALO3, Main Result] F-signature detects strong F-regularity, i.e., s(R) > 0 if and
only if R is strongly F-regular.

The origins of F-signature theory can be found in [SVAB97] and was formally developed
by Hunecke and Leuschke in [HL0O2]. Researchers understood that F-signature served as a
numerical measurement of singularities long before it was shown to exist in full generality.
Under the assumption of existence, it was first shown in the early 2000’s that s(R) = 1 if and
only if R is regular by Huneke and Leuschke, and that s(R) > 0 if and only if R is strongly
F-regular by Aberbach and Leuschke. Tucker’s proof of the existence of F-signature came
nearly 10 years later.

Our presentation of F-signature theory will significantly deviate from the historical devel-
opment of the theory. We will not present the fundamental theorems of F-signature in the

order they were discovered nor we will follow the original techniques. We will utilize modern
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techniques developed in [PT18, PS21, Pol22] to present streamlined and elementary proofs
of (1), (2), and (3) respectively.

Before continuing with the theory of F-signature the reader should first observe that com-
puting the Frobenius splitting numbers of R does not require looking at all possible choices
of direct sum decompositions of FfR into irreducibles and then counting free summands.

More specifically, we have the following lemma.

Lemma 9.1. Let (R,m, k) be a local ring. Suppose that M is a finitely generated R-module
and M = R®" @ N, = R®2 @ N, are choices of direct sum decompositions of M so that
N1, Ny do not admit a free summand. Then t, = ts.

In particular, if (R,m, k) is an F-finite local ring of prime characteristic p > 0 and
F¢R = R® @ M is any choice of direct sum decomposition of FER so that M does not admit

a free summand, then t = a.(R).

Proof. There exists onto map ¢ : R®* @& N; — R%2. Because we are assuming that N
does not admit a free summand we must have that (0@ N;) C mR%2. In particular, if we
base change to the residue field k we find that there is an onto map k%" — k%2, Therefore
t; > ty. By symmetry we conclude that ¢; = ¢5. The second assertion follows by applying
the first assertion to M = F¢R. U

To establish the theory of F-signature, we first need to investigate the rank of F¢R.
Suppose that K is an F-finite field. Consider the Frobenius map F': K — F,K; an element
F,r € F,K satisfies the monic polynomial equation P — r = 0. Therefore the degree of the
minimal polynomial of every element of F,K divides p. It follows that [FLK : K| = p? for
some v € N and [FfK : K] = p® for every e € N. If R is an F-finite domain with fraction
field K then we define y(R) to be the unique integer such that [F*K : K] = p®® for all
e € N, ie., y(R) is unique integer such that rankp(F°R) = p**® for all e € N.

Lemma 9.2. Let (R,m,k) be an F-finite local ring of prime characteristic p > 0. Then
Fff% = (FfR) ®gr R for all e > 0. As a consequence, R is reduced if R is reduced.

Proof. Since F¢R is a finitely generated R-module, we have (FSR) ®pr R @ But
@ >~ FeR: if we identify FCR with R, then @ is the completion of R with respect
to the ideal mP! while F*BR is the completion of R with respect to m, so they are the same
since vVmP = m. If R is reduced, then R — F¢R and thus R < FfR® R Ffé, which

implies R is reduced by Exercise 2. 0
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Lemma 9.3. Let (R, m, k) be an F-finite local domain of prime characteristic p > 0 and let
K be the fraction field of R. Let P be a minimal prime ofﬁ and let L = Rp. Then L is a
field and FCL = FEK @k L. In particular, [FSL : L] = [F¢K : K].

Proof. By Lemma 9.2, R is reduced so L is a field. Now we have
FCL > (F°R)p fﬁb@ﬁ Rp = FfR@RE@E Rp = FCRQp Rp = FCK @k L
where the third isomorphism follows from Lemma 9.2. 0

Theorem 9.4. Let (R,m, k) be an F-finite local domain of prime characteristic p > 0 and
of dimension d. Then for each e € N we have that rankg(F¢R) = [F¢k : k]p.

Proof. We first suppose that R is complete. By Cohen’s structure theorem, R module-finite

over A = k[[x1,xa,...,x4)]. Consider the following commutative diagram of local domains:

A R

L

F°A—— F°R

Since rank is multiplicative across compositions, we have
rank 4 (FFR) = rankp(F{ R) rank4(R) = rankpe 4(FYR) rank 4 (FLA).

The extension of local domains A — R is isomorphic to F€A — F¢R. Therefore rank4(R) =
rankpe 4 (FER) and hence rankg(F¢R) = rank,(FSA). As mentioned in the proof of Theo-
rem 1.1 it is straightforward to check that F€A is a free A-module with basis

{Feal - a%) | 0 < i; < p°, where {FA} is a free basis of F°k over k}.
Therefore rank 4 (F¢A) = [Fk : k]p® as wanted.

Now we suppose that R is not necessarily complete. Let P be a minimal prime of R
such that d = dim(R) = dim(R/P). Let K be the fraction field of R and L the fraction
field of R/P. By Lemma 9.3 we have that [F°K : K] = [F¢L : L], ie., rankp(F°R) =
rank~, ,(F¢(R/P)). This completes the proof as we already showed that for the complete

R/P 7 R
local domain R/P that ranks, ,(F¢R/P) = [Fk : k]p®. O

R/P

Remark 9.5. The proof of Theorem 9.4 shows something more. It shows that if (R, m, k)
is an F-finite local domain of dimension d with fraction field K then R is (reduced and)
equidimensional. That is, for each minimal prime @ € Spec(R) we have that dim(R/Q) = d.
Indeed, if () is a minimal prime of R and Lg is the fraction field of I;’/ Q) then [FfK :
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K] = [F¢Lg : Lg] by Lemma 9.3. But by Theorem 9.4, [F*K : K] = [Ffk : k]p®® and
[FfLg : Lg| = [Ffk - k]pedim(ﬁ/@. Therefore d = dim(R/Q).

This observation that the completion of an F-finite local domain is reduced and equidi-
mensional is not surprising. Indeed, by Theorem 1.7 every F-finite ring is excellent (we will
prove this in Chapter 10), and the completion of any excellent local domain is known to be

reduced and equidimensional.

Corollary 9.6. Let (R,m, k) be an F-finite local ring of prime characteristic p > 0 and
P C Q be prime ideals. Then v(R/Q) < v(R/P).

Proof. Since dim(R/Q) < dim(R/P), v(R/Q) < v(R/P) by Theorem 9.4. O

9.1. F-signature exists. Let R be an F-finite ring of prime characteristic p > 0, not
necessarily a domain. We set v(R) = max{y(R/P) | P € Spec(R)}. Corollary 9.6 implies
that v(R) = max{y(R/P) | P € Min(R)}. If R is not necessarily a domain, so that the
notion of generic rank is not necessarily well-defined, then in the spirit of Theorem 9.4 we
set rankg(F¢R) = p®'®). Equivalently, we set rank(F¢R) to be the maximal generic rank
of FE(R/P) over R/P as P varies through the (minimal) prime ideals of R.

Lemma 9.7. Let (R,m, k) be an F-finite local ring of prime characteristic p > 0 and M a
finitely generated R-module. There exists a constant C' € R so that for all e € N,

ur(FiM) < Crankg(F{R).

Proof. Begin by considering a prime filtration 0 = My C M; C --- C M; = M so that
M;/M;_1 = R/ P, for some prime P; € Spec(R). Counting minimal generators is subadditive
on short exact sequences, see Exercise 43, therefore up(F¢R) < Yt ur(F¢(R/P;)). Thus
we may assume M = R is an F-finite local domain.

We induct on v(R), the unique integer so that rankg(F°R) = p='® for all e € N. If
7(R) = 0 is minimal then R is a perfect field by Theorem 9.4 and there is nothing to show.
Suppose that v(R) > 0. Because we may assume that R is a domain we have that F,R is

generically free of rank p?¥ and hence there exists a short exact sequence
0= R L FER—T =0

where T is a finitely generated torsion R-module. In particular, 7" is a module over R/(c)
for some ¢ # 0. Since v(R/(c)) < v(R) by Corollary 9.6, we may assume by induction that
there exists a constant C so that u(F¢T) < Cp0@=1 for all e € N.

Applying F¢~1(—) to the above short exact sequence we find new short exact sequences

0— Fe'R®Y L peR 5 FelT 5 0.
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Counting minimal number of generators is sub-additive on short exact sequences hence
W(FER) < p(FET RO 4 ((FE'T)
— p®(FEIR) + p(FET)
< p'B (FEIR) + Cpe0(B-D),
Dividing by rankz(F°R) = p®") we find that

pEER) _ p(ER) L C
rankgp(F¢R) — rankg(Fe'R)  pe
Similarly, there is an inequality

p(IFET'R) H(FE*R) ¢
rankp(Fe'R) ~ rankg(Fe2R) pe
Applying the inequality of (9.2) to (9.1) we find that

WER) _ pFR) O C
rankz(F¢R) — rankz(F¢2R) pe=!  p°

Inductively, we derive the inequality

(9.1)

(9.2)

<

u(FER) C C C 1 1 1 C
<14 = 4 ... —<Cl1+—-—+--- < <2C.
ke Sty T et e SO oS+ Sy_1s
Therefore pu(FfR) < 2C rankg(FER) for all e € N. O

Corollary 9.8. Let (R,m, k) be an F-finite local ring of prime characteristic p > 0 and let
T be a finitely generated R-module not supported at any minimal prime of R. Then there

exists a constant C so that
pr(FeT) < CpeO B,

Proof. Let I = Anng(T). Clearly we have up(FT) = pp/r(FT). By Lemma 9.7 there exists
an constant C' so that pg,(FeT) < Cp?®/D. But y(R/I) < v(R) by Corollary 9.6. O

Lemma 9.9. Let (R,m, k) be an F-finite local ring of prime characteristic p > 0. If R is
not strongly F-reqular then s(R) = 0.

Proof. Let FCR = R%%(®) @ M, be a choice of direct sum decomposition of F¢R so that
M. does not have a free summand, see Lemma 9.1. Set N, = m®%(®) @ M,. In particular,
N, C F°R is an R-submodule, F¢R/N, = k®%(F) and a.(R) = (r(F*R/N,).

We are assuming R is not strongly F-regular. So there exists an element ¢ € R not in any
minimal prime of R such that R e FfR does not split for all e € N. Observe then that
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mE¢R + spangep{ Fic} € N, for all e € N. Therefore we can estimate
ac(R) = ((FER/N,) <Cn(F*R/(mF*R + span g o[ Fec}))
=(r(FI(R/cR) ®r Rjm) = pr(F{(R/cR)).
By Corollary 9.8 there is a constant C' such that
W(FL(R/cR)) < Cp0 070,

Dividing by p®* and taking a limit as e — oo shows that

0< s(R) = tim 20 < 5y € O

e—00 pe’Y(R) — e—00 p€

The following is the key lemma in establishing the existence of F-signature.

Lemma 9.10. Let (R, m, k) be a local ring and let
0— M, — My — M;—0
be a short exact sequence of finitely generated R-modules. Then

frkR(MQ) S frkR(Ml) + /LR(M3>

Proof. Begin by choosing direct sum decompositions M; = R®fke(M) ¢ N and M, =
R®fkr(M2) o N, where M, and M, are R-modules without a free summand. Because M is

(Mz)

a module without a free summand we have that 0 & M; C m®fkr @® M,. In particular,

there is an induced map
M, My

O @M — m@frkR(MQ) @E
Equivalently, there is a right exact sequence

RETkr(M1) _y p@frkp(M2) _, Mé =0

and the cokernel M} is a homomorphic image of Mj. Counting minimal generators is sub-

additive on right exact sequences and therefore
fl"kR(Mg) S fI‘kR<M1) + ,U/R(Mé) S fI'kR(Ml) + /LR(M3). ]

Now we can prove the first main result of this chapter.

Theorem 9.11. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0. Then

ac(R)
pe'Y(R)

the F-signature of R exists, i.e., the sequence of numbers { } . defines a Cauchy se-

quence.
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Proof. By Lemma 9.9 we are reduced to the scenario that R is strongly F-regular. By
Lemma 3.2 we know that R is a domain. Let

R (R

s+(R) = limsup ac(f) and s_(R) = liminf ac(F)

e—oo  P°© ev(R)’ e—00 pe’Y(R) ’

We aim to show s (R) < s_(R).

Since rankg(F,R) = p" | we have a short exact sequence

0— F.R— R*'™ 57 50

where T' is a finitely generated torsion R-module. Applyig Ff(—) gives us a short exact
sequence
0— F''R — FCR™"™ 5 FeT — 0.

By Lemma 9.10 we have that for each e € N the inequality
frk p(FCR®™) < frk p(FSM' R) + pp(FCT),

that is,
p"Wac(R) < ac1(R) + pr(FLT).

By Corollary 9.8 there exists a constant C' so that pup(FT) < Cp@U=1 " Dividing by

pletD(R) vields that
0lB) _ aclR) | C
)
(

p(eJrl) v(R) e :

IN

pe’y(R

We can similarly bound the ratio a:jf)w ,)3 from above by %% + z% and therefore

pe'y(R) — p(e+2)v(R) pe pe—i-l'

a(R) _ a(R) C C

Inductively, we find that for all e, eq € N that

a.(R) - Uereo(R)  C C C
pe’y(R) — p(e—i-eo)'y(R) + E + pe+1 +o Tt p6+60—1
. Aeteq (R) O 1 1 ae+eo(R) 20
= ey T (Mo T T T | S e T e
Taking a limit infimum as ey — oo shows that for all e € N that
a.(R) 2C
) <s_ (R)+ pra

Taking a limit supremum as e — oo then shows that
s+(R) < s_(R),

i.e., the F-signature of R exists. U
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9.2. F-signature and strong F-regularity. We aim to prove that an F-finite local ring
(R, m, k) is strongly F-regular if and only if s(R) > 0. Lemma 9.9 establishes the simpler
direction of the equivalence: if s(R) > 0, then R is strongly F-regular. It remains to show
the converse: if R is strongly F-regular, then s(R) > 0.

This result was first proved by Aberbach and Leuschke in [AL03], invoking multiple deep
theorems and advanced techniques. For example, their approach relies on a “valuative cri-
terion” for tight closure provided by Hochster and Huneke in [HH91], later generalized by
Aberbach in [Abe01]. Additionally, they use the Izumi—Rees theorem [Ree89], which gives
a linear bound on any two Rees valuations centered on the maximal ideal of an analytically
irreducible local domain.

In contrast, we do not invoke these advanced techniques. Instead, we present two novel and
more elementary proofs, detailed in Theorem 9.23 and Theorem 9.25. Presenting multiple
simplified proofs of Aberbach and Leuschke’s theorem are further benefited with additional
insights of prime characteristic rings. The method of proof in Theorem 9.23 complements the
theory of linear comparison of ideal topologies in rings of prime characteristic. Meanwhile,
the techniques underlying the proof of Theorem 9.25 are enriched by insights into the divisor
class group of a local strongly F-regular domain.

Fundamental to the study of Noetherian local rings is the concept of completion. If
(R, m, k) is a Noetherian local ring, M a finitely generated R-module, and I C R an ideal, the
completion M 1= 1&1 M /1™ M is the collection of Cauchy sequences in M with respect to the
I-adic topology (or metric) on M. Here, the “distance” between two elements my, mg € M

is the reciprocal of sup{t | m; — my € I' M}, where the reciprocal of co is defined to be 0.

Definition 9.12. A Noetherian local ring (R, m, k) is said to be analytically irreducible if

the completion R with respect to the maximal ideal m is a domain.

The following lemma of Chevalley highlights an important property of a module over a
local ring with maximal ideal m. Chevalley’s Lemma serves as the foundation for several

deep theorems in commutative algebra and algebraic geometry.

Lemma 9.13 ([Che43]). Let (R, m, k) be a Noetherian local ring and M a finitely generated
R-module. Suppose that I C R is an m-primary ideal and { M, },en is a descending sequence
of submodules of M so that N,en ]\/4; = 0. There exists an t > 0 such that M; C I M.

In particular, if {I,}nen a descending chain of ideals so that N,en ]n}A% = 0. Then there
exists t > 0 such that I; C J.

Proof. The completion map R — Ris faithfully flat, therefore M,, C I M if and only if M, C
IM. We therefore can replace R by R, I by IR, M by ]\//\[, and {M, }nen by {]\//ZL}neN and
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assume that (R, m, k) is a complete local domain. Since M/IM us Artinian, the descending
chain of submodules {(M,, + IM)/IM },cn eventually stabilizes. Thus there exists n; so
that for all n > ny; we have that (M,, + IM)/IM = (M,, + IM)/IM. Similarly, there
exists ny > ny so that (M, + I?M)/I?M = (M, + I*?M)/I*M for all n > n,. Inductively
choose n; so that nyy > ny and (M, + I'M)/I'M = (M, + I'M)/I'M for all n > n,.
Replacing M; by M,,, we may assume that the sequence of modules { M, },en is such that
(M, + I'M)/I'M = (M, + I'M)/I*M for all n > t.

We claim that M; C IM. Choose an element n; € M;. Because (My + IM)/IM =
(My + IM)/IM we can choose 1y € My so that ny =7, mod IM. Inductively, we choose
elements 7, € M; so that n;,; = 7, mod I'M. The sequence of elements {rn;} forms a
Cauchy sequence. Let 77 € M denote its limit (which exists since M is complete: it is a
finitely generated module over a complete local ring). Because each 1, € M; and N M; = 0
we must have that 7 = 0. In particular, there exists a ¢ such that n, € IM. Recall that
ny = -, mod I'"*M. Hence 1, —n,_; € I'M C IM and therefore n,_; € IM. By induction
m € IM and hence M; C I'M as claimed. O

Lemma 9.14. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0 and M a
finitely generated R-module. For each e € N let

I M)={neM|R LU FZM does not split}.

(1) For each e € N the set 1,(M) is a submodule of M containing mP 1M .

(2) For each e € N we have that a.(M) = (M /I.(M))[F¢k : k].

(3) {1c(M)}een is a descending chain of submodules of M.

(4) If R is strongly F-reqular and M is torsion-free then Neey Le(M) = 0.

(5) For each € N, I. (M) ={n € M | p(Ftn) € m, Yo € Homg(FM, R)}.
If M = R then we refer to I, :== I.(R) as the eth splitting ideal of R.

Proof. (1) Suppose that ny,1m2 € I.(M) and r € R we aim to show that rmy +n € I.(M).
Suppose by way of contradiction that there exists ¢ € Homg(FM, R) so that ¢(F¢(rn +
n2)) = @(Ffrm) + ¢(Ffne) = 1. Because R is local we must have that either ¢(Ffrn,) is a
unit of R or ¢(F¢n9) is a unit of R. If o(F¢rn,) is a unit then 1y & I (M) if p(Ffn9) is a
unit then ny & I.(M).

(2) Suppose that FeM = R®%(M) @ N is a choice of direct sum decomposition of FM so
that NV does not admit a free summand. Under this choice of direct sum decomposition we
have that FeI,(M) = m®*M) ¢ N. Therefore

KR(FEM/Fer(M» o ae(M)
[Fek : k] T [Fek K]

Cr(M/1e(M)) = Cper(FL(M/1(M))) =
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(3) We want to show I.(M) D I..1(M), this is clear if I.(M) = M and so we assume
I.(M) # M. Suppose n € I.(M) and choose splitting ¢ : F*M — R so that o(F¢n) = 1.
We will show that n ¢ I.,;(M). Observe that R is F-pure: consider R - M, then 1:
FfR LU FeM % R is a splitting of R — F°R. Then ¢(F.p(Fet'n)) =1 and n & I..1(M)
as claimed.

(4) See Lemma 5.9.

(5) Givenn € M, then R LN F¢M does not split if and only if for all p € Homgz(F¢M, R),
©(Ffn) is a non-unit of R. Equivalently, p(Ffn) € m for all ¢ € Homg(FfM, R). O

The following is a sufficient criteria to assert positivity of F-signature.

Lemma 9.15. Let (R,m, k) be an F-finite local ring of prime characteristic p > 0 and
dimension d. Suppose that there exists an ey € N so that for alle € N, I, C mPl. Then
s(R) > - > 0.

peo

Proof. By Lemma 9.14 and Theorem 9.4,

Qeteq (R)
[Feteok : k]

e W FER rankp(FER .
= U(R)etey) 2 K(R/m[p}) = [F(ek : ]3] 2 [FeRk(: k] : =p.

Dividing by p(¢t)? and taking a limit as e — co shows that

s(R) >

i >0 O

9.2.1. Positivity of F-signature via the Artin-Rees Lemma. Kunz's theorem equates the
property R is non-singular with F¢R being a flat R-module. When R is singular, then
the following lemma allows us to identify an element ¢ € R and flat, even free submodules,
F, C F¢R for all e € N so that cFfR C F,. The existence of such elements are related to
the theory of test elements in tight closure theory (see Chapter 12).

Lemma 9.16. Let R be an F-finite domain of prime characteristic p > 0. There exists
0 # ¢ € R and choices of free submodules F, C FER for all e € N so that cF¢R C F,.

Proof. Let K denote the fraction field of R. Then (F.R)y = F.K is a free K-vector space
of rank p” for some v € N. By clearing denominators of a basis of F.K over K, we can
select elements of F, R that form a basis of F,K over K. Let F; be the R-submodule of F,R
generated by this choice of elements.

The submodule F; C F,R is necessarily a free R-module, i.e., F; = R®’", as any non-
trivial relation among the chosen elements would imply a non-trivial relation among the
chosen basis of F, K over K. Let F, = R®” be the natural choice of free R-module defined
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by Fl@pv C F.F, C F,F.R = F?R. Inductively, we define F,,; as the natural free module
Fo1:=F" CFF.CFFR~F'R,

built from the inclusion F} C F,R.

Since the inclusion of R-modules F} C F,R agrees upon localization at the O-prime of R,
there exists some 0 # ¢ € R such that ¢cF,R C F}. In particular, cF,F, C F.,; for all e € N.
By induction, assume c2F°R C F,. Then:

FCF R PF,F°R = cF,(PFR) C c¢F,F, C F.y.
Thus, the element ¢? satisfies the desired property of the lemma. O

The following definition is a generalization of the “Frobenius splitting submodules” intro-

duced in Lemma 9.14.

Definition 9.17. Let R be an F-finite ring of prime characteristic p > 0, M a finitely
generated R-module, I C R an ideal, and e € N. The eth generalized splitting ideal of M
with respect to the ideal I is the set

L(I; M) = {n € M| o(Fn) € I, Vo € Homp(F°*M, R)}.

Remark 9.18. Note that if (R, m, k) is local then I.(m; M) = I.(M) and I.(m; R) = I, as
defined in Lemma 9.14. More generally, the sets I.(I; M) defined above are easily verified to
be submodules of M and enjoy properties similar to those discussed in Lemma 9.14. Details

are left to the readers in Exercise 42.

The following lemma provides to us some elementary but useful relationships among gen-
eralized splitting submodules of an F-finite ring.

Lemma 9.19. Let R be an F'-finite ring of prime characteristic p > 0 and I C R an ideal.
(1) For all e,eq € N,
]e+eo(]; R) - Ie(IEO (]; R)’ R)
(2) For every c € R and e € N, " I(I; R) C I.(cI; R).
Proof. (1) Suppose that r € R\ I.(I.,(I; R); R). This implies there exists ¢ € Homg(FFR, R)
so that @(Ffr) € R\ I.,(I; R), which in turn implies there exists v € Hompg(F°R, R) so
that Y (F(p(Ffr))) € R\ I. Therefore the composition of R-linear maps
v FeroR B9 pap Yop

is so that y(EFfter) € R\ I, hence r € R\ Loye,(I; R).
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(2) Suppose that r € I.(I; R). Then for all ¢ € Homgz(FCR, R), p(Ffr) € 1. Therefore
co(Fer) = p(cFer) = o(FcP'r) € cl for all ¢ € Hompg(F°R, R). Therefore ¢**I.(I; R) C
I.(cI; R) as claimed. O

If (R,m, k) is an F-finite regular local ring of prime characteristic p > 0, then FfR is a
finitely generated free R-module for all e € N, by Theorem 1.1. If I C R is an ideal and
r € R, then v € R\ IPif and only if Fz € FER\IF¢R if and only if there exists a choice of
projection onto a free summand 7 : FR — R such that 7(F°x) ¢ I. Consequently, 2 ¢ IP’]
if and only if 2 ¢ I.(I; R), which implies that Pl = I,(I; R) for all ideals I C R when R is
regular.

When R is singular, the following proposition shows that the element ¢ described in
Lemma 9.16 provides a bounded comparison between the Frobenius powers of an ideal I and

the generalized splitting ideals of R with respect to I.

Proposition 9.20. Let R be an F-finite domain of prime characteristic p > 0 and let
0 # c € R be an element so that for all e € N there exists a free submodule F, C F¢R so that
cF¢R C F,, see Lemma 9.16 for the existence of such elements. Then for all ideals I C R
and e € N,

L(I; R) C (IW] 5 ).

Proof. Suppose that r € R\ I, This implies Fér € FCR\ IF°R C F¢R\ IF,. Then
cFer = F¢cr € F, \ cIF,. Therefore for an appropriate choice of projection 7 onto a free

summand of F,, the composition of R-linear maps
v: FZR SFESR

is so that p(F°r) € R\cl. Consequently, I.(cI; R) C I”]. By Lemma 9.19 (2), ¢*"I.(I; R) C
I.(cI; R) C I¥). Therefore I.(I; R) C (IP) :p ¢®) for every e € N. O

The following characteristic-free lemma is an application of the Artin-Rees Lemma.

Lemma 9.21. Let R be a ring, ¢ € R a nonzerodivisor, and I C R an ideal. Let A be an
Artin-Rees number of (¢) C R with respect to the ideal I C R, i.e., (c)NI" = I""((c) N I4)
for alln > A. Then for allt > A+ 1 andn € N, (I'" :p c*) C [,

Proof. Observe that (c) N I' = ¢(I' :g ¢) and I*"4((c) N I4) C cI*=A. Therefore for all
t>A+1, c(I': ¢) C el We are assuming c is a nonzerodivisor of R. We may cancel c
and have ideal containments (I* :z ¢) C I'™4 for all t > A+ 1. Observe that if t > A+ 1
and n > 2 then

(I g ™) = ((I"™:gc) g Y C (I g 7).
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Descending induction on n provides the containment (1™ :g ¢") C =4 = [=An, O
Lemma 9.22. Let R be an F-finite domain and I C R an ideal. There exists a constant C
so that for all e € N I.(I¢; R) C I,

Proof. By Lemma 9.16 there exists an element 0 # ¢ € R and for every e € N a free
submodule F, C FfR so that cF¢R C F,. By Proposition 9.20, for every e, A, s € N,

I(I"%; R) C (I g %) € (1ATP° 1 ).

By Lemma 9.21, if A € N is chosen to be an Artin-Rees bound of (¢) C R with respect to
the ideal I C R, then (I(A“’)pe ‘R cpg) C I° for all e, s € N. If 5 is chosen to be the number
of generators of the ideal I, then I**° C Il for all e € N. Consequently for all e € N, if A
is an Artin-Rees number of (¢) € R with respect to the ideal I C R and s is the minimal

number of generators of I, then for all e € N,
I(I"*%; R) C 1P, O

Theorem 9.23. Let (R, m, k) be an F-finite and strongly F-reqular ring of prime charac-
teristic p > 0.

(1) There exists a constant eg € N so that for all e € N, I, (m; R) C mPJ.,

(2) The F-signature of R is positive.
Proof. The second assertion is a corollary of the first by Lemma 9.15. By Lemma 9.22, there
exists a constant C' so that for all e € N,

(9.3) I.(m% R) C mPl.

Lemma 9.14 implies N,y I (m; R) = 0. The ring R is analytically irreducible by Lemma 3.2
and Corollary 3.12. Chevalley’s Lemma, Lemma 9.13, implies there exists e; € N so that
I.,(m; R) C m®. By Lemma 9.19 (1), for every e € N,

(9.4) Iieo(m; R) C (I, (m; R); R).

The ideal containment I, (m; R) € m® implies

(9.5) I.(I,(m; R); R) C I.(mY; R).

Combining (9.3), (9.4), and (9.5), for every e € N, I, (m; R) C mPl. O

9.2.2. Positivity of F-signature via Maximal Cohen-Macaulay Modules. Our second presen-
tation that the F-signature of a local strongly F-regular ring is positive, first presented in
[Pol22], is derived from from a representation theoretic statement on the Frobenius pushfor-

wards of Cohen-Macaulay modules. We start with a proof of [Pol22, Main Theorem].
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Theorem 9.24. Let (R,m, k) be an F-finite and strongly F-regular local ring of prime
characteristic p > 0. Then there exists an ey € N so that if M is a finitely generated maximal
Cohen-Macaulay R-module and n € M \ mM then there exists ¢ € Homg(FM, R) so that
p(Ffn) =1, i.e., Fn generates a free R-summand of FEOM.

Proof. First of all we observe that the finitely generated R-module F°M has a free R-
summand if and only if Ffoﬁ has a free R-summand (see Exercise 44). Therefore one can
replace R by R to assume that R is complete (note that strong F-regularity is preserved
under completion by Corollary 3.12). In particular, R admits a canonical module wg. Given
a finitely generated R-module N, we use N* to denote the wg-dual Homg(N,wg) for the
rest of this proof.

We map a free module R®Y onto M*, let K denote the kernel, and consider the short

exact sequence
0— K — R*™ = M* — 0.

The module R®Y is Cohen-Macaulay by Theorem 4.6, M* is Cohen-Macaulay by [BH93,
Theorem 3.3.10], and therefore K is seen to be Cohen-Macaulay by examining the induced
long exact sequence of local cohomology modules with support in the maximal ideal m. If we
apply Hompg(—,wg) to the above short exact sequence and utilize [BH93, Theorem 3.3.10] a

second time we find that there is a short exact sequence of Cohen-Macaulay R-modules
(9.6) 0— M — Wiy — K* —0.

Let £ = z1,...,24 be a system of parameters of R and let I = (z). Then Torf(R/I, K*)
agrees with the first Koszul homology module H;(z; K*) and H;(z; K*) = 0 as x is a regular
sequence on K*. Therefore if we apply — ®g R/I to the short exact sequence in (9.6) we
produce a new short exact sequence

M wgN K*

0
TIM T 1N IR

Consequently, if € M\ M then under the inclusion M C wh™ we find that n € Wi\ TwE".
Recall that for each natural number e € N the eth splitting submodule of wg is the
submodule
I.(wg) ={mewr | R LN Ffwg does not split}.
By Lemma 9.14, Neey le(wr) = 0. By Lemma 9.13 there exists an integer ey, depending
only on wg and I, so that I.,(wg) C Iwg. Thus if n € M \ IM then under the inclusion

M C wE we must have that n € Wi \ I, (wg)®V. In particular, there exists an R-linear
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map ¢ : FOuEY — R so that ¢(F®n) = 1. Restricting the domain of ¢ to FM shows
that Ff°M admits a free summand. U

Theorem 9.25. Let (R, m, k) be an F-finite and strongly F-regular ring of prime charac-
teristic p > 0.

(1) If eg € N is chosen as in Theorem 9.24, then for all e € N, I, ., (m; R) C mP,
(2) The F-signature of R is positive.

Proof. The second assertion is a corollary of the first by Lemma 9.15. If » € R\ mP if
and only if Ffr € FCR\ mFfR. The modules F¢R are maximal Cohen-Macaulay. By
Theorem 9.24 there exists ¢ : FfTR — R so that o(FfTor) =1, ie., 1 € R\ Loty (m; R).
Therefore I.,.,(m; R) C mlPl for all e € N. O

9.3. F-signature and regularity. Let (R, m, k) be an F-finite local ring of prime charac-
teristic p > 0. Huneke-Leuschke were the first to prove in [HL02| that R is a regular local
ring if and only if s(R) = 1. They showed that s(R) = 1 implies that a related numerical
invariant called the Hilbert—Kunz multiplicity of R, egk(R), must also be equal to 1. Then
they appeal to a result of Watanabe—Yoshida [WY00] that analytically irreducible local rings
with Hilbert-Kunz multiplicity equal to 1 must be regular. The proof of Huneke-Leuschke’s
theorem presented here follows the methodology of [PS21] and allows us to bypass Hilbert—
Kunz theory.

Our proof that s(R) = 1 if and only if R is regular is a consequence of developing an
equimultiplicity theory of F-signature in strongly F-regular rings. More specifically, we need
to study the behavior of F-signature and Frobenius splitting numbers under localization.

Suppose that F¢R = R®%(H) g M, and the module M, does not admit a free summand.
If P € Spec(R) then

F'R®p Rp = F°Rp = RE*R) g (M,)p.
By Lemma 9.1 we find that a.(Rp) > a.(R) and equality holds if and only if (M.)p does
not admit a free Rp-summand. Therefore to keep track of the differences of the Frobenius
splitting numbers of R and a localization of R at a prime ideal P it is beneficial to keep
track of the number of summands F¢R isomorphic to a particular module. To this end, if

M is a finitely generated R-module we let

a(R) = max{n | M®" is a direct summand of F*R}.

Observe that if M does not admit a free summand and M is a direct summand of FfR so
that Mp has at least one free Rp-summand, then a.(Rp) > a.(R) + aM(R).
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The following lemma is an elementary observation that for a strongly F-regular local ring
R, if a finitely generated R-module M is a direct summand of F°R for some ey, then the

numbers a (R) are asymptotically comparable to the numbers rankg(F*R) = (B,

Lemma 9.26. Let (R, m, k) be an F-finite and strongly F-regular local ring of prime char-
acteristic p > 0 and let M be a finitely generated R-module. If aé\g(R) > 1 for some eg € N

then
a)' (R)

hen_1>é£1f R > 0.

Proof. Suppose that F°°R = M & N and then consider a direct sum decomposition of FFR
as FR = R®%(R) @ P Then

Feteo R =2 feo RPae(R) qy preo p o (N @y N)®ae(B) gy peo p,

In particular,
a (R) > a.(R).

e+ep

Dividing by p(¢t€0)7(®) and taking a limit infimum as e — oo reveals that

a)(R) _ s(R)
hen_1>£f per(R) = peor(B)’

a quantity that is positive by Theorem 9.25. U

A consequence of Lemma 9.26 is an equimultiplicity theory of F-signature. The following
corollary gives us that F-signature is unchanged under localization at a prime ideal if and

only if each of the Frobenius splitting numbers too are unchanged under localization.

Corollary 9.27. Let (R,m,k) be an F-finite and strongly F-regular local ring of prime
characteristic p > 0. Suppose that P € Spec(R). Then the following are equivalent:

(1) a.(R) = a.(Rp) for all e € N;
(2) s(R) = s(Rp).

Proof. If a.(R) = a.(Rp) for all e € N then s(R) = s(Rp): The sequences of numbers

{ ev(R)} and {a;g,;))} converging to the F-signature of R and Rp respectively are identical

sequences, see Exercise 45.
Suppose that a.,(R) # ae,(Rp), or equivalently, F®° R = R®%0 R g M, where M., does not
admit a free summand but (M,,)p has a free Rp-summand (see Lemma 9.1). By Lemma 9.26

we have that
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For each e € N consider a direct sum decomposition of the form

M,

~ Dae R 3] e o R
FER & R®e(B) g pyfec “(B) g N,

Localizing at P and counting free summands gives us

Me,

a.(Rp) > a.(R) + a."*(R).

Diving by p©*®) = p7(Er) and taking a limit infimum as e — oo shows that

s(Rp) > s(R) + liminf —
Now we can prove the following.

Theorem 9.28. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0. Then
s(R) =1 if and only if R is a regular local ring.

Proof. If R is regular then F¢R is a finite free R-module for all e € N by Theorem 1.1. Hence
acll) _ 1 for all e € N and so s(R) = 1.

pe'Y(R)

Conversely, if s(R) = 1 then R is strongly F-regular by Theorem 9.25 and hence a domain

by Lemma 3.2. Consider the localization of R at the prime ideal 0 and observe then that
1 = s(R) = s(Rp). By Corollary 9.27 we must have that a.(R) = a.(Ry) = rankg(FFR) for
all e € N. Therefore F¢R is a free R-module for all e € N and therefore R is a regular local
ring by Theorem 1.1. 0

We end this chapter with an application of Theorem 9.24 to the divisor class group of

strongly F-regular singularities.

Proposition 9.29. Let (R,m,k) be an F-finite and strongly F-regular local ring of prime
characteristic p > 0. Then, up to linear equivalence, there are only finitely many divisors D
such that R(p°D) is mazimal Cohen-Macaulay for all e > 0.

Proof. Let eq be the constant in Theorem 9.24. Let D be a divisor such that R(p®D) is
maximal Cohen-Macaulay for all ¢ > 0. Then FPR(p®D) admits an R-summand, that
is, there exists a (split) surjection F°R(p®®D) — R. Tensoring with R(—D) and applying
(—)*™*, we obtain a split surjection F*°R — R(—D). Thus, R(—D) is a summand of F°R.
Since F° R can only have finitely many rank one summand up to isomorphism, we see that
there are only finitely many isomorphism classes of such R(—D). Hence there are only

finitely many such divisors D up to linear equivalence. U

Corollary 9.30. Let (R,m,k) be a two-dimensional F-finite and strongly F-reqular local
ring of prime characteristic p > 0. Then the divisor class group CI(R) is finite.
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Proof. By Proposition 9.29, it is enough to observe that R(D) is maximal Cohen-Macaulay

for all divisors D: this is because R(D) is (S3) over a two dimensional normal domain R. [

Corollary 9.31. Let (R,m,k) be an F-finite and strongly F-regular local ring of prime
characteristic p > 0 and of dimension d. Then the torsion part of C1(R) is finite.

Proof. By Proposition 9.29, it is enough to show that R(D) is maximal Cohen-Macaulay for

all torsion divisors D, which follows from Proposition 5.10. 0

Corollary 9.30 and Corollary 9.31 are in some sense the best possible: it is not true that
CI(R) is finite for all strongly F-regular local rings in higher dimension. In Example 3.10, we
see that R = k[[z,y, u,v]]/(zy —uv) is a three-dimensional strongly F-regular local ring, and
it is easy to check that Cl(R) = Z with the ideal (z,u) representing a generator of Cl(R).

Exercise 42. Let R be an F-finite ring, M a finitely generated R-module, I C R an ideal,
and e € N.

(1) Show that I (I; M) is a submodule of M containing IPJM.

(2) Show that if I C J are ideals then I.(I; M) C I.(J; M).

(3) Show that {I.(I; M)}cen is a descending chain of submodules of M.

Exercise 43. Let (R, m, k) be a local ring and M’ — M — M” — 0 a right exact sequence
of finitely generated R-modules. Show that ugr(M) < pur(M')+pur(M") where pg(N) counts

the minimal number of elements needed to generate a finitely generated R-module N.

Exercise 44. Let (R, m, k) be a local ring and M a finitely generated R-module. Show that

frkp(M) = frks(M).

Exercise 45. Let (R, m, k) be an F-finite local ring of prime characteristic p > 0 and P C @
be prime ideals of R. Prove that v(R) > v(R/P) = v(Rg/PRg) and that a.(R) < a.(Rg).
Prove that s(R) < s(Rg) for all ) € Spec(R).

Exercise 46. Let (R, m, k) — (5,n,¢) be a flat local extension of F-finite rings of prime
characteristic p > 0. Prove that s(R) > s(S5). (Hint: Use Exercise 45 to reduce to the case
that dim(R) = dim(.5).)

In connection with Corollary 9.30 and Corollary 9.31, the following question is open.

Open Problem 4. Let (R, m, k) be an F-finite and strongly F-regular local ring of prime
characteristic p > 0. Is it true that CI(R) is finitely generated?



F-SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 95
10. RADU-ANDRE’S THEOREM, KUNZ’S THEOREM, AND GABBER’S THEOREM

In this chapter, we utilize modern techniques to prove some foundational results unique
to prime characteristic commutative algebra. The first theorem is obtained by Radu and
André [Rad92, And93] and can be viewed as a relative version of Kunz’s theorem, Theorem
1.1. The second and third theorems are mentioned earlier: see Theorem 1.7 and Theorem
1.6, and they both indicate that F-finite rings have nice geometric properties and are not
pathological from the view of algebraic geometry.

We begin with the Radu-André Theorem. Recall that a map R — S of (Noetherian)
rings is called regular if it is flat and all fibers are geometrically regular, i.e., k(P) ®g S is

geometrically regular over x(P) for all P € Spec(R).

Theorem 10.1 (Radu—André Theorem). A homomorphism R — S of (Noetherian) rings
of prime characteristic p > 0 is reqular if and only if FFR ®r S — F£S is flat for some
(equivalently, all) e > 0.

The difficulty of the theorem is that it is not clear in priori that FR®pg S is a Noetherian
ring (though it will follow from the conclusion of the theorem that FfR ®pg S is in fact
Noetherian, see Exercise 48).'" We thus proceed carefully. We first record some criteria for
flatness, see [Sta, Tag 00MD] for more details.

Lemma 10.2 ([Sta, Tag 0523]). Let R — S be a map of (Noetherian) rings. Let I C R be
an ideal and let M be a finitely generated S-module. Suppose for each n > 1, M/I"M is
flat over R/I"™. Then for each prime Q) € Spec(S) such that I C Q, Mg is flat over R. In
particular, if (S,n,¢) is local and 1S C n, then M is flat over R.

Lemma 10.3 ([Sta, Tag 051C]). Let A be a ring that is not necessarily Noetherian, I C A
an ideal, and M an A-module. If M/IM is flat over A/I and Tor{(A/I, M) =0, then

(1) M/I"M ‘s flat over A/I™ for alln > 1.

(2) For any A-module N that is annihilated by I™ for some m > 0, Tor{(N, M) = 0.
In particular, if I is nilpotent, then M is flat over A.

The next lemma is well-known to experts, as we cannot find a good reference beyond the

Noetherian set up, we deduce it from Lemma 10.3.

Lemma 10.4 (Fiberwise criteria for flatness). Let A be a ring that is not necessarily Noe-
therian, and let M be an A-module. Let t € A such that t is a nonzerodivisor on both A and
M. If M/tM is flat over AJtA and M, is flat over A;, then M is flat over A.

HIf we know FCR ®pr S is Noetherian in priori (e.g., if R is F-finite), then at least one direction of the
theorem follows quite easily from Kunz’s theorem and the local criterion for flatness [Sta, Tag 00ML].
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Proof. By Lemma 10.3 applied to I = (¢), we know that Tor?' (N, M) = 0 for all t™-torsion
A-modules N (by taking a direct limit). For any ¢™-torsion A-module N, we have 0 — K —
F — N — 0 where F'is a free A/t™A-module and K is t"-torsion. Since t is a nonzerodivisor
on A and M, Torf(F . M)=0 for all j > 0. The long exact sequence of Tor then shows that
Torj‘(N, M) =0 for all j > 0. By taking direct limit we know that Torf(N, M) =0 for all
7 > 0 and all t*°-torsion A-modules N.

For an arbitrary A-module N, if we let T,y N = {n € M | t‘n = 0 for some ¢}, then we

have two short exact sequences:
0—-TyN—-+N—-N—-0,and0—+N—-N,— N =0

Now Tor;‘(F(t)N, M) = Torf(N’, M) = 0 for all j > 0 since I' N, N’ are both ¢*>°*-torsion,
and Torf (N, M) = Tor;‘t (Ny, My) = 0 for all j > 0 since M; is flat over A;. By examining
the long exact sequence of Tor, it is easy to see that Torf(N ,M) =0 for all 7 > 0. Thus M
is flat over A. O

Proof of Theorem 10.1. We first prove that if F*R ®gr S — F¢S is flat for some e > 0, then
R — S is regular. We observe that if FFR®g S — F¢S is flat, then applying F¢(—), we see
that F*R®peg FCS — F2¢S is flat, while applying F2*R®@per (—), we see that F* RS —
F*R ®pep F°S is flat. Thus composing these two maps we see that F2*R ®@p S — F*S
is flat. Thus iterating this process, we find that there are infinitely many e > 0 such that
FER®p S — F£S is flat.

We set £ = k(P) and aim to show k ®pr S is geometrically regular over . Note that
for any finite and purely inseparable field extension ' of k, we can pick e > 0 such that
K C Ffk and FER®pr S — F¢S is flat. Base change the flat map FfR ®r S — F°S along
F¢R — Ffk, we know that Ffk @ S — Ff(k ®g S) is flat. Consider the composition:

K/®RS—>F:R®RS—>F:<R®RS>—)F:(K/(X)RS)

where the first and third maps are flat as they are base changed from field extensions, and
the middle map is flat by previous discussion. Thus the composition is flat and so k' ®r S
is regular by Theorem 1.1. Therefore k ®g S is geometrically regular over .

To show R — S is flat, we may localize at a prime ideal of S and localize R at the
contraction of that prime ideal. Thus we may assume that (R, m, k) — (S,n,/) is a local
homomorphism. By Lemma 10.2, it is enough to show that R/mlP"l — S/mlPlS is flat for
infinitely many e > 0. Base change the flat map FfR ®r S — F£S along R — R/m, we see
that F¢(R/mP) @p/m S/mS — F(S/mlP1S) is flat. Thus the composition:

FE(R/mPy — FE(R/mP)) @/ S/mS — FE(S/mlPS)
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is flat (the first map is flat since it is base changed over a field), and hence R/mlP"l — S/mlP°lg
is flat as desired.

We now prove the other direction that if R — S is regular, then FFR®zrS — F¢S is flat for
all e > 0. For any ideal J C R, consider the ideal F¢J(FFR®QrS) =2 FEJQrS C FFR®RS.
Since R — S (and hence FFR — FfR®p S) is flat, we know that

Tort*"m5(FeS, (FE R @g S)/FEJ(FER @ S)) = Tor,* (FES, FER/FET) = 0

for all j > 0. Apply the above discussion to the nilradical J of R, since J" =0 for n > 0 as

R is Noetherian, if we can show that
F:(R/J)®ryy (S)/JS) = (FER®R S)/FiJ(FER®R S) = FLS/FIJ(FES) = FE(S/J)

is flat, then by Lemma 10.3 (applied to A = FFR®gr S and I = FEJ(FER®pRS)) we will get
that FEF R ®r S — F£S is flat as desired. Therefore, we may replace R by R/J to assume R
is reduced.

We next note that, to show FFR ®gr S — FS is flat, it is enough to check this at each
prime ideal of S. Thus we may localize S at a prime ideal and localize R at the contraction
to assume (R, m, k) — (5, n,¢) is a regular local homomorphism.

Now we use induction on dim(R). If dim(R) = 0, then since we may assume R is local
and reduced, R = k is a field and our hypothesis becomes that S is geometrically regular

over k. Consider the composition:
Ffk®, S — F¢S — F¥*k @pey, FCS = FO(Fk @ S).

This composition is flat: Fk®;.S = hﬂk/ k' @1 S where k' runs over all finite field extensions
of k contained in F¢k, since each k' ®y S is regular by our assumption, k' ®; S — F£(k' ®4.S)
is flat by Theorem 1.1, and a direct limit of flat maps is flat. But the second map in the
composition is obviously faithfully flat as it is base changed from field extensions. Thus the
first map in the composition, Ffk ®; S — F£S, is flat. This proves the case dim(R) = 0.
Finally, we assume dim(R) > 0. We may assume (R, m, k) is local and reduced. Thus there
exists a nonzerodivisor ¢ € m. Since (R, m, k) — (S, n, /) is flat, Fft®1 is a nonzerodivisor on
FfR®g S and F¢t is a nonzerodivisor on F¢S. By Lemma 10.4, to show (FFR®pS) — F£S

is flat, it is enough to show that

(1) (FFR®RrS)/F(FER®R S) — FCS/FEt(FeS) is flat, and
(2) (FSR®r S)|gmgi] — (F9)[5g) is flat.

Fet

Now the first map is the same as F{(R/tR) ®p/rS/tS — F£(S/tS), while the second map is
the same as F¢(Ry) ®g, Sy — F£(S;). Since t is a nonzerodivisor, dim(R/tR) < dim(R) and
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dim(R;) < dim(R). Thus by induction on dimension, we know both maps are flat (note that
R; is not local, but this doesn’t matter, since to show F¢(R;) ®g, S¢ — F2(S;) is flat, we can

localize at primes of S; and their contractions to R; again). This completes the proof. [

Our second goal is to show the following Kunz’s theorem, proved in [Kun76], that every

F-finite ring is excellent and a partial converse.

Theorem 10.5. If R is an F-finite ring of prime characteristic p > 0 then R is excellent.
Moreover, if (R, m, k) is a local ring of prime characteristic p > 0, then R is F-finite if and
only if R is excellent and k is F'-finite.

We start with a lemma.

Lemma 10.6. Let (R, m, k) be an F-finite local domain of prime characteristic p > 0 and
let K be the fraction field of R. Then for any finite field extension L of K, L@gpR is reqular.

Proof. For all e > 0, we have
FS(L®rR)=FL®pp FFREFIL@pep FFR®R R = FL®R R

where the isomorphism in the middle follows from Lemma 9.2. Since F¢L is free over L,
F¢L®p R is free over L Rr R. Thus by Theorem 1.1, L ®p R is regular (note that here we
are implicitly using that L ®pg R is Noetherian: it is module-finite over K ®x R, which is a
localization of R). O

We will also need the following fact about excellent rings, see [Sta, Tag 032E] for more
details.

Lemma 10.7 ([Sta, Lemma 10.160.2]). Let R be an excellent reduced ring with total quotient
ring K. Then the integral closure of R in any finite reduced extension L of K is module-finite

over R.

Now we are ready to prove Kunz’s theorem. Recall that R is excellent if R satisfies the

following;:
(1) R is universally catenary.

(2) If S is an R-algebra of finite type, then the regular locus of S is open in Spec(.S).
(3) For all P € Spec(R), the map Rp — Rp has geometrically regular fibers.

Proof of Theorem 10.5. We first show that if R is F-finite, then R is excellent. Since any
ring finite type over an F-finite ring is still F-finite (see Exercise 5), to show R is universally

catenary, it is enough to show that any F-finite ring is catenary.
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Now let P C @ be two prime ideals in R, we want to show any saturated chain of primes

between P and () have the same length. Suppose we have two saturated chains:
P=PCPhPC---CPh=Q andP=Q C@QC - CQn=0Q.
Applying Theorem 9.4 to Rp,,, /P Rp,,,, we find that
[FYR(B) 2 5(By)] = p° - [FYR(Piia) © £(Piga)] for all d.

Thus [FfR(P) : k(P)] = p™ - [Fer(Q) : k(Q)], but then the same argument for the other
chain shows that [Ffk(P) : k(P)] = p™ - [Ffr(Q) : k(Q)]. Tt follows that n = m.

We next show that for any finite type R-algebra S, the regular locus of S is an open subset
of Spec(S). But since S is F-finite, F€S is a finitely generated S-module. By Theorem 1.1,
Sp is regular if and only if (F£S)p is a finite free Sp-module. Since F£S is finitely generated,
it is easy to see that if (F¢S)p is finite free over Sp, then there exists f ¢ P such that (F£.S);
is finite free over Sy. Thus the regular locus of S is open in Spec(S) and we have completed
the proof that F-finite implies excellent.

It remains to show Rp — Rp has geometrically regular fibers. That is, for any ) C P and
any finite field extension x(Q)’ of k(Q), k(Q) ®g, Rp is regular. This follows immediately
from Lemma 10.6 applied to Rp/QRp.

We now prove that if (R, m, k) is an excellent local ring with k& an F-finite field, then R is
F-finite. By Exercise 4 we may assume R is reduced. Let K be the total quotient ring of R,
which is a product of fields K = K; x Ky x --- x K. Since R is excellent, each K; ®p R is
regular and thus K ®p R is regular and hence reduced. But since R K® R E’, we see that
R is reduced. By Cohen’s structure theorem, R is a homomorphic image of k[[z1, ..., z,]]

and so by Exercise 5, R is F-finite since k is F-finite. We next claim the following.
Claim 10.8. FfK ®p R is finitely generated over K ®p R for all e > 0.

Proof. For any L = Ly X Ly X --- X Ls where L; is a finite field extension of K, since R — R
has geometrically regular fibers, we know that L ®g R is regular. Thus by Theorem 1.1,
L®g R — F¢(L ®g }?) is faithfully flat. By considering all finite extensions L; between K;
and F°K; and taking a direct limit, we find that F°K @ R — F¢(FCK ®p ]%) is faithfully

flat. But this map factors as
F°K @z R— F¢(K @z R) = FS(FK @x R)

and obviously, K ®g R — F‘K ®p R is faithfully flat as K is a product of field (or one can
use Theorem 1.1 since K is regular). Therefore we find that F°K ®p R — F¢(K ®g R) is
faithfully flat, in particular it is injective. But since R is F-finite, K ®p R is F-finite since it
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is a localization of R, we know that F¢(K ®p R) is finitely generated over K ® 5 R. Therefore
F{K ®p R is finitely generated over K ®p R as desired. U

Finally, since Ris faithfully flat over R, by Claim 10.8 we see that F¢ K is finitely generated
over K. Now we apply Lemma 10.7, we know that the integral closure of R inside FfK is
module-finite over R. But clearly F¢R is contained inside this integral closure, hence FYR
is module-finite over R, that is, R is F-finite. 0J

Our final goal is to explain in detail the following result of Gabber [Gab04].

Theorem 10.9. If R is an F-finite ring of prime characteristic p > 0 then R is a homomor-
phic image of an F-finite reqular ring. In particular, every F-finite ring admits a canonical

module.

Proof. Let RP be the subring of R consisting of p-th powers of elements of R. Note that R is
F-finite is equivalent to saying that R is module-finite over RP. Let a4, ..., as be generators

of R as a module over RP. Set

Rn — _ R[zl,...,zs]

(2 —ay,..., 22 —a,)

Consider the inverse system:
'_»Rn_»Rnflﬁ')"'_»ROZR

where each R,, — R, is the Frobenius map on R and the identity map on zy, ..., z, it is
easy to see that the map is surjective for all n. Set R, := Y&nn R, and we will show R, is

a (Noetherian) F-finite regular ring. By Theorem 1.1, it is enough to show:

(1) Ry is Noetherian

(2) Ry is reduced

(3) R is generated over RE_ freely by {2} - - - 2i3 }o<i,<p—1 Where zj, denotes the constant
sequence (--+— z; — zj = -+ — 2j) € Roo.

We first prove (3). Since R is generated by ay, ..., as over RP. By the definition of R,, it
is easy to check that R, is generated freely over RP by {zil e zéS}ggijgp,l for any n > 1.1
Thus the conclusion follows as we pass to the inverse limit.

We next prove (2). To ease the presentation we will use the following notations for the rest
of the argument: i denotes an s-tuple iy, ... 4, Ai means Aiy, ..., iy, 1 = j means i = j

is

for each k, and o < ¢ < 8 means a < i, < 3 for each k. Moreover, we set 2 := zil szt

is

i L0
and at :=aj' ---al.

12We caution the reader that one cannot invoke Theorem 1.1 to say that R, is regular, this is because R,
is not reduced so we cannot identify R? — R,, with R,, = F.R,.
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Claim 10.10. Ker(R,, — R,_1) = {z € R,|a? = 0}.

Proof. Suppose & = Y g<jcpn iz € R, where a; € R. Then a? = Y., n af 2. Write

1 .

) o i )
Sar- ¥ L dpxie ¥ (% det 02
0<i<p” 0<j<pr—t =) 0<j<pn—1 =]
mod p" 1 mod p

we see that

2? = 0 if and only if for each j, Z alar" T =3 _ 0.

But this is equivalent to saying that

> > afarT "9 = 0in Ry_y

0<j<prl  i=j
mod p

n—1
since R,_ is finite free over R with basis {§1}0§j<pn_1. But note that in R,,_;, we have
> oY dam V= 3 aph

0<j<pr—1  i=j 0<i<pr

n—1

mod p

which is precisely the image of  under the map R, — R,_1 (by definition of this map).
Therefore 27 = 0 if and only if z € Ker(R,, = R,,—1). O

Claim 10.10 immediately implies that R, = Y&nn R, is reduced. We have completed the
proof of (2).
Finally, we prove (1). This will take some work. We first let

Kn+m,n = Ker(Rn+m — Rn>
and we claim the following.
Claim 10.11. For alln >0 and m > 1, K,ipmn = (Kn+m’0)[”n} as ideals in Ryip,.

Proof. By Claim 10.10 (and an easy induction), we have that (K, 4m0)?"! € K,imn. Now
let r € K. We write
r= Yy rzt= > (> rE)

0<i<pntm 0<j<pnr  i=j
mod p"

where r; € R. Since a generates R over RP, {a®}o<<,n generates R over RP". Thus we can

write

TZ = Z zkai Z b "*mk in Rn-‘rma

0<k<p™ 0<k<p™
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where b;, € R. Thus we have

= TN ey
0<j<pn  i=j  O0<k<p
- mod p"

In order to show r € KLp:ln,m it is enough to show that for each j,

Z Z bi k2" kyam () ¢ Kpymo-

i=j  0<k<p"
mod p"

But its image in R = Ry is (note that in Ry, z = a)
Gm LT e,

- i=j  0<k<p"
mod p"

and our hypothesis r € K, 4, implies that

Z ( Z T?mgi—l)gi — Z ( Z Tfmgpn (l—l))gl =0in R,.
0<j<pn  i=j 0<j<pr  i=j
mod p" mod p

Since R, is finite free over R with basis {;i}ogl-@n, this implies that for every j,

m 1 (s ntm 1
0= amTP = N 3 e e ) =,

i=j =] 0<k<pm
mod p" mod p"
which is exactly what we want. 0

At this point, we set J,, := Ker(R., — R,). Note that we have
J=h2h2 2,2
We next claim the following
Claim 10.12. For each n >0, J, C Npso(JPT+ J,0) € Npso(J™ + Jpn).
Proof. The second inclusion is trivial. We prove the first inclusion. Pick x4 € J,,, which can
be thought of as a sequence
Te="""—"Tpy1 —> Ty — -+ = Tp=0—---—= 29 =0.

In particular, z,, € K,,, = K,[fﬁ)] by Claim 10.11 and thus we can write x,, = Zrimyf;
where r;,, € R,, and y;n, € K,,o. Since the inverse system has surjective transition maps,
Tims Yim are images of 7;q, yje € Ro and y;e € Jy = J by construction. Thus by looking at
the m-th entry we find that x4 — 37505 € Jyn. Therefore J, € JP') + J,, as desired. [
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Next we set I, = Ny (J" + Jp). It is clear that J =1) D [ O --- O I, O --- and that
{I,}n>1 is a graded family of ideals in R, (i.e., I,1 C Lim).

Claim 10.13. R, is complete with respect to the topology defined by {1, }n>1.

Proof. By Claim 10.12, J,, C I,, for each n > 1. Consider the following commutative diagram

S VY5 AP 1) A Y ) AP —

| | |

> RnJrl - Roo/JnJrl — > Rn - Roo/Jn — > Rnfl - Roo/Jnfl >

¢ | |

Roo/In—H Roo/In Roo/[n—l - = .

The inverse limit of the second row is R, by definition. Thus to prove the claim it is enough

to show that the first row is a null system, that is, for each n > 1 there exists £ > 0 such
that I C J,,.

Foreachye = (- = Ynt1 = Y — --- — 0) € I; = J, we have y,,41 € K11 foralln > 0.
Since K110 = (Kn+170)[p"] by Claim 10.11, we can pick k£ > 0 (depends on n) such that
(Kny10)® C (KnJrLO)[p"} = K41, (thisis possible since K, ;1 is finitely generated, as it is an
ideal in a Noetherian ring R, ;). Therefore for each x4 € Iy = Nyso(J* + Jpn) C JF + T,
the (n + 1)-th entry x,,; is contained in (K,10)" as this holds for all elements in J* and
elements in J, 41 have (n + 1)-th entry 0. Thus z,,+1 € K,+1,, by our choice of k£ and hence
x, = 0, which implies x4 € J,. So I}, C J,, as desired. O

Finally, we claim the following.
Claim 10.14. The associated graded ring gri, Roo := (Roo/I1) ® (I1/13) ® - - - is Noetherian.

Proof. First we note that R /I1 = Ry /J = R is Noetherian and I; /1[5 is finitely generated:
it can be viewed as an ideal in R, /I, which is Noetherian since it is a quotient of Ry, /Jy =
Rsy. Thus to show grj, R is Noetherian, it is enough to show that I,,/I, 11 = (I;/I3)", that is,
I, C I+ 1,1, for all n > 1 (the other inclusion is clear). Since 1,11 2 J,41 by Claim 10.12,
it is enough to show I,, C I} + I,,+1 modulo J, 1. But recall that I, = Ny,>0(J" + Jp,), thus
after modulo J,, 11, I, is generated by J" = I} O

Now the conclusion of (1) that R, is Noetherian follows from Claim 10.13 and Claim
10.14. For any ideal I C R, its image in gr;, R. is finitely generated, say by f,,..., f;.
We claim that [ is generated by fi,..., f;: given any x € I, suppose x € I, — 1,1, then
we can find z1,...,x; such that ' :== z — (fix1 + - -+ frxy) € L,41 N I, now pick n’ > n such
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that 2’ € I, — Iy,1, we can find 2}, ...z} such that 2" .= 2/ — (fizi + - fix}) € Ly NI,
continuing this process and using R, is complete with respect to {1, },>1, it is easy to check
that eventually we can write x = fiy; + -+ + foyn, so [ is generated by fi,..., fa.

We have completed the proof that R is a homomorphic image of an F-finite regular ring,
call it S. By Exercise 49, we have dim(R) = d < oo and dim(S) = n < oo. Therefore
Ext? %(R, S) is a canonical module of R. O

Remark 10.15. It is worth pointing out that not all excellent local rings admit canonical

modules, for example see [Nis12, Example 6.1].

Exercise 47. Let R — S be a homomorphism of rings of prime characteristic p > 0 such
that F'R ®p S — F¢S is pure. Prove that all fibers of R — S are F-pure.

Exercise 48. Let R — S be a regular homomorphism of (Noetherian) rings of prime char-
acteristic p > 0. Prove that FR ®pr S is a Noetherian ring. (Hint: Use Theorem 10.1 and
the hint in Exercise 31.)

Exercise 49. Let R be a (not necessarily local) F-finite ring of prime characteristic p > 0
and let P C () be two prime ideals of R. Prove that

ht(P) + log, rank,p)(Fir(P)) = ht(Q) + log, rank, ) (F.k(Q)).
Use this to show that dim(R) < oco.

Exercise 50. Let R be an excellent ring of prime characteristic p > 0. Prove that if Rp is
F-finite for all P € Spec(R), then R is F-finite. (Hint: Use Lemma 10.7.)

Remark 10.16. It is natural to ask whether the property of being F-finite is a local property
without assuming excellence. It turns out that this is not always true and counter-examples
can be found in [DI22]. Here we point out another construction that simultaneously give an
example of a ring which is locally F-split but not F-split: in [Hei22, Example One], Heitmann
constructed a non-excellent PID R such that for every P € Spec(R), Rp is isomorphic to
a localization of k[z,y] where k is a countably infinite field of characteristic p > 0. For
example, one can take k = F, so that Rp is F-finite and F-split for every P € Spec(R). But
since R has an F-finite fraction field and R is not excellent, by [DS18, Theorem 3.2], R is
neither F-finite nor F-split.
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11. CONNECTIONS WITH MODULE OF DIFFERENTIALS

In this chapter, we revisit some results relating module of differentials of a homomorphism
A — B of rings of prime characteristic p > 0 and intrinsic properties of the map. More
precisely, under suitable Noetherian hypotheses, we will prove a result of Fogarty [Fog80]
which says that Qp/4 is finite if and only if B is F-finite over A (i.e., F.B is finite over
F.A®B), and a result of Tyc [Tyc88] which says that Q4 is free if and only if B admits a
p-basis over A. The difficulty in establishing these results is that it is not clear a priori that
certain auxiliary rings are Noetherian (and without suitable assumptions, we do not think
this is true). Therefore we proceed carefully, and, throughout this chapter, we will no longer
assume that all rings are Noetherian and we will explicitly state the Noetherian assumptions

whenever we need them.

Remark 11.1. In [Fog80, Proposition 1], it was stated that if R is a Noetherian ring of
prime characteristic p > 0 that contains a subring & (not necessarily Noetherian), then the
module of differentials Qg is finite if and only if R is finite over its subring k[RP] (or
equivalently, F, R is finite over F.k ®; R). However, it was pointed out in [And91] that the
proof in [Fog80] requires certain extra Noetherian assumptions. In [Hasl15, Remark 13], it
was claimed that [Fog80, Proposition 1] follows from [And91, Proposition 57] when both k
and R are Noetherian. We have not been able to verify this claim. We are only able to
prove [Fog80, Proposition 1] under the assumption that both R and k[RP] are Noetherian
(see Corollary 11.4 for a more precise statement). The results in [Fog80] were used in [Tyc88,
Proof of Theorem 1] to generalize earlier results in [Mat70] and [KN84] on the existence of
p-basis. Due to the incompleteness of the argument in [Fog80], [Tyc88, Theorem 1] also
requires extra Noetherian assumptions (this was observed in [And91, Proposition 58]). Due
to these issues, we will present complete arguments of [And91, Propositions 57 and 58], as
well as [Fog80, Proposition 1] and [Tyc88, Theorem 1] under suitable Noetherian hypotheses.

Before we proceed, we collect some notations and definitions that will be used throughout.
Let ¢: A — B be a map of not necessarily Noetherian rings of prime characteristic p > 0.
We say ¢ is invertible up to a power of Frobenius if there exists ¢: B — A so that ¢ o ¢ and
po@ are the e-th Frobenius map on A and B respectively for some e € N. This is equivalent
to the existence of ¢': B — F¢A so that ¢’ o p and (Ffp) o ¢ are the e-th Frobenius map
A — FfA and B — F¢B respectively.

Let A C B be an inclusion of not necessarily Noetherian rings of prime characteristic p > 0.
A set of elements I' of B is called p-independent over A if the monomials { fafi... fin},

where fi,..., f, are distinct elements in I' and 0 < i; < p — 1, are linearly independent over
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A[BP]. T is called a p-basis of B over A if it is p-independent over A and A[BP?|[T'] = B.
When k& C ¢ is an extension of fields of prime characteristic p > 0, a p-basis of ¢ over k
always exists and it corresponds to a free basis of Qy/i, see [Sta, Tag 07P2]. When A = F,,
we simply call a p-basis over A a p-basis.

We start with the following theorem which is essentially [And91, Proposition 57|. Our
proof is largely based on [Fog80, Proof of Proposition 1].

Theorem 11.2. Suppose p: A — B is map of Noetherian rings of prime characteristic

p > 0 that is invertible up to a power of Frobenius and Qg4 = 0. Then ¢ is surjective.

Proof. We may replace A by p(A) C B to assume that A is a subring of B that contains BP"
for some e € N (and replace ¢ by the natural inclusion map). We will make this assumption
throughout.

Since BP" C A, we can identify Spec(A) and Spec(B). In order to show A = B, it is then
enough to show Ay = Bg for all Q € Spec(A). Thus without loss of generality, we may
assume (A, m, k) — (B,n,{) is a local extension of Noetherian local rings.

Set B' := B/mB. Since {0g/4 = 0, we have Qp//, = 0 and in particular €/, = 0. The
latter implies that the empty set is a p-basis of ¢ over k (see [Sta, Tag 07P2]), i.e., £ = k[(P].
But since B” C A, we have B?" C k and thus *° C k. It follows that £ = k. Now B’ is
an Artinian local ring with residule field &, thus the natural map k& — B’ identifies k as a
coefficient field of B’. By Cohen’s structure theorem, we have (B, n, k) = k[[z1,...,z,]|/1]
for some I C n?. It is straightforward to check that {dxy,...,dr,} are linearly independent
in Qp, @p k (in fact, they are a minimal set of generators of Qg /), since B’ is finite over
k). Therefore, our assumption that Qg /, = 0 implies that n = 0, which means that B’ = k.

We have proved that A/m = B/mB. By [Sta, Tag 0315], we know that the natural map
A = Bis surjective. Moreover, since A — B is invertible up to a power of Frobenius, so
is A/m" — B/m"B by Exercise 52. Taking the inverse limit, we know that A — B is also

invertible up to a power of Frobenius. We next consider the ideal
I :=Ker(B®, A — B).
Note that, as B?* C A, for any element >.b;, ® a; € B ®4 fl, we have
S hoa) = od =100 ad =10 a" cln(Ad 2% B, A).

It follows that if 3 b;®a; € I, then Y0 a?" C Ker(A — B). By Exercise 52, (X 07 a2 )?" = 0.
Thus we have IP*1 =0 in B®,4 A.

Claim 11.3. B®4 A is a Noetherian ring.
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Proof of Claim. We first prove the claim under the additional assumption that B (and thus
A) is reduced. In this case, let K and L be the total quotient rings of A and B respectively.
Note that we have K = [ K; and L = [] L; such that each Lfe C K;. But as Q1 /x = 0, we
know that €2z, /k, = 0 for each i and thus the empty set is a p-basis of L; over K; (see [Sta,
Tag 07P2]). It follows that K; = L; and thus K = L. We now have an injection

B®A/A1‘—>L®A/A12K®A/T

Since K ® 4 A is Noetherian (it is a localization of A) and I”*) = 0, we have (I(K®4A))" = 0

for some n > 0. By the injection above, it follows that I™ = 0. We next consider the ideal
J :=Ker(B®4 B — B).

Since we have a factorization
B®AA—»B®AB—»B,

we know that J = I(B ®4 E) and in particular J" = 0. On the other hand, we also have
J = Ker(p) ®p B where p: B®s B — B is the multiplication map. Since Qg4 = 0,
Ker(p) = Ker(p)? and thus J = J2. It follows that J = 0 and thus B ®4 B = B.

Now from the short exact sequence
01— A— B0,
we have a commutative diagram:

Boal —>=B®4A—=B@sB —=0.

| |

0 I B®a A B 0

It follows that [ is a finitely generated ideal of B ® 4 A (since I is finitely generated, as it is
an ideal in the Noetherian ring A) such that /™ = 0 and (B®4 A)/I = B is Noetherian. By
Exercise 51, B ®4 A is Noetherian. This completes the proof when B is reduced.

Finally, in general, we have A — B which implies /0p N A = /04 and thus induces
Ared < Brea- By Exercise 52, A,.q — Breq is invertible up to a power of Frobenius and it is

easy to see that Qg _,/a,, = 0. Therefore by the reduced case already established, we have

red

(B®4A)/VOp(B®aA) 2 (B/\0p) ®4 A% Breg @,y Area
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is Noetherian. Setting N := /0p(B ®4 ﬁ), we have that NV is a finitely generated ideal such
that N™ = 0 for some n > 0 and (B ®4 A)/N is Noetherian. By Exercise 51 again, B®,4 A
is Noetherian. U

We have proved that B® AAis Noetherian, thus it is a Noetherian local ring with maximal
ideal m(B ®4 A) and residue field k (by the discussion before Claim 11.3). Consider the
short exact sequence

0—>I—>B®Aﬁ—>§—>0.

After modulo m"™, we have that
B/m"B ® 4 mn A/m"A S B/m"B
is an isomorphism. This implies that
ICnm"(BRyA) =0

by Krull’s Intersection Theorem (as B ®4 A is a Noetherian local ring). Therefore we have
B ®4 A2 B. Finally, tensoring the map A — B by A we obtain

A—)B@Aggé

which we have shown to be surjective. It follows that A — B is surjective by faithful flatness
of A — A. This completes the proof of the theorem. O

We next observe that, if R — S is a map of (not necessarily Noetherian) rings of prime
characteristic p > 0 such that F¢S is finitely generated over FfR ®p S for some e € N, then
Qpes/rer = Qpes/(Ferogs) 1S a finitely generated FYS-module and thus Qg/r is a finitely
generated S-module (see Exercise 53). We next prove a converse of this fact under suitable

Noetherian assumptions, which is essentially [Fog80, Proposition 1].

Corollary 11.4. Let R — S be a map of rings of prime characteristic p > 0 such that S and
Im(FfR®Rr S — FES) are Noetherian for some e € N. Then the following are equivalent:
(1) Qs is finitely generated over S by {df1, ..., dfn}.
(2) FES is finitely generated over FER ®@g S by {F¢f1,...,Fff,}.
In particular, a Noetherian ring S of prime characteristic p > 0 is F-finite if and only if

Qgr, 15 a finitely generated S-module.

Proof. We leave (2) = (1) as an Exercise 53, and we will show (1) = (2). Consider the map
 Im(F{R®r S — F{S)[z1, ..., 2n)

Az - =
4 (= fr B — )

— F;S=B
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sending z; to FY f; for each 7. Then ¢ is invertible up to a power of Frobenius: we can simply
set ¢ to be the natural map B — FfA and check that ¢ o ¢ (resp., (Ffp) o ¢) is the e-th
Frobenius map A — FfA (resp., B — F¢B). Moreover, our assumptions imply that A, B

are Noetherian and {25/4 = 0, to see the latter, use the exact sequence
QA/F,SR Qs B — QB/FfR — QB/A — 0

and note that the first map above is surjective as the image of dz; is d(F¢f;). Now by
Theorem 11.2, A — B is surjective, which is precisely saying that F¢S is finitely generated
over FER®p S by {F¢fi,...,FEf,}. The last conclusion is the case R = F, and note that,
in this case, In(FfR®r S — FS) =Im(S — F£S) is Noetherian as S is so. O

We next prove the following version of [Tyc88, Theorem 1], which is essentially [And9l,
Proposition 58].

Theorem 11.5. Let A C B be an inclusion of Noetherian rings of prime characteristic
p > 0 such that BP C A. Then the following are equivalent:

(1) Qpja is a free B-module generated by {df;|i € I}.
(2) {fili € I} is a p-basis of B over A.

Proof. We first prove (2) = (1). For any B-module M, giving an A-linear derivation B — M

is the same as giving a ¢ € Hom (B, M) so that g satisfies the Leibniz rule. Now condition
(2) implies that B is free over A[BP] = A with basis

(i firt, .t € 1,0 < iy < p— 1}

Thus any such g € Homy (B, M) is determined by ¢(f;) where i € I: once we know g(f;),
we can extend via the Leibniz rule to obtain the value of g on each basis element. By the
universal property of module of differentials, it is easy to see that g/, is free with generators
{dfi]i € I}, i.e., (1) holds.

Now we will prove (1) = (2). It is easy to see that the set {f;|i € I} is p-independent over
A: for if Zaﬁjjﬁzﬁf e f: = 0 for some ty,...,t, € [,0<4; <p—1, and aﬁjji’; €A isa
relation on fi,,..., f;, of minumum degree, then taking differential, we obtain a nontrivial
B-relation on {dfy,,...,df;,} contradicting the freeness of Q2p,4. Thus it remains to show
that A[f;]i € I] — B is surjective (and hence an isomorphism).

To show A[f;|i € I| — B is surjective, we can localize at each prime ideal of A to assume
that (A,m, k) — (B,n,{) is a local extension of Noetherian local rings. We have a natural
surjection Qp/4 @p ¢ — Qi thus we have a subset I C I so that the images of {df;|i € I'}
in Q, form a basis of Q. over £. By [Sta, Tag 07P2], the images {f;|i € I} in ¢ form a
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p-basis of ¢ over k and thus k[f;|i € I'] = ¢ as k — [ is purely inseparable. Next we note
that A" := A[f;|i € I'] is a direct limit of the system
{Ax = A[fili € L]} 1,cr finite subset-
Since {f;|i € I} is part of a p-basis of B over A and B? C A, we have
Alzli € 1]
(2f = flie L)
In particular, Ay/mAy = k[f;|i € I,] is a subfield of £ and thus each (A, m,) is a Noetherian

local ring, where m, = mA,. It follows from [Ogo91, Theorem 1] (we sketch this in Exer-

Ay =

cise 55) that A" = lim Ay is a Noetherian local ring'® with maximal ideal m’ := mA’ and
residue field k[f,|i € I'] = (.
Now we note that the local extensions A — A" — B induces

QA’/A QK B — QB/A — QB/A’ — 0.

Since the image of the first map is exactly the B-submodule of Q5,4 generated by {df;|i € I'},
it follows that Qg 4 is a free B-module generated by {df;li € I — I'}. But the extension
(A, m’,0) — (B,n,{) induces a surjection n/n* - Qp,u ®p (. Therefore Qp,/ 4 is a finite

free B-module, i.e., the set I — I’ is finite. In particular, the ring
Alfilie Il = A'lfilie I — I

is Noetherian, as it is finitely generated over the Noetherian ring A’.
We now have a map of Noetherian rings A[f;|i € I| — B that is invertible up to a power
of Frobenius (since B” C A), and it is easy to see that Qp,a[f,ic) = 0. By Theorem 11.2,

the map is surjective. 0

Corollary 11.6. A Noetherian ring R of prime characteristic p > 0 admits a p-basis if and
only if Qrsr, is a free R-module, and when these conditions hold and R is reduced, R is

reqular.

Proof. This follows by applying Theorem 11.5 to A = RP and B = R and note that Qg/p, =
Qg ge. For the last conclusion, note that when R is reduced, R is free over RP is equivalent

to F,R is free over R, hence R is regular by Theorem 1.1. 0

BIn our context, the transition maps in liﬂ/\ Ay are flat, and in this case [Ogo91, Theorem 1] is essentially
due to Nagata.

Note that the condition Qp JE, is free alone does not imply R is regular, for example if R = Fy[z]/(2?),
then it is easy to see that Qp/p, = R.
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In general, for a (Noetherian) reduced ring R, having a p-basis is much stronger than being
regular. For instance, it implies that F¢R is free (and not merely flat) over R for all e € N.
In other words, any regular ring R such that F,R is not free over R cannot have a p-basis.
Such examples exist even for excellent regular local rings (see Exercise 54 or [DM23]). On
the other hand, it is well-known that F-finite regular local rings always admit p-basis, see
[KN80, Corollary 3.2]. We include a slightly different argument here via quasi-coefficient
field [Mat70, 38.F and Theorem 91].

Proposition 11.7. Let (R,m, k) be a Noetherian F-finite reqular local ring of prime char-
acteristic p > 0. Then R admits a p-basis.

Proof. By [Mat70, Theorem 91], there exists a commutative diagram:

k' ——k

.

R——>R

where the right vertical map is a choice of a coefficient field k of R and k¥ — k is a field
extension so that €/ = 0. It follows that /r, @p k — Qr, and thus we may choose
ALy -y An € K so that their images in k form a p-basis for k by [Sta, Tag 07P2] (note that k is
F-finite since R is F-finite). By Cohen’s structure theorem, we know that R & k[[z:, . . ., 24|

where we may assume that x,...,z, are elements of R. It is straightforward to check that

{)\1,...,)\7“1'1,...,336[}

is a p-basis of R, i.e., F,R is free over R with basis {F L Ninght -de}, where 0 <
ij,hj <p—1. But since F.R~F.R Qnr R (see Lemma 9.2) and each F*)\If .. /\fl"xi” . -xgd
belongs to F, R, it follows from the faithful flatness of R — R that {F A ... Ninght ... ghay
0 <1ij,h; <p—1,is a free basis of F.R over R. That is, {\1,..., Ay, 21,..., 24} is a p-basis
of R. O

It was also proved in [KN80, Theorem 3.4] that every regular local ring essentially of finite
type over a field of prime characteristic p > 0 admits a p-basis. On the other hand, there
exist complete regular local rings over a field of prime characteristic p > 0 that do not admit

p-basis, see Exercise 54.

Exercise 51. Let R be a not necessarily Noetherian ring and I C R be a finitely generated
ideal such that R/I is Noetherian and R is [-adically complete (e.g., I" = 0 for some n).
Prove that R is Noetherian. (Hint: Mimic the argument after the proof of Claim 10.14).
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Exercise 52. Let A — B be a map of not necessarily Noetherian rings of prime characteristic

p > 0 that is invertible up to a power of Frobenius. Prove the following:

(1) For any A-algebra R, R — R ®4 B is invertible up to a power of Frobenius.
(2) We have A,eq — Breq is invertible up to a power of Frobenius.
(3) If I = Ker(A — B), then I”"] = 0 for some e € N.

Exercise 53. Suppose R — S is a map of not necessarily Noetherian rings of prime char-
acteristic p > 0 such that F£S is generated over FER ®p S by {F¢f;|i € I} for some e € N.
Prove that Qg is generated over S by {fi|i € I}.

Exercise 54 ([KKN80, Example 3.8]). Let k& be a field of prime characteristic p > 0 such
that [k : kP] = co. Prove that R := k[[z]] does not have a p-basis. (Hint: Use the proof of
Theorem 11.5 and the existence of coefficient field to show that if R has a p-basis {f;|i € I},
then we may assume that fo = = and {f;|i € I,7 # 0} is a p-basis of k, then prove that
k[RP][x] # R. Alternatively, show that F,R is not free over R.)

Exercise 55 ([Ogo91, Theorem 1.1]). Let {(Ax,my, k))}rea be a directed system of Noe-
therian local rings such that m, = myA, for 4 > X and let A := lim | A,. Note that (A, m, k)
is a local ring, where m = myA for all A and k = ligA ky. Prove that A is Noetherian via
the following steps:

(1) Let A be the m-adic completion of A. Prove that A is Noetherian ([Nag62, (31.7)]).
(2) Let I be an ideal of A. Prove that A//\I ~ A/IA.
(3) Prove that there is A\g € A such that the induced map (gr,,, Ax) @, & — gr,, A is an
isomorphism for all A > Ag. In particular, gr,,, Ay — gr, A is injective for all A > Aq.
(4) Use Step (3) to prove that A — A is injective.
Now let I be an ideal of A. Since A is Noetherian by Step (1), there exists A" € A such that
TA = I'A for some I' C I N Ay. Applying Step (4) to the directed system {A/I'Ax} sy,
we obtain an injection A/I'A — m >~ A/IA, where the isomorphism follows from Step
(2). But clearly, I/I'A is in the kernel and thus [ = I'A is finitely generated.
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12. TIGHT CLOSURE, FROBENIUS CLOSURE, AND BIG COHEN-MACAULAY ALGEBRAS

In this chapter, we provide a brief and minimal introduction to tight closure and Frobe-
nius closure of ideals, focusing on their relationship with the four prominent types of F-
singularities. The theory of closure operations and F-singularities is then connected to an
algebra map R — B(R), where B(R) is a specific non-Noetherian algebra. Under mild
hypotheses, B(R) is shown to be balanced big Cohen-Macaulay. Throughout this chapter,
we continue to assume all rings are Noetherian, we will remind the readers whenever we

encounter non-Noetherian rings such as R,e¢ and B(R).

12.1. Tight closure and Frobenius closure. We start with the definition of tight closure
and Frobenius closure of ideals, in fact, these closure operations can be defined for all submod-
ules of all modules, but we will not discuss the more general theory. For a more detailed and
thorough treatment of tight closure theory, we refer the readers to some excellent texts such
as [Hun96, Hun98, Hoc07], or Hochster-Huneke’s original papers [HH90, HH94a, HH94c].

Definition 12.1. Let R be a ring of prime characteristic p > 0 and let I C R be an ideal.

e The Frobenius closure of I, denoted by I, are elements z € R such that 27 € "]
for some e > 0 (or equivalently, all e > 0).
e The tight closure of I, denoted by I*, are elements © € R such that there exists an

element ¢ € R not in any minimal prime of R so that caz?” € I for all e > 0.

We say R is weakly F-regular if I* = I for all ideals I C R, and we say R is F'-regular if all

localizations of R are weakly F-regular.

It is straightforward to see that I© C I* are both ideals of R. It is also easy to see that
(I™)F = I¥. We next observe that (I*)* = I*. For suppose I* = (y1,...,¥yn), then for each
y;, there exists ¢; not in any minimal prime of R so that c;y? “ e 1P for all e > ¢;. We set
co:=c1- ¢, and ey := max{ey,...,e,}. It follows that co(I*)PT C 1P for all e > ey. Now
if y € (I*)*, then there exists ¢ not in any minimal prime of R so that cy?” € (I*)P] for all
e > 0 by definition. Multiplying by cy, we then obtain that (coc)y?” € co(1*)P1 C I for
all e > 0 and thus y € I*.

Example 12.2. Let R be a regular ring of prime characteristic p > 0. Then R is F-regular.
To see this, it is enough to show that R is weakly F-regular. Since R is a product of
regular domains (and it is easy to check that a product of weakly F-regular rings is weakly
F-regular), we may assume that R is a domain. Now if cz?” € Il for all e > 0, then
c € (I : 2P°) = (I : )P by the flatness of Frobenius (Theorem 1.1). But if 2 ¢ I, then
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(I : x) is contained in some maximal ideal m and thus ¢ € O, m?1 C N, m? R, = 0. Thus R

is weakly F-regular as desired.

As a generalization of Example 12.2, we will show that strongly F-regular rings are F-
regular, in particular weakly F-regular. This relates strong F'-regularity with tight closure
of ideals. Whether the three notions of F-regularity are equivalent is a central open problem

in tight closure theory, see Discussion 3.13 and Open Problem 1.

Proposition 12.3. Let R be an F-finite and strongly F-reqular ring of prime characteristic
p>0. Then R is F-regular.

Proof. By Lemma 3.3, it is enough to show that R is weakly F-regular. Suppose z € I*,
then by definition there exists ¢ € R not in any minimal prime of R such that ca?* € Il
for all e > 0, which is equivalent to saying that x - Fic € I(FfR) for all e > 0. Since R
is strongly F-regular, there exists e > 0 such that the map R — F¢R sending 1 — Ffc is
split. Let ¢ be the splitting. It follows that x = ¢(z - Fc) € ¢(I - FER) C I. Thus I* =1
and hence R is weakly F-regular. O

In general, tight closure and Frobenius closure in singular rings can be tricky to compute.
We leave the first part of the next example as Exercise 56. The second part is a challenge,

see [Sin98, Theorem 5.2] for the actual computation.

Example 12.4. Let R = F,[x,y,2]/(2* + y* + 2*). Then we have
(1) 22 € (x,9)*, and if p = 2 mod 3, then 22 € (z,y).
(2) zyz € (22,92, 22)%, and if p = 2 mod 3, then xyz € (22,9, 2.

We next show that for principal ideals, tight closure agrees with integral closure, which is

a consequence of the following Briangon-Skoda theorem.

Proposition 12.5. Let R be a ring of prime characteristic p > 0 and let I C R be an ideal
generated by n elements. Then we have I* C I and I™ C I*, where I denotes the integral
closure of I. In particular, I* = I for principal ideals I, and that weakly F-reqular rings are

normal.

Proof. By [SH06, Corollary 6.8.12], x € I if and only if there exists ¢ € R not in any minimal
prime of R so that cz™ € I™ for infinitely (or equivalently, all) m > 0. Then I* C I follows
since I C P, The other containment I* C I* follows similarly by noting that if I is
generated by n elements, then 1™ C I"l. Now if R is weakly F-regular, then in particular
0 = 0" D 0¥ = /0 and thus R is reduced. Since all principal ideals are tightly closed and
thus integrally closed, it follows that R is normal (by [SHOG, Proposition 1.5.2]). O
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Remark 12.6. It follows from Proposition 12.5 and Example 12.2 that in a regular ring of
prime characteristic p > 0, if an ideal I can be generated by n elements, then ™ C I. In

fact, this holds for regular rings in arbitrary characteristics, see [LS81].

We next relate F-injectivity with Frobenius closure of ideals generated by system of pa-

rameters for Cohen-Macaulay rings.

Proposition 12.7. Let (R,m, k) be a Cohen-Macaulay local ring of prime characteristic
p > 0 and dimension d. Then the following conditions are equivalent.

(1) R is F-injective.

(2) (z1,...,29) = (x1,...,2q) for every system of parameters xy,...,xq.

(3) (x1,...,29) = (x1,...,2q) for some system of parameters 1, ..., zq.
Proof. We consider the commutative diagram:

R/(xy,...,0q) > HY(R)

| 7 |

R/(z) ... 2 )— HY(R)
where the vertical maps are the natural e-th Frobenius actions, and the horizontal maps
are injective since R is Cohen-Macaulay. If R is F-injective, then the right vertical map

is injective and chasing the diagram we know that the left vertical map is injective, i.e.,

Y e (2, .. 2b) implies y € (x1,...,xq) for every system of parameters xi,...,xq
and every e. This clearly implies (z1,...,24)" = (x1,...,24). On the other hand, if
(21,...,2q)F = (x1,...,24) for some system of parameters xy,...,z4, then the left verti-

cal map is injective and chasing the diagram we find that Ker(F| 4 g)) N Soc(HZ(R)) =0
(since Soc(R/(z1,. .., 1q)) maps isomorphically onto Soc(HZ(R)) as R is Cohen-Macaulay).
It follows that Ker(F*|g4gy) = 0 and thus the natural Frobenius action on Hg(R) is injec-

tive, i.e., R is F-injective. 0

Remark 12.8. In general, if (R, m, k) is a local ring of prime characteristic p > 0 such that
every ideal generated by a system of parameters is Frobenius closed, then R is F-injective,
see [QS17, Theorem 3.7]. However, it is not true that F-injectivity implies that every ideal
generated by a system of parameters is Frobenius closed, see [(JS17, Theorem 6.5]. We will

outline the example constructed in [()S17] (which is based on [Sin99b]) in Exercise 66.
We next characterize F-purity via Frobenius closure of ideals.

Proposition 12.9. Let R be a ring of prime characteristic p > 0. Then R is F-pure if and

only if every ideal is Frobenius closed. In particular, weakly F-regular rings are F-pure.
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Proof. If R is F-pure, then R/I — R/I @y F°R = F¢(R/I"") is injective for all e and
all ideals I C R. This is saying that 27" € I" implies € I, i.e., I¥ = I. Thus every
ideal is Frobenius closed. Conversely, by Exercise 11 and the fact that I"Rp = (IRp)" (see
Exercise 57), we may assume (R, m, k) is local. Now we note that for every m-primary ideal

J C R, we have a commutative diagram

R/J —— F(R/JVT)

| |

R/JR —= F¢(R/J¥IR)

where the horizontal maps are the e-th Frobenius map. Since JI = J, the top horizontal map
is injective for all e and thus so is the bottom horizontal map. It follows that (JR)" = JR for
all m-primary ideal J C R. In particular, Ris reduced, since the nilradical of R is contained
in N, (m"R)" =N, m"R = 0. Now by [Hoc77, Theorem 1.7], in order to show R — FCR is
pure it is enough to show that R/I — R/I @z FCR = F¢(R/I"]) is injective, which follows

since I = I. The last conclusion follows since I C I*. O

12.2. Big Cohen-Macaulay algebras and F-rational rings. We next study tight closure
and Frobenius closure via certain non-Noetherian algebras. The idea in the construction of
B(R) in the discussion below comes from Gabber [Gabl18].

Discussion 12.10. Let R be a ring of prime characteristic p > 0. We use Ryes 1= @e F*R
to denote the perfection of R, which is a non-Noetherian ring when dim(R) > 0. If R is
reduced, then Rperr = Ueen RYP° Tt is easy to see (Exercise 58) that for any ideal I C R,
I = IRy N R, i.e., the contraction of IRy to R. Next, we set
N
B(R) := W™ ][ Rpert

where W denotes the multiplicative set generated by (c, F.c, F2c,...) for all ¢ not in any

minimal prime of R. Note that B(R) is not a Noetherian ring. We further define
I = IB(R)NR.

Note that = € % if and only if there exists w € W so that

N N
w(z,z,...) € T[] Roert = [ I Rpert-
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By our definition of W, this is the case exactly when there exists ¢ not in any minimal prime
of R so that F¢(ca?") = (Ffc) - x € I Rpey for all e € N, that is,

cx? C [[pe}Rperf AR = (I[pe})F

for all e € N.

Lemma 12.11. With notations as above, we have I* C I®. Conversely, if there exists
co € R not in any minimal prime of R such that coI™ C I 4+ /0 for all ideals I C R, then
I* = I5.

Proof. 1If x € I*, then by definition there exists ¢ € R not in any minimal prime of R such
that ca?” € IP] for all e > e,. Thus for every e € N, (ca? )P € 1771 = (JPNP*] and thus
cx?” € (IPhF . Tt follows from Discussion 12.10 that z € I5.

Conversely, if z € I, then by Discussion 12.10 there exists ¢ € R not in any minimal prime
of R such that ca?” € (I for all e € N. By assumption we have (coc)z?” € 1Pl + /0 for
all e € N. Let ¢y € N be such that (v/0)?) = 0. It follows that

(coc)”* 2 = ((coc)a? PP € (1) + VB)P™) = [°*°0) 1 (/)] = [

for all e € N and thus z € I*. O

Remark 12.12. The existence of ¢y in Lemma 12.11 holds in either of the following cases,

and consequently, under either of the following conditions we have I* = 5.

e R is F-pure.
e R is F-finite.
e (R,m, k) is excellent local.

In the first case, we can take ¢y = 1 since I” = I by Proposition 12.9. In the second and
third cases, we can work modulo V0 to assume R is reduced. If R is F -finite, then there is
an R-linear map ¢: F.R — R such that ¢(F,1) = ¢ for a nonozerodivisor ¢ € R (since the
map R — F,R is split after tensoring with the total quotient ring of R, and in fact, for any
¢’ such that R. is regular, we can take ¢ to be a large power of ¢’). We prove by induction
that for all e > 1, there is an R-linear map ¢.: F*R — R such that ¢.(F¢1) = ¢* =: ¢y. For
e = 1 we simply take ¢; = c¢. For e > 1, by inductive hypothesis, F.¢. 1 defines a map
F¢R — F,R sending F*¢1 to F,c?. Thus a multiple of this map sends F°1 to F,c? = c- F,1.
Composing with ¢ then defines a map ¢.: F¢R — R sending F*°1 to ¢?. Now if x € I, then
there exists e so that " € I ie., x-F°1 € I- F°R. Applying ¢, then gives that coz € I.
Finally, if (R, m, k) is excellent local (and reduced), then there exists ¢ € R such that R,
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and hence R, is regular. We consider
R— R— R

By Lemma 6.12, for all sufficiently small choices of T', we have (RF), is regular. Thus by the
F-finite case discussed above, there exists N > 0 so that ¢VJF C J for all ideals J C RY.
Now if I C R, then we have

NP CNITRHYNRCNUIRNY' NRCIR NR=1

where the last equality follows from the fact that R’ is faithfully flat over R (see Discus-
N

sion 6.6). It follows that we can take co = ¢".

An element ¢ not in any minimal prime of R is called a test element of tight closure if
cI* C [ for all ideals I C R. Remark 12.12 can be generalized to prove the following result on
existence of test elements, see [HH94a] and [ST12] for more intense studies of test elements
and the theory of test ideals.

Theorem 12.13. Let R be a reduced ring of prime characteristic p > 0. Suppose one of the

following conditions hold:

e R is F'-finite.
o (R,m, k) is excellent local.

Then for any ¢ € R not in any minimal prime of R such that R. is reqular, there exists N

depending only on c so that cNI* C I for all ideals I C R, i.e., ¢V is a test element.

Proof. We first assume R is F-finite. Suppose x € I*. We know there exists d not in any
minimal prime of R such that dz?” € I’ for all e > 0. Since R, is F-finite and regular and
hence strongly F'-regular, we know there exists eq depending on d such that R, — F°R,
sending 1 to F¢°d splits. Unlocalizing, we find that there exists an integer L depending on
d and an R-linear map ¢ : FR — R sending Fd to c*. Now from da?™" e TP we
obtain that 27" Fod € IPIFR. Applying ¢ we obtain that ¢tzP* € IP for all e > 0. In
particular, choosing e > L we have cx € I”. By Remark 12.12, there exists a fixed power
o of ¢ such that ¢Mo I C I. Thus we can take N = Ny + 1 and ¢V I* C [.

Now suppose (R, m, k) is excellent local and R, is regular. Then R, is regular. We consider
R— R— R'.

By Lemma 6.12, for all sufficiently small choices of T, we have R’ is reduced and (EF)C is
regular. Thus by the F-finite case discussed above, there exists N so that ¢V.J* C J for all
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ideals J C RT. Now for any I C R, we have
NP CAN(IFRYNRCNUIRYNRCIRTNR=1

where the second inclusion and the last equality follows from the fact that RT is faithfully
flat over R (see Exercise 60). O

We have the following characterization of weakly F-regular rings in terms of the non-
Noetherian algebra B(R).

Proposition 12.14. Let R be a ring of prime characteristic p > 0. Then R is weakly
F-reqular if and only if R — B(R) is pure.

Proof. If R — B is pure, then by Lemma 12.11, I* C I8 = I for all ideals I C R and
thus R is weakly F-regular. Now we suppose R is weakly F-regular. In particular, R is
F-pure and thus by Remark 12.12, we have I® = I* = I. But since R is F-pure, by
Exercise 11 and Corollary 2.3, ﬁ; is F-pure and in particular reduced for every maximal
ideal m C R. Now by [Hoc77, Proposition 1.2, Proposition 1.4, and Theorem 1.7], in order
to show R — B(R) is pure it is enough to show that R/I — B(R)/IB(R) is injective, which

follows since I8 = 1. O

We next prove that, under mild assumptions on a local ring (R, m, k) of prime characteristic
p > 0, the non-Noetheiran R-algebra B(R) constructed in Discussion 12.10 is balanced big
Cohen-Macaulay, that is, every system of parameters of R is a regular sequence on B(R) and

mB(R) # B(R).

Theorem 12.15. Let (R, m, k) be a local ring of prime characteristic p > 0 and dimension
d. Suppose R is a homomorphic image of a Cohen-Macaulay ring. Then the following are

equivalent:

(1) R is equidimensional.
(2) B(R) is a balanced big Cohen-Macaulay algebra over R.

Proof. We first prove (2) = (1). We suppose B(R) is a balanced big Cohen-Macaulay algebra
over R but R is not equidimensional. Let Py, ..., P, be the minimal primes of R such that
dim(R/P;) = d and let @1, ..., Q,, be the minimal primes of R such that dim(R/Q);) < d.
We choose v € NJL,Q; — U P and y € MLy P — UJL Q5. Then zy € v/0 and so by
replacing x and y by their powers, we may assume that zy = 0. Since x is part of a system
of parameters in R, we know that x is a nonzerodivisor on B(R) and thus the image of y is
0 in B(R). This implies y € 0° and by Discussion 12.10, this means there exists ¢ € R not
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in any minimal primes of R so that cy?” € 0¥ = /0. It follows that y € v/0 C Q; which is a
contradiction.

We next prove (1) = (2). Write R = S/I where (S,m, k) is a Cohen-Macaulay local ring
and let zq, ..., 24 be a system of parameters of R. By Exercise 61 we may choose y,...,yn
in I, where h = ht(I), so that yi,...,yn, T1,..., x4 is a system of parameters of S (we abuse

notations and use x; to denote the chosen lift of z; to S).

Claim 12.16. There exists cg € R not in any minimal prime of R and a fixed ey € N such
that for alle e N and oll 1 <i < d—1,

€ € € 60 €T € €T €
co (@ sat) nathy)" C (@2l
Proof of Claim. Suppose zxfil e («¥, ..., 2", lift this to S we have that
zalle (@, al )+ I
Let \/(y1,---,yn) = Pi0---NE,NEQ1N---NQ,, where Py, ..., P, are those minimal primes
of (y1,...,yn) that contain I and Q1,...,Q,, are those minimal primes of (yi,...,y,) that
do not contain I. Since R = S/I is equidimensional, P, ..., P, are exactly the minimal
primes of I. We can pick ¢ € NJL,Q; — UL P; (if no such @Q’s exist, we simply take ¢ = 1).
Then ¢l C \/(v1,--.,yn) and the image of ¢ in R is not in any minimal prime of R. We have

szzpj—l € (xll)e7- .. al‘fe> + V (ylv- .- 7yh)‘

Let eg € N such that ( (Y1, .- ,yh))[p °l C (y1,.-.,yn) and let cg = ¢, it follows that

pe() pe+eo pe+60 pe+50
co2’ i Y T PR 7/ B
Since S is Cohen-Macaulay, 1, ..., Yn, 1, ..., x4 is a regular sequence on S, and thus
peo pe+eo pe+60
ol e (@) o2l Ty, yn).

Therefore, after modulo I, we obtain that
= (x’fHED, . ,a:pe+60)

in R. This completes the proof of the claim. O

By Claim 12.16, we know that for all e € N,

(Fetoco) - (@1, ) FER tpep Tien) - FEFOR) C (1, ) FETR,
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Thus after taking a direct limit over all e, we find that

(C(l)/POO) . ((gjb . 7xi)Rperf :Rperf $i+1) g (.Tl, RN ,l’i)Rperf

where (0(1)/ P OO) denote the ideal in Ry generated by all (the images of) Ffcy. It follows that

N N N
(H(Cé/p )) : ((xla ce 7%)(1_[ Ryert) (T Rpest) 56i+1> C (@1, my) H Rpex-

Thus after inverting the multiplicative set W (which contains (cg, Ficp, F2cy, . .. ) since cq is

not in any minimal prime of R), we have
(Ib s 7xZ)B(R) ‘B(R) Ti+1 - (1'1, s 7xZ>B(R)
for every i, that is, x1, . .., x4 is a regular sequence on B(R). Finally, to show mB(R) # B(R),
it is enough to prove that 1 ¢ mB(R). If this is the case, then by the definition of B(R),
there exists ¢ € R not in any minimal prime of R such that
N N

(c,Foc,Fc,...) € mH Rpert = Hmeerf.

This means Fic € mR,e¢ for all e € N, which in turn implies that
c e (mPHE C (mlPhyr C ml]
for all e > 0, where the last containment follows from Proposition 12.5. Thus we have
c E ﬂem[pe] = \/6

by [SHO6, Exercise 5.14], contradicting our choice of c. O

Corollary 12.17. Let (R, m, k) be a local ring of prime characteristic p > 0. Then R admits
a balanced big Cohen-Macaulay algebra.

Proof. Let P be a minimal prime of R such that dim(R/P) = dim(R). Then B(R/P) is a
balanced big Cohen-Macaulay algebra over R/P by Theorem 12.15. It follows that B(R/P)
is also a balanced big Cohen-Macaulay algebra over R. O

Remark 12.18. Corollary 12.17 holds without assuming the local ring (R, m, k) has prime
characteristic p > 0, see [And18, Gab18, HM18].

We now use Theorem 12.15 to obtain the characterization of F-rational rings in terms of
tight closure of ideals generated by system of parameters (the latter is the original definition
of F-rationality in [HH94c]).
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Proposition 12.19. Let (R,m,k) be a local ring of prime characteristic p > 0 that is
a homomorphic image of a Cohen-Macaulay ring. Then R is F-rational if and only if

(1,...,2q)" = (x1,...,24q) for every system of parameters xy,...,Zq.

Proof. Suppose R is F-rational and let z € (z1,...,24)*. Then there exists ¢ € R not in
any minimal prime of R such that ¢z’ € (22,... 2%) for all e > 0. Consider the class
1= (25 € Hi(R). We thus have that

cF(n) =[] =0

in HI(R) for all e > 0. Since R is F-rational, we know there exists ¢ > 0 such that cF¢(—)
is injective on HZ(R). Tt follows that n = 0 in H4(R), which implies z € (x1,...,24) as R is
Cohen-Macaulay.

Conversely, if every ideal generated by a system of parameters is tightly closed, then

for every part of a system of parameters xy,...,z;, we can complete it to a full system of
parameters 1, ..., xq and we have
* n n\* __ n ny __
(@1, @) C (@1, @y 0g) = (@, T, @, xy) = (21,0, %)

In particular, (x1,...,2;)" = (z1,...,7;) and thus by Lemma 12.11 (applied to all ideals

generated by part of a system of parameters with ¢ = 1) we have
(ZEl,...,lL‘Z‘)B = ([L’l,...,Ii)* = (I‘l,...,l'i)

for every zq,...,x; part of a system of parameters. In particular, every principal ideal
of height one is tightly closed and thus integrally closed by Proposition 12.5. It follows
that R is normal by [SHO06, Proposition 1.5.2]. In particular, R is equidimensional and
thus B(R) is balanced big Cohen-Macaulay by Theorem 12.15. Now if yz;1 € (21,...,2;),
then yx;y1 € (21,...,2,)B(R) and thus y € (z1,...,2;)® = (21,...,7;). Thus R is Cohen-
Macaulay, and by Proposition 12.7, R is F-injective.

Finally, for every ¢ € R not in any minimal prime of R, we consider
Ne = {n € Hy(R) | cF*(n) = 0}.

Since R is F-injective, we know that N, O N.,; for all e € N. It follows that there exists

¢’ > 0 so that Ny = N, for all ¢ > ¢’ as HI(R) is Artinian. Now if n = [5:55] € Ne,
then n € N, for all e > ¢/, i.e., ¢F°(n) = 0. Since R is Cohen-Macaulay, this implies that
e’ € (af ... 2 for all e > ¢ and thus z € (21,...,24)* = (x1,...,24). Hence n =0

which means N, = 0, i.e., ¢F®(—) is injective on H%(R). Thus R is F-rational. O
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The following submodule of the top local cohomology module Hé(R) implicitly appeared
multiple times (see Chapter 4, and also the proof of Proposition 12.19) and so we formally

introduce it here.

Definition 12.20. Let (R, m, k) be a local ring of prime characteristic p > 0 and dimension
d. We define

iy = 1N € HY(R) | ¢cF¢(n) = 0 for some ¢ not in any minimal prime of R and all e > 0}

to be the tight closure of 0 in H(R)."

Lemma 12.21. Let (R, m, k) be an excellent and equidimensional local ring of prime char-

acteristic p > 0 and dimension d. Then for every system of parameters x1,...,xq4 of R, we
have
n n\* n n\B
Oy = timg ST o W B0 o o () — ()

(xf,...,21) (2. al)

where the transition map in the direct limit is multiplication by x1 - - - x4.

Proof. If z € (x},...,20)*, then there exists ¢ not in any minimal primes of R so that
ez e (2", .. 2" for all e > 0. It is straightforward to see that the class 7 := [ 2]
1 d
belongs to 07,4 (R)" To establish the first isomorphism, it suffices to show that each n € 07,4 (R)
is the image of some class [z?f‘rg] such that 2z € (a7,...,2%)*. Now for each n € Hi(R),
we may write n = [*—], i.e., 1 is the image of z € R/(7,...,z}}) under the identification
1 d
d ~ 1: R * p© _ d
HS(R) = lim Ta) If 1 € 0%a gy then we have that [W] =0 € HS(R) for all
e > (. This means there exists s > 0 such that
e (zy - mg)® € (P 2P,
It follows that
p° np®+s np®+sy | s np® np\B __ np® npe x
Ve (2Tl T (e xg)t C (2Tt )P = (2t

by Theorem 12.15 and Remark 12.12. By Theorem 12.13, there exists ¢’ not in any minimal
prime of R such that

cd2? e (@, 2) + 0
for all e > 0. Fix ey € N such that (v/0)?*) = 0, we have

(Ccl)peo Zp5+60 c (xvlzp”eo’ o zgp”eo)

15A5 we mentioned at the beginning of this chapter, there is a more general notion of tight closure of

submodules of modules, and 0%, ) S H2(R) fits into this general context.
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for all e > 0. Thus z € (z7,...,2})* as wanted. This completes the proof of the first iso-

morphism. The second isomorphism follows from Remark 12.12. For the third isomorphism,

note that if n := [*—] € Ker (Hgﬁ(R) — Hfl(B(R))), then by Theorem 12.15 we have that
1 d

ze (z..., x)B(R)NR = (x7,...,2%)5. This completes the proof. O

A local ring (R, m, k) of prime characteristic p > 0 and dimension d is called F-nilpotent
(resp., weakly F-nilpotent) if the Frobenius action is nilpotent on (@i<dH§1(R))@0qul R (resp.,
®i<qH:(R)). These singularities were introduced and studied in [ST17, PQ19, Quy19]. We
end this chapter by providing characterizations of F-nilpotent and weakly F-nilpotent rings

via the non-Noetherian algebras Re,¢ and B(R).

Proposition 12.22. Let (R, m, k) be a local ring of prime characteristic p > 0. Then R is
weakly F-nilpotent if and only if Ry is a balanced big Cohen-Macaulay algebra.

Proof. First we suppose Ry is balanced big Cohen-Macaulay. Then every system of pa-
rameters xy, ..., %4 is a regular sequence on Rpey. It follows that H;(z7,. .., 2}; Rpet) = 0
for all ¢ > 1 and in particular Hi (Rpert) = lim Hy_j(z7, ..., 2 Ryers) = 0 for all j < d.
Therefore lim HI(F¢R) = 0 and thus the Frobenius action is nilpotent on HJ (R) for every
J < d, that is, R is weakly F'-nilpotent.

We next prove the converse. We observe that when R is weakly F-nilpotent, we have that
H,(Ryert) = lim H3(FER) = 0.

If the conclusion does not hold, then we can choose an example with dim(R) = d minimum.

Let x1,...,24 be a system of parameters of R. By induction on ¢ we may assume that
Z1,...,%; is a regular sequence on Rpes. If @ = d then there is nothing to prove so we
assume that ¢ < d. Consider (z1,...,%;) g, Tit1. Since Rp is weakly F-nilpotent for all

P € Spec(R) by Exercise 64. For all P € Spec(R)\{m}, we have

(331, e ,.Z'i) :(RP)perf xi+1 = (1'1, Ce ,.CEZ‘)(Rp)perf.

As a consequence, we have

(121) (3717 cee 7xi) :Rperf Lit1 C HSI( Rperf )
(Ila s 7xi)Rperf (.Il, s 7Ii)Rperf
Since x1, . .., x; is a regular sequence on R,e¢, by examining the long exact sequence on local

cohomology induced by the short exact sequence

Rperf "Tj4+1 Rperf N Rperf

— 0
(l'l,...,ﬂfj)Rperf ’ ($1,...,1L'j)Rperf (xl,...,xjH)Rperf

0—
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for each 0 < j <17 — 1, we obtain via a straightforward induction that

Hg( Rpert ) =o.

(xlv s 7xi)Rperf

In particular, since ¢ < d, we have H(Rpert/ (21, - .., 2;) Rpert) = 0 and thus by (12.1), 2,44
is a nonzerodivisor on Rpe/(%1,. .., %;)Rperr. We have shown that z4,...,24 is a regular
sequence on Rpef. Since it is clear that mRyes # Rpe, Rpert 1S @ balanced big Cohen-

Macaulay algebra. O

Proposition 12.23. Let (R,m, k) be an excellent local ring of prime characteristic p > 0

and dimension d. Then the following are equivalent:
(1) R is F-nilpotent.
(2) Rpext is balanced big Cohen-Macaulay and HE(Rpert) — HL(B(R)) is injective.

Proof. By Lemma 12.21 and the fact that B(R) is perfect, we have

(12.2) Ker (Hg(Ryar) = Ha(B(R))) = liﬁmeOEg(R).

In particular, H (Ryer) — HE(B(R)) is injective if and only if the Frobenius action on 0%, )

is nilpotent. The conclusion follows immediately from this and Proposition 12.22. U

Exercise 56. Verify Example 12.4 part (1).

Exercise 57. Let R be a ring of prime characteristic p > 0. Let I C R be an ideal and
W C R a multiplicative set. Prove that W= = (IW~R)!" and that W=1I* C (IW~'R)*.

We point out that it is not true in general that W—'7* = (IW~'R)*, see [BM10]. On the
other hand, it is not known whether tight closure commutes with localization at one element,
i.e., whether we always have I*R; = (I Ry)*.

Exercise 58. Let R be a ring of prime characteristic p > 0 and let I C R be an ideal. Prove
that I = I Rpers N R.

Exercise 59. Let R — S be a module-finite extension of domains of prime characteristic
p > 0. Prove that IS N R C I* for all ideals I C R. Prove that if R is weakly F-regular,
then R — S splits for all module-finite extensions S.

Exercise 60. Let R — S be a faithfully flat extension of rings of prime characteristic p > 0.
Prove that I*S C (15)* for all ideals I C R.
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In fact, for any homomorphism R — S of rings of prime characteristic p > 0, if R is
essentially of finite type over an excellent local ring, then [*S C (I5)* for all ideals I C R
(see [HH94al). This is called the persistence of tight closure.

Exercise 61. Let (R, m, k) be a local ring that is a homomorphic image of a Cohen-Macaulay
ring S. Write R = S/I and suppose z1, ..., 24 is a system of parameters of R. Prove that
there exists a sequence of elements yi,...,y, in I, where h = ht([), and lifts z; of z; to S

such that y1,...,yn, 21, ..., 24 is a system of parameters of S.
The next exercise is the so-called “colon-capturing” property of tight closure.

Exercise 62. Let (R, m, k) be an excellent and equidimensional local ring of prime charac-
teristic p > 0 and dimension d. Prove that for every system of parameters x;,...,x4 of R,

we have

* *

(.fl‘l, ce ,I‘Z'> R g (.fl‘l, Ce 71'1') and (.fl‘l, Ce ,I'i)* T = (Z'h .. ,.T,L'>
for every i. (Hint: Use Remark 12.12 and Theorem 12.15.)

The next exercise shows that under mild assumptions, to check F-rationality, it is enough

to show one system of parameters is tightly closed.

Exercise 63. Let (R, m, k) be an excellent and equidimensional local ring of prime charac-

teristic p > 0 and dimension d. Suppose there is a system of parameters x1, ..., x4 such that

(x1,...,24) = (x1,...,24)". Prove R is F-rational via the following steps:
(1) Use Exercise 62 and descending induction to show that (z1,...,2;)* = (z1,...,2;)
for every i. Conclude that x1,..., x4 is a regular sequence and R is Cohen-Macaulay.

(2) Show that HZ(R) — HZ(B(R)) is injective.
(3) Use Lemma 12.21 to show that (yi,...,v4)* = (y1, ..., yaq) for all system of parameters
Y1,...,Yq. Conclude that R is F-rational.

In fact, the conclusions of Exercise 62 and Exercise 63 hold under the weaker assumption
that (R, m, k) is (equidimensional and) a homomorphic image of a Cohen-Macaulay ring, see

[HH90, HH94a] for more general statements.

Exercise 64. Prove that if (R, m, k) is a weakly F-nilpotent (resp., an excellent and F-
nilpotent) local ring of prime characteristic p > 0. Then Rp is weakly F-nilpotent (resp.,
F-nilpotent) for all P € Spec(R). (Hint: Mimic the strategy in the proof of Theorem 4.13.)

Exercise 65. Prove that if (R, m, k) is an excellent F-nilpotent local ring of prime charac-
teristic p > 0, then (z1,...,24)" = (21,...,74)" for every system of parameters x1, ..., z,.
(Hint: Use Proposition 12.23.)
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In fact, if (R,m,k) is excellent, equidimensional, and (xy,...,24)" = (z1,...,24)* for
every system of parameters, then R is F-nilpotent (i.e., the converse of Exercise 65 holds),
we refer the readers to [P()19, Theorem A].

Exercise 66 ([()S17, Example 6.3] and [Sin99b, Example 3.2]). Let k be a field of prime
characteristic p > 0 and let

R =k[[z,y, 2w, t]]/(t) 0 (zy, 22, y(z — w?)).
Prove the following:

(1) w?(x* — y?) is part of a system of parameters of R.
(2) w“y4t € ( ?(a? —y4)R)F-
(3) why't ¢ w(2® — )R

(4) w is a nonzerodivisor on R and R/wR is F-pure (so R is F-injective by Theorem 5.5).
It follows that for all as, az, as € R so that w?(z? —y?), as, a, ay form a system of parameters
of R, we have w3yt € (w*(2? — y*),ay, a3, a})’ but w3yt ¢ (w?(z? — y*),as,ay,al) for
n > 0. Therefore, R is an F-injective local ring but not every ideal generated by a system
of parameters of R is Frobenius closed.

Note that the local ring (R, m, k) constructed in Exercise 66 is not normal (it is not even

equidimensional). To the best of the authors’ knowledge, the following question is open.

Open Problem 5. Let (R,m,k) be a complete and F-injective local ring of prime char-
acteristic p > 0. Suppose R is normal (or merely equidimensional). Then is every ideal
generated by a system of parameters of R Frobenius closed?
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13. LINEAR COMPARISONS OF IDEAL TOPOLOGIES IN RINGS OF PRIME CHARACTERISTIC

Throughout this chapter, we will continue to assume that all rings are Noetherian (unless
otherwise stated). Many fundamental theorems in commutative algebra are formulated and
proved in terms of ideal containments. A particular example, discussed in Chapter 9, is a
result of Aberbach and Leuschke [AL03]: an F-finite local ring (R, m, k) of prime charac-
teristic p > 0 is strongly F-regular if and only if its F-signature is positive. The approach
taken in this text, as well as in [ALO03], to show positivity of the F-signature of a strongly

F-regular ring is to establish a linear containment relationship between the splitting ideals
I.(R)={reR|R AN F{R does not split}

and the Frobenius powers of the maximal ideal mPl. The critical argument of the proof is
to show that if R is strongly F-regular then there exists a natural number ey € N such that
for all e > ey, I,(R) C mlP"" ! see Lemma 9.15 for details.

In this chapter, we will explore other ideal containment problems in F-finite domains of
prime characteristic p > 0. After a brief discussion on the notion of an ideal topology of a
ring, we present an elementary proof, in the prime characteristic setting, of an important
characteristic-free theorem of Swanson [Swa00] on the linear comparison between symbolic
and ordinary powers of an ideal. A key feature of the approach taken here is the avoidance
of a deep and technical result from birational geometry, the Izumi-Rees Theorem [Ree89].

The main results of [AL03] and [Swa00] establish linear containments of relevant sequences
of ideals through the Izumi-Rees Theorem. On the other hand, the proofs presented in this
chapter (as well as the two proofs of positivity of F-signature presented in Chapter 9) bypass
the Izumi-Rees Theorem entirely.!®

Our efforts to bypass the Izumi-Rees Theorem in our proofs are not intended to downplay
its importance or beauty, but rather to highlight and share powerful prime characteristic
techniques that are relatively more elementary. Additionaly, at the end of this chapter, we
present a novel and elementary proof of the Izumi-Rees Theorem for F-finite rings in prime

characteristic p > 0.

13.1. Ideal topologies. Let R be a ring and I = {1, },en & descending chain of ideals. The
collection I induces a topology on R. For any = € R, the sets {y € R | x —y € I;} form a
basis of open neighborhoods of x, where ¢ varies over the natural numbers.

If 7 and 7 are two topologies on a space X, then the 7i-topology is finer than the 75-
topology if every open set of 75 contains an open set of 7. The topologies 71 and 75 are

16Two other independent proofs of Aberbach and Leuschke’s theorem that do not rely on the Izumi-Rees
Theorem can be found in [PT18, Section 5].
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equivalent if both topologies are finer than one another. The notions of finer and equivalent
topologies of a ring R defined by descending chains of ideals enjoy the following algebraic

characterization.

Definition 13.1. Let I = {I,,},en and J = {J,}nen be two sets of descending chains of
ideals of a ring R.

e The [-topology of R is finer than the J-topology of R if for all s € N there exists
t € N so that I; C J,.

e The I-topology of R is equivalent to the J-topology of R if the I-topology of R is finer
than the J-topology of R and the J-topology of R is finer than the I-topology of R.

If I = {I,}nen is a descending chain of ideals of a ring R, then a Cauchy sequence in R
with respect to [ is a sequence of elements (x,,),en such that for all ¢ € N, there exists m € N
such that for all ny,ny > m, z,, — x,, € I;. The condition N,,cy I, = 0 on the descending
chain of ideals I ensures distinct elements of R can be separated by open sets with respect
to the topology defined by I, meaning the I-topology is Hausdorff. Indeed, if N, ey InR = 0,
f # g € R, then there exists n € N so that f — ¢ & I, implying {f +y | y € I,} and
{9+ vy |ye€ I,} are distinct open sets separating the elements f and g.

The completion of R with respect to I is the collection of all Cauchy sequences with
respect to I and can be identified with the projective limit @ R/I;. The completion inherits
a ring structure from R, and there is a natural ring homomorphism R — @R/ I; that
identifies an element r € R with the constant sequence (7)nen. If I and J are descending
chains of ideals of R so that the I-topology is finer than the J-topology, then every Cauchy
sequence of R with respect to I is a Cauchy sequence with respect to J, inducing a ring
homomorphism @R/ I, — @R/ J;. If the topologies defined by I and J are equivalent,
then l'&nR/L = @R/Jt.

Fundamental theorems in commutative algebra describe the algebraic properties of the
completion 1£1R/ I' and the ring homomorphism R — 1£1R/ I'. For instance, the Krull’s
Intersection Theorem provides a general criteria for R — lgn R/I' to be injective, while the
Artin-Rees Lemma underpins foundational results that l&lR/ I' is a Noetherian ring and
that R — l&n R/I' is flat. Chevalley’s Lemma provides a criteria for the topology described
by a descending chain of ideals to be finer than the topology of a local ring (R, m, k) defined
by the powers of m.

Definition 13.2. Let R be a ring and [ C R an ideal. Let W be the complement of the
union of the associated primes of I. Recall that the nth symbolic power of I is the ideal
I = ["W~RN R. Then
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e The [-adic topology of R is the topology of R defined by the descending chain of
ideals {I"} en.

e The I-symbolic topology of R is the topology of R defined by the descending chain of
ideals {I™},cn.

We first observe that the symbolic topology of an ideal in a domain is Hausdorff.
Lemma 13.3. Let R be a domain and I C R an ideal. Then N,en 1™ = 0.

Proof. Let p be a minimal prime of /. We have
I™R, = (IR,)™ =I"R, C p"R,.

Consequently, if # € N,eny I™, then 2 € N,en p"R, = 0 in R, by the Krull’s Intersection
Theorem. Thus, there exists ¢ € R\ p such that cx = 0, implying = 0 since R is assumed

to be a domain. O

It is clear from the definition of the symbolic powers of an ideal I that I™ C I for every
n € N. In particular, the I-adic topology of R is finer than the I-symbolic topology of R. An
application of Chevalley’s Lemma shows that, under mild hypotheses, the symbolic topology

of an ideal is equivalent to its adic topology.

Definition 13.4. A local ring (R, m, k) is called analytically irreducible if R, the m-adic

completion of R, is a domain.

Corollary 13.5. Let R be a ring and I C R an ideal. Suppose that for allp € U,cn Ass{I"},
Ry is analytically irreducible. Then the I-adic topology of R is equivalent to the I-symbolic
topology of R.

Proof. Since I™ C I™ for every n € N, it suffices to show that for every s € N, there exists
t € N such that I® C I*. Given s € N, choose a primary decomposition I* = g; N ---Nq,
and let p; = /g;. Since q; is primary to p;, we have I C q; if and only if IV R,, C q;R,,. By
assumption, ]/%; is a domain, thus N, cy I(”)]f?; C ﬂneN(H/%;)(") = 0 by Lemma 13.3. Since
qi; Ry, is primary to the maximal ideal p;R,,, it follows from Chevalley’s Lemma, Lemma 9.13,
that there exists ¢; such that IR, C q;R,,. Thus we have

T4 _](ti)Rpi NRCqR, NR=q;

where the last equality follows from the fact that q; is p;-primary. Now it is easy to see that
ift:maX{ti}lgigg, then [(t) g q1 ﬂﬂqg =I°. O
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13.2. Prime characteristic methods and linear equivalence of ideal topologies. A
remarkable property of a Noetherian ring R is described by an important theorem of Swanson
[Swa00], which asserts that if I C R is an ideal for which the adic and symbolic topologies
are equivalent, then they are “linearly equivalent”.

Theorem 13.6 ([Swa00, Main Result)). Let R be a domain and I C R an ideal. If the I-adic
and I-symbolic topologies of R are equivalent, then there exists a constant C', depending on
I, so that for alln € N, 1™ C ™.

A distinguishing tool in prime characteristic not available in other characteristics are the
splitting ideals of an ideal I C R. Recall that if R is an F-finite ring, I C R an ideal, and
ee N, then I.(I; R) :={r € R| p(Ffr) € I, Vo € Homg(FFR, R)}, see Definition 9.17.

A particularly important property of splitting ideals is that if [ is an ideal of an F-
finite domain R, then there exists a constant Cj so that for all e € N, I,(1¢°) C TPl see
Lemma 9.22. Consequently, if the I-adic and I-symbolic topologies of R are equivalent,
then there exists a constant C' so that 1(©) C I which in turn implies that for all e € N,

I.(I©)) C TPl We record this observation for reference.

Lemma 13.7. Let R be an F-finite domain of prime characteristic p > 0 and I C R an
tdeal whose adic and symbolic topologies are equivalent. There exists a constant C so that
for alle € N,

I (19 R) C 1P,

An ideal I C R of an F-finite ring R of prime characteristic p > 0 enjoys the property
that for every e € N, I} C I(I). The next lemma is a similar observation as it pertains to

symbolic powers of ideals.

Lemma 13.8. Let R be an F'-finite ring and I C R an ideal generated by t elements. Then
for every C € N, %) C [.(I' R).

Proof. Let x € I1°®”). We need to show that for every ¢ € Homg(F°R, R), ¢(Ftz) € I'©).
It suffices to show @(F¢x) € I(©) after localization at an associated prime of I. Let p be an
associated prime of I. We have I'9)R, = I°R, and x € ("R, = [“*"R, C (IP\°R, =
(I9)FIR,. Therefore p(Fex) € p((I€)PIR,) C IR, as ¢ is R,-linear. O

Theorem 13.9. Let R be an F'-finite domain of prime characteristic p > 0 and I C R an
ideal. If the adic and symbolic topologies of I are equivalent, then there exists a constant C'
so that for allm € N, I(€™) C [,
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Proof. By Lemma 13.7, there exists a constant C' such that for all e € N, I,(1(); R) C 1],
Let t denote the minimal number of generators of I. Let n € N and « € ()
e € N, write p° = a.n + r. with 0 < r. < n. Fix an element 0 # d € (¢ We have
x% € [(€%en)  which implies that dz® € I€?°), By Lemma 13.8, I(¢%?) C I.(I(9);R),
which implies that for every e € N, dx% € I,

Next we note that d"z%" € (IP1)» = (")l Multiplying by 2™ we obtain that for every
e € N, d"a? € (I")lPl. The element d” is independent of e, therefore z € (I™)*, the tight
closure of I". Let 0 # ¢ € R be a test element of R, see Theorem 12.13, so that ¢(I")* C I"™
for all n € N, ie., (I™)* C (I" :g ¢). If Ais an Artin-Rees number of (¢) C R with respect
to the ideal I C R, then Lemma 9.21 implies that (I" :g ¢) C [" A foralln > A+ 1. Tt

follows that for all n > A + 1,

. For every

](Ctn) g ]n—A.
Consequently, for all n € N,

](Ct(A+1)7’L) C ](A—l—l)n—A C " 0

13.3. Discrete valuations and the Izumi-Rees Theorem. We now turn our attention to
the Izumi-Rees Theorem for F-finite rings in prime characteristic p > 0. Let K be a field and
K> the multiplicative group of nonzero elements of K. A discrete valuation is a non-trivial
group homomorphism v : K* — Z so that for all z,y € K*, v(z +y) > min{v(z),v(y)}.
We extend v to a function v : K — Z U {oo} by letting v(0) = oco. If v is a valuation
then V,,, or V if v is clear from context, is the valuation ring of v and described as the set
V, ={x € K | v(z) > 0}. The ring V, is a local principal ideal domain (PID). If x € V, is
an element so that v(z) = min{v(z) | z € V,,}, then 2V, is the unique maximal ideal V,,. If

I CV, is a nonzero proper ideal of V,,, then IV = 2!V, for some t € N.

Definition 13.10. Let R be a domain and K its field of fractions. A discrete valuation of
R is a discrete valuation v : K* — Z so that R C V,,. The center of v in R is the prime
ideal p, := m, N R € Spec(R). The wvaluation ideal of R with respect to v is defined as
Isy,:={reR|v(z)>n}=m!V,NR.

Lemma 13.11. Let R be a domain with field of fractions K, v a discrete valuation of R,
and p, the center of v. Then for each n € N the valuation ideal I,>, is an ideal of R primary
to p, so that p(V") Cl>p.

Proof. Suppose x,y € R so that zy € [,>, and y € p,. Then we have v(y) = 0 and

v(x) = v(z) + v(y) = v(ay) = n.
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Therefore = € I,>,, and thus I,>, is primary to p,. It is clear that p] C [,>,. Thus [,>,
being primary to p, implies that p(®) = poR,, NRC 1>, Ry, NR=1,>,. U

Let (R, m, k) be an excellent analytically irreducible local ring. First developed by Izumi in
[[zu85] in the analytic setting, and generalized by Rees in [Ree89], the Izumi-Rees Theorem
establishes a linear relationship between two discrete valuations of R that belong to the class
of divisorial valuations of R that are centered on the maximal ideal. Divisorial valuations

are a subclass of discrete valuations and will be discussed in subsection 13.4.

Theorem 13.12 (Izumi-Rees Theorem, [Ree89]). Let (R, m, k) be an excellent analytically
irreducible local ring. If v1 and vy are divisorial valuations of R centered on m, then there

exists a constant E so that for all x € R,
v(z) < Evy(x).

Rees’s characteristic-free proof of Izumi’s Theorem requires the full scope of the theory of
surface singularities found in [Lip78] when R has dimension 2. Higher dimensions are then
reduced to the dimension 2 case through methods similarly used in the study of properties
stable under generic grade reductions found in [Hoc73b], relying upon cohomology vanishing
theorems of Faltings in [Fal80] in the dimension reduction process.

We will present a streamlined and novel perspective to an improvement of the [zumi-Rees
Theorem for F-finite domains of prime characteristic p > 0, see Theorem 13.15. Specifically,
we will show that under suitable assumptions, if v, and v, are discrete valuations centered
on p and q respectively, where p C q € Spec(R), then there exists a constant £ so that for
all z € R, yy(x) < Evy(x). The materials in subsection 13.4 provide relevant information
on divisorial valuations so that the Izumi-Rees Theorem, Theorem 13.12 (for F-finite local
domains) follows from Theorem 13.15, see Remark 13.16. We highlight some details of our
approach.

(1) Equate the Izumi-Rees Theorem to finding a constant C' so that for each e € N there
is a containment of valuation ideals I,,>cpe C I >pe.

(2) For each e € N, realize I, >, as the set of elements x € R so that p(Fir) € m, V,,
for all V,, -linear maps ¢ : FyV, — V. This is essentially a consequence of the fact
that m, is principal and F7V,, is a free V, -module.

(3) There is a bounded family A, of maps F¢V,, — V,, and 0 # ¢ € R with the following
property: if @ & I, >y, then there exists ¢ € A, so that ¢(Ffz) € m,, and cp €
Hompg(F¢R, R).

We begin with the reduction of the Izumi-Rees Theorem to linear containment properties

of valuation ideals of R.
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Lemma 13.13. Let R be a domain with field of fractions K and v,w diecrete valuations of
R. Then the following holds

(1) If E is a constant so that for all x € R, v(x) < Ew(x), then for alln € N,
Lsgn C Iysp.

(2) If C' is a constant so that for alln € N, I,>cn C Iy>n, then for all z € R,
v(z) < 2Cw(x).

(8) If R is an F-finite domain of prime characteristic p > 0 and C is a constant so that
foralle € N, I,>cpe C I,>pe, then for all v € R,

v(z) < 2Cw(x).
Proof. We will only show (3). The remaining details are left as Exercise 68. We may assume

x € p so that v(z),w(z) > 1 since otherwise v(z) = 0 and the conclusion is obvious. The

claimed inequality is trivial if v(x) < C. Thus we may also assume v(z) > C. For each

e € N, write p° = a, L@j + 7. with 0 <7, < L”(Cx)j and fix a nonzero element y € I, _ ., v) |-
= C
Then for all e € N,

v(ya®) = v(y) + acv(x) > v(y) + Ca, V(Cx)J > Cp°.

We are assuming I,>cpe € I,>pe and the above inequality implies yz® € I,>cpe. Hence for

every e € N,

w(yz®) > p° = a. Vg)J + Te.

Note that the element y was chosen independent of e and r. is a natural number bounded

above for all e € N. The sequence a. tends to infinity as e tends to infinity. Therefore

DWT™) 5 Jiy 2 e e {VS)J > V(gf) ~1.

w (:E) - ell{go ae e—00 ae

It follows that
v(z) < Cw(z) 4+ C < 2Cw(z). O

Let R be an F-finite domain of prime characteristic p > 0 and K its field of fractions.
Then we have Homg(F¢R, R) ®r K = Homg (FFK, K). Since Homg(F¢R, R) is torsion-free,
the natural localization map Hompg(F¢R, R) — Homg (FSK, K) is injective and identifies

Homp(F{R, R) = {¢ € Homg (FK, K) [ (F{R) € R}.
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For any ¢ € Homg (FFK, K), the image ¢(FfR) C K is a finitely generated R-module. If
¢ # 0 is a common multiple of the denominators of a generating set of the R-module p(F¢R),
then o(FfR) C R- % Multiplying by ¢ then shows that cp € Hompg(F¢R, R). The following
lemma bounds the image of F¢R in K for a family of maps formed by restricting scalars

under Frobenius and composition of a bounded collection of functions in Homg (F. K, K).

Lemma 13.14. Let R be an F-finite domain of prime characteristic p > 0, K the fraction
field of R, and 1,2, - ¢y € Homg (F. K, K).
For each e € N and index i = (i1, 4a, ..., ic) € {1,2,3,...,t}% let 7 € Homg (FEK, K)

be the composition of maps

e—1
—1 Fy Pie —1
0= 01 0 Fupiy 00 Fe gy, Fel By pei

—2
F: @ie—l\ F*Wig
S e

s P 20 K

Then there exists 0 # ¢ € R so that for all e € N and indexes i € {1,2,...,t}%°,

1
¢ (FYR) C R‘E-

Proof. Since R is F-finite, for each 1 < i < t, the image o;(F,R) of the map F,R %% K
is a finitely generated R-module. Choosing a common multiple of the denominators of a
generating set of p;(F.R), we can assume that ¢;(F,R) C R - % for each 1 < i < t. We
will show by induction on e that for each index (i1,4s,...,%.) € {1,2,...,t}%¢ we have
©:(FfR) C R+ 5. The case e = 1 follows by our choice of c.

Now we suppose @ FfR) C R - C% for all indexes (iy,is,...,3.) € {1,2,...,t}¥¢. Let
i = (ig, i1, 0, ..,5c) € {1,2,...,t}®" and let 7 = (iy, iy, ...,i.). Then

. . 1 1

Multiplying by ¢ we obtain that

o PR) C gy (BB 2 ) = 9o (R ™) € iy (RR) C R

Q=

F.c?

Dividing by ¢, we have
1
072.

e:(FFT'R) C R- O

We are now ready to prove a version of the Izumi-Rees Theorem for discrete valuations of

an F-finite domain of prime characteristic p > 0.

Theorem 13.15. Let R be an F'-finite domain of prime characteristic p > 0, and p C q €
Spec(R) prime ideals so that R, is analytically irreducible and the p-symbolic topology of R
is finer than the q-symbolic topology of R. Let v and w be discrete valuations of R centered

on p and q respectively. Suppose ,en L,znf%; = 0. Then there exists a constant E so that
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forall x € R,
(@) < Euy(x).

Proof. By Lemma 13.13, it suffices to show there exists a constant C' so that for all e € N,

Ly>cpe © Luspe.

An element € R belongs to I,,>,e if and only if z € mff V.. The V,-module F.,V,, is a free
Vi-module. Let {Fiwy, Fiws, ..., Fiw} be a basis of F.V,, over V,,, and let m; : F.V,, — V,
be the projection of F,V,, onto the free V, -summand generated by F,w; with respect to the

chosen basis. For each index i = (iy,i9,...,4.) € {1,2,...,t}%¢ define
e _ e e—1
F*w;—F*wZeF* Wi, _4 F*wzl

as an element of F¢V through the composition of the first eth iterates of the Frobenius
endomorphism V — F,V — -« — F¢71V — [V,

The collection {Few; |7 € {1,2,...,t}®¢} forms a basis of F*V,, over V. For each index
= {1,2,...,t}®°, let 7 be the projection of FfV,, onto the free V,,-summand generated by
Few; with respect to the basis {Few: | 7 € {1,2,...,t}%¢}. If i = (i1, da,...,0,.) then 7 is
factored as

me=my 0 Fumy 0 0 FE7%m o F< .
By Lemma 13.14 (applied to V,, and R respectively), there exists 0 #c¢; € V, and 0 #d € R
such that for each index i € {1,2,...,t}%

T(FV,) CVy -~ and m(F°R)C R-

C1

&=

Now we choose 0 # ¢, € I,>,(c) € R. Then V, - i cV,- ci Setting ¢ := dcy € R, we obtain

S
that for each 1,
1

m(FV,) CV, - {12 and 7HF{R)CR- -
By our assumption ey I,,Zn]/%\p = 0 and Chevalley’s Lemma (Lemma 9.13), for each s € N
there is ¢ € N so that I,>/, C p°R, and thus I,>; C p(s). Combined with Lemma 13.11, it
follows that the topology defined by the descending chain of ideals {,>, }nen is equivalent to
the p-symbolic topology of R and thus finer than the g-symbolic topology of R by assumption.
By Lemma 13.11, the g-symbolic topology is finer than the topology defined by {I,>, }nen-
Thus the topology defined by {I,>, }nen is finer than the topology defined by {I,>n }nen-
Let C be a constant so that I,>c C L>ue)+1- If 2 € R \ L,>pe, then there exists some i

such that m(Ffz) € m,V,,. Let ¢ := cm;. We have ¢ € Homy, (F7V,,,V,,) satisfies

p(Fix) & m O,
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Since T F¢V,) C V,,- L and m(FFR) C R-1, we have o(F*V,) C V, and ¢(FfR) C R, which

means that
¢ € Homy, (F{V,,V,) and ¢ € Homg(F{R, R).

Thus by our choice of C', we have
p(Fiz) € R\ Losu(e)+1 © R\ Li>c.

It follows that ¢(Fez) ¢ mSV, and thus z ¢ (mS)PNV, = mCP°V, implying & L>cpe.

Therefore, for every e € N, there is a containment of valuation ideals
I>cpe € Lyspe. O

13.4. Divisorial valuations. Let R be a domain, K its fraction field, v a discrete valuation
of R, V, the valuation ring of v, m, the maximal ideal of V,,, and p, € Spec(R) the center of
v. We say that v is a divisorial valuation of R if tr.degg g (Vi,/m,V,) = ht(p) — 1.
Divisorial valuations are central in the study of singularities through birational geometry,
especially in the study of singularities over C through embedded resolutions of singularities.
They measure the vanishing orders at the generic point of exceptional components of bira-
tional models of Spec(R). Moreover, over an excellent domain R, divisorial valuations enjoy

the following property (see [SHOG, Proposition 10.4.3])

e If v is a divisorial valuation of R centered on p € Spec(R) so that R, is analytically
irreducible, then v extends uniquely to a divisorial valuation v of ]/%\p.” In particular,

we have ﬂnelean\p =0.

Remark 13.16. Suppose (R, m, k) is an F-finite (and thus excellent) analytically irreducible
local ring. If v is a divisorial valuation of R centered on m and w is a discrete valuation of R
centered on m, then the above property of divisorial valuations tells us that the assumptions
of Theorem 13.15 are satisfied (by taking p = q = m). It follows that there exists a constant
E so that v(z) < Ew(zx) for all € R, which is exactly the conclusion of Theorem 13.12 in
this setting.

For the convenience of the reader, we also list the following equivalent characterizations of
divisorial valuations of an excellent domain R, see [SHO6, Chapter 10] for proofs and more
general statements.

(1) v is a divisorial valuation of R.
(2) There exists a projective birational morphism Y = Spec(R) from a normal scheme

Y to Spec(R) so that v is the valuation of an exceptional component of .

171¢ {rn}nen is a Cauchy sequence in R, with respect to the pRy-adic topology, then we can always extend
v to ¥ in the following way: U ({7 }nen) := lim,— 00 v(T0).
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The valuation v is a Rees valuation of some ideal I C R. That is, there exists an ideal
I C Rand 0 # x € [ so that if R [ﬂ is the finitely generated R-algebra generated by

the fractions {2 |a € I}, R [ﬂ is the normalization of R [ﬂ in its field of fractions

K, and v is the valuation of the discrete valuation ring of the localization of R [ﬂ
at a height 1 prime ideal containing .

There exists an ideal I C R so that if T is a variable, R[IT, T~ = @,,cz ["T™ the
Z-graded extended Rees algebra of I, R[IT, T-1] the integral closure of R[IT, T~
in its field of fractions K(7), and v is the valuation of the discrete valuation ring of
the degree 0 piece of the homogeneous localization of R[IT,T~1] with respect to a

homogeneous height 1 prime ideal containing 7.

We next give a nontrivial example of divisorial valuations.

Example 13.17 (Divisorial valuations of the point blowup of an A;-singularlity, ¢ > 3). Let
k be a field, t > 3, R = k[xy, xa, 23]/ (2129 — 2%), and m = (1, 22, 23). The extended Rees
algebra R[mT,T~!] has dimension 3 and is a homomorphic image of the Z-graded polynomial
ring k1, To, 3, Y1, Ys, Y3, T71] defined by x; — z;, Y; — x;T, and T~ — T—!. The degrees
of x1, 9, x5 are 0, the degrees of Y1, Ys, Y3 are 1, and the degree of 7! is —1. One can easily
determine that (1Yo — T-C2Y) T — 2, T7'Ys — 29, T~'Y3 — 23) is a height 4 prime
of k[xy, x9, 73, Y1, Ys, Y3, T71] contained in the kernel, which implies that

klx1, xa, x3)[Y1, Yo, Y3, T
(ViYa — T2V, Ty — 20, T Yy — w5, T 1Y; — 1)
kY1, Y, Vs, T71]
(Y, — T~ DY)

RmT, T =

The singular locus of the Cohen-Macaulay ring R[mT,T~!] is the codimension 2 set

Sing(R[mT, T ']) = V((Y1, Y, T™'Y3)),

which implies R[mT,T~!] = R[mT,T-'] is normal. The associated graded ring

g g TIWTT kYL Y Y

TORWI.T] (V1Y)

has two minimal primes, or equivalently, T-*R[mT, T~ '] = (T, Y;)N (T, Y,). Thus there
are two Rees valuations of R associated to m. The degree 1 element Y3 = 23T € RmT, T ']
avoids the two height 1 primes of T-'R[mT,T~'| and

1 Z2
~ k|:137137x3}

@z =)

Ty T2

(R[mT7 T_I]Y3>0 =R

$37 XT3
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Therefore the valuation rings of two Rees valuations of m are

T3 &3 x3, 21 T3 T3 X 22

Y Iayg

Discussion 13.18. Let R be an excellent domain and I € R an ideal. If IR denotes the

integral closure of I expanded to the normalization R of R, then by Exercise 72,
R[IT,T-1|=---®#RT>®RI " ®R®IRT ® PRT* & - - .

Consequently, we have

T"R[IT, T-)NR=1I"
It follows that if v, 1s,..., 14 are the Rees valuations of R and v;(I) is the natural number
such that 1V, = mZ;j(I) V.., then

t
In = ﬂ IinVi(I)n'
=1

Therefore, the Rees valuations of an ideal I C R provide a canonical (though potentially
non-minimal) primary decomposition of I™. Since primary decompositions are not unique
at non-minimal components, establishing containment in an ideal with embedded associated
primes can be challenging. This creates a natural appeal for using divisorial valuations in
the study of ideal topologies, as the primary decompositions of the integral closures of the
powers of an ideal as valuation ideals are uniquely determined by the divisorial valuations

arising through the normalized blowup of the ideal.

Exercise 67. Let R be an excellent normal domain. Show that for all ideals I C R, the
I-symbolic topology of R is equivalent to the I-adic topology of R. (Hint: Use Corollary 13.5)

Exercise 68. Complete the proof of Lemma 13.13.

Exercise 69. Let k be a perfect field of prime characteristic p > 0 and R = k[xy, 2, ..., x4
For each i € {1,2,3,...,p° — 1}® let x = 2129+ -74. Let A, be the collection of basis
clements {Fez’ | i € {1,2,...,p° — 1}¥9} of FER over R. Let T FYR — R be the dual of
the basis element ngz. Let V be the divisorial valuation ring k |x1, %, cee i—ﬂ (1)
which of the projection maps = ; are well-defined maps FZV — V., ie., 7re7;(FfV) cV.

. Determine

Exercise 70. Let R be an F-finite normal domain of prime characteristic p > 0. Suppose
Hompg(F R, R) is principally generated as an F©° R-module by ®;. Show that for all t € N,

d;y := Dy 0 FOPy 0--- 0 FV9d, € Homp(F!R, R)
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principally generates Homp(F! R, R) as an F'® R-module. (Hint: The cyclic module gener-
ated by ®; and the module Hompg(F!* R, R) are both (S3). By Proposition A.2, it is enough
to check the assertion after localizing at any height 1 prime ideal of R. Thus we can assume
R is a regular local ring and F°R has an R-basis. Now mimic the methods in the proof of
Theorem 13.15 to describe the bases of F!®R and maps that generate Homg(F'* R, R) as

an R-module.)

Exercise 71. Let (R, m, k) be a one-dimensional local domain and assume the normalization
map R — R is finite. Show that the collection of divisorial valuations of all ideals of R is a

finite set in bijection with the maximal ideals of R.

Exercise 72. Let R be a domain and I C R an ideal. Let R be the normalization of R and
for each n € N, I"R the integral closure of the expanded ideal I™R. Show that

RIT,T-1=---®RT*0RT '®R®IRT ® PRT*®--- .

Exercise 73. Let R be a standard graded normal domain with homogeneous maximal ideal
m and fraction field K. Show that the function v,q : K* — Z defined on an element
0+# f € Rby vea(f) = max{t € N| f € m'} is a divisorial valuation of R. (Hint: Start by
showing the associated graded ring gr,(R) = RmT,T /T 'RmT,T~'] = R. Conclude
that RmT,T~'] = R[mT,T-1] and T~! generates a prime ideal of RmT,T~'].)

Exercise 74. Let k be a field, t > 3, R, = k[z1, x2, x3]/(x122 — %), and m; the maximal
ideal (x1, 29, x3) R;. Show that the set of divisorial valuations of R associated to the maximal
ideal m; is a two-element set {v1,12} so that vi(zy) =t — 1, vi(z2) = 1, wa(x2) = 1, and
vo(x2) = t — 1. Conclude that {R;} is a family of two-dimensional normal domains with
isomorphic associated graded rings that do not share a common Izumi-Rees bound described
by Theorem 13.12 and Theorem 13.15 with respect to the divisorial valuations associated to

their respective maximal ideals. (Hint: Use Example 13.17.)
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APPENDIX A. GENERALIZED DIVISORS AND CLASS GROUPS

We collect the basics of generalized divisors and the divisor class group of a Noetherian ring
which is not necessarily assumed to be normal. We refer to the reader to [Har94, Section 2]
for details.

Let R be a (Noetherian) ring and let K denote its total ring of fractions. We assume
that R satisfies Serre’s condition (S2) and is (G), i.e., R is Gorenstein in codimension 1. A
finitely generated R-submodule I of K is a fractional ideal. We say that [ is non-degenerate
if Ip = Kp for each minimal prime P of R. The inverse of a fractional ideal I is the
fractional ideal I=! := {f € K | fI C R}. Observe that I=! = Hompg(/, R) := I* and so
if I is non-degenerate then so is I~!. If a fractional ideal I is reflexive, i.e., I — I** is an
isomorphism, then [ is called a generalized divisor. Note that since we are assuming R is (S5)
and (G), I is reflexive if and only if [ is (S2) as an R-module, see Exercise 78. If I C R then
I is called effective. There is a one-to-one correspondence between non-degenerate effective
reflexive fractional ideals of R and codimension 1 subschemes of Spec(R) without embedded
components.

We aim to describe the divisor class group of R. To do so, it is convenient to use additive
notation. So if Dy, Dy represents generalized divisors I, I, then we use D+ D5 to represent

the generalized divisor
(([1]2)71)71 = HOmR(HOHlR([1[27 R), R) = ([1[2)**

and —D; to represent I; ! (note that, with the additive notion, 0 represents R). A generalized
divisor D is almost Cartier if its corresponding fractional ideal I is principal in codimension
1. If R is normal then every divisor is almost Cartier.

Let D be a generalized divisor correspond to a fractional ideal I. We define the divisorial
ideal associated to D to be R(D) := I~'. Note that, with this notation, D is effective if
and only if R C R(D). We will say Dy > Dy if D; — D, is effective. For any nonzerodivisor
f € K, we use div(f) to denote the principal divisor that corresponds to the fractional ideal
(f), i.e, R(div(f)) = R - % Now if Dy, Dy are almost Cartier generalized divisors then Dy
is linearly equivalent to Dy, Dy ~ Dy, if D1 — Dy is a principal divisor. It is easy to see that
Dy — Dy = div(f) if and only if (f) - R(Dy) = R(Ds), in other words, Dy ~ D, if and only
if R(D1) = R(D3) as R-modules.

The divisor class group of R, denoted by Cl(R), is the abelian group of almost Cartier
generalized divisors modulo linear equivalence. Abusing notations a bit, a divisor is a choice

of an almost Cartier generalized divisor that represents an element of Cl(R).
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Suppose further that R admits a canonical module wg. The assumption that R is (S2)
and (Gy) insures that wp = R(Kx) for some (almost Cartier generalized) divisor Kx of
X = Spec(R). Any such divisor is referred to as a canonical divisor. If Kx is a torsion
element of CI(R) then R is said to be Q-Gorenstein. The Q-Gorenstein index of R is the
least positive integer N so that N Kx is a principal divisor. Whenever a ring is described as
being Q-Gorenstein, it is implicitly assumed that R is (S2) and (G;) and admits a canonical

module. We say that R is quasi-Gorenstein if R is Q-Gorenstein of QQ-Gorenstein index 1.

Remark A.1. If (R, m, k) is local, then R admits a canonical module if R is a homomorphic
image of a Gorenstein local ring. If, in addition, R is equidimensional (which holds if R is (S55)
and is a homomorphic image of a Gorenstein local ring), then we have (wg)p is a canonical
module for Rp for all P € Spec(R), see [Aoy83, HHI4b] or [Sta, Sections 47.16-47.19] for

more details.

It is important for us to understand when maps of (Sz)-modules are isomorphisms, see
Exercise 79. To this end we present a proposition. For simplicity of our presentation, we
make a convention that a finitely generated (S3)-module has no associated primes that are not
minimal (e.g., when R is a domain, then we are assuming (S3)-modules are automatically
torsion-free), this condition holds for all divisorial ideals R(D) discussed above so there

should be no ambiguity.

Proposition A.2. Let R be an (S3) ring and N — M a map of finitely generated (S5)
R-modules. Then the following are equivalent:
(1) N — M is an isomorphism;
(2) N — M is an isomorphism in codimension 1, i.e., Np — Mp is an isomorphism for
each height < 1 prime ideal P € Spec(R).

Proof. Suppose that Np — Mp is an isomorphism for each height < 1 prime ideal P €
Spec(R). Let K be the kernel of N — M. Then K is a submodule of N and if K # 0,
then the associated primes of K has height at least two, which is not possible since K is
a submodule of an (S3) R-module (see our convention above). Thus we have a short exact
sequence of the form

0O=>N—->M-=C—=0

and the module C' localizes to 0 at every height < 1 prime ideal of R. Suppose by way of
contradiction that C' # 0 and choose P € Spec(R) that is minimal as an element of the
support of C. Then P has height at least 2. In particular, we can localize at P and consider
the short exact sequence

00— Np—>Mp—Cp—0
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where the modules Np, Mp have depth at least 2 and Cp is a nonzero finite length Rp-
module. This is impossible, if we consider the long exact sequence of local cohomology

modules we find that there is an exact sequence
HJODRP(MP) - HJODRP(CP) — H%’RP(NP>
and hence either Mp has depth 0 or Np has depth no more than 1. U

If R is normal, then the divisor class group of R described above agrees with the standard
definition. Specifically, if R is normal then a divisor can be defined to be an element of the
free abelian group generated by the irreducible codimension 1 subvarieties of X = Spec(R)

and CI(R) is the group of Weil divisors modulo linear equivalence.

A.1. Cyclic covers. Let (R, m,k) be a local (S3) and (Gy) ring and let D be a torsion
divisor of index N, i.e., ND is a principal divisor. Suppose that R(ND) = R - f where f
is a nonzerodivisor of the total ring of fractions K of R. For every pair of natural numbers
i,7 we have that R(iD)R(jD) C R((i + j)D) and so we can consider the following graded
R-algebra N
T := P R(iD)t'.

i=0
It is not difficult to see that 7' is finitely generated over R by elements of degree no more than
N and S :=T/(ft" —1) decomposes as an R-module as R®& R(D)®---® R((N —1)D). The
ring S is referred to as a cyclic cover of R with respect to the divisor D. Observe that if g is a
different choice of generator of R(N D) then we can form the cyclic cover S’ := T'/(gt"¥ —1).

The rings S and S’ need not be isomorphic.

Example A.3. Let k be a field, R = k[[x,y, 2]]/(zy + 2%), and consider the height 1 prime
P = (x,2). Consider the divisor D corresponds to the fractional ideal P~! (so D is anti-

effective) and observe that D is torsion of index 3 with
e R(D)=P = (z,2);
e R(2D) = P® = (z, 2%);
e R(3D) = P® = (z).

As an R-module, a cyclic cover of R with respect to D decomposes as
R—S=R&R(D)It®R2D)? =R® Pto PP = Ra (v, 2)t © (v, 212

To understand the multiplicative structure of S, with respect to the choice of generator x of

R(3D), let us consider the product of the elements zt and zt? of S as an example. Then

ztoat? =z(at?) =2 1=z
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The following lemma shows two important pieces of information concerning cyclic covers.

Lemma A.4. Let (R, m, k) be a local (S3) and (G4) ring. Suppose that D is a torsion divisor
of index N and S = ®Y,' R(iD)t' a cyclic cover of R by D.
(1) The ring S is local with unique mazimal ideal m © @Y ' R(iD)t';
(2) If T : S — R is the projection of S onto the degree 0 component of S then 7 principally
generates Homg(S, R), i.e., if ¥ € Hompg(S, R) then there exists s € S so that

Y =m(s—).

Proof. We first check that m @ @Y ' R(iD)t' is an ideal of S. Once this is established it
is easy to see that m @ @Y ,' R(iD)t' is the unique maximal ideal of S (we leave it to the
reader to check that every element not belonging to this ideal is a unit). Showing that
m @ @Y,' R(iD)t' is an ideal of S amounts to checking that if 1 <i < N — 1, a € R(iD),
and b € R((N —i)D) then at’ - bt~ is an element of m. Suppose that f is a choice of
principal generator of R(N D) defining the multiplicative structure of S. Suppose by way
of contradiction that at’ - btV = 2 = ¢ for some unit u of R. Then ab = uf and so

!
div(a) + div(b) = div(f). This provides us the following information:

(1) a € R(iD) and therefore div(a) > —iD;
(2) b€ R((N —1i)D) and therefore div(b) > —(N — 1) D;
(3) div(f) = div(ab) = div(a) 4+ div(b) = —ND = —iD — (N —1)D.
Properties (1), (2), and (3) can only hold if div(a) = —iD and div(b) = —(N —i)D, contra-
dicting the initial assumption that the index of D is N.
We now aim to show that Hompg(S, R) is a principal S-module. There is an isomorphism

of S-modules

N—1 '
Hompg(S, R) = Hompg(R(iD)t', R).
=0
Furthermore, Homg(R(iD), R) = R(—iD), ie., if A : R(iD) — R is R-linear then there

exists x € R(—iD) so that \(n) = an for all n € R(iD). To show that Homg(S, R) is
principally generated as an S-module by the projection map 7 it is enough to show that
if ©» : S — R is the composition of S projected onto R(iD) followed by the multiplication
map A : R(iD) — R defined by A(n) = xn then ¢ = w(s—) for some s € S. This is indeed
the case, suppose that R(ND) = R - f. Then fr € R((N — i)D) and we consider the
element s = fotV=% of S. Then s-nt' = fant™ = an. It readily follows that 1) = m(s—) as

claimed. 0

Proposition A.5. Let (R,m, k) be a local (S3) and (Gy) ring. Suppose that D is a torsion
divisor of index N and S = @' R(iD)t' is a cyclic cover of R by D. Let 7 € Hompg(S, R)
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be the projection of S onto R. Then S — Homg(S, R) defined by mapping s — w(s—) is
an isomorphism. Under this isomorphism, the evaluation-at-1 map e; : Homg(S,R) — R

defined by v — (1) corresponds to the projection map .

Proof. The map S — Hompg(S, R) sending s +— m(s—) is onto by Lemma A.4. We leave as
an exercise to the reader to verify that S #2767, Hom r(S, R) is injective, see Exercise 77.
Showing that 7 corresponds to the evaluation-at-1 map e; under the isomorphism

s—m(s—)

S Hompg(S, R)

is equivalent to observing the following diagram commutes:

s—m(s—)

S

Homg(S, R)

\ iel

R.
O

We point out that the (Sz) and (G;) properties are preserved when we pass from a local
ring to a cyclic cover, a proof of this fact is contained in the proof of Lemma A.7 below. We
caution the reader that in prime characteristic p > 0 it might happen that a cyclic cover of a
normal domain fails to be normal (though it is always a domain in our context), see [TW92]
for more detailed discussions. For this reason, it is important for us to relax ourselves to

work with (S2) and (G) rings.

A.2. Pull back divisors. Let R — S be a map of (S2) and (G) rings that corresponds to
a map of schemes 7: Spec(S) — Spec(R). Given a divisor D on R, we want to pull it back
along 7 to obtain a divisor 7*D on S — this is not always possible if D is not Cartier. We

thus restrict ourselves in the following two cases:

e R — S is a module-finite extension.

e S =R := R/xR where r is a nonzerodivisor of R.

Discussion A.6. Recall that a divisor D on R corresponds to a fractional ideal R(D) that is
principal in codimension 1. In the case R — S is a module-finite extension, we define 7*D to
be the divisor on S such that S(7*D) = (R(D)S)**, where (—)* := Homg(—, S). In the case
that S = R/xR, we need to replace the divisor D by D’ linearly equivalent to D such that
D’ has no component in V' (z) (which is always possible by Lemma A.8), and then define
7D’ to be the divisor such that S(7*D’) = (R(D’)S)**, in this case we will also write D’

for 7D’ to indicate that D’ is a divisor of R. Note that in the second case, we are actually
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defining a map CI(R) — CI(S). We leave it to the reader in Exercise 75 to check that these

are well-defined.

Lemma A.7. Let (R,m, k) be a Q-Gorenstein local ring with choice of canonical divisor K x
on X = Spec(R) that has index NM, with N and M positive integers. If D = NKx and
R — S the cyclic cover of R with respect to D then S is Q-Gorenstein of index N.

Proof. We first check that S is (S2) and (G1). The extension R — S is finite and S de-
composes as a finite direct sum of R-modules which are (S3), thus S is (S2) as a ring. If
Q) € Spec(S) is a height 1 prime then P = RN (Q is a height 1 prime of R and Sq is a
localization of Sp := S ®g Rp. The canonical module R(Kx)p is a principal fractional ideal
of Rp. Thus Sp is isomorphic to a ring of the form Rp[Z]/(f) where Z is a variable. In
particular, Sp and its localization S are Gorenstein.

To compute the Q-Gorenstein index of S, note that we have

ws & Homg(S,wr) = Hompg(®M;'R(iD)t, R(Kx))

~ @Mi'R(Kx —iD)t™
= @iy R(Kx + (M — i) D)t

Il

(R(Kx)-5)™.

Therefore 7* K x is linearly equivalent to Ky where 7 : Y = Spec(S) — X = Spec(R). Thus
N Ky is linearly equivalent to 7*(NKx) = 7*D which is principal, see Exercise 76. On the
other hand if N/ < N, then we have

S(N'Ky) = (R(N'Kx) - S)* 2 oM 'R(N'Kx +iNKx)t'.

It is readily checked that the right hand side is not principally generated over S: if it is, then
we have R(N'Kx +iNKx) = R for some 0 < i < M — 1, which contradicts that the index
of Ky is NM. Thus S is Q-Gorenstein of index V. 0]

Lemma A.8. Let R be an (S2) and (G1) ring and let © € R be a nonzerodivisor of R. Then
for every divisor D there exists D' linearly equivalent to D such that D' has no component

in V(x).

Proof. Let P, ..., P, be the associated primes of (z). Since R is (Ss), all the P;’s have height
one. Set W = R — U;P; and note that, as D is almost Cartier, W 'R(D) = f-W™!R for
some element f in the total ring of fractions of R. Now it is easy to see that D' := D+div(f)
does the job. O
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Lemma A.9. Let R be an (S3) and (G1) ring and let x € R be a nonzerodivisor of R such
that R := R/xR is also (S3) and (Gy). Suppose D is a torsion divisor on R with index
N, such that D has no component in V(x). Then D is a torsion divisor on R whose index
divides N.

Moreover, if (R,m,k) is local and R(iD)/xR(iD) is an (Ss) module over R for each i,
then the torsion index of D equals N.

Proof. We have R(ND) = R and thus

R(ND) = R(ND) = (R(ND)/xR(ND))*™ = R.1®

This proves the first assertion. Now if R(iD)/xR(iD) is (Ss), then R(iD) = R(iD)/xR(iD),
so if R(1D) = R for some i, then R(iD) = R since R is local. Thus the torsion index of D
equals N. [l

Lemma A.10. Let (R, m, k) be an (S2) and (G1) local ring and let x € R be a nonzerodivisor
of R such that R := R/xR is also (S9) and (Gy). Suppose R admits a canonical module and
that Kx is a choice of the canonical divisor of X = Spec(R) such that Kx has no component

in V(x). Then Kx is a canonical divisor of R.

Proof. It is enough to show that (R(Kx)/xR(Kx))* = wg, that is, (wgp/twr)*™ = wg.
Recall that we always have wr/rwr — wg, and as the latter module is reflexive, we have an
induced map (wg/zwr)** — wg. Now by Proposition A.2, it is enough to observe that this

map is an isomorphism in codimension 1 as R is (G). O

Exercise 75. With notation as in Discussion A.6, show that the definition 7* D, 7* D’ induces
a well-defined group homomorphism 7*: Cl(R) — CI(S).

Exercise 76. Let (R,m,k) be an (S3) and (G;) local ring. Suppose that D is a torsion
divisor of index N and S = @~ ' R(iD)t' is a cyclic cover of S with respect to D. Prove
that 7* D is a principal divisor where 7 : Spec(S) — Spec(R).

Exercise 77. Let (R, m,k) be an (S;) and (G4) local ring. Suppose that D is a torsion
divisor of index N and S = @N;' R(iD)t' is a cyclic cover of S with respect to D. Let
¢ € Hompg(S, R) be as in Proposition A.4. Show that the map S — Hompg(S, R) defined by
mapping s — (s—) is injective.

18Here, the first equality actually requires one to check that the pull back of divisors yields a well-defined
map Cl(R) — CI(S), see Exercise 75.
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Exercise 78. Let R be an (S2) and (Gy) ring, M a finitely generated R-module. Prove the

following;:

(1) M — M** is injective if and only if M has no associated primes that are not minimal.
(2) M — M* is an isomorphism if and only if M is an (S3)-module. (Recall our

convention on (S3)-modules in the paragraph above Proposition A.2.)

Exercise 79. Let R be an (S;) and (G4) ring and let Dy, Dy be two divisors. Prove the

following;:
(1) HomR(R(Dl), R(Dg)) = R(Dg — Dl),
(3) If R is additionally F-finite of prime characteristic p > 0, then
(FER(Dy) ©5 R(D3))™ & FSR(D; + 5 Ds).

(Hint: Exercise 78 and Proposition A.2 could be helpful.)
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