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Introduction

The local theory of prime characteristic singularities is a beautiful and historied subject.
Singularities which are defined in terms of the behavior of the Frobenius endomorphism
have been labeled “F -singularities”. We give an introduction on the four most prominent F -
singularity classes; F -pure, F -injective, strongly F -regular, and F -rational singularities. Our
approach is algebraic and we assume the reader is familiar with the basics of commutative
algebra, see [Mat89] and Part I of [BH93].

Our treatment of prime characteristic singularities starts with Kunz’s fundamental theo-
rem from the 1960’s, a point on a variety defined over a prime characteristic field is non-
singular if and only if the Frobenius map is flat at that point, [Kun69]. We then begin our
treatment of F -singularities with the first F -singularity class to be considered historically.
The class of F -pure rings were born out of Hochster–Roberts’s study of rings of invariants in
the 1970’s, [HR74, HR76]. Our initial presentation of F -pure rings in Chapter 2 is centered
around Fedder’s criterion, [Fed83], a containment test to determine if a homomorphic image
of a regular ring is F -pure.

We deviate from the historical development of F -singularities in Chapter 3 and introduce
the basic theory of strongly F -regular singularities, a singularity class that emerged from
Hochster–Huneke’s tight closure theory, [HH90, HH91, HH94a, HH94c]. Strongly F -regular
rings are naturally studied in this text without the knowledge of tight closure theory.

We overlap the theory of F -injective and F -rational singularities in Chapter 4 through the
study of Frobenius actions on local cohomology modules. In the 1980’s, F -injective singular-
ities came from the study of F -pure rings by Fedder, [Fed83], and the theory of F -rational
singularities appeared alongside strongly F -regular singularities in tight closure theory. Sim-
ilar to the theory of strongly F -regular singularities, the theory of F -rational singularities
can be approached naturally without the knowledge of tight closure. Moreover, our study
of F -rational rings through local cohomology gives valuable insight to more advanced topics
treated in later chapters.

The problems of deforming the four fundamental F -singularity classes is presented in
Chapter 5. We give self-contained treatments of the deformation problems as it pertains
to F -rational singularities, Q-Gorenstein strongly F -regular singularities, and Q-Gorenstein
F -pure singularities. We present and record some partial progress on the currently open prob-
lem of deforming F -injective singularities. Counterexamples to the deformation of strongly
F -regular and F -pure singularities in non-Q-Gorenstein rings are given in Chapter 8, among
many other examples. The study of F -singularities under local ring maps R → S given by
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Γ-constructions, completions, and other faithfully flat maps is the content of Chapter 6 and
Chapter 7. Fundamentals of F -signature theory are presented in Chapter 9.

In Chapter 10 we give self-contained and elementary proofs of: the Radu-André Theorem
(a significant generalization of Kunz’s theorem concerning the flatness of the Frobenius);
another theorem of Kunz that F -finite rings are excellent, and Gabber’s result that F -finite
rings are homomorphic image of regular rings. In Chapter 11 we discuss the relation between
Frobenius and module of differentials and we provide proofs of theorems of Fogarty and Tyc.

Chapter 12 offers an unconventional introduction to tight closure theory. Foundational
results, such as the existence of test elements, the Briançon-Skoda Theorem, and the exis-
tence of balanced big Cohen-Macaulay algebras, are derived in part as consequences of the
F -singularity theory developed in earlier chapters. In Chapter 13, we provide applications of
prime characteristic methods to ideal topologies. In particular, we gave new and streamlined
proofs of celebrated results of Swanson and Izumi-Rees for F -finite rings. At the end of ev-
ery chapter we provide several supplemental exercises. Several open problems are presented
throughout the text.

This manuscript began as a collection of notes and exercises used at an RTG minicourse
in Commutative Algebra taught by the two authors at University of Utah in the Summer of
2018, and at an MSRI graduate course taught by the first author with assists by the second
author and Ilya Smirnov at University of Notre Dame in the Summer of 2019 (which is
part of the Thematic program in Commutative Algebra and its Interactions with Algebraic
Geometry). The first author also used a preliminary version of this manuscript as the main
reference for a graduate course taught at Purdue University in the Spring 2021 semester.
We are grateful for the feedbacks we received from the students who participated in these
workshops and classes. During the preparation of this manuscript, we are benefited from
numerous conversations with Rankeya Datta and Karl Schwede, and we wish to thank them
for all their comments. We would also like to thank Alessandro De Stefani, Adrian Langer,
Shiji Lyu, Cheng Meng, and Ilya Smirnov for their feedbacks on preliminary versions of this
manuscript.

Unless otherwise stated, all rings are assumed to be commutative, Noetherian and with
multiplicative identity 1. We will use the convention that (R,m, k) is a (Noetherian) local
ring with unique maximal ideal m and residue field k = R/m.
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1. Kunz’s theorem and F -finite rings

Rings of prime characteristic p > 0 come equipped with a special endomorphism, namely
the Frobenius endomorphism F : R → R defined by F (r) = rp. For each e ∈ N we can
iterate the Frobenius endomorphism e times and obtain the e-th Frobenius endomorphism
F e : R → R defined by F e(r) = rp

e . Roughly speaking, the study of prime characteristic
rings is the study of algebraic and geometric properties of the Frobenius endomorphism.

Throughout this text, we often need to distinguish the source and target of the Frobenius
map. We adopt the commonly used notation F e

∗R to denote the target of the Frobenius
as a module over the source, that is, F e: R → F e

∗R. Under this notation, elements in
F e

∗R are denoted by F e
∗ r where r ∈ R, and the R-module structure on F e

∗R is defined via
r1 · F e

∗ r2 = F e
∗ (rp

e

1 r2). On the other hand, F e
∗R
∼= R via F e

∗ r ↔ r as rings.
Suppose that R is reduced and let K be the total ring of fractions of R, thus K = ∏

Ki

is a product of fields. Let K := ∏
Ki. There are inclusions R ⊆ K ⊆ K. We let

R1/pe := {s ∈ K | spe ∈ R}.

In other words, R1/pe is the collection of pe-th roots of elements of R. Then R1/pe is unique
up to non-unique isomorphism, and R1/pe ∼= R via r1/pe ↔ r as rings. In this setup, we can
view the Frobenius map as the natural inclusion R ↪→ R1/pe , see Exercise 3.

As we already mentioned, the singularities of R are often studied via the behavior of the
Frobenius map. A fundamental result in this direction is proved by Kunz [Kun69].

Theorem 1.1 (Kunz’s Theorem). A ring R of prime characteristic p > 0 is regular if and
only if the Frobenius map F e: R→ F e

∗R is flat for some (or equivalently, all) e > 0.

Proof. First assume that R is regular, we want to show that F e
∗R is a flat R-module. Since

flatness can be checked locally and we have (F e
∗R)P ∼= F e

∗ (RP ) as RP -modules for all P ∈
Spec(R), we may assume (R,m, k) is local. We next consider the commutative diagram:

R //

��

F e
∗R

��

R̂ // F e
∗ R̂

Since both vertical maps are faithfully flat, if we can show the bottom map is flat, then it
will imply that the top map is flat. Therefore we may replace R by R̂ to assume (R,m, k) is
a complete regular local ring. By Cohen’s structure theorem, R ∼= k[[x1, . . . , xd]]. Let R̃ :=
k[[x1, . . . , xd]] and note that R → R̃ is faithfully flat. Thus by the following commutative
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diagram
R //

��

F e
∗R

��

R̃ // F e
∗ R̃

and the same reasoning as above (both vertical maps are faithfully flat), we may replace R
by R̃ to assume that R ∼= k[[x1, . . . , xd]]. In this case, it is straightforward to check that F e

∗R

is a free R-module with basis

{F e
∗ (xi11 · · ·x

id
d ) | 0 ≤ ij < pe}.

Now we prove the converse. Note that if F e
∗R is flat over R for some e > 0, then after

iterating we see that F ne
∗ R is flat over R for all n. In particular, we can assume F e

∗R is flat
over R for infinitely many e > 0. Since regularity and flatness are local conditions, we may
again assume that (R,m, k) is a local ring. Let g = depthR. We pick a regular sequence
in m of maximal length: x1, . . . , xg. It follows that R/(x1, . . . , xg) has depth 0 and thus
0 ̸= N := Soc(R/(x1, . . . , xg)) ∼= HomR(R/m, R/(x1, . . . , xg)). Hence there exists n such
that N ⊈ mn(R/(x1, . . . , xg)).

Claim 1.2. For any finitely generated R-module M of infinite projective dimension with
minimal free resolution

· · · → Rng+2 ϕg+2−−→ Rng+1 ϕg+1−−→ Rng → · · · → Rn1 → Rn0 →M → 0,

the entries in the matrix representing ϕg+2 are not all contained in mn.

Proof of Claim. Since pdRR/(x1, . . . , xg) = g, we have TorRg+1(M,R/(x1, . . . , xg)) = 0.
Therefore tensoring the above minimal free resolution with R/(x1, . . . , xg), we know that

(R/(x1, . . . , xg))ng+2 ϕg+2−−→ (R/(x1, . . . , xg))ng+1 ϕg+1−−→ (R/(x1, . . . , xg))ng

is exact in the middle. Since the resolution is minimal, the socle Nng+1 ⊆ (R/(x1, . . . , xg))ng+1

is contained in Kerϕg+1 = Imϕg+2. If all entries in the matrix representing ϕg+2 are contained
in mn, then Nng+1 ⊆ mn(R/(x1, . . . , xg))ng+1 and thus N ⊆ mn(R/(x1, . . . , xg)). This is a
contradiction. □

We now continue the proof of the theorem. Suppose pdRR/m =∞. Since the Frobenius
map is flat, tensoring a minimal free resolution of R/m with F e

∗R and identifying F e
∗R

with R, we obtain a minimal free resolution of R/m[pe] such that the entries in the matrix
representing each differential (in particular the (g + 2)-th differential) are all contained in
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m[pe], the ideal generated by pe-th powers of elements of m. But for e ≫ 0 this contradicts
Claim 1.2 because n is independent of e. Therefore pdRR/m <∞ and thus R is regular. □

Remark 1.3. Since the Frobenius map F e induces a bijection on Spec(R), F e is flat if and
only if it is faithfully flat. Hence Theorem 1.1 implies that a ring R of prime characteristic
p > 0 is regular if and only if F e is faithfully flat for some (or equivalently, all) e > 0.

Remark 1.4. Our proof of the converse direction in Theorem 1.1 follows from [KL98] (which
originates from ideas in [Her74]).

We next introduce a rather “mild” condition on the Frobenius map.

Definition 1.5. A ring R of prime characteristic p > 0 is called F -finite if for some (or
equivalently, all) e > 0, the Frobenius map F e: R → R is a finite morphism, i.e., F e

∗R is a
finitely generated R-module.

For example, a field k of prime characteristic p > 0 is F -finite if and only if [k1/p : k] <∞.
More generally, it follows from Exercise 5 below (and Cohen’s structure theorem) that rings
essentially finite type over F -finite fields are F -finite, and complete local rings of prime
characteristic p > 0 with F -finite residue fields are F -finite.

The F -finite property turns out to imply that the rings are not pathological. We will
sometimes implicitly use the following two results, due to Gabber [Gab04] and Kunz [Kun76]
respectively, throughout. We will give proofs of these results in Chapter 10.

Theorem 1.6. Let R be an F -finite ring of prime characteristic p > 0. Then R is a
homomorphic image of an F -finite regular ring. In particular, F -finite rings admit canonical
modules.

Theorem 1.7. If R is an F -finite ring of prime characteristic p > 0, then R is excellent.
Moreover, if (R,m, k) is a local ring of prime characteristic p > 0, then R is F -finite if and
only if R is excellent and R/m is F -finite.

Recall that a ring R is called excellent if R satisfies the following:
(1) R is universally catenary.
(2) If S is an R-algebra of finite type, then the regular locus of S is open in Spec(S).
(3) For all P ∈ Spec(R), the map RP → R̂P has geometrically regular fibers. That is,

for all Q ∈ Spec(R) such that Q ⊆ P , κ(Q)′ ⊗RP
R̂P is regular for all finite (or

equivalently, finite and purely inseparable) field extensions κ(Q)′ of κ(Q).
Excellent rings include most examples arising from algebraic geometry. For example, all
rings essentially finite type over a field and all complete local rings are excellent.
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Exercise 1. Let R be a ring of prime characteristic p > 0. Verify that if F e
∗R is finitely

generated for one e > 0, then F e
∗R is finitely generated for all e > 0.

Exercise 2. Let R be a ring of prime characteristic p > 0. Prove that R is reduced if and
only if R→ F e

∗R is injective for one (or equivalently, all) e > 0.

Exercise 3. Let R be a reduced ring of prime characteristic p > 0. Show that the eth iterate
of the Frobenius map F e : R→ F e

∗R is isomorphic to the inclusion of algebras R ⊆ R1/pe .

Exercise 4. Let R be a ring of prime characteristic p > 0. Prove that R is F -finite if and
only if Rred := R/

√
0 is F -finite. (Hint: First show that R → F e

∗R factors through Rred for
e ≫ 0. Then consider a filtration 0 = Jn ⊆ Jn−1 ⊆ · · · ⊆ J =

√
0 ⊆ R and show that each

F e
∗ (J i/J i+1) is finitely generated over Rred.)

Exercise 5. Let R be an F -finite ring of prime characteristic p > 0. Prove the following:
(1) If I ⊆ R an ideal then R/I is F -finite.
(2) If W a multiplicative subset of R then W−1R is F -finite.
(3) If x an indeterminate then R[x] and R[[x]] are F -finite.

Conclude that rings essentially of finite type over F -finite rings are F -finite.
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2. F -pure rings and Fedder’s criterion

An F -singularity is a class of prime characteristic singularities defined in terms of the be-
havior of Frobenius endomorphism. Theorem 1.1 equates flatness of the Frobenius endomor-
phism with non-singularity of the ambient ring. Therefore non-singularity is an F -singularity
and thus it motivates the study of other F -singularities. Our first class of F -singularities are
F -pure and F -split singularities.

Definition 2.1. A map of R-modules M1 →M2 is pure if M1⊗RN →M2⊗RN is injective
for every R-module N . A ring R of prime characteristic p > 0 is called F -pure (resp., F -
split) if the Frobenius map F e: R→ F e

∗R is pure (resp., split) for some (or equivalently, all)
e > 0.

Clearly, a split map is always pure, hence F -split implies F -pure. Moreover, if R is F -pure
then the Frobenius map is injective and thus R is reduced, see Exercise 2. So in this case
we can always view the Frobenius map as the natural inclusion R ↪→ R1/pe . Therefore R
is F -pure if and only if R is reduced and the natural map R → R1/pe is pure for some (or
equivalently, all) e > 0. Similarly, R is F -split if R is reduced and R → R1/pe is split for
some (or equivalently, all) e > 0.

We will prove that F -singularity classes of F -pure and F -split singularities are equivalent
for F -finite rings and complete local rings. To establish this we prove a general criterion for
purity of maps.

Proposition 2.2. Let (R,m, k) be a local ring and M an R-module. Then a map R → M

is pure if and only if the induced map E → E ⊗RM is injective where E := ER(k) denotes
the injective hull of the residue field.

Proof. One direction is obvious. So suppose R → M is not pure, then there exists an R-
module N such that N → N ⊗RM is not injective. Since N is a directed union of its finitely
generated submodules and injectivity is preserved under direct limit, we may assume N is
finitely generated. Now we pick u ∈ Ker(N → N ⊗RM), there exists n such that u /∈ mnN .
Consider the commutative diagram:

N //

��

N ⊗RM

��
N/mnN // (N/mnN)⊗RM
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Since the image of u ∈ N/mnN is nonzero, the bottom map is not injective. Now N/mnN

has finite length, so it embeds in E⊕r for some r. The commutative diagram

N/mnN //
� _

��

(N/mnN)⊗RM

��
E⊕r // E⊕r ⊗RM

then shows that the bottom map is not injective. Thus E → E ⊗RM is not injective. □

Corollary 2.3. Let (R,m, k) be a local ring of prime characteristic p > 0. Then R is F -pure
if and only if R̂ is F -pure.

Proof. We have canonical isomorphisms E := ER(k) ∼= ER(k)⊗R R̂ ∼= E
R̂

(k). Thus we have

E → E ⊗R F e
∗R→ E ⊗R F e

∗ R̂
∼= E ⊗

R̂
F e

∗ R̂.

Since F e
∗R → F e

∗ R̂ is faithfully flat and hence pure (see Exercise 10) and thus also pure as
an R-module map, the second map is injective. Hence the composition is injective if and
only if the first map is injective. Therefore the conclusion follows from Proposition 2.2. □

Corollary 2.4. Let R → M be a pure map. If either R is complete local or M is finitely
generated, then R → M is split. In particular, if R is a ring of prime characteristic p > 0,
F -pure, and is either complete local or F -finite, then R is F -split.

Proof. If (R,m, k) is complete local, then taking the Matlis dual of the injection E ↪→ E⊗RM
yields a surjection HomR(E ⊗RM,E) ↠ HomR(E,E) ∼= R. By adjunction we have

HomR(E ⊗RM,E) ∼= HomR(M,HomR(E,E)) ∼= HomR(M,R).

Thus we have a surjection HomR(M,R) ↠ R, one can check that this is precisely the natural
map induced by applying HomR(−, R) to R→M . Thus R→M is split.

Next we assume M is finitely generated. We want to show that the map HomR(M,R)→ R

is surjective. It is enough to check this locally on Spec(R). Since M is finitely genrated, we
have

RP ⊗R HomR(M,R) ∼= HomRP
(MP , RP ).

Since R → M is pure, RP → MP is pure for all P ∈ Spec(R), we may thus assume that R
is local. But then the surjectivity of HomR(M,R)→ R can be checked after base change to
R̂. Since M is finitely generated, we know that

R̂⊗R HomR(M,R) ∼= Hom
R̂

(M ⊗R R̂, R̂).
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Therefore it remains to show that Hom
R̂

(M⊗R R̂, R̂)→ R̂ is surjective. But since R→M is
pure, R̂→M⊗RR̂ is pure, and hence split by the first conclusion. So Hom

R̂
(M⊗RR̂, R̂)→ R̂

is surjective as wanted. □

Since faithfully flat maps are always pure (see Exercise 10 below), regular rings of prime
characteristic p > 0 are F -pure by Theorem 1.1, and thus by Corollary 2.4, complete regular
local rings and F -finite regular rings are F -split. However, we warn the reader that there
are examples of regular local rings (even DVRs) of prime characteristic p > 0 that are not
F -split. The first such example was discovered by Datta–Smith [DS16] who constructed
a non-excellent DVR of prime characteristic p > 0 that is not F -split. Datta–Murayama
[DM23] have constructed an excellent, local, henselian DVR of prime characteristic p > 0
that is not F -split. Thus without the assumptions of Corollary 2.4, it frequently happens
that F -pure rings fail to be F -split. We will not treat these examples in this text though: for
most questions that we will study, one can first localize and then complete (one can further
pass to F -finite rings, see Chapter 6) so Corollary 2.4 can be applied to tell us that we do
not need to distinguish between F -pure and F -split.

We next state and prove a fundamental result of Fedder [Fed83].

Theorem 2.5 (Fedder’s criterion). Let (S,m, k) be a regular local ring of prime characteristic
p > 0 and let I ⊆ S be an ideal. Then R := S/I is F -pure if and only if (I [p] : I) ̸⊆ m[p]

where I [p] is the ideal generated by p-th powers of elements of I.

Proof. We first assume (S,m, k) is a complete regular local ring with perfect residue field.
By Cohen’s structure theorem, S ∼= k[[x1, . . . , xd]] and we know that F∗S is a finite free
S-module with basis {F∗(xi11 · · ·xidd ) | 0 ≤ ij < p}.

Claim 2.6. For each tuple (i1, . . . , id) with 0 ≤ i1, . . . , id < p there is an S-linear map
φ(i1,...,id): F∗S → S which is defined on basis elements as follows:

φ(i1,...,id)(F∗(xj11 · · ·x
jd
d )) =

1 (j1, . . . , jd) = (i1, . . . , id)
0 (j1, . . . , jd) ̸= (i1, . . . , id)

.

Moreover, HomS(F∗S, S) ∼= (F∗S) · Φ where Φ = φ(p−1,...,p−1).

Proof of Claim. The first assertion is clear and we only prove the second assertion. Since all
the φ(i1,...,id)s generate HomS(F∗S, S) as an S-module, it is enough to observe that

φ(i1,...,id)(F∗ · −) = Φ(F∗(xp−1−i1
1 · · ·xp−1−id

d · −)) = F∗(xp−1−i1
1 · · ·xp−1−id

d ) · Φ.

Therefore Φ generates HomS(F∗S, S) as an F∗S-module as wanted. □
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Since F∗S is a finite free S-module, every map F∗(S/I) → S/I can be lifted to a map
F∗S → S, and thus can be written as Φ(F∗(s · −)) for some s ∈ S by Claim 2.6.

Claim 2.7. Φ(F∗(s · −)) induces a map F∗(S/I)→ S/I if and only if s ∈ (I [p] : I).

Proof of Claim. If s ∈ (I [p] : I), then Φ(F∗(s · −)) sends F∗I to I hence it induces a map
F∗(S/I) → S/I. To prove the converse, suppose r = sr′ ∈ sI such that r /∈ I [p]. Since
{F∗(xi11 · · ·xidd ) | 0 ≤ ij < p} is a free basis of F∗S over S, F∗r can be written uniquely
as ∑ ri1i2...idF∗(xi11 · · ·xidd ) where ri1i2...id ∈ S. Since F∗r /∈ F∗I

[p] by our choice, there exists
ri1i2...id /∈ I and by Claim 2.6 φ(i1,...,id)(F∗r) /∈ I. But then Φ(F∗(rxp−1−i1

1 · · ·xp−1−id
d )) /∈ I

and thus Φ(F∗(s · r′xp−1−i1
1 · · ·xp−1−id

d )) /∈ I. Therefore Φ(F∗(s · −)) does not send F∗I to I
so it does not induce a map F∗(S/I)→ S/I. □

By Claim 2.7, S/I is F -pure (equivalently, F -split in this case by Corollary 2.4) if and
only if there exists s ∈ (I [p] : I) such that Φ(F∗(s ·−)) is surjective. But it is easy to see that
Φ(F∗(s · −)) is surjective if and only if s /∈ m[p]: if s ∈ m[p] then the image of Φ(F∗(s · −))
is contained in m so it cannot be surjective, while if s /∈ m[p] then s contains a monomial
xi11 · · · xidd with nonzero coefficient for some 0 ≤ i1, . . . , id < p, so Φ(F∗(s ·xp−1−i1

1 · · ·xp−1−id
d ))

is a unit and thus Φ(F∗(s · −)) is surjective. Putting all these together, we see that S/I is
F -pure if and only if (I [p] : I) ⊈ m[p].

We next treat the general case. Consider the following commutative diagram:

S //

��

Ŝ ∼= k[[x1, . . . , xd]] //

��

S̃ := k[[x1, . . . , xd]]

��

R = S/I // R̂ = Ŝ/IŜ // R̃ := S̃/IS̃

It is clear that all the maps in the horizontal rows are faithfully flat. Moreover, since
ES(k) ∼= k[x−1

1 , . . . , x−1
d ] and similarly for S̃, we have E

S̃
(k) ∼= ES(k)⊗S S̃. It follows that

ER(k)⊗R R̃ ∼= (AnnES(k) I)⊗S S̃ ∼= AnnE
S̃

(k) IS̃
∼= E

R̃
(k).

Therefore we have the following commutative diagram:

ER(k) //

��

ER(k)⊗R F∗R

��

E
R̃

(k) ∼= ER(k)⊗R R̃ // E
R̃

(k)⊗
R̃
F∗R̃ ∼= ER(k)⊗R F∗R̃

Note that a socle representative u ∈ ER(k) maps to a socle representative u ⊗ 1 ∈ E
R̃

(k).
Thus u maps to zero in ER(k)⊗RF∗R if and only if u⊗1 maps to zero in E

R̃
(k)⊗

R̃
F∗R̃ (the
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right vertical map is injective as F∗R→ F∗R̃ is faithfully flat and hence pure, see Exercise 10).
Thus the top map is injective if and only if the bottom map is injective. By Proposition 2.2,
R is F -pure if and only if R̃ is F -pure. Now R̃ = S̃/IS̃ and S̃ is complete local with perfect
residue field, so by what we have proved, R̃ is F -pure if and only if (I [p]S̃ :

S̃
IS̃) ⊈ m[p]S̃.

But since S → S̃ is faithfully flat, the latter holds if and only if (I [p] : I) ̸⊆ m[p]. □

Remark 2.8. There is a graded version of Fedder’s criterion: let S = k[x1, . . . , xd] be a
polynomial ring over a field k and let I ⊆ S be a homogeneous ideal. Then R := S/I is
F -pure if and only if (I [p] : I) ̸⊆ m[p] where m = (x1, . . . , xd). The proof follows from the
same line as in Theorem 2.5: the key point is that, when k is perfect, HomS(F∗S, S) ∼= F∗S

still holds and we have a graded version of Proposition 2.2 (with graded injective hull of k
in place of the injective hull of k). We leave the details to the interested reader.

Remark 2.9. With the same setup as in Theorem 2.5 or Remark 2.8, it follows from the
same argument that R is F -pure if and only if (I [pe] : I) ⊈ m[pe] for some (or equivalently,
all) e > 0. We leave the details to the interested reader.

Fedder’s criterion is extremely useful as it allows us to determine if a particular ring is
F -pure.

Example 2.10. Let k be a field of prime characteristic p > 0.
(1) Let S be k[[x1, . . . , xd]] or k[x1, . . . , xd] and let R = S/I be a Stanley-Reisner ring

(i.e., I is generated by square free monomials). Then R is F -pure. The point is that
x1x2 · · ·xd is a multiple of every square free monomial, thus (x1 · · ·xd)p−1 · f ∈ (fp)
for any square free monomial f . Hence (x1 · · ·xd)p−1 ∈ (I [p] : I) since I is generated
by square free monomials, but (x1 · · ·xd)p−1 /∈ m[p].

(2) Let R denote either k[[x, y, z]]/(x3 + y3 + z3) or k[x, y, z]/(x3 + y3 + z3). Then (I [p] :
I) = (x3 +y3 +z3)p−1. If p ≡ 1 mod 3, then there is a term (xyz)p−1 in the monomial
expansion of (x3 +y3 +z3)p−1 with nonzero coefficient thus R is F -pure. On the other
hand, if p ≡ 2 mod 3, then one checks that (x3 + y3 + z3)p−1 ∈ m[p] = (xp, yp, zp) so
R is not F -pure.

Exercise 6. Let R be a ring of prime characteristic p > 0. Verify that R → F e
∗R is pure

(resp., split) for one e > 0, then R→ F e
∗R is pure (resp., split) for all e > 0.

Exercise 7. Suppose that R is an F -finite ring of prime characteristic p > 0 and F e
∗R admits

a free summand. Show that the Frobenius map R → F e
∗R is split. (Assuming F e

∗R admits
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a free summand is equivalent to assuming that there exists F e
∗ r ∈ F e

∗R and φ : F e
∗R→ R so

that φ(F e
∗ r) = 1. We are asking you to show the existence of a map ψ : F e

∗R → R so that
ψ(F e

∗ 1) = 1.)

Exercise 8. Let k be a field of prime characteristic p > 0. Use Fedder’s criterion to show
that R = k[[x, y, z]]/(x2 + y3 + z7) is not F -pure.

Exercise 9. Prove that if R → S is pure (resp., split) map of rings of prime characteristic
p > 0 and S is F -pure (resp., F -split), then R is F -pure (resp., F -split).

Exercise 10. Prove that if R → S is faithfully flat, then R → S is pure. Give an example
of a faithfully flat ring extension that is not split.

Exercise 11. Show that a map of R-modules N → M is pure if and only if NP → MP is
pure for all P ∈ Spec(R). In particular, if R is a ring of prime characteristic p > 0, then R

is F -pure if and only if RP is F -pure for all P ∈ Spec(R), also prove that if R is F -split,
then RP is F -split for all P ∈ Spec(R).1

1It turns out that being F -split is not a local property in general, see Remark 10.16. However, the authors
do not know that for an excellent ring R, whether RP is F -split for all P ∈ Spec(R) implies R is F -split.
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3. F -regular rings: splitting finite extensions

In this chapter, we introduce and study the arguably most important class of F -singularities:
strongly F -regular rings, [HH90, HH94a].

Definition 3.1. An F -finite ring R of prime characteristic p > 0 is called strongly F -regular
if for every c ∈ R that is not in any minimal prime of R, there exists e > 0 such that the
map R→ F e

∗R sending 1 to F e
∗ c splits as a map of R-modules.

Clearly, strongly F -regular rings are F -split and in particular reduced. For local rings, we
can say more.

Lemma 3.2. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime charac-
teristic p > 0. Then R is a domain.

Proof. Since R is reduced, it is enough to show that R has only one minimal prime. Let
P1, . . . , Pn be the minimal primes of R. Suppose n ≥ 2, we pick fi ∈ ∩j ̸=iPj − Pi. Then we
have ∑n

i=1 fi is not contained in any minimal prime of R. Thus as R is strongly F -regular,
there exists e > 0 and an R-linear map ϕ: F e

∗R→ R such that ϕ(F e
∗ (∑n

i=1 fi)) = 1 and thus∑n
i=1 ϕ(F e

∗ fi) = 1. Since (R,m, k) is local, at least one of ϕ(F e
∗ fi) is a unit. Without loss of

generality, we may assume ϕ(F e
∗ f1) = u ∈ R is a unit. But then as f1f2 = 0 (since f1f2 is

contained in all minimal primes of R and R is reduced), we have

uf2 = ϕ(f2 · F e
∗ f1) = ϕ(F e

∗ (fp
e

2 f1)) = ϕ(F e
∗ 0) = 0

which is a contradiction. □

Like F -purity, strong F -regularity is a local property.

Lemma 3.3. Let R be an F -finite ring of prime characteristic p > 0. Then R is strongly
F -regular if and only if RP is strongly F -regular for every P ∈ Spec(R).

Proof. First suppose R is strongly F -regular. Let P1, . . . , Pn be the minimal primes of R. It
is enough to show that for any c ∈ R whose image in RP is not contained in any minimal
prime of RP , we can find e > 0 and an RP -linear map F e

∗RP → RP sending F e
∗ c to 1. We

may assume c is not in any minimal prime of R: for suppose c is contained in P1, . . . , Pi but
not in the other minimal primes of R, then we can pick c′ ∈ ∩nj=i+1Pj −∪ij=1Pi and replace c
by c+ c′ (the image of c′ in RP is 0 since Pj ⊈ P for each j = 1, . . . , i). But then since R is
strongly F -regular, there exists e > 0 such that the map R → F e

∗R sending 1 to F e
∗ c splits

as a map of R-modules. So after localizing the splitting we get the desired RP -linear map
F e

∗RP → RP sending F e
∗ c to 1.
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We next prove the converse. We fix c ∈ R not in any minimal prime of R. We know that for
every P ∈ Spec(R), there exists e (which may depend on P ) such that RP → F e

∗RP sending
1 to F e

∗ c splits. Since R is F -finite, HomRP
(F e

∗RP , RP ) ∼= RP ⊗R HomR(F e
∗R,R) hence there

exists a map ϕ ∈ HomR(F e
∗R,R) sending F e

∗ c to f /∈ P . But then Rf → F e
∗Rf sending

1 to F e
∗ c splits. Now for every P ∈ SpecR we can find such f thus ∪D(f) = Spec(R).

Hence there exists f1, . . . , fn such that ∪ni=1D(fi) = Spec(R) and for each fi there exists
ei > 0 such that Rfi

→ F ei
∗ Rfi

sending 1 to F ei
∗ c splits. It is then easy to check that, for

e0 = max{e1, . . . , en}, the map R→ F e0
∗ R sending 1 to F e0

∗ c splits. □

The following is a consequence of Kunz’s theorem, Theorem 1.1.

Theorem 3.4. An F -finite regular ring of prime characteristic p > 0 is strongly F -regular.

Proof. By Lemma 3.3, we may assume that (R,m, k) is an F -finite regular local ring. By
Theorem 1.1, F e

∗R is a finite free R-module. For any 0 ̸= c ∈ R, there exists e > 0 such that
F e

∗ c ∈ F e
∗R is part of a minimal basis of F e

∗R over R: otherwise F e
∗ c ∈ m · F e

∗R = F e
∗ (m[pe])

for all e which implies that c ∈ ∩em[pe] = 0 which is a contradiction. Since F e
∗ c ∈ F e

∗R is
part of a minimal basis of F e

∗R over R, the map R→ F e
∗R sending 1 to F e

∗ c splits as a map
of R-modules. □

We next prove that every strongly F -regular ring R splits out of every finite extension of
R, a crucial property of strongly F -regular rings.

Theorem 3.5. Let R be an F -finite and strongly F -regular ring of prime characteristic
p > 0. Then R→ S splits for any module-finite extension S of R.

Proof. Since S is module-finite over R, it is enough to show RP → (R − P )−1S is split
for every prime P ∈ Spec(R). Thus by Lemma 3.3, we may assume (R,m, k) is a strongly
F -regular local ring and hence a domain by Lemma 3.2. By killing a minimal prime of S, we
may further assume that S is also a domain. Now S is a torsion-free R-module, thus there
exists an R-linear map θ: S → R such that θ(1) = c ̸= 0. Since R is strongly F -regular, we
can find e such that R→ F e

∗R sending 1 to F e
∗ c splits, call the splitting ϕ. Now we consider

the following commutative diagram with natural maps:

R //

��

S

��
F e

∗R // F e
∗S.
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We know that F e
∗ θ: F e

∗S → F e
∗R sends F e

∗ 1 to F e
∗ c, thus ϕ ◦ F e

∗ θ sends F e
∗ 1 ∈ F e

∗S to
1 ∈ R. Therefore, R → F e

∗S splits, this clearly implies R → S splits by the commutative
diagram. □

Combining the results we have so far, we obtain:

Corollary 3.6. If R is a regular ring of characteristic p > 0, then R → S splits for any
module-finite extension S of R.

Proof. Since S is module-finite over R, it is enough to show RP → (R − P )−1S is split for
every prime P ∈ Spec(R) thus we may assume R is a regular local ring. We then consider
the faithfully flat extensions R → R̂ ∼= k[[x1, . . . , xd]] → R̃ ∼= k[[x1, . . . , xd]]. Again since S
is module-finite over R, it is enough to show R̃ → R̃ ⊗R S is split. Now R̃ is F -finite and
regular thus strongly F -regular by Theorem 3.4. So R̃→ R̃⊗R S splits by Theorem 3.5. □

Remark 3.7. Corollary 3.6 holds without assuming the regular ring R has prime charac-
teristic p > 0, see [And18].

Another consequence of Theorem 3.5 is the following:

Corollary 3.8. Let R be an F -finite and strongly F -regular ring of prime characteristic
p > 0. Then R is normal. In particular, one-dimensional strongly F -regular rings are
regular.

Proof. Suppose R is not normal, then there exists a
b

integral over R (with b a nonzerodivisor
in R) but a

b
/∈ R. Let R′ = R[a

b
]. Since R→ R′ is a finite extension, by Theorem 3.5, there

exists an R-linear map θ: R′ → R such that θ(1) = 1. Thus

b · θ(a
b

) = θ(a) = a.

But then a
b

= θ(a
b
) ∈ R, which is a contradiction. □

Another important property of strongly F -regular rings is the following:

Theorem 3.9. Let R and S be F -finite rings of prime characteristic p > 0. If R is a direct
summand of S and S is strongly F -regular (e.g., S is regular), then R is strongly F -regular.

Proof. By Lemma 3.3, it is enough to show RP is strongly F -regular for each P ∈ Spec(R).
Now RP is a direct summand of (R−P )−1S and the latter is strongly F -regular by Lemma
3.3 again. Thus we may assume (R,m, k) is local. Since S is strongly F -regular, it is normal
by Corollary 3.8 and hence a product of normal domains S ∼= S1 × S2 × · · · × Sn = ∏

Siei

where ei is the i-th idempotent corresponding to Si (e.g., e1 = (1, 0, . . . , 0)). Now a splitting
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ϕ: S → R sends 1 = (1, . . . , 1) = ∑
ei to 1. Since (R,m, k) is local, there exists i such that

ϕ(ei) is a unit in R. But then the induced map ϕ̃: Si → R defined via ϕ̃(si) := ϕ(siei) for
all si ∈ Si is an R-linear surjection Si ↠ R. Therefore R → Si is split (i.e., R is a direct
summand of Si). Note that, as Si can be viewed as a localization of S, Si is still strongly
F -regular by Lemma 3.3.

Thus replacing S by Si, we may assume that both R and S are domains. Let 0 ̸= c ∈ R
be given. Since S is strongly F -regular, there exists e > 0 and an S-linear map ϕ: F e

∗S → S

such that ϕ(F e
∗ c) = 1. Let θ: S → R be a splitting. Then θ ◦ ϕ: F e

∗S → R is an R-linear
map sending F e

∗ c to 1. Restricting this map to F e
∗R then yields an R-linear map F e

∗R→ R

sending F e
∗ c to 1. □

Theorem 3.9 allows us to write many examples of strongly F -regular rings:

Example 3.10. Let k be an F -finite field of prime characteristic p > 0.
(1) Let R = k[x, y, z]/(xy−z2). Then R ∼= k[s2, st, t2] is a direct summand of S = k[s, t].

Hence R is strongly F -regular. More generally, Veronese subrings of polynomial rings
(over F -finite fields) are strongly F -regular.

(2) Let R = k[x, y, u, v]/(xy− uv). Then R ∼= k[a, b]#k[c, d] ∼= k[ac, ad, bc, bd] is a direct
summand of S = k[a, b, c, d]. Hence R is strongly F -regular. More generally, Segre
product of polynomial rings (over F -finite fields) are strongly F -regular.

Finally, we point out that to check strong F -regularity, one actually only needs to check
the splitting condition in the definition for one single c. This will be very useful in later
chapters.

Theorem 3.11. Let R be an F -finite ring of prime characteristic p > 0. Suppose there exists
c not in any minimal prime of R such that Rc is strongly F -regular (e.g., Rc is regular).
Then R is strongly F -regular if and only if there exists e > 0 such that the map R → F e

∗R

sending 1 to F e
∗ c splits as a map of R-modules.

Proof. Given any d ∈ R that is not in any minimal prime of R, the image of d is not in
any minimal prime of Rc. Therefore, since Rc is strongly F -regular, there exists e0 > 0
and a map ϕ ∈ HomRc(F e0

∗ Rc, Rc) such that ϕ(F e0
∗ d) = 1. Since R is F -finite, we have

HomRc(F e0
∗ Rc, Rc) ∼= Rc ⊗R HomR(F e0

∗ R,R) and thus ϕ = φ
cn for some n > 0 and some

φ ∈ HomR(F e0
∗ R,R). It follows that φ(F e0

∗ d) = cn. Next we pick e1 > 0 such that n < pe1−e,
so (the image of) F e

∗ c in F e1
∗ R is a multiple of F e1

∗ cn. Since R → F e
∗R sending 1 to F e

∗ c

splits, it follows that R→ F e1
∗ R sending 1 to F e1

∗ cn splits (since R is F -pure). We pick such
a splitting θ and consider the map θ ◦ (F e1

∗ φ): F e1+e0
∗ R → R. It is straighforward to check

that this map sends F e1+e0
∗ d to 1. □
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Corollary 3.12. An F -finite local ring (R,m, k) of prime characteristic p > 0 is strongly
F -regular if and only if R̂ is strongly F -regular.

Proof. We may assume R is a domain by Lemma 3.2. Since R is excellent, there exists
0 ̸= c ∈ R such that Rc is regular and then R̂c is also regular. Consider the following
commutative diagram:

E //

∼=
��

E ⊗R F e
∗R

��

E // E ⊗
R̂
F e

∗ R̂

where E = ER(k) = E
R̂

(k) and the horizontal maps are induced by R → F e
∗R (resp.,

R̂ → F e
∗ R̂) sending 1 to F e

∗ c. It is easy to see that the first row is injective if and only if
the second row is injective. Since R and R̂ are F -finite, by Corollary 2.4 and Proposition
2.2, R → F e

∗R sending 1 → F e
∗ c splits if and only if R̂ → F e

∗ R̂ sending 1 → F e
∗ c splits. By

Theorem 3.11, R is strongly F -regular if and only if R̂ is strongly F -regular. □

Exercise 12. Let R be an F -finite ring of prime characteristic p > 0. Suppose that M is a
finitely generated module, m ∈ M , and that there exists e0 ∈ N and φ ∈ HomR(F e0

∗ M,R)
such that φ(F e0

∗ m) = 1. Show that R is F -pure and that for all e ≥ e0 there exists a
ψ ∈ HomR(F e

∗M,R) such that ψ(F e
∗m) = 1.

Exercise 13. Let R→ S be a faithfully flat extension of F -finite rings of prime characteristic
p > 0. Prove that if S is strongly F -regular, then R is strongly F -regular.

Exercise 14. Let R be an F -finite and strongly F -regular domain of prime characteristic
p > 0. Show that for each nonzero element g ∈ R that there exists an e ∈ N so that
R → F e

∗R ⊆ F e
∗R[1/g] = F e

∗R(Div(g)) splits. (Hint: Show that R → F e
∗R ⊆ F e

∗R[1/g] is
isomorphic to R ·F e

∗ g−−→ F e
∗R.)

Exercise 15. Let R be an F -finite and strongly F -regular ring of prime characteristic p > 0.
Prove that for all effective divisors D (see Appendix A), there exists e0 (depending on D)
such that for all e ≥ e0, the composition R → F e

∗R → F e
∗R(D) splits. (Hint: Show that

there exists a nonzero element g ∈ R such that D ≤ Div(g) and use Exercise 14.)

Exercise 16 (Glassbrenner [Gla96]). Let (S,m, k) be an F -finite regular local ring of prime
characteristic p > 0 (resp., a polynomial ring over an F -finite field of prime characteristic
p > 0) and let I ⊆ S be an ideal (resp., a homogeneous ideal). Then the following are
equivalent for R = S/I:



20 LINQUAN MA AND THOMAS POLSTRA

(1) R is strongly F -regular.
(2) For every c ∈ S not in any minimal prime of I, there exists e > 0 such that c(I [pe] :

I) ⊈ m[pe].
(3) For some c ∈ S not in any minimal prime of I such that Rc is strongly F -regular,

there exists e > 0 such that c(I [pe] : I) ⊈ m[pe].
(Hint: Mimic the strategy of the proof of Theorem 2.5.)

Exercise 17. Let k be an F -finite field of prime characteristic p > 0 andR = k[x1, . . . , xd]/(xn1 +
· · · + xnd). Use Exercise 16 to show that R is strongly F -regular if n < d and p≫ 0, and R

is not strongly F -regular if n ≥ d ≥ 2.

Exercise 18. Let R be an N-graded ring over a field k of prime characteristic p > 0 with
homogenous maximal ideal m. Use Theorem 2.5 and Exercise 16 to prove that R is F -pure
(resp., F -finite and strongly F -regular) if and only if so is Rm.

A very big open question in F -singularity theory, and tight closure theory, is whether the
converse of Theorem 3.5 holds.

Open Problem 1. Let R be an F -finite domain of prime characteristic p > 0. If R → S

splits for any module-finite extension S of R, then is R strongly F -regular?

This has an affirmative answer in the following cases:
(1) If R is Gorenstein by [HH94c].
(2) If R is Q-Gorenstein by [Sin99a].
(3) If the anti-canonical cover of R is a Noetherian ring by an unpublished result of

Singh, see also [CEMS18] for more general results. (Recall that the condition means,
with KX a choice of the canonical divisor of X = Spec(R), S := ⊕n≥0R(−nKX) is a
finitely generated R-algebra).

We refer the readers to Appendix A for basics on divisors and Q-Gorenstein rings. Here we
just point out that there are (obvious) implications (3)⇒ (2)⇒ (1) since every Gorenstein
ring is Q-Gorenstein and every Q-Gorenstein ring has Noetherian anti-canonical cover.

Discussion 3.13. In Hochster–Huneke’s foundational work [HH90, HH94a], there are three
notions of F -regularity: weakly F -regular, F -regular, and strongly F -regular. The former
two are defined using tight closure (see Appendix 12). Conjecturally all these notions are
equivalent (at least for F -finite rings), but to this date this is still not proven. It turns
out that even weakly F -regular rings split from all their module-finite extensions, see Ex-
ercise 59. Thus an affirmative answer to Open Problem 1 will imply that all these notions
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are equivalent. For related results on the equivalence of different notions of F -regularity, see
[HH94a, Wil95, Mac96, LS99, LS01, AP22, AHP24]. On the other hand, it has become appar-
ent that strong F -regularity is the most useful concept and has most applications/connections
to algebraic geometry.

Discussion 3.14. We can define strongly F -regular rings beyond the F -finite setting, there
are actually several ways to extend the definition, for example see [HH94a] or [DS16]. For
technical reasons, and also because it will be quite technical to define F -signature without
F -finite assumptions, we decide to keep the F -finite assumption in the definition of strong
F -regularity in this text.
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4. F -rational and F -injective rings

In this chapter we discuss F -rational and F -injective rings [Fed83, HH94a, HH94c]. We
begin by collecting some basic facts about Frobenius structure on local cohomology modules.
Let I = (f1, . . . , fn) be an ideal of R, then we have the Čech complex:

C•(f1, . . . , fn;R) := 0→ R→ ⊕iRfi
→ · · · → Rf1f2···fn → 0.

The i-th local cohomology module H i
I(R) is the i-th cohomology of C•(f1, . . . , fn;R). The

local cohomology modules H i
I(R) only depends on the radical of I. Since the Frobenius

endomorphism on R naturally induces the Frobenius endomorphism on all localizations of
R, it induces a natural Frobenius action on C•(f1, . . . , fn;R), and hence it induces a natural
Frobenius action on each H i

I(R).
We know from the definition that a ring homomorphism R→ S induces a map H i

I(R)→
H i
IS(S). The natural Frobenius action on H i

I(R) discussed above can be alternatively de-
scribed as H i

I(R)→ H i
I·F∗R(F∗R) = H i

F∗I[p](F∗R) and then identify H i
F∗I[p](F∗R) with H i

I(R),
where the last identification is induced by F∗R ∼= R as rings (note that H i

I[p](R) = H i
I(R)).

We will be mostly interested in the case that (R,m, k) is local and I = m. In this case, we
can compute H i

m(R) using the Čech complex on a system of parameters x1, . . . , xd of R. For
example, the top local cohomology module Hd

m(R) is isomorphic to
Rx1···xd∑

i Im(Rx1···x̂i···xd
) ,

and with this description, the natural Frobenius action on Hd
m(R) is given by

r

xn1 · · ·xnd
→ rp

xnp1 · · ·x
np
d

.

Definition 4.1. A local ring (R,m, k) of dimension d and of prime characteristic p > 0 is
called F -rational if R is Cohen-Macaulay and for every c ∈ R that is not in any minimal
prime of R, there exists e > 0 such that the composition

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R)

is injective. Equivalently, using F e: Hd
m(R) → Hd

m(R) to denote the e-th Frobenius action,
this is saying that c·F e(−) is injective on Hd

m(R). An arbitrary ring R of prime characteristic
p > 0 is called F -rational if and only if Rm is F -rational for all maximal ideals m ⊆ R.

Remark 4.2. Our definition of F -rational rings is not the original one as in [HH94a, HH94c],
but it is an equivalent definition for all rings that are homomorphic images of Cohen-
Macaulay rings. This is a very mild assumption: for example, all excellent local rings
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satisfy this condition [Kaw02]. In fact, in Hochster’s 2007 lecture notes on tight closure
[Hoc07], being a homomorphic image of a Cohen-Macaulay ring is built into the definition
of F -rationality, thus almost nothing is lost.

Example 4.3. Suppose (R,m, k) is a regular local ring of dimension d and of prime char-
acteristic p > 0. We will show that R is F -rational. Note that a socle representative of
Hd

m(R) is η = 1
x1···xd

where x1, . . . , xd is a regular system of parameters of R. If c ̸= 0
such that c · F e(η) = 0 for all e > 0, then c

xpe

1 ···xpe

d

= 0 in Hd
m(R) for all e > 0. But then

c ∈ ⋂e(xpe

1 , . . . , x
pe

d ) = 0, a contradiction.

Proposition 4.4. Suppose R is an F -rational ring of prime characteristic p > 0, then R is
normal. In particular, one-dimensional F -rational rings are regular.

Proof. We may assume (R,m, k) is local. In order to show R is normal, it is enough to prove
that every principal ideal of height one is integrally closed by [SH06, Proposition 1.5.2] (if
dim(R) = 0, then the condition implies R is a field so R is trivially normal). Suppose
y ∈ (x) where x is not in any minimal prime of R, then there exists m > 0 such that
(y, x)n = (y, x)m(x)n−m for all n > m. Thus xmyn ∈ (x)n for every n. We can extend x to a
full system of parameters x, xt2, . . . , xtd of R. Then the Čech class η = y

xxt
2···xt

d
satisfies

xm · F e(η) = xm · yp
e

xpextp
e

2 · · ·x
tpe

d

= 0

for all e > 0 since xmype ∈ (xpe) by construction. So by the definition of F -rationality, η = 0
in Hd

m(R). But since R is Cohen-Macaulay, we know that y ∈ (x, xt2, . . . , xtd). As this is true
for every t > 0, y ∈ ⋂t(x, xt2, . . . , xtd) = (x). Thus (x) is integrally closed. □

An important result we want to prove next is that strongly F -regular rings are F -rational.
We need a well-known lemma.

Lemma 4.5. Let (R,m, k) be a complete and equidimensional local ring of dimension d.
Suppose RP is Cohen-Macaulay for all P ∈ Spec(R) − {m}. Then H i

m(R) has finite length
for all i < d.

Proof. By Cohen’s structure theorem, we can write R = S/I where S is a complete regular
local ring. By local duality, H i

m(R)∨ ∼= Extn−i
S (R, S) where n = dim(S). It follows that

Extn−i
S (R, S)P ∼= Extn−i

SP
(RP , SP ) = Extdim(SP )−(i−dim(R/P ))

SP
(RP , SP ),
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where we abuse notation and also use P to denote the pre-image of P in S. Now by local
duality over SP ,

Extdim(SP )−(i−dim(R/P ))
SP

(RP , SP )∨ ∼= H
i−dim(R/P )
PRP

(RP ).

Since R is equidimensional, dim(R/P ) + dim(RP ) = d hence if i < d then i− dim(R/P ) <
dim(RP ). Thus if P ∈ Spec(R) − {m} and i < d, then H

i−dim(R/P )
PRP

(RP ) = 0 since RP is
Cohen-Macaulay, which gives Extn−i

S (R, S)P = 0. Thus Extn−i
S (R, S) is supported only at

{m} when i < d. By local duality, H i
m(R) has finite length whenever i < d. □

We can now prove the following result.

Theorem 4.6. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime char-
acteristic p > 0. Then R is F -rational (and hence Cohen-Macaulay).

Proof. Note that Hd
m(R) = Hd

m(R̂) and if c ∈ R is not in any minimal prime of R, then c is
not in any minimal prime of R̂. Thus it is clear that R̂ is F -rational implies R is F -rational.
Therefore we may assume R is a complete local domain by Corollary 3.12 and Lemma 3.2.
Since strong F -regularity is preserved under localization by Lemma 3.3, by induction on
dim(R) we may further assume RP is Cohen-Macaulay for all P ∈ Spec(R)−{m}. Thus by
Lemma 4.5, H i

m(R) has finite length whenever i < d = dim(R).
Let 0 ̸= c ∈ m. Since H i

m(R) has finite length for i < d, there exists n such that
cnH i

m(R) = 0. Replacing c with cn we may assume cH i
m(R) = 0. Thus (F e

∗ c) ·H i
m(F e

∗R) = 0.
Since R is strongly F -regular, there exists e > 0 and an R-linear map F e

∗R → R such that
the composition of the following maps is the identity map on R:

R→ F e
∗R

·F e
∗ c−−→ F e

∗R→ R.

Applying the i-th local cohomology functor H i
m(−) to the above composition of maps we

see that the identity map on H i
m(R) factors through the zero map on H i

m(F e
∗R) and thus

H i
m(R) = 0 whenever i < d. This proves that R is Cohen-Macaulay. Finally, applying the

d-th local cohomology functor Hd
m(−) to the same composition of maps, we see that the

identity map on Hd
m(R) factors through

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R).

In particular, the above map is injective and thus R is F -rational. □

As a consequence of the results we proved so far, we can prove the following.

Corollary 4.7. Let R → S be a pure map of rings of prime characteristic p > 0. If S is
regular, then R is Cohen-Macaulay.
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Proof. We first observe that if R and S are both F -finite and the map R → S is split (this
includes most cases of interest). Then the conclusion follows by combining Theorem 3.4,
Theorem 3.9, and Theorem 4.6.

But with a careful examination of the methods we used in proving these results, we can
prove the general case of the corollary. We now give the details. First of all we may assume
(R,m, k) is a local ring. Since R → S is pure, E → E ⊗R S is injective so u ⊗ 1 ̸= 0 in
E ⊗R S, where E = ER(k) and u is a socle representative of E. But then u ⊗ 1 ̸= 0 in
E ⊗R SQ for some Q ∈ Spec(S), and thus E → E ⊗R SQ is injective. This implies R → SQ

is pure by Proposition 2.2. So we may assume S is also a local ring. We may then replace R
by R̂ and S by Ŝ ∼= k[[x1, . . . , xn]] and further replace Ŝ by S̃ := k[[x1, . . . , xn]]. Therefore
we may assume (R,m, k)→ (S, n, ℓ) is pure where S is a complete and F -finite regular local
ring and (R,m, k) is a complete local domain. Furthemore, by induction on dim(R) we may
assume RP is Cohen-Macaulay for all P ∈ Spec(R)−{m}. By Lemma 4.5, H i

m(R) has finite
length for all i < dim(R).

For each i < dim(R), let 0 ̸= c ∈ R that annihilates H i
m(R). By Theorem 3.4, S is strongly

F -regular so there exists e > 0 such that S → F e
∗S sending 1 to F e

∗ c splits. We consider the
following commutative diagram:

H i
m(R) //

��

H i
m(F e

∗R)
·F e

∗ c //

��

H i
m(F e

∗R)

��

H i
m(S) // H i

m(F e
∗S)

·F e
∗ c // H i

m(F e
∗S)

From the bottom row, we see that the map from top left H i
m(R) to bottom right H i

m(F e
∗S)

is injective, while from the first row, we see that the same map is the zero map from H i
m(R)

to H i
m(F e

∗S) as c annihilates H i
m(R). This shows that H i

m(R) = 0 and hence R is Cohen-
Macaulay. □

Remark 4.8. Corollary 4.7 holds without assuming the rings R, S have prime characteristic
p > 0, see [HH95] and [HM18].

The converse of Theorem 4.6 holds if R is Gorenstein.

Proposition 4.9. Suppose R is an F -finite ring of prime characteristic p > 0 which is
Gorenstein and F -rational, then R is strongly F -regular.

Proof. By Lemma 3.3, we may assume (R,m, k) is local. It is enough to show that for any
c ∈ R not in any minimal prime of R, there exists e > 0 such that the map E → E ⊗R F e

∗R

induced by sending 1 to F e
∗ c is injective (see Proposition 2.2 and Corollary 2.4), where
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E = ER(k) denotes the injective hull of the residue field as usual. Since R is Gorenstein,
E ∼= Hd

m(R). Thus the map E → E ⊗R F e
∗R can be identified with the map Hd

m(R) →
Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R), which is injective by the F -rationality of R. □

We next give an alternative but important characterization of F -rationality (up to com-
pletion), see [Smi97] for more details. We need a definition.

Definition 4.10. Let R be a ring of prime characteristic p > 0 and let M be an R-module
with a Frobenius action F (i.e., F (rm) = rpF (m) for all r ∈ R and m ∈ M). An R-
submodule N ⊆M is called F -stable if F (N) ⊆ N .

Proposition 4.11. Let (R,m, k) be a local ring of prime characteristic p > 0. Then the
following are equivalent:

(1) R̂ is F -rational.
(2) R is Cohen-Macaulay and the only F -stable submodules of Hd

m(R) are 0 and Hd
m(R),

i.e., Hd
m(R) is a simple object in the category of R-modules with a Frobenius action.

Proof. Since Hd
m(R) is Artinian, any R-submodule of Hd

m(R) carries a canonical R̂-module
structure, and the Frobenius structure on Hd

m(R) is unaffected by considering it as a module
over R̂. Thus all conditions in (2) are unaffected by replacing R by R̂ and so we may assume
(R,m, k) is complete.

Suppose (1) holds. By Proposition 4.4, we may assume (R,m, k) is a complete normal local
domain. Let N ⫋ Hd

m(R) be a proper F -stable submodule. By Matlis duality, Hd
m(R)∨ ∼=

ωR ↠ N∨ is a proper quotient. Since ωR is a rank one torsion-free R-module, it follows
that N∨ (and hence N) is annihilated by some c ̸= 0 since N∨ ̸= ωR. If N ̸= 0, then any
0 ̸= η ∈ N satisfies c · F e(η) = 0 for all e, which contradicts that c · F e(−) is injective for
some e.

Suppose (2) holds. First notice that the Frobenius is injective on Hd
m(R): otherwise the

kernel is a nonzero and proper submodule (see Exercise 23) of Hd
m(R) which contradicts (2).

Now for any c ∈ R not in any minimal prime of R, it is easy to check that

{η ∈ Hd
m(R) | c · F e(η) = 0 for all e ≥ 0}

is an F -stable submodule of Hd
m(R). Since it is annihilated by c, it cannot be Hd

m(R) so it
must be 0 by the conditions of (2). But this is saying that for any η ∈ Hd

m(R), there exists
e > 0 such that c ·F e(η) ̸= 0. Let Ne := {η ∈ Hd

m(R) | c ·F e(η) = 0}. Since the Frobenius is
injective on Hd

m(R), it is easy to check that N0 ⊇ N1 ⊇ N2 ⊇ · · · . Since Hd
m(R) is Artinian

and ∩eNe = 0, there exists e such that Ne = 0, which is precisely saying that c · F e(−) is
injective on Hd

m(R). □
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A natural question one might ask at this point is that whether (R,m, k) is F -rational
implies R̂ is F -rational (it is easy to see that if R̂ is F -rational then R is F -rational). It
turns out that this is not always true, but it holds if R is excellent. We will come back to this
question in Chapter 6. In the proof of Proposition 4.11, we crucially used the fact that the
Frobenius action is injective on Hd

m(R). We now formally introduce F -injective singularities.

Definition 4.12. A local ring (R,m, k) of prime characteristic p > 0 is called F -injective if
the natural Frobenius action on H i

m(R) is injective for all i. An arbitrary ring R of prime
characteristic p > 0 is called F -injective if Rm is F -injective for all maximal ideals m ⊆ R.

It is straightforward from the definition that if R is F -rational, then R is F -injective.
Since the Frobenius structure on H i

m(R) is the same when we consider it as a module over R̂,
we also know that a local ring (R,m, k) is F -injective if and only if R̂ is F -injective. We next
show that F -injectivity and F -rationality are preserved under localization. For F -injectivity,
the strategy is taken from [DM24], where the result is proved in its most general form.

Theorem 4.13. Let R be a ring of prime characteristic p > 0. If R is F -injective then RP

is F -injective for all P ∈ Spec(R).

Proof. We may assume (R,m, k) is local with dim(R) = d. First we claim that we may
assume R is complete. Let P ∈ Spec(R), pick a minimal prime Q of PR̂, then RP → R̂Q is
faithfully flat with dim(RP ) = dim(R̂Q). Thus H i

Q(R̂Q) ∼= H i
P (RP ) ⊗RP

R̂Q for all i and it
is easy to see that the isomorphism is compatible with the Frobenius actions. Hence if we
can show R̂Q is F -injective, then RP is F -injective.

Now we assume (R,m, k) is complete, by Cohen’s structure theorem we can write R = S/I

where (S, n, k) is a complete regular local ring of dimension n. We can write F∗R = lim−→j
Rj

such that each Rj is module-finite over R, thus F∗(RP ) = lim−→j
(Rj)P . We have the following

(abusing notations a bit, we still use P to denote the corresponding prime ideal in S):

R is F -injective ⇒ H i
m(R)→ H i

m(F∗R) is injective for all i

⇒ H i
m(R)→ H i

m(Rj) is injective for all i, j

⇒ Extn−i
S (Rj, S)→ Extn−i

S (R, S) is surjective for all i, j

⇒ Extn−i
SP

((Rj)P , SP )→ Extn−i
SP

(RP , SP ) is surjective for all i, j

⇒ H
dim(SP )−n+i
P (RP )→ H

dim(SP )−n+i
P ((Rj)P ) is injective for all i, j

⇒ H
dim(SP )−n+i
P (RP )→ H

dim(SP )−n+i
P (F∗(RP )) is injective for all i

⇒ RP is F -injective.

where the third and fifth implications are due to local duality over S and SP respectively. □
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Finally, we show that F -rationality localizes.

Theorem 4.14. Let R be a ring of prime characteristic p > 0. If R is F -rational then RP

is F -rational for all P ∈ Spec(R).

Proof. We may assume (R,m, k) is local with dim(R) = d. By Proposition 4.4, R is a Cohen-
Macaulay normal domain, and hence so is RP . Suppose P has height h, it is then enough
to show that for any 0 ̸= c ∈ R, there exists e > 0 such that cF e(−) is injective on Hh

P (RP ).
Suppose on the contrary, there exists 0 ̸= c ∈ R such that cF e(−) is not injective for all
e > 0. Then for all e > 0, we have

0 ̸= Ke := Ker(Hh
P (RP ) cF e(−)−−−−→ Hh

P (RP )).

We claim that Ke+1 ⊆ Ke: if cF e+1(η) = 0, then F (cF e(η)) = cpF e+1(η) = 0, but we know
that RP is F -injective by Theorem 4.13, thus cF e(η) = 0. Therefore we have a descending
chain of RP -modules:

K1 ⊇ · · · ⊇ Ke ⊇ Ke+1 ⊇ · · · .

Since Hh
P (RP ) is an Artinian RP -module, this chain stabilizes and so there exists 0 ̸= η ∈

∩eKe. Next we pick a system of parameters x1, . . . , xh, xh+1, . . . , xd of R such that the image
of x1, . . . , xh is a system of parameters on RP . Note that

Hh
P (RP ) = lim−→

e

RP

(xpe

1 , . . . , x
pe

h )RP

,

where the connection maps are multiplication by (x1 · · ·xh)p
e+1−pe . By replacing x1, . . . , xh by

their powers if necessary, we may assume that η ̸= 0 is the image of y ∈ RP/(x1, . . . , xh)RP

in Hh
P (RP ). Multiplying η and y by elements in R − P (which are units in RP ), we may

assume that y ∈ R. We consider the following commutative diagram

Hh
P (RP )

cF e(−)
// Hh

P (RP )

RP

(x1,...,xh)RP

?�

OO

x 7→cxpe

// RP

(xpe

1 ,...,xpe

h
)RP

?�

OO

where the vertical maps are injections since RP is Cohen-Macaulay. Chasing the image of
y ∈ RP/(x1, . . . , xh)RP , we find that for all e > 0, cype = 0 in RP/(xp

e

1 , . . . , x
pe

h )RP . That is,
for every e > 0, there exists ze /∈ P such that czeyp

e ∈ (xp
e

1 , . . . , x
pe

h ).
Let (x1, . . . , xh) = Q1 ∩ · · · ∩Qs be an irredundant primary decomposition of (x1, . . . , xh),

with Pi =
√
Qi the corresponding associated primes. We may assume P = P1. Since

R is Cohen-Macaulay and x1, . . . , xh is a regular sequence, each Pi is a minimal prime of
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(x1, . . . , xh) and we have Ass(R/(x1, . . . , xh)) = Ass(R/(xp
e

1 , · · · , x
pe

h )) for all e > 0. Let
(xp

e

1 , . . . , x
pe

h ) = Q1,e ∩ · · ·Qs,e be the irredundant primary decomposition with Pi =
√
Qi,e.

We know that Qi,e is the contraction of (xp
e

1 , . . . , x
pe

h )RPi
to R. Since (x1, . . . , xh)hp

e ⊆
(xp

e

1 , . . . , x
pe

h ), we have Q(hpe)
i ⊆ Qi,e. Now we fix z ∈ (Q2 ∩ · · · ∩ Qs)h − P1, it follows that

zp
e ∈ Qhpe

i ⊆ Qi,e for all i ≥ 2. Since czeyp
e ∈ (xp

e

1 , . . . , x
pe

h ) ⊆ Q1,e and ze /∈ P = P1, we
know that cype ∈ Q1,e. Thus we have z ∈ R− P such that for all e > 0,

cyp
e

zp
e ∈ Q1,e ∩Q2,e ∩ · · · ∩Qs,e = (xp

e

1 , . . . , x
pe

h ).

Therefore for all e > 0 and all n > 0, we have

c(zy)pe ∈ (xp
e

1 , . . . , x
pe

h ) ⊆ (xp
e

1 , . . . , x
pe

h , x
npe

h+1, . . . , x
npe

d ).

Since R is F -rational, there exists e > 0 such that cF e(−) is injective on Hd
m(R). Fix this e,

we consider the following commutative diagram

Hd
m(R) � �

cF e(−)
// Hd

m(R)

R
(x1,...,xh,x

n
h+1,...,x

n
d

)

?�

OO

x 7→cxpe

// R

(xpe

1 ,...,xpe

h
,xnpe

h+1,...,x
npe

d
)

?�

OO

where the vertical maps are injective since R is Cohen-Macaulay. Chasing the diagram we
find that the bottom map is injective. Since zy ∈ R/(x1, . . . , xh, x

n
h+1, . . . , x

n
d) maps to zero in

R/(xp
e

1 , . . . , x
pe

h , x
npe

h+1, . . . , x
npe

d ), we obtain that zy ∈ (x1, . . . , xh, x
n
h+1, . . . , x

n
d) for all n > 0.

Thus
zy ∈ ∩n(x1, . . . , xh, x

n
h+1, . . . , x

n
d) = (x1, . . . , xh),

which implies y ∈ (x1, . . . , xh)RP . Therefore 0 = y ∈ RP/(x1, . . . , xh)RP and thus η = 0,
which is a contradiction. □

Exercise 19. Prove that if a ring R of prime characteristic p > 0 is F -injective, then R is
reduced. (Hint: Use the fact that reduced is characterized by (R0) and (S1), and then use
Theorem 4.13.)

Exercise 20. Let R→ S be a faithfully flat extension of rings of prime characteristic p > 0.
Prove that if S is F -rational (resp., F -injective), then R is F -rational (resp., F -injective).
(Hint: Use Theorem 4.14 (resp., Theorem 4.13) to reduce to the case that dim(R) = dim(S).)
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Exercise 21. Show that if R is an F -pure ring of prime characteristic p > 0, then R is
F -injective. Conversely, show that if (R,m, k) is a quasi-Gorenstein and F -injective ring of
prime characteristic p > 0, then R is F -pure.

Exercise 22. Let R be an N-graded ring over a field of prime characteristic p > 0 with
homogeneous maximal ideal m. Show that

(1) If R is F -injective, then [H i
m(R)]>0 = 0 for each i.

(2) If R is F -rational, then [Hd
m(R)]≥0 = 0.

Exercise 23. Let (R,m, k) be a local ring of prime characteristic p > 0 and dimension d.
Show that the kernel of the natural Frobenius action on Hd

m(R) is a proper submodule of
Hd

m(R).

Exercise 24. Prove the following strengthening of Corollary 4.7: Suppose R→ S is a pure
map of rings of prime characteristic p > 0. If S is regular, then R is F -rational.

Discussion 4.15. We have seen that direct summands of F -regular rings (respectively F -pure
ring) are F -regular (respectively F -pure). One can ask if a direct summand of F -rational
or F -injective ring is F -rational or F -injective. This is not the case. Watanabe [Wat97]
constructed an example of a direct summand of an F -rational ring that is not even F -
injective. The example will be examined in Chapter 8, where we also give an example of a
direct summand of an F -rational ring that is not Cohen-Macaulay.
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5. The deformation problem

An interesting question in the study of singularities is how they behave under deformation.
Roughly speaking, if Spec(R) is the total space of a fibration over a curve, then the special
fiber of this fibration is a variety with coordinate ring R/xR for a nonzerodivisor x of R.
The question is whether the singularity type of the total space Spec(R) is no worse than the
singularity type as the special fiber Spec(R/xR).

This deformation question has been studied in details for F -singularities. The following
list summarizes the best known progress.

(1) Strong F -regularity fails to deform in general [Sin99c], but it deforms for normal
Q-Gorenstein rings [AKM98].

(2) F -purity fails to deform in general [Fed83, Sin99b], but it deforms for normal Q-
Gorenstein rings [HW02, Sch09, PS23].

(3) F -rationality always deforms [HH94a].
(4) Deformation of F -injectivity remains an open problem in general. But it is known

that F -injectivity deforms for Cohen-Macaulay rings [Fed83], and that F -purity al-
ways deforms to F -injectivity [HMS14].

Counterexamples to the deformation of strongly F -regular and F -pure singularities will
be examined in Chapter 8, see Example 8.9. In this chapter we present the (partial) positive
results on deformation of F -singularities mentioned above.

5.1. Deformation of F -rational and F -injective singularities. We begin by proving de-
formation of F -injectivity in the Cohen-Macaulay case and the deformation of F -rationality.

Theorem 5.1. Let (R,m, k) be a local ring of prime characteristic p > 0 and x ∈ m a
nonzerodivisor on R. Then

(1) If R/xR is Cohen-Macaulay and F -injective, then R is Cohen-Macaulay and F -
injective.

(2) If R/xR is F -rational, then R is F -rational.

Proof. We first prove (1). It is clear that R is Cohen-Macaulay. It is enough to show that
the natural Frobenius action on Hd

m(R) is injective. The commutative diagram:

0 // R

xpe−1F e

��

·x // R //

F e

��

R/xR //

F e

��

0

0 // R
·x // R // R/xR // 0



32 LINQUAN MA AND THOMAS POLSTRA

induces a commutative diagram:

0 // Hd−1
m (R/xR)

F e

��

// Hd
m(R) ·x //

xpe−1F e

��

Hd
m(R) //

F e

��

0

0 // Hd−1
m (R/xR) // Hd

m(R) ·x // Hd
m(R) // 0

If the middle map is not injective, then we pick η ∈ Soc(Hd
m(R)) ∩ Ker(xpe−1F e) and it is

easy to see that η comes from Hd−1
m (R/xR). But this contradicts the injectivity of F e on

Hd−1
m (R/xR). Thus xpe−1F e and hence F e is injective on Hd

m(R).
We next prove (2). Suppose we have c ∈ R not in any minimal prime of R. It is enough

to show that the F -stable submodule {η ∈ Hd
m(R) | c · F e(η) = 0 for all e ≥ 0} is 0 (see

the proof of Proposition 4.11, here we need to use that R is injective, which we just proved
in (1)). If this submodule is nonzero, then it intersects Soc(Hd

m(R)) nontrivially so we may
assume there exists 0 ̸= η ∈ Hd

m(R) such that c ·F e(η) = 0 for all e > 0 and xη = 0. We can
write c = xnc′ where c′ /∈ (x) and pick any e≫ 0 such that pe − 1 ≥ n. Since c · F e(η) = 0,
c′xp

e−1F e(η) = 0. Since xη = 0 we know that η comes from Hd−1
m (R/xR) and chasing the

diagram we find that c′F e(η) = 0 in Hd−1
m (R/xR). But since R/xR is F -rational, it is a

normal domain by Proposition 4.4 and hence the image of c′ is nonzero in R/xR. So the
F -rationality of R/xR implies that c′F e(−) is injective on Hd−1

m (R/xR) for all e≫ 0. Thus
η = 0, a contradiction. □

Recall that the notions of strong F -regularity and F -rationality coincide in Gorenstein
rings, Proposition 4.9. Therefore we have the following result on deformation of strong
F -regularity (we will generalize this result in section 5.2).

Corollary 5.2. Let (R,m, k) be an F -finite Gorenstein local ring of prime characteristic
p > 0 and x ∈ m a nonzerodivisor on R. If R/xR is strongly F -regular, then R is strongly
F -regular.

Proof. By Theorem 5.1, R is F -rational and thus strongly F -regular by Proposition 4.9. □

The deformation question for F -injectivity is not solved completely. To this date, the best
partial result towards this question is obtained in [HMS14], where it is shown that F -purity
deforms to F -injectivity (note that F -purity itself does not deform in general by Example
8.9, unless we invoke the Q-Gorenstein hypothesis, see Theorem 5.19 or [PS23]). To prove
this result, we need a result from [Ma14].
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Theorem 5.3. If (R,m, k) is an F -pure local ring of prime characteristic p > 0, then for
all i and all F -stable submodules N ⊆ H i

m(R), the natural Frobenius action on H i
m(R)/N is

injective.

Proof. We may replace R by R̂ to assume R is F -split (see Corollary 2.4). We then observe
the following quite general claim:

Claim 5.4. If R → S is split, η is an element of H i
m(R), and N is a submodule of H i

m(R),
then η ∈ N provided that the image of η in H i

mS(S) is contained in the S-span of the image
of N in H i

mS(S).

Proof. Let ϕ: S → R be a splitting. It is easy to check that we have the following commu-
tative diagram

S ⊗R H i
m(R) //

ϕ⊗id &&

H i
mS(S)

Hi
m(ϕ)

��

H i
m(R).

Thus if the image of η is in the S-span of the image of N , say Im(1⊗ η) = ∑
si · Im(1⊗ ηi)

where ηi ∈ N . Then by the above commutative diagram, η = ∑
ϕ(si)ηi ∈ N . □

We now continue the proof of the theorem. Suppose N is an F -stable submodule such
that the Frobenius action on H i

m(R)/N is not injective, then there exists η /∈ N such that
F (η) ∈ N . Let Ne be the R-span of F e(N). Since N is F -stable, we have a descending
chain N0 ⊇ N1 ⊇ N2 ⊇ · · · . This chain stabilizes since H i

m(R) is Artinian. Therefore, as
F (η) ∈ N , F e+1(η) ∈ Ne = Ne+1 for e ≫ 0. Finally we apply Claim 5.4 to the (e + 1)-th
Frobenius map F e+1: R → R (which is split by assumption) and note that the R-span of
the image of N is precisely Ne+1, hence we know that η ∈ N , a contradiction. □

We now prove the aforementioned result in [HMS14], our proof proceeds very similarly as
in the Cohen-Macaulay case and it differs from the original argument.

Theorem 5.5. Let (R,m, k) be a local ring of prime characteristic p > 0 and x ∈ m a
nonzerodivisor on R. If R/xR is F -pure, then R is F -injective.

Proof. The commutative diagram:

0 // R

xpe−1F e

��

·x // R //

F e

��

R/xR //

F e

��

0

0 // R
·x // R // R/xR // 0
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induces a commutative diagram:

0 // H i−1
m (R/xR)/ Im(H i−1

m (R))

F e

��

// H i
m(R) ·x //

xpe−1F e

��

H i
m(R) //

F e

��

· · ·

0 // H i−1
m (R/xR)/ Im(H i−1

m (R)) // H i
m(R) ·x // H i

m(R) // · · ·

Note that Im(H i−1
m (R)) is an F -stable submodule of H i−1

m (R/xR). So by Theorem 5.3, F e

is injective on H i−1
m (R/xR)/ Im(H i−1

m (R)). Now by the same argument as in Theorem 5.1,
this implies that xpe−1F e and hence F e is injective on H i

m(R). □

In fact, it can be shown that Im(H i−1
m (R)) = 0 in the proof of Theorem 5.5. This was

observed in [MQ18], and we leave it as an exercise, see Exercise 25.
Since quasi-Gorenstein F -injective rings are F -pure (see Exercise 21), we have the following

result on deformation of F -purity (we will generalize this result in section 5.2).

Corollary 5.6. Let (R,m, k) be a quasi-Gorenstein F -pure local ring of prime characteristic
p > 0 and x ∈ m a nonzerodivisor on R. If R/xR is F -pure, then R is F -pure.

Proof. By Theorem 5.5, R is F -injective and thus F -pure by and Exercise 21. □

5.2. Deformation of strongly F -regular and F -pure singularities. Our approach to
the deformation problem of strong F -regularity and F -purity essentially follows from [PS23],
and it involves the study of cyclic covers of R. To this end, we suggest that the reader who
is not familiar with divisor class groups, divisorial ideals, reflexification, and the theory of
(S2)-modules over a ring which is (S2) and (G1), i.e., Gorenstein in codimension 1, consult
Appendix A for the basic theory, notation, and language.

Before continuing forward we want to introduce the idea of the proof informally. Suppose
that R is Q-Gorenstein, x ∈ R a nonzerodivisor such that R/xR is strongly F -regular or
F -pure, and let R→ S be a cyclic cover of R with respect to the canonical divisor. Consider
the following commutative diagram:

R //

��

S

��
R/xR // S/xS

.

A result of Carvajal-Rojas [CR22, Theorem C], which generalizes a theorem of Watanabe
[Wat91], asserts that R is strongly F -regular (resp., F -pure) if and only if a cyclic cover of R is
strongly F -regular (resp., F -pure). Therefore to show R is strongly F -regular (resp., F -pure),
it suffices to show that R/xR → S/xS is a cyclic cover of R/xR and that S is Gorenstein
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(resp., quasi-Gorenstein), since then we can invoke Corollary 5.2 (resp., Corollary 5.6) to
conclude the proof.

In fact, the proof strategy in the strongly F -regular case follows exactly as outlined above,
while in the F -pure case we need some modifications. We begin by presenting a self-contained
and elementary proof of [CR22, Theorem C] mentioned above. We first prove a general fact
on extending R-linear maps F e

∗R→ R to the cyclic cover.

Proposition 5.7. Let (R,m, k) be an (S2) and (G1) local ring of prime characteristic p > 0
and D a torsion divisor of index N . Let S = ⊕N−1

i=0 R(iD)ti be a cyclic cover of R with
respect to D and let π : S → R be the projection of S onto R. If φ : F e

∗R→ R is an R-linear
map then there exists an S-linear map ψ : F e

∗S → S so that the following diagram commutes:

F e
∗S

ψ
//

F e
∗π

��

S

π

��
F e

∗R
φ
// R

Proof. Let e1 : HomR(S,R)→ R be the evaluation-at-1 map defined by ψ 7→ ψ(1). To find a
map ψ making the above diagram commutative we utilize Proposition A.5 and instead show
the existence of an S-linear map ψ : F e

∗ HomR(S,R) → HomR(S,R) so that the following
diagram commutes:

F e
∗ HomR(S,R)

ψ
//

F e
∗ e1
��

HomR(S,R)
e1
��

F e
∗R

φ
// R

Given an element ρ ∈ HomR(S,R) and its corresponding element F e
∗ ρ ∈ F e

∗ HomR(S,R) we
let ψ(F e

∗ ρ) be the element of HomR(S,R) which maps an element s to

ψ(F e
∗ ρ)(s) = φ(F e

∗ e1(sF e
∗ ρ)) = φ(F e

∗ e1(F e
∗ ρ(sp

e · −)))

= φ(F e
∗ e1(ρ(sp

e · −)))

= φ(F e
∗ ρ(sp

e · 1))

= φ(F e
∗ ρ(sp

e)).

We leave it to the reader to verify that ψ is S-linear and makes the diagram commute. □

We are now ready to prove [CR22, Theorem C].
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Theorem 5.8. Let (R,m, k) be an F -finite (S2) and (G1) local ring of prime characteristic
p > 0, D a torsion divisor of index N , and S = ⊕N−1

i=0 R(iD) a cyclic cover of R with respect
to D.

(1) R is strongly F -regular if and only if S is strongly F -regular;
(2) R is F -pure if and only if S is F -pure.

Proof. The ring R is a direct summand of S. Hence if S is strongly F -regular then so is R
by Theorem 3.9 and if S is F -pure then R is F -pure by Exercise 9.

Suppose that R is strongly F -regular and let c be a nonzero element of S. We aim to
show the existence of an e ∈ N and an S-linear map ψ : F e

∗S → S so that ψ(F e
∗ c) = 1.

Consider the projection π : S → R. We claim that there exists an element s ∈ S so that
π(sc) ̸= 0. Suppose that R(ND) = R · f . Write c = ∑N−1

i=0 cit
i with ci ∈ R(iD). If c0 ̸= 0

then π(c) = c0 ̸= 0. If ci ̸= 0 for some i > 0 then choose nonzero element x ∈ R((N − i)D)
and observe that π(xtN−ic) = xci

f
̸= 0. If there exists an S-linear map ψ : F e

∗S → S so that
ψ(F e

∗ sc) = 1 then the map φ := ψ(F e
∗ s−) is such that φ(F e

∗ c) = 1. Therefore we can replace
c by sc and assume that c0 := π(c) ̸= 0.

Since R is strongly F -regular, there exists an e ∈ N and an R-linear map φ : F e
∗R → R

such that φ(F e
∗ c0) = 1. By Proposition 5.7 there exists an S-linear map ψ : F e

∗S → S so
that the following diagram is commutative:

F e
∗S

ψ
//

F e
∗π

��

S

π

��
F e

∗R
φ
// R

Observe that (π ◦ ψ)(F e
∗ c) = (φ ◦ F e

∗π)(F e
∗ c) = φ(F e

∗ c0) = 1. Moreover, by Lemma A.4,
mS = m ⊕⊕N−1

i=1 R(−iD) is the unique maximal ideal of S, and we have π(mS) = m. In
particular, ψ(F e

∗ c) must be a unit of S and thus the element F e
∗ c can be split out of F e

∗S as
desired.

The proof technique above also shows that S is F -pure provided R is F -pure. One starts
with a map F∗R→ R sending F∗1 7→ 1. One can then lift this map to a map of S-modules
ψ : F∗S → S and then argue as above to claim that ψ(F∗1) must be a unit of S. □

Recall that there is a one-to-one correspondence between divisorial ideals of a normal
domain R and isomorphism classes of finitely generated rank 1 modules satisfying Serre’s
condition (S2), see Appendix A for more general situation. It is atypical for the depth
of a divisorial ideal of a normal domain to exceed 2. An exception to this “rule” is that
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divisorial ideals corresponding to torsion divisors in a strongly F -regular ring are Cohen-
Macaulay, which follows directly from Theorem 5.8. Here we record another proof of this
fact2 following [Mar22, Proposition 2.6] which we find to be more direct, elementary, and
transparent, though we will not use this result explicitly in the sequel.

Lemma 5.9. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime char-
acteristic p > 0 and M a finitely generated torsion-free R-module. If m ∈ M is a nonzero
element then for all e≫ 0 there exists φ ∈ HomR(F e

∗M,R) such that φ(F e
∗m) = 1.

Proof. By Exercise 12, it is enough to show that there exists a single natural number e and
φ ∈ HomR(F e

∗M,R) so that φ(F e
∗m) = 1. Because M is torsion-free and finitely generated

there exists an inclusion of M into a free module R⊕N . Let m ∈M be a non-zero element. By
mapping onto an appropriate summand of R⊕N we find that there exists a map φ : M → R

so that φ(m) = r ̸= 0. We are assuming R is strongly F -regular. So for all e ≫ 0 there
exists ψ : F e

∗R → R so that ψ(F e
∗ r) = 1. In particular, ψ ◦ F e

∗φ ∈ HomR(F e
∗M,R) and

ψ(F e
∗φ(m)) = 1. □

Proposition 5.10. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0. If D is a torsion divisor then there exists an e ∈ N so that R(D) is a
direct summand of F e

∗R. In particular, R(D) is a Cohen-Macaulay R-module.

Proof. Up to isomorphism, the set of R-modules {R(iD)}i∈Z is a finite list as D is a torsion
divisor. By Lemma 5.9 there exists an e ∈ N so that F e

∗R(iD) has a free R-summand for all
i ∈ Z. In particular, there exists an e ∈ N so that F e

∗R(−peD) has a free summand, say

F e
∗R(−peD) ∼= R⊕M.

If we apply −⊗R R(D), reflexify, and utilize part (3) of Exercise 79 we see that

(F e
∗R(−peD)⊗R R(D))∗∗ ∼= F e

∗R(−peD + peD) ∼= F e
∗R
∼= R(D)⊕ (M ⊗R R(D))∗∗,

i.e., R(D) is a (finite) direct summand of F e
∗R as claimed. It follows that R(D) is a Cohen-

Macaulay since R (and hence F e
∗R) is Cohen-Macaulay by Theorem 4.6. □

Now we are ready to prove the deformation of strong F -regularity when the ambient ring
is Q-Gorenstein.

Theorem 5.11. Let (R,m, k) be an F -finite Q-Gorenstein local ring of prime characteristic
p > 0 and x ∈ m a nonzerodivisor on R. If R/xR is strongly F -regular then R is strongly
F -regular.
2This fact was observed in several locations in the literature, for example see [Wat91, Corollary 2.9] and
[PS14, Corollary 3.3].
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Proof. First of all, since R/xR is strongly F -regular, R/xR is normal by Corollary 3.8. By
Lemma A.8, we can choose an effective canonical divisor KX of X = Spec(R) that has no
component in V := V (x) ∼= Spec(R/xR) and KX restricts to an (effective) canonical divisor
KV of V by Lemma A.10. Suppose KX has index N , we set S = ⊕N−1

i=0 R(iKX)ti to be the
cyclic cover of R with respect to KX .

Claim 5.12. R/xR→ S/xS is the cyclic cover of R/xR with respect to KV .

Proof of Claim. Fix an 1 ≤ i ≤ N and consider the divisor D = iKX . We will show
that R(D)/xR(D) is an (S2) module over R/xR, which will imply that R(D)/xR(D) ∼=
(R/xR)(iKV ) by Lemma A.9 and thus S/xS will indeed be a cyclic cover of R/xR with
respect to the canonical divisor KV . Note that if dim(R) ≤ 2, then R(D) is Cohen-Macaulay
over R and hence R(D)/xR(D) is Cohen-Macaulay over R/xR. Thus we may assume that
dim(R) ≥ 3 in what follows.

Let D|V denote the pull back of the divisor D from X = Spec(R) to V = Spec(R/xR), see
Discussion A.6. By Lemma A.9, we know that D|V is torsion of index at most N . Now for
every 1 ≤ j ≤ N , tensoring the canonical map R(D)→ (R/xR)(D|V ) with the composition
R→ F e

∗R→ F e
∗R(jD) and reflexify we obtain (see Exercise 79):

R(D) //

��

F e
∗R(jD + peD)

��
(R/xR)(DV ) // F e

∗ (R/xR)(jD|V + peD|V )

Since R/xR is strongly F -regular, by Exercise 15, the bottom map above splits for e ≫ 0
for every 1 ≤ j ≤ N . Now we fix such an e ≫ 0 and pick 1 ≤ j ≤ N such that N divides
j + pe. It follows that F e

∗R(jD + peD) ∼= F e
∗R and F e

∗ (R/xR)(jD|V + peD|V ) ∼= R/xR, and
thus we obtain a commutative diagram:

(†) R(D)
φ

//

��

F e
∗R

��
(R/xR)(D|V )

ψ
// F e

∗ (R/xR)

where the map ψ is split.
By induction on the dimension of R, we may assume that R(D)/xR(D) is (S2) on the

punctured spectrum of R/xR and hence R(D)/xR(D) → (R/xR)(D|V ) is an isomorphism
on the punctured spectrum. It follows that the induced maps of local cohomology modules

H i
m(R(D)/xR(D))→ H i

m((R/xR)(D|V ))
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is an isomorphism for all i ≥ 2 and thus the following composition

λi : H i
m(R(D)/xR(D))→ H i

m((R/xR)(D|V )) Hi
m(ψ)−−−→ H i

m(F e
∗ (R/xR))

is (split) injective for all i ≥ 2, since ψ is split.
Now consider the following commutative diagram:

0 // R(D) ·x // R(D) //

φ

��

R(D)/xR(D) //

��

0

F e
∗R // F e

∗ (R/xR)

.

There is an induced commutative diagram of local cohomology modules:

0 // H1
m(R(D)/xR(D)) // H2

m(R(D)) ·x // H2
m(R(D)) π //

��

H2
m(R(D)/xR(D))

λ2
��

0 = H2
m(F e

∗R) // H2
m(F e

∗ (R/xR))

.

Since R/xR is (S2), x is a nonzerodivisor of R and dim(R) ≥ 3, we know that depth(R) ≥ 3
and thus H2

m(F e
∗R) = 0. Since λ2 is injective, chasing the diagram shows that the map π

is the 0-map and so H2
m(R(D)) = xH2

m(R(D)). The module R(D) is (S2) and therefore
H2

m(R(D)) is a finitely generated R-module, see Exercise 29, by Nakayama’s lemma we have
H2

m(R(D)) = 0, and therefore H1
m(R(D)/xR(D)) = 0.

Since R(D)/xR(D) is (S2) on the punctured spectrum and that H1
m(R(D)/xR(D)) = 0,

it follows that R(D)/xR(D) is an (S2) module over R/xR as wanted. □

Finally, by Claim 5.12 and Theorem 5.8, S/xS is strongly F -regular and thus Cohen-
Macaulay. It follows that S is Cohen-Macaulay. But then since S is quasi-Gorenstein by
Lemma A.7, S is Gorenstein and so S is strongly F -regular by Corollary 5.2 and thus R is
strongly F -regular by Theorem 5.8. □

Finally, we turn to the deformation problem of F -purity in Q-Gorenstein rings. Indeed,
Hara and Watanabe were able to notice through their efforts to compare log terminal and
log canonical singularities with F -regular and F -pure singularities in [HW02] that F -purity
deforms provided R is Q-Gorenstein of index not divisible by the characteristic of R, a proof
that was eventually recorded in full generality by Schwede in [Sch09]. The deformation
of Q-Gorenstein F -pure singularities was completely solved in [PS23]. We begin with the
following observation of Fedder.
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Lemma 5.13. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and x ∈ m

a nonzerodivisor. Then for each e ∈ N the R-linear maps R π−→ R/xR and F e
∗ (R/xR) ·F e

∗x
pe−1

−−−−−→
F e

∗ (R/xpe
R) induce R-linear maps

(1) Ψe
1 : HomR(F e

∗R,R) π−→ HomR/xR(F e
∗ (R/xpe

R), R/xR)

(2) Ψe
2 : HomR/xR(F e

∗ (R/xpe
R), R/xR) ·F e

∗x
pe−1

−−−−−→ HomR/xR(F e
∗ (R/xR), R/xR).

If R is Gorenstein, then the maps Ψe
1 and Ψe

2 are onto for every e ∈ N.

Proof. The map Ψe
1: HomR(F e

∗R,R)→ HomR(F e
∗R,R/xR) is obtained by applying HomR(F e

∗R,−)
to the natural surjection R

π−→ R/xR and observing that

HomR(F e
∗R,R/xR) ∼= HomR/xR(F e

∗R/xF
e
∗R,R/xR) ∼= HomR/xR(F e

∗ (R/xpe

R), R/xR).

The map Ψe
2 : HomR(F e

∗R,R/xR) → HomR/xR(F e
∗ (R/xR), R/xR) is given by applying

HomR(−, R/xR) to the map F e
∗ (R/xR) ·F e

∗x
pe−1

−−−−−→ F e
∗ (R/xpe

R).
Suppose that R is Gorenstein. To show that Ψe

1 is onto consider the short exact sequence

0→ R
·x−→ R→ R/xR→ 0.

Then Ext1
R(F e

∗R,R) = 0 as F e
∗R is a Cohen-Macaulay R-module and R is Gorenstein (see

[BH93, Theorem 3.3.10]). Thus Ψe
1 is onto. Similarly, to show that Ψe

2 is onto consider the
short exact sequence

0→ F e
∗ (R/xR) ·F e

∗x
pe−1

−−−−−→ F e
∗ (R/xpe

R)→ F e
∗ (R/xpe−1R)→ 0.

Then Ext1
R/xR(F e

∗ (R/xpe−1R), R/xR) = 0 as F e
∗ (R/xpe−1R) is a Cohen-Macaulay R/xR-

module (see Exercise 28) and R/xR is Gorenstein (again, use [BH93, Theorem 3.3.10]).
Thus the induced map Ψe

2 is onto. □

If R/xR is F -pure but not strongly F -regular, then the cyclic cover R → S with respect
to the canonical divisor of R will produce a quasi-Gorenstein ring, where deformation of
F -purity is known to hold, see Corollary 5.6. However, it is no longer reasonable to expect
a divisorial ideal associated to a torsion divisor to be of high depth and we do not expect
R/xR→ S/xS to remain a cyclic cover of R/xR. Our adjustment will still come in the form
of expecting certain divisorial ideals to be of high depth: not all divisorial ideals associated
to torsion divisors will have high depth, but those with index p to a power do.

Lemma 5.14. Let (R,m, k) be an (S2) and (G1) local ring which is F -finite and F -pure of
prime characteristic p > 0. Suppose that D is a torsion divisor of index pe0 for some e0.
Then R(D) is a direct summand of F e0

∗ R.
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Proof. Consider a direct sum decomposition of F e0
∗ R,

F e0
∗ R ∼= R⊕M.

If we tensor with R(D) and reflexify we find that

F e0
∗ R(pe0D) ∼= F e0

∗ R ∼= R(D)⊕ (M ⊗R R(D))∗∗

where (−)∗ = HomR(−, R). □

Let us return to the problem of deforming F -purity in a Q-Gorenstein ring. Let x ∈ R be
a nonzerodivisor such that R/xR is (S2), (G1), and F -pure. Let KX be a choice of canonical
divisor on X = Spec(R) that has no component in V (x). Suppose that Npe0KX ∼ 0 and p

does not divide N . Let D = NKX . Observe that not only is pe0D ∼ 0 but for any integer m
we have that pe0mD ∼ 0. In particular, if we consider the cyclic cover S = ⊕N−1

i=0 R(iD)ti,
then we expect each of the divisorial ideals R(iD) to have good enough depth properties
(since this will be the case if we know R is F -pure, see Lemma 5.14) so that R/xR→ S/xS

is the induced cyclic cover of R/xR. This will allow us to replicate the deformation of strong
F -regularity proof to the deformation of F -purity problem, provided we can establish the
deformation of F -purity in Q-Gorenstein rings whose index is relatively prime p. To this
end, we should try to understand the cyclic cover S associated to the divisor D = NKX .
We begin with a well-known lemma.

Lemma 5.15. Let R → S be a module-finite extension of (S2) and (G1) rings with choice
of canonical divisor KX on X = Spec(R) and KY on Y = Spec(S). Then we have

HomR(S,R) ∼= S(KY − π∗KX).

In particular, if R is an (S2), (G1), and F -finite ring of prime characteristic p > 0, then for
each e ∈ N there is an isomorphism

HomR(F e
∗R,R) ∼= F e

∗R((1− pe)KX).

Proof. First note that we have R(KX) ∼= ωR, S(KY ) ∼= ωS ∼= HomR(S, ωR). Now we have

HomR(S,R) ∼= HomR(S ⊗R ωR, ωR) ∼= HomS(S ⊗R ωR,HomR(S, ωR))
∼= HomS(S ⊗R ωR, ωS) ∼= HomS(S ⊗R R(KX), S(KY ))
∼= HomS((S ⊗R R(KX))∗∗, S(KY )) ∼= HomS(S(π∗KX), S(KY ))
∼= S(KY − π∗KX)
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where the first isomorphism on the third line follows from the fact that S(KY ) is reflexive.
This proves the first assertion, the second assertion follows from the first by observing that
the pull back of KX under the e-th Frobenius map is peKX . □

Lemma 5.15 implies that HomR(F e
∗R,R) is a cyclic F e

∗R-module for infinitely many choices
of e, provided R is Q-Gorenstein of index not divisible by the characteristic of R.

Corollary 5.16. Let (R,m, k) be a normal F -finite domain of prime characteristic p > 0
with choice of canonical divisor KX on X = Spec(R). Then the following are equivalent:

(1) R is Q-Gorenstein of index not divisible by p;
(2) HomR(F e

∗R,R) ∼= F e
∗R for all e sufficiently divisible.

Proof. If NKX ∼ 0 and p does not divide N then Fermat’s Little Theorem allows us to
conclude that N divides 1−pe for all integers e ∈ N which are sufficiently divisible. For such
an e ∈ N we use Lemma 5.15 and find that

HomR(F e
∗R,R) ∼= F e

∗R((1− pe)KX) ∼= F e
∗R.

Conversely, if HomR(F e
∗R,R) ∼= F e

∗R is a cyclic F e
∗R-module then we have that (1−pe)KX ∼

0 by Lemma 5.15 again and so KX is torsion of index not divisible by p. □

Proposition 5.17. Let (R,m, k) be an F -finite Q-Gorenstein ring of prime characteristic
p > 0 and of Q-Gorenstein index not divisible by p. Suppose that x ∈ m is a nonzerodivisor
such that R/xR is (S2) and (G1). Then the composition of the natural maps Ψe

2◦Ψe
1 described

in Lemma 5.13 is onto for infinitely many integers e ∈ N.

Proof. Fix an integer e ∈ N so that the index of KX divides 1− pe and so HomR(F e
∗R,R) ∼=

F e
∗R((1− pe)KX) is a cyclic F e

∗R-module, see Corollary 5.16.
Consider the maps Ψe

1 and Ψe
2 described in Lemma 5.13 and let

Ψe = Ψe
2 ◦Ψe

1 : HomR(F e
∗R,R)→ HomR/xR(F e

∗ (R/xR), R/xR)

be the composition of Ψe
1 and Ψe

2. Because HomR(F e
∗R,R) ∼= F e

∗R we have that the image of
Ψe in HomR/xR(F e

∗ (R/xR), R/xR) is abstractly isomorphic to F e
∗ (R/xR), in particular the

image of Ψe is an (S2)-module over F e
∗ (R/xR). The module HomR/xR(F e

∗ (R/xR), R/xR) ∼=
F e

∗ (R/xR) is an (S2)-module as well. By Proposition A.2 we can check that the image of
Ψe agrees with HomR/xR(F e

∗ (R/xR), R/xR) by checking equality when localized at a height
one prime. This will indeed be the case since R/xR is (G1) and the map Ψe is onto under
the Gorenstein hypothesis by Lemma 5.13. □

We are ready to prove F -purity deforms in Q-Gorenstein rings whose Q-Gorenstein index
is not divisible by p.
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Corollary 5.18. Let (R,m, k) be an F -finite Q-Gorenstein ring of prime characteristic p > 0
and of Q-Gorenstein index not divisible by p. Suppose that x ∈ m is a nonzerodivisor such
that R/xR is (S2), (G1), and F -pure. Then R is F -pure.

Proof. By Proposition 5.17, we can choose e such that

Ψe : HomR(F e
∗R,R)→ HomR/xR(F e

∗ (R/xR), R/xR)

is onto. It follows that for each R/xR-linear map φ : F e
∗ (R/xR) → R/xR there is a

commutative diagram
F e

∗ (R/xR)
φ

//

·F e
∗x

pe−1

��

R/xR

=
��

F e
∗ (R/xpe

R)
φ̃

// R/xR

F e
∗R

φ′
//

π

OO

R.

π

OO

In particular, since R/xR is F -pure, we can choose φ to be an onto map, but then an easy
diagram chasing shows that φ′ is also onto and thus R is F -pure. □

We now have the tools necessary to prove that F -purity deforms in Q-Gorenstein rings.

Theorem 5.19. Let (R,m, k) be a Q-Gorenstein F -finite ring of prime characteristic p > 0.
Suppose that x ∈ m is a nonzerodivisor such that R/xR is (S2), (G1), and F -pure. Then R

is F -pure.

Proof. By Lemma A.8, we can choose a canonical divisor KX of X = Spec(R) that has no
component in V := V (x) ∼= Spec(R/xR) and KX restricts to a canonical divisor KV of R/xR
by Lemma A.10. Suppose that pe0NKX ∼ 0 and p does not divide N . Consider the cyclic
cover R→ S associated to the divisor NKX . The ring R is a direct summand of S and thus
R will be F -pure provided S is F -pure. By Lemma A.7, S is Q-Gorenstein with index N

not divisible by p and so by Corollary 5.18 it is enough to show that S/xS is F -pure.
Suppose we can show that R/xR → S/xS is a cyclic cover of R/xR with respect to

NKV , then S/xS will be F -pure by Theorem 5.8. To show that R/xR → S/xS is a cyclic
cover it is enough to show that if D = iNKX for some 1 ≤ i ≤ pe0 then R(iD)/xR(iD)
is an (S2) R/xR-module. Now an almost identical argument as in the proof of Claim 5.12
works: to obtain the commutative diagram (†), one just need to tensor the canonical map
R(D) → (R/xR)(D|V ) with the natural map R → F e

∗R for any e ≥ e0 and note that the
divisor D, and hence D|V , has torsion index divisible by pe (see Lemma A.9), thus it follows
that R(peD) ∼= R and (R/xR)(peD|V ) ∼= R/xR. □
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Exercise 25. Let (R,m, k) be a local ring of prime characteristic p > 0 and x ∈ m a
nonzerodivisor on R such that R/xR is F -pure. Use Theorem 5.3 to show that the natural
map H i

m(R/xnR) → H i
m(R/xR) is surjective for all n ≥ 1 and all i. Then use this to

show that multiplication by x on H i
m(R) is surjective for all i. (Hint: Consider the long

exact sequence of local cohomology induced by 0 → R
·x−→ R → R/xR → 0 and show the

connection maps are injective.)

Exercise 26. Let (R,m, k) be a local ring of prime characteristic p > 0 and x ∈ m a
nonzerodivisor on R such that R/xR is quasi-Gorenstein and F -pure. Use Exercise 25 to
prove that R is quasi-Gorenstein and F -pure. (We caution the reader that, in general, the
quasi-Gorenstein property does not deform [STT20, Theorem 4.2].)

Exercise 27. Let (R,m, k) be a Q-Gorenstein, F -finite, and F -pure local ring of prime
characteristic p > 0. Let KX be a choice of canonical divisor of X = Spec(R). Show
that there exists integer e ∈ N so that R(pe0KX) is a direct summand of F e

∗R(KX) for all
e0 ≫ 0 sufficiently divisible. Prove that for all e0 ≫ 0 sufficiently divisible the divisorial
ideal R(pe0KX) satisfies (Sr) provided R satisfies (Sr). (Hint: Suppose that NpeKX ∼ 0 and
p is relatively prime to N . Show that R(KX) is a direct summand of F e

∗R(KX) and consider
what happens to this direct sum decomposition when you apply −⊗R (R((pe0 − 1)KX)) and
reflexify for all e0 ≫ 0.)

Exercise 28. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and depth
g ≥ 1. Suppose that x ∈ m is a nonzerodivisor of R. Show that F e

∗ (R/xiR) has depth g − 1
as an R/xR-module for all 1 ≤ i ≤ pe.

Exercise 29. Let (R,m, k) be a local ring of dimension d that admits a canonical module
(i.e., R is a homomorphic image of a Gorenstein local ring). Let M be a finitely generated
R-module such that dim(R/P ) = d for all minimal primes P of M , and such that M satisfies
Serre’s condition (Si) for some i < d. Show that H i

m(M) is a finitely generated R-module.
(Hint: Mimic the proof of Lemma 4.5.)

As we already mentioned, whether F -injectivity deforms in general remains an open ques-
tion. We refer the reader to [MSS17, MQ18, DSM22] for further progress.

Open Problem 2. Let (R,m, k) be a local ring of prime characteristic p > 0 and x ∈ m a
nonzerodivisor on R. If R/xR is F -injective, then is R also F -injective?
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6. The Γ-construction and completion of F -rationality

Our goal of this chapter is to show that completion of excellent local F -rational rings
are F -rational. To establish this, we need to show that in the definition of F -rationality,
we actually only need to consider one (special) c. This is not difficult to prove if R is F -
finite. To reduce the general case to the F -finite case, we need a powerful tool introduced
by Hochster–Huneke [HH94a]: the Γ-construction.

Discussion 6.1 (Trace map). Let (R,m, k) → (S, n, ℓ) be a module-finite extension of local
rings of dimension d. Suppose ωR is a canonical module of R (recall that this means ω∨

R
∼=

Hd
m(R)). Then the canonical map R→ S induces a trace map:

ωS ∼= HomR(S, ωR) Tr−→ ωR.

The Matlis dual of this map yields

Hd
m(R)→ HomR(ωS, ER(k)) ∼= HomS(ωS,HomR(S,ER(k))) ∼= HomS(ωS, ES(ℓ)) ∼= Hd

n (S),

which is precisely the natural map on top local cohomology modules induced by R → S.
In particular, if R is F -finite of prime characteristic p > 0, then the natural e-th Frobenius
action Hd

m(R) → F e
∗H

d
m(R) corresponds to the trace map F e

∗ωR
Tre

−−→ ωR, and it can be
checked that Tre1+e2 = Tre1 ◦F e1

∗ (Tre2). Note that here we are implicitly using that F -finite
rings admit canonical modules (see Theorem 1.6). Moreover, if, in addition, (ωR)P ∼= ωRP

(this holds for all P ∈ Spec(R) if R is equidimensional, see Remark A.1), then (Tre)P is the
corresponding trace map for RP .

Proposition 6.2. Let (R,m, k) be an F -finite Cohen-Macaulay local ring of prime char-
acteristic p > 0. Then R is F -rational if and only if for every c ∈ R that is not in any
minimal prime of R, there exists e > 0 such that the composition F e

∗ωR
·F e

∗ c−−→ F e
∗ωR

Tre

−−→ ωR

is surjective (i.e., Tre : F e
∗ (cωR)→ ωR is surjective).

Proof. This follows immediately from Discussion 6.1 and the definition of F -rationality. □

Proposition 6.2 implies that if R is F -finite and F -rational, then RP is F -rational for all
P ∈ Spec(R). Of course, we have already proved a more general Theorem 4.14 without
assuming R is F -finite.

The next result is an analog of Theorem 3.11 for F -rationality. We will eventually extend
this result to excellent Cohen-Macaulay local rings in Chapter 7. But at this point, we only
prove it when R is F -finite.

Proposition 6.3. Let (R,m, k) be an F -finite Cohen-Macaulay local ring of prime charac-
teristic p > 0 and of dimension d. Suppose there exists c not in any minimal prime of R
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such that Rc is F -rational (e.g., Rc is regular). Then R is F -rational if and only if there
exists e > 0 such that the composition

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R)

is injective, or equivalently,
F e

∗ωR
·F e

∗ c−−→ F e
∗ωR

Tre

−−→ ωR

is surjective.

Proof. Suppose z is not in any minimal prime of R. Then z is not in any minimal prime of Rc

and thus by Proposition 6.2, there exists e0 such that Tre0 : F e0
∗ (zωRc)→ ωRc is surjective.3

Since R is F -finite, we know that

HomRc(F e0
∗ (zωRc), ωRc) ∼= HomR(F e0

∗ (zωR), ωR)c.

Therefore we know that there exists n > 0 such that the image of Tre0 : F e0
∗ (zωR) → ωR

contains cnωR.
Our assumption says that there exists e > 0 such that c · F e is injective on Hd

m(R). If
we compose this map n times we get that c1+pe+···+p(n−1)e · F ne is injective on Hd

m(R), in
particular, cn · F ne is injective on Hd

m(R). That is, the composition

Hd
m(R)→ Hd

m(F ne
∗ R) ·Fne

∗ cn

−−−−→ Hd
m(F ne

∗ R)

is injective. But then by Discussion 6.1, we see that Trne: F ne
∗ (cnωR) → ωR is surjective.

Now the composition

Trne+e0 : F ne+e0
∗ (zωR) Fne

∗ Tre0
−−−−−→ F ne

∗ ωR
Trne

−−→ ωR

is surjective and so by Proposition 6.2, R is F -rational. □

As a consequence, we prove the following result on openness of F -rational locus for F -finite
local rings. We will eventually extend this result to excellent local rings.

Proposition 6.4. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. Then
the F -rational locus of Spec(R) is open.

Proof. Suppose RP is F -rational, it is enough to show that there exists f /∈ P such that Rf is
F -rational. Since RP is a domain by Proposition 4.4, there is a unique minimal prime P ′ of
R that is contained in P . Suppose we can find f /∈ P such that (R/P ′)f is F -rational, then

3Here we are using Proposition 6.2 for an F -finite but not necessarily local ring Rc, we leave it to the reader
to check that the proposition is still valid in our context: the point is that the trace map is Tre is globally
defined and it localizes to the corresponding trace map for RP for all P ∈ Spec(Rc).
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after replacing f by a multiple not in P so that P ′Rf = 0, we have that Rf
∼= (R/P ′)f is

F -rational. Thus we may replace R by R/P ′ to assume that (R,m, k) is an F -finite domain.
Since R is excellent by Theorem 1.7, there exists c ̸= 0 such that Rc is regular. Since RP

is F -finite and F -rational, by Proposition 6.2 we know that there exists e > 0 such that Tre:
F e

∗ (cωRP
) → ωRP

is surjective, where Tre can be viewed as the trace map of ωR localized
at P , see Discussion 6.1 (here R is a local domain and hence equidimensional). It follows
that there exists f /∈ P such that Tre: F e

∗ (cωRf
) → ωRf

is surjective. Since RP is Cohen-
Macaulay, we can replace f by a multiple to assume that Rf is Cohen-Macaulay.4 Now by
Proposition 6.3 (applied to each RQ such that Q ∈ D(f)), we see that Rf is F -rational. □

Remark 6.5. In the proof of Proposition 6.3, we are implicitly using R is local since we
need a global trace map Tr: F e

∗ωR → ωR. It is well-known that this holds as long as R is
F -finite and “sufficiently affine” (see [BB11], we will not make this precise here).5 Now for
any F -finite ring R, we can find a finite cover of Spec(R) by sufficiently affine open subsets
∪D(fi), then a small modification of the proof of Proposition 6.3 works for each Rfi

. But a
subset of Spec(R) is open if and only if its intersection with each D(fi) is open. Therefore
for any F -finite (not necessarily local) ring R, the F -rational locus of Spec(R) is open.

We next introduce the Γ-construction of Hochster–Huneke [HH94a] – a very useful tech-
nique to reduce questions from complete local rings to the case of F -finite local rings. The
results presented here: Lemma 6.9 – Lemma 6.14, originate from [HH94a] and [EH08].

Let k be a field of prime characteristic p > 0 with a p-basis Λ. Let Γ be a fixed cofinite
subset of Λ. For e ∈ N we denote by kΓ,e the purely inseparable field extension of k that is
the result of adjoining pe-th roots of all elements in Γ to k.

Discussion 6.6 (The Γ-construction). Let (R,m, k) be a complete local ring of prime charac-
teristic p > 0. Abusing notations a bit, we also fix k ⊆ R to be a coefficient field of R. Let
x1, . . . , xd be a system of parameters for R. By Cohen’s structure theorem we know that R
is module-finite over A = k[[x1, . . . , xd]] ⊆ R. We define

AΓ :=
⋃
e∈N

kΓ,e[[x1, . . . , xd]],

4It is well-known that the Cohen-Macaulay locus is open for excellent rings. In our context, we can argue
as follows: Since (R,m, k) is F -finite, we know that (R,m, k) is a homomorphic image of a regular local ring
(S, n, k) by Theorem 1.6, it is easy to check that RP is Cohen-Macaulay if and only if Extj

S(R, S)P = 0 for
all j ̸= n− d where n = dim(S) and d = dim(R), but if these Ext groups vanish when localized at P , then
they vanish when inverting f for some f /∈ P .
5In fact, it is true that there exists a global trace map Tr: F e

∗ ωR → ωR for all F -finite rings.
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which is a regular local ring faithfully flat and purely inseparable over A (note that AΓ is
Noetherian, we leave this as Exercise 31). The maximal ideal of A expands to that of AΓ. Set
RΓ := AΓ⊗AR. Then RΓ is module-finite over the regular local ring AΓ, and RΓ is faithfully
flat and purely inseparable over R. The maximal ideal of R expands to the maximal ideal
of RΓ and the residue field of RΓ is kΓ := ⋃

e∈N k
Γ,e. Note that, since R → RΓ is purely

inseparable, Spec(RΓ) can be identified with Spec(R). For every Q ∈ Spec(R), we use QΓ

to denote the unique prime ideal in RΓ corresponds to Q, i.e., QΓ =
√
QRΓ.

Remark 6.7. With notation as in Discussion 6.6, it is easy to see that RΓ = ⋃
e∈NR⊗̂kkΓ,e.

In particular, the definition of RΓ depends only on the choice of the coefficient field k (and
the choice of p-base of k), but not on the choice of x1, . . . , xd.

Remark 6.8. With notation as in Discussion 6.6, we have depthRQ = depthRΓ
QΓ since

RQ → RΓ
QΓ is purely inseparable. In particular, RQ is Cohen-Macaulay if and only if RΓ

QΓ is
Cohen-Macaulay.

Lemma 6.9. With notation as in Discussion 6.6, RΓ is F -finite.

Proof. It is enough to show that AΓ is F -finite, that is, F∗A
Γ is finitely generated as an

AΓ-module. Let θ1, . . . , θn be the finitely many elements in Λ− Γ. Then we claim that the
following finite set

Θ := {F∗(θi11 · · · θinn · x
j1
1 · · ·x

jd
d )|0 ≤ it, jt ≤ p− 1}

is a generating set of F∗A
Γ over AΓ. To see this, note that

F∗A
Γ =

⋃
e∈N

F∗(kΓ,e[[x1, . . . , xd]]),

and it is easy to check that F∗(kΓ,e[[x1, . . . , xd]]) is generated over kΓ,e+1[[x1, . . . , xd]] by Θ.
Thus after passing to the union, we see that Θ is a generating set of F∗A

Γ over AΓ. □

Lemma 6.10. With notation as in Discussion 6.6, if Q is a prime ideal of R, then for all
sufficiently small choices of Γ, we have QΓ = QRΓ.

Proof. Replacing R by R/Q, it is enough to show that if R is a complete local domain, then
RΓ is a domain for all sufficiently small choices of Γ (see Remark 6.7).

We let L, LΓ, LR denote the fraction field of A, AΓ, R respectively. Since AΓ is purely
inseparable over A, we know that LΓ = L⊗A AΓ. Also note that LR is a finite extension of
L. We first observe that it suffices to show LR ⊗L LΓ is a field for sufficiently small choices
of Γ: for if this is true, then we have

RΓ = R⊗A AΓ ↪→ LR ⊗A AΓ = LR ⊗L L⊗A AΓ = LR ⊗L LΓ
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and hence RΓ is a domain as desired (the injection above follows because AΓ is flat over A).
We next note that, since AΓ ↪→ kΓ[[x1, . . . , xd]], we have LΓ ⊆ Frac(kΓ[[x1, . . . , xd]]) and thus⋂

Γ⊆Λ cofinite
LΓ ⊆

⋂
Γ⊆Λ cofinite

Frac(kΓ[[x1, . . . , xd]]) = Frac(k[[x1, . . . , xd]]) = L

where the middle equality follows from [Mat70, 30.E] since ⋂ kΓ = k. Thus we have ⋂LΓ = L.
Let {λ1, . . . , λn} be a basis of LR over L. To show LR ⊗L LΓ is a field, it is enough to show
{λ1, . . . , λn} are linearly independent over LΓ (view all fields in a fixed ambient L). We pick
Γ such that the number of linearly independent vectors of {λ1, . . . , λn} over LΓ is maximum
among all the LΓ. If this number is h < n, then without loss of generality we can assume
{λ1, . . . , λh} are linearly independent over LΓ but λh+1 = ℓ1λ1 + · · · ℓhλh where ℓi ∈ LΓ and
at least one of the ℓi, say ℓ1, is not in L. Since ⋂LΓ = L, we can pick Γ′ ⊆ Γ such that
ℓ1 /∈ LΓ′ . But then λh+1 cannot be written as a linear combination of λ1, . . . , λh over LΓ′ (if
so then we have two expressions of λh+1 as linear combinations of λ1, . . . , λh over LΓ which
contradict the linear independency of {λ1, . . . , λh} over LΓ), it follows that {λ1, . . . , λh+1}
are linearly independent over LΓ′ contradicting our choice of Γ. Therefore, for all sufficiently
small choices of Γ, LR ⊗L LΓ is a field. □

Remark 6.11. With notation as in Discussion 6.6, if R is a domain, then we have Frac(R) =⋂Frac(RΓ) where the intersection is taken over all sufficiently small Γ such that RΓ is a
domain. In fact, following the notation as in the proof of Lemma 6.10, we have⋂

Frac(RΓ) =
⋂

(LR ⊗L LΓ) = LR ⊗L
⋂
LΓ = LR ⊗L L = LR = Frac(R)

where the second equality is because LR is a finite field extension of L and the third equality
uses ⋂LΓ = L as in the proof of Lemma 6.10.

Lemma 6.12. With notation as in Discussion 6.6, if RQ is regular then RΓ
QΓ is regular for

all sufficiently small choices of Γ. In fact, the regular locus of Spec(R) can be identified with
the regular locus of Spec(RΓ) for all sufficiently small choices of Γ.

Proof. By Lemma 6.10, for sufficiently small Γ, QRΓ = QΓ is a prime ideal. Thus RQ → RΓ
QΓ

is a faithfully flat extension whose closed fiber is a field, so it follows that RΓ
QΓ is regular.

We use Reg(R) to denote the regular locus of Spec(R). For any Γ′ ⊆ Γ two cofinite
subsets of Λ, we have a faithfully flat purely inseparable extension RΓ′ → RΓ which induces
a faithfully flat extension RΓ′

PΓ′ → RΓ
PΓ . Thus if P Γ ∈ Reg(RΓ), then P Γ′ ∈ Reg(RΓ′). Thus

after we identify Spec(RΓ) with Spec(R), we have Reg(RΓ) ⊆ Reg(RΓ′) (note that these are
open subsets of Spec(R) since all RΓ are F -finite by Lemma 6.9 and hence excellent). Since
open subsets of Spec(R) satisfy ascending chain condition, we know that for all sufficiently
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small choices of Γ, Reg(RΓ) = Reg(RΓ′) for all Γ′ ⊆ Γ. Fix such a Γ, we will show that
Reg(R) = Reg(RΓ). Clearly Reg(RΓ) ⊆ Reg(R). Suppose there exists Q ∈ Reg(R) but
QΓ /∈ Reg(RΓ). Then by the first part of the lemma we can pick a sufficiently small Γ′ ⊆ Γ
such that QΓ′ ∈ Reg(RΓ′), but then Reg(RΓ′) ̸= Reg(RΓ) which is a contradiction. □

Lemma 6.13. With notation as in Discussion 6.6, if Q ∈ Spec(R) and W is an Artinian
RQ-module with an injective Frobenius action, then for all sufficiently small choices of Γ the
induced Frobenius action is injective on W Γ := W ⊗RQ

RΓ
QΓ.

Proof. By Lemma 6.10, we may assume Γ is small enough such that QΓ = QRΓ. Then we
have κ(QΓ) = Frac(RΓ/QRΓ) and ⋂κ(QΓ) = κ(Q) (see Remark 6.11).

Let V be the socle of W . Since W is Artinian, V is a finite dimensional vector space over
κ(Q) and V Γ := V ⊗RQ

RΓ
QΓ = V ⊗κ(Q) κ(QΓ) is the socle of W Γ (as a module over RΓ

QΓ).
Let F be the given Frobenius action on W and let F Γ be the induced Frobenius action on
W Γ. Set UΓ := V Γ ∩Ker(F Γ) which is a κ(QΓ)-subspace of V Γ.

Note that UΓ′ ⊆ UΓ whenever Γ′ ⊆ Γ and F Γ is injective on W Γ if and only if UΓ = 0. We
pick Γ sufficiently small such that dim(UΓ) is the smallest. We next fix a basis v1, . . . , vn of
V over κ(Q). If dim(UΓ) > 0, then we choose a basis of UΓ over κ(QΓ) and write each basis
vector as ∑ aijvj where aij ∈ κ(QΓ). Now the reduced row echelon form of (aij) is uniquely
determined by UΓ, and in this reduced row echelon form, each row must contain an entry not
in κ(Q) since UΓ ∩ V = 0 (as F is injective on W ). But since ⋂κ(QΓ) = κ(Q), there exists
Γ′ ⊆ Γ such that at least one of these entries is not in κ(QΓ′), it follows that UΓ′ must have
dimension strictly smaller than dim(UΓ) (choose a basis of UΓ′ and look at the reduced row
echelon form with respect to v1, . . . , vn again, it must have fewer rows). This contradicts our
choice of Γ. Thus for all sufficiently small Γ, UΓ = 0 and so F Γ is injective as desired. □

Lemma 6.14. With notation as in Discussion 6.6, if RQ is F -rational, then RΓ
QΓ is F -

rational for all sufficiently small choices of Γ. In fact, the F -rational locus of Spec(R) can
be identified with the F -rational locus of Spec(RΓ) for all sufficiently small choices of Γ.

Proof. Since RQ is an excellent local domain (by Proposition 4.4), there exists c ∈ R whose
image in RQ is nonzero such that (RQ)c is regular. Since Reg(R) = Reg(RΓ) for sufficiently
small choices of Γ by Lemma 6.12, Reg(Rc) = Reg(RΓ

c ) and thus (RΓ
QΓ)c is regular. Since

RΓ
QΓ is F -finite and Cohen-Macaulay, by Proposition 6.3 it is enough to show there exists

e > 0 such that for all sufficiently small choices of Γ,

Hh
QΓ(RΓ

QΓ)→ F e
∗H

h
QΓ(RΓ

QΓ) ·F e
∗ c−−→ F e

∗H
h
QΓ(RΓ

QΓ)
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is injective, where h = ht(Q). This follows from Lemma 6.13 since RQ is F -rational and
Hh
QΓ(RΓ

QΓ) ∼= Hh
Q(RQ)⊗RQ

RΓ
QΓ .

The rest of the proof is very similar to Lemma 6.12. We use Frat(R) to denote the F -
rational locus of Spec(R). For any Γ′ ⊆ Γ two cofinite subsets of Λ, we have a faithfully
flat extension RΓ′ → RΓ which induces a faithfully flat extension RΓ′

PΓ′ → RΓ
PΓ . Thus if

P Γ ∈ Frat(RΓ), then P Γ′ ∈ Frat(RΓ′) by Exercise 20. Thus after we identify Spec(RΓ) with
Spec(R), we have Frat(RΓ) ⊆ Frat(RΓ′) (note that these are open subsets of Spec(R) by
Proposition 6.4). Since open subsets of Spec(R) satisfy ascending chain condition, we know
that for all sufficiently small choices of Γ, Frat(RΓ) = Frat(RΓ′) for all Γ′ ⊆ Γ. Fix such
a Γ, we will show that Frat(R) = Frat(RΓ). Clearly Frat(RΓ) ⊆ Frat(R). Suppose there
exists Q ∈ Frat(R) but QΓ /∈ Frat(RΓ). Then by the first part of the lemma we can pick a
sufficiently small Γ′ ⊆ Γ such that QΓ′ ∈ Frat(RΓ′), but then Frat(RΓ′) ̸= Frat(RΓ) which is
a contradiction. □

Corollary 6.15. Let (R,m, k) be a complete local ring of prime characteristic p > 0. Then
the F -rational locus of Spec(R) is open.

Proof. By Lemma 6.9, for all sufficiently small choices of Γ, RΓ is F -finite. Thus by Propo-
sition 6.4, the F -rational locus of Spec(RΓ) is open. Hence so is the F -rational locus of
Spec(R) by Lemma 6.14. □

We can now prove the following.

Theorem 6.16. Let (R,m, k) be an excellent Cohen-Macaulay local ring of prime char-
acteristic p > 0. Suppose there exists c not in any minimal prime of R such that Rc is
regular. Then R̂ is F -rational (and hence R is F -rational) if there exists e > 0 such that the
composition

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R)

is injective. In particular, if R is excellent, then R is F -rational if and only if R̂ is F -rational.

Proof. We first note that Hd
m(R) = Hd

m(R̂) and if c ∈ R is not in any minimal prime of R,
then c is not in any minimal prime of R̂. Thus it is clear that R̂ is F -rational implies R
is F -rational (this is also a special case of Exercise 20, and we do not need to assume R is
excellent).

Since R is excellent, R → R̂ has geometrically regular fibers and hence we know that R̂c

is also regular. By Lemma 6.12, R̂Γ
c is regular for sufficiently small choices of Γ. Moreover,

since
Hd

m(R)→ Hd
m(F e

∗R) ·F e
∗ c−−→ Hd

m(F e
∗R)
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is injective, By Lemma 6.13, it follows that for sufficiently small choices of Γ,

Hd
m(R̂Γ)→ F e

∗H
d
m(R̂Γ) ·F e

∗ c−−→ F e
∗H

d
m(R̂Γ)

is injective.
Since R̂Γ is F -finite and Cohen-Macaulay, and R̂Γ

c is regular (note that c is not in any
minimal prime of R̂Γ since R → R̂Γ is flat), Proposition 6.3 shows that R̂Γ is F -rational.
But then since R̂→ R̂Γ is faithfully flat, R̂ is F -rational by Exercise 20. The last conclusion
follows since the assumptions are clearly satisfied if R is F -rational. □

Remark 6.17. There are examples of non-excellent F -rational local rings (R,m, k) of prime
characteristic p > 0 such that R̂ is not F -rational, see [LR01].

Exercise 30. Let R be an F -finite ring of prime characteristic p > 0. Prove that the
F -injective, F -pure and strongly F -regular locus of Spec(R) are open.

Exercise 31. With notation as in Discussion 6.6, prove that AΓ → kΓ[[x1, . . . , xd]] is faith-
fully flat, and use this to show that AΓ is Noetherian. (Hint: Prove the more general fact
that if A → B is a faithfully flat extension of rings such that B is Noetherian, then A is
Noetherian.)

Exercise 32. With notation as in Discussion 6.6, use Lemma 6.10 to prove that if J is a
radical ideal of R, then for all sufficiently small choices of Γ, we have JRΓ is radical (in
particular if R is reduced then RΓ is reduced for all sufficiently small Γ).

In Proposition 6.3, Remark 6.5, and Exercise 30, we have seen that for F -finite rings, the
loci of Spec(R) such that R is F -rational (resp., F -injective, F -pure) is open. In Chapter 7,
we will show that the same holds for excellent local rings, and with some further work this
can be shown to hold for all rings essentially of finite type over excellent local rings – this is
basically because the theory of Γ-construction can extended to this set up (see [HH94a] or
[Mur21]). It is thus natural to ask the following question.

Open Problem 3. Let R be an excellent ring of prime characteristic p > 0. Is the F -
rational (resp., F -injective, F -pure) locus of Spec(R) open?6

6We caution the reader that, one cannot expect the openness of loci for these F -singularities without the
excellent assumption, for example see [DM24, Theorem 5.10] (which is based on [Hoc73a]).
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7. F -singularities under faithfully flat base change

The goal of this chapter is to study F -singularities under faithfully flat base change. The
general question we are interested is the following : Suppose (R,m, k) → (S, n, ℓ) is a flat
local extension such that the base ring R and the closed fiber S/mS have certain type of
F -singularities, then whether S has the same type of F -singularities? For example, if R is
a DVR with uniformizer t, then S/mS ∼= S/tS where t is a nonozerodivisor of S, and this is
precisely the deformation question we studied in Chapter 5.

Since even the deformation question has a negative answer in general (e.g., for F -pure and
strongly F -regular singularities, see Chapter 8, Example 8.9), one cannot expect the general
question hold without additional assumptions. We will present what is known in this area.
We first recall a well-known lemma.

Lemma 7.1 ([Mat70, Section 21]). Let (R,m, k)→ (S, n, ℓ) be a flat local extension such that
S/mS is Cohen-Macaulay. Let x := x1, . . . , xd be a system of parameters of S/mS. Then
x1, . . . , xd is a regular sequence on S and S/(x)S is faithfully flat over R. In particular,
Hd

(x)(S) is faithfully flat over R.

We also recall the following result on the behavior of injective hull under faithfully flat
extension with Gorenstein closed fiber, which is due to Hochster–Huneke [HH94a, Lemma
7.10] in the generality we need.

Lemma 7.2. Let (R,m, k)→ (S, n, ℓ) be a flat local extension such that S/mS is Gorenstein.
Let x := x1, . . . , xd be a system of parameters of S/mS. Then ES(ℓ) ∼= ER(k) ⊗R Hd

(x)(S).
Moreover, if u is a socle representative of ER(k) and the image of v

x1···xd
∈ Hd

(x)(S) in
Hd

(x)(S/mS) is a socle representative of Hd
(x)(S/mS), then u⊗ v

x1···xd
is a socle representative

of ES(ℓ) ∼= ER(k)⊗R Hd
(x)(S).

Proof. We have ER(k) = ∪h AnnER(k) m
h ∼= ∪hER/mh(k) and similarly ES(ℓ) ∼= ∪hES/mhS(ℓ).

Thus we can replace R → S by R/mh → S/mhS to assume that (R,m, k) is Artinian (note
that the socle representative doesn’t change when we do this replacement).

By Lemma 7.1, we know that St := S/(xt1, . . . , xtd)S is faithfully flat over R with St/mSt

Gorenstein. If we can show that ER(k)⊗R St ∼= ESt(ℓ), then we would have

ER(k)⊗R Hd
(x)(S) ∼= ER(k)⊗R lim−→

t

St ∼= lim−→ESt(ℓ) ∼= ES(ℓ).

Note that v
x1···xd

∈ Hd
(x)(S) is the image of v(x1 · · · xd)t−1 ∈ St whose image in St/mSt is a

socle representative of St/mSt. Therefore, replacing S by St and v
x1···xd

by v(x1, . . . , xd)t−1
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and noting that for Artinian local rings, the injective hull of the residue field coincides with
the canonical module, it is enough to establish the following claim:

Claim 7.3. Let (R,m, k)→ (S, n, ℓ) be a flat local extension of Artinian local rings such that
S/mS is Gorenstein. Then we have ωR ⊗R S ∼= ωS. Moreover, if u is a socle representative
of ωR and v ∈ S whose image in S/mS is a socle representative of S/mS, then u ⊗ v is a
socle representative of ωR ⊗R S ∼= ωS.

Proof of Claim. Since R→ S is flat local, we have ℓS(ωR⊗RS) = ℓS(R⊗RS) = ℓS(S). Thus
to show ωR ⊗R S ∼= ωS, it is enough to show that ωR ⊗R S has a one-dimensional socle. But
note that

HomS(ℓ, ωR ⊗R S) ∼= HomS(ℓ,HomS(S/mS, ωR ⊗R S))
∼= HomS(ℓ,HomR(k, ωR)⊗R S)
∼= HomS(ℓ, k ⊗R S) ∼= HomS(ℓ, S/mS) ∼= ℓ,

which is exactly what we want to show. We leave it to the reader to check through the above
isomorphisms that the socle elements are matched as in the claim. □

□

7.1. The case of strongly F -regular and F -pure singularities. We first prove the
base change results on F -pure and strongly F -regular singularities. These results, in the
generality we presented, are originally due to Aberbach [Abe01] using methods from tight
closure theory. Our arguments are more streamlined and do not depend on the knowledge
of tight closure. In what follows, we will use ER and ES to denote the injective hull of the
residue field of R and S respectively. We begin with the F -pure case.

Theorem 7.4. Let (R,m, k) → (S, n, ℓ) be a flat local extension of rings of prime char-
acteristic p > 0 such that R is F -pure and S/mS is Gorenstein and F -pure.7 Then S is
F -pure.

Proof. By Lemma 7.2 and Proposition 2.2, it is enough to show that

ER ⊗R Hd
(x)(S)→ ER ⊗R Hd

(x)(S)⊗S F e
∗S
∼= ER ⊗R F e

∗R⊗F e
∗R F

e
∗H

d
(x)(S)

is injective for all e > 0. Now the image of the socle representative u ⊗ v
x1···xd

under the
map is u⊗ F e

∗ 1⊗ F e
∗ ( vpe

xpe

1 ···xpe

d

). Thus it is enough to show this element is nonzero in ER ⊗R

7Note that if R is a DVR (or more generally, a regular local ring), then we only need to assume S/mS is quasi-
Gorenstein and F -pure, see Exercise 26. The authors do not know whether one can relax the Gorenstein
hypothesis to quasi-Gorenstein in general.
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F e
∗R ⊗F e

∗R F
e
∗H

d
(x)(S). Since R is F -pure, u ⊗ F e

∗ 1 ̸= 0 in ER ⊗R F e
∗R. Thus there exists a

nonzero (F e
∗R)-linear map F e

∗R → ER ⊗R F e
∗R sending F e

∗ 1 to u ⊗R F e
∗ 1, say with kernel

F e
∗J . Since F e

∗H
d
(x)(S) is faithfully flat over F e

∗R by Lemma 7.1, we have an injection:

(F e
∗R/F

e
∗J)⊗F e

∗R F
e
∗H

d
(x)(S) ↪→ ER ⊗R F e

∗R⊗F e
∗R F

e
∗H

d
(x)(S).

The image of F e
∗ 1⊗ F e

∗ ( vpe

xpe

1 ···xpe

d

) under this map is precisely u⊗ F e
∗ 1⊗ F e

∗ ( vpe

xpe

1 ···xpe

d

). Thus to

show the latter one is nonzero, it is enough to show F e
∗ 1⊗ F e

∗ ( vpe

xpe

1 ···xpe

d

) ̸= 0. But

(F e
∗R/F

e
∗J)⊗F e

∗R F
e
∗H

d
(x)(S) ↠ (F e

∗R/F
e
∗m)⊗F e

∗R F
e
∗H

d
(x)(S) ∼= F e

∗ (Hd
(x)(S/mS)),

thus it is enough to show that F e
∗ ( vpe

xpe

1 ···xpe

d

) ̸= 0 in F e
∗ (Hd

(x)(S/mS)), that is, vpe

xpe

1 ···xpe

d

̸= 0
in Hd

(x)(S/mS). But S/mS is F -pure, in particular F -injective by Exercise 21, hence the
Frobenius action on Hd

(x)(S/mS) is injective. Since v
x1···xd

̸= 0, vpe

xpe

1 ···xpe

d

= F e( v
x1···xd

) ̸= 0 in
Hd

(x)(S/mS). □

We next prove the general base change result for strong F -regularity. One difficulty in
establishing this compared with the F -pure case is that we need to choose c carefully to
detect the strong F -regularity of the target ring.

Theorem 7.5. Let (R,m, k) → (S, n, ℓ) be a flat local extension of F -finite rings of prime
characteristic p > 0 such that R is strongly F -regular and S/mS is Gorenstein and strongly
F -regular. Then S is strongly F -regular.

Proof. Since S/mS is strongly F -regular, it is a normal domain by Proposition 3.8. Thus
mS is a prime ideal in S. We first show that S ′ = SmS is strongly F -regular. We know that
R → S ′ is a flat local extension such that S ′/mS ′ is a field. Moreover, by Proposition 3.12,
we may replace R and S ′ by their completion to assume R and S ′ are both complete.

Suppose there exists c ∈ S ′ not in any minimal prime of S ′ such that for all e > 0, the
map S ′ → F e

∗S
′ sending 1 to F e

∗ c is not split, then by Corollary 2.4 and Proposition 2.2, the
map ES′ → ES′ ⊗S′ F e

∗S
′ induced by sending 1 to F e

∗ c is not injective for all e > 0, thus
the socle of ES′ maps to zero under this map. By Lemma 7.2, ES′ ∼= ER ⊗R S ′ and a socle
representative is u⊗ 1 where u is a socle representative of ER. It follows that

ES′ ⊗S′ F e
∗S

′ ∼= ER ⊗R S ′ ⊗S′ F e
∗S

′ ∼= ER ⊗R F e
∗R⊗F e

∗R F
e
∗S

′

and that u⊗ F e
∗ 1⊗ F e

∗ c = 0 in ER ⊗R F e
∗R⊗F e

∗R F
e
∗S

′ for all e > 0. Thus

F e
∗ c ∈ AnnER⊗RF

e
∗R⊗F e

∗ RF
e
∗S′(u⊗ F e

∗ 1⊗ F e
∗ 1) ∼= (AnnER⊗RF

e
∗R(u⊗ F e

∗ 1))⊗F e
∗R F

e
∗S

′
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for all e > 0 where the isomorphism follows from that F e
∗S

′ is flat over F e
∗R. However,

since R is strongly F -regular, we know that for all 0 ̸= z ∈ R, there exists e > 0 such that
the map R → F e

∗R sending 1 to F e
∗ z is split, thus F e

∗ z /∈ AnnER⊗RF
e
∗R(u ⊗ F e

∗ 1) (again by
Corollary 2.4 and Proposition 2.2). Therefore, if we define F e

∗ Ie := AnnER⊗RF
e
∗R(u ⊗ F e

∗ 1),
then ∩eIe = 0 and 0 ̸= c ∈ ∩e(Ie ⊗R S ′). But by Chevalley’s lemma, for all n > 0, there
exists e(n) such that Ie(n) ⊆ mn, thus ∩e(Ie ⊗R S ′) ⊆ ∩nmnS ′ = 0 which is a contradiction.

So far we have proved that SmS is strongly F -regular. By Exercise 30, there exists c /∈ mS

such that Sc is strongly F -regular. Note that c is a nonzerodivisor on S/mS and thus it is
a nonzerodivisor on S by Lemma 7.1, in particular, c is not in any minimal prime of S. By
Theorem 3.11, it is enough to show that there exists e > 0 such that the map S → F e

∗S

sending 1 to F e
∗ c is split. The rest of the proof is very similar to the proof of Theorem 7.4.

By Corollary 2.4 and Proposition 2.2, it is enough to show that the map ES → ES ⊗S F e
∗S

induced by sending 1 to F e
∗ c is injective for some e > 0. By Lemma 7.2, this is the same as

the map

ER ⊗R Hd
(x)(S)→ ER ⊗R Hd

(x)(S)⊗S F e
∗S
∼= ER ⊗R F e

∗R⊗F e
∗R F

e
∗H

d
(x)(S).

Now the image of the socle representative u⊗ v
x1···xd

under the map is u⊗F e
∗ 1⊗F e

∗ ( cvpe

xpe

1 ···xpe

d

).
Thus it is enough to show this element is nonzero in ER ⊗R F e

∗R ⊗F e
∗R F

e
∗H

d
(x)(S). Since R

is strongly F -regular (in particular F -pure), u⊗ F e
∗ 1 ̸= 0 in ER ⊗R F e

∗R. Thus there exists
a nonzero (F e

∗R)-linear map F e
∗R → ER ⊗R F e

∗R sending F e
∗ 1 to u⊗R F e

∗ 1, say with kernel
F e

∗J . Since F e
∗H

d
(x)(S) is faithfully flat over F e

∗R by Lemma 7.1, we have an injection:

(F e
∗R/F

e
∗J)⊗F e

∗R F
e
∗H

d
(x)(S) ↪→ ER ⊗R F e

∗R⊗F e
∗R F

e
∗H

d
(x)(S).

The image of F e
∗ 1⊗ F e

∗ ( cvpe

xpe

1 ···xpe

d

) under this map is precisely u⊗ F e
∗ 1⊗ F e

∗ ( cvpe

xpe

1 ···xpe

d

). Thus to

show the latter one is nonzero for some e > 0, it is enough to show F e
∗ 1 ⊗ F e

∗ ( cvpe

xpe

1 ···xpe

d

) ̸= 0
for some e > 0. But we have

(F e
∗R/F

e
∗J)⊗F e

∗R F
e
∗H

d
(x)(S) ↠ (F e

∗R/F
e
∗m)⊗F e

∗R F
e
∗H

d
(x)(S) ∼= F e

∗ (Hd
(x)(S/mS)).

Thus it is enough to show that F e
∗ ( cvpe

xpe

1 ···xpe

d

) ̸= 0 in F e
∗ (Hd

(x)(S/mS)) for some e > 0, that is,
cvpe

xpe

1 ···xpe

d

̸= 0 in Hd
(x)(S/mS) for some e > 0. But S/mS is strongly F -regular, and hence F -

rational by Theorem 4.6. Therefore since v
x1···xd

̸= 0, cvpe

xpe

1 ···xpe

d

= cF e( v
x1···xd

) ̸= 0 in Hd
(x)(S/mS)

for some e > 0 as desired. □

7.2. The case of F -rational and F -injective singularities. We next prove the general
base change result on F -injective and F -rational singularities. We slightly deviate from the
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historical discoveries of these results: we first prove the F -injective case, which is due to
Datta–Murayama [DM24], and then we will make use of the F -injective case along with
other techniques to establish the result on base change of F -rationality.

Theorem 7.6. Let (R,m, k) → (S, n, ℓ) be a flat local extension of rings of prime charac-
teristic p > 0 such that R is F -injective and S/mS is Cohen-Macaulay and geometrically
F -injective over k. Then S is F -injective.

Proof. Let x := x1, . . . , xd be a system of parameters of S/mS. We first claim the following:

Claim 7.7. For any Artinian R-module M , the map F e
∗M ⊗RHd

(x)(S)→ F e
∗ (M ⊗RHd

(x)(S))
sending F e

∗m ⊗ η → F e
∗ (m ⊗ F e(η)) is injective for all e > 0, where F e(−) is the natural

Frobenius action on Hd
(x)(S).

Proof. By taking a direct limit, it suffices to prove the claim for all R-modules of finite
length. Moreover, if 0→ M1 → M2 → M3 → 0 is a short exact sequence, then since F e

∗ (−)
and ⊗RHd

(x)(S) are both exact (by Lemma 7.1), we have a commutative diagram

0 // F e
∗M1 ⊗R Hd

(x)(S) //

��

F e
∗M2 ⊗R Hd

(x)(S) //

��

F e
∗M3 ⊗R Hd

(x)(S) //

��

0

0 // F e
∗ (M1 ⊗R Hd

(x)(S)) // F e
∗ (M2 ⊗R Hd

(x)(S)) // F e
∗ (M3 ⊗R Hd

(x)(S)) // 0.

Thus to prove the claim for M2, it is enough to prove it for M1 and M3. So by induction
on the length of M , it is enough to prove the claim for M = k. But we have the following
commutative diagram

F e
∗k ⊗R Hd

(x)(S) //

∼=
��

F e
∗ (k ⊗R Hd

(x)(S))

∼=
��

Hd
(x)(F e

∗k ⊗k S/mS) // F e
∗ (Hd

(x)(S/mS)) // F e
∗ (Hd

(x)(F e
∗k ⊗k S/mS))

.

The composition map in the second row is injective, because it is a direct limit of the natural
Frobenius map Hd

(x)(k′ ⊗k S/mS)→ F e
∗ (Hd

(x)(k′ ⊗k S/mS)) (where k′ is a finite extension of
k in F e

∗k), which is injective since S/mS is geometrically F -injective over k. Thus the map
in the first row is injective as desired. □

Now Claim 7.7 implies that the natural map

F e
∗H

i
m(R)⊗R Hd

(x)(S)→ F e
∗ (H i

m(R)⊗R Hd
(x)(S)) ∼= F e

∗H
i+d
n (S)
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is injective (the last isomorphism follows from Lemma 7.1 and a simple computation using
the spectral sequence H i

mH
j
(x)(S) ⇒ H i+j

n (S)). But H i
m(R) → F e

∗H
i
m(R) is injective since R

is injective, thus as Hd
(x)(S) is faithfully flat over R by Lemma 7.1, we know that

H i+d
n (S) ∼= H i

m(R)⊗R Hd
(x)(S)→ F e

∗H
i
m(R)⊗R Hd

(x)(S)

is injective. Composing the two maps we find that H i+d
n (S)→ F e

∗H
i+d
n (S) is injective for all

i (we leave it to the reader to check that this map is precisely the natural Frobenius action
on H i+d

n (S)). Thus S is F -injective. □

It will take us considerable effort to prove the corresponding base change result for F -
rationality. We first prove a special case, that is, when S/mS is geometrically regular. This
result was originally obtained by Vélez [Vél95] (which extended some results in [HH94a]).

Theorem 7.8. Let (R,m, k)→ (S, n, ℓ) be a flat local extension of excellent rings of prime
characteristic p > 0 such that R is F -rational and S/mS is geometrically regular over k.
Then S is F -rational.

Proof. Since S/mS is geometrically regular over k (so clearly Cohen-Macaulay and geomet-
rically F -injective over k), by Claim 7.7 we know that

F e
∗H

n
m(R)⊗R Hd

(x)(S)→ F e
∗ (Hn

m(R)⊗R Hd
(x)(S))

is injective for all e > 0, where n = dim(R) and d = dim(S/mS).
Furthermore, since R is excellent and (R,m, k)→ (S, n, ℓ) is flat local with S/mS geomet-

rically regular over k, κ(P )⊗R S is geometrically regular over κ(P ) for all P ∈ Spec(R) by
[And74, Thm on page 297]. In particular, there exists 0 ̸= c ∈ R such that Rc and Sc are
both regular (note that R is a domain by Proposition 4.4 and thus c is not in any minimal
prime of S since R→ S is flat). Now since R is F -rational, there exists e > 0 such that

Hn
m(R)→ F e

∗H
n
m(R) ·F e

∗ c−−→ F e
∗H

n
m(R)

is injective. This injection is preserved after tensoring with Hd
(x)(S) since the latter is flat

over R by Lemma 7.1, and thus the composition

Hn
m(R)⊗RHd

(x)(S)→ F e
∗H

n
m(R)⊗RHd

(x)(S) ·F e
∗ c−−→ F e

∗H
n
m(R)⊗RHd

(x)(S)→ F e
∗ (Hn

m(R)⊗RHd
(x)(S))

is injective. After identifying Hn
m(R) ⊗R Hd

(x)(S) with Hn+d
n (S) (again, this follows from

Lemma 7.1 and the spectral sequence H i
mH

j
(x)(S)⇒ H i+j

n (S)), the above injection is precisely

Hn+d
n (S)→ F e

∗H
n+d
n (S) ·F e

∗ c−−→ Hn+d
n (S).
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Since S is excellent Cohen-Macaulay and Sc is regular (and c is not in any minimal prime
of S), S is F -rational by Theorem 6.16. □

The above theorem allows us to prove the following criterion for F -rationality. This is a
full generalization of Proposition 6.3 and Theorem 6.16.

Theorem 7.9. Let (R,m, k) be an excellent Cohen-Macaulay local ring of prime character-
istic p > 0. Suppose there exists c not in any minimal prime of R such that Rc is F -rational.
Then R is F -rational if and only if there exists e > 0 such that the composition

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R)

is injective.

Proof. Since Rc → R̂c has geometrically regular fibers (as R is excellent), we know that R̂c is
F -rational by Theorem 7.8. It follows that for sufficiently small choices of Γ, R̂Γ

c is F -rational
by Lemma 6.14. Moreover, since

Hd
m(R)→ Hd

m(F e
∗R) ·F e

∗ c−−→ Hd
m(F e

∗R)

is injective, it follows that for sufficiently small choices of Γ,

Hd
m(R̂Γ)→ F e

∗H
d
m(R̂Γ) ·F e

∗ c−−→ F e
∗H

d
m(R̂Γ)

is injective by Lemma 6.13. Since R̂Γ is F -finite and R̂Γ
c is F -rational (and c is not in any

minimal prime of R̂Γ since R → R̂Γ is flat), Proposition 6.3 shows that R̂Γ is F -rational.
But then since R→ R̂Γ is faithfully flat, R is F -rational by Exercise 20. □

We can also extend Proposition 6.4 to the case of excellent local rings, this was also
originally proved by Vélez [Vél95].

Theorem 7.10. Let (R,m, k) be an excellent local ring of prime characteristic p > 0. Then
the F -rational locus of Spec(R) is open.

Proof. By Corollary 6.15, we know that the F -rational locus of Spec(R̂) is open. Let V (I) ⊆
Spec(R̂) be the non-F -rational locus where I ⊆ R̂ is a radical ideal. We claim that the
non-F -rational locus of Spec(R) is precisely V (I ∩R).

To see this, first note that if P ∈ Spec(R) such that P does not contain I ∩ R, then any
prime Q ∈ Spec(R̂) lying over P does not contain I and thus R̂Q is F -rational, which implies
RP is F -rational by Exercise 20 since RP → R̂Q is faithfully flat.

Now suppose P ∈ Spec(R) contains I ∩ R, we want to show RP is not F -rational. Write
I = Q1 ∩ · · · ∩ Qn where Q1, . . . , Qn are minimal primes of I. Then I ∩ R = P1 ∩ · · · ∩ Pn
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where Pi = Qi ∩ R. Since I ∩ R ⊆ P , we know Pi ⊆ P for some i. If RP is F -rational,
then RPi

is F -rational by Theorem 4.14. But then as Qi contracts to Pi and R is excellent,
RPi
→ R̂Qi

is a faithfully flat extension of excellent local rings with geometrically regular
fibers. Thus Theorem 7.8 implies that R̂Qi

is F -rational, which is a contradiction to I ⊆ Qi

(recall that V (I) is the non-F -rational locus of Spec(R̂)). □

Remark 7.11. In fact, the idea behind the proof of Theorem 7.10 is a more general result:
if R → S is a faithfully flat extension and U ⊆ Spec(R), then U is open if and only if the
pre-image of U in Spec(S) is open, see [Sta, Lemma 29.25.12].

The behavior of F -rational singularities under flat local extension was studied exten-
sively by Enescu [Ene00] and Aberbach–Enescu [AE03] (which extends some results in
[HH94a, HH94c, Vél95]). The theorem we present here seems to be most general version,
and was originally proved in [AE03] using sophisticated arguments involving tight closure.
Our treatment, based on similar ideas, is more streamlined.

Theorem 7.12. Let (R,m, k)→ (S, n, ℓ) be a flat local extension of excellent rings of prime
characteristic p > 0 such that R is F -rational and S/mS is geometrically F -rational over k.
Then S is F -rational.

Proof. Since S/mS is F -rational, it is a normal domain by Proposition 4.4. Thus mS is a
prime ideal in S. We first show that S ′ := SmS is F -rational: since S/mS is geometrically
F -rational over k, we know that R → S ′ is a flat local extension such that S ′/mS ′ is
geometrically F -rational and thus geometrically regular over k (since dim(S ′/mS ′)=0) and
so by Theorem 7.8, S ′ is F -rational.

Since S is an excellent local domain and SmS is F -rational, by Theorem 7.10 we know that
there exists c /∈ mS such that Sc is F -rational. Note that c is a nonzerodivisor on S/mS and
thus it is a nonzerodivisor on S by Lemma 7.1, in particular, c is not in any minimal prime
of S. Let x := x1, . . . , xd be a system of parameters of S/mS. In analogy with Claim 7.7,
we have the following.

Claim 7.13. For any Artinian R-module M , the map F e
∗M⊗RHd

(x)(S)→ F e
∗ (M⊗RHd

(x)(S))
sending F e

∗m⊗ η → F e
∗ (m⊗ cF e(η)) is injective for some e > 0, where F e(−) is the natural

Frobenius action on Hd
(x)(S).

Proof. This follows from the same argument as in Claim 7.7, using S/mS is geometrically
F -rational instead of geometrically F -injective. □
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As a consequence, we see that there exists e > 0 such that the map F e
∗H

n
m(R)⊗RHd

(x)(S)→
F e

∗ (Hn
m(R) ⊗R Hd

(x)(S)) sending F e
∗ η

′ ⊗ η → F e
∗ (η′ ⊗ cF e(η)) is injective. But since R is F -

injective and Hd
(x)(S) is faithfully flat over R (see Lemma 7.1), composing this injection with

the injection
Hn

m(R)⊗R Hd
(x)(S)→ F e

∗H
n
m(R)⊗R Hd

(x)(S)

and using that Hn
m(R)⊗R Hd

(x)(S) ∼= Hn+d
n (S), we find that Hn+d

n (S)→ F e
∗H

n+d
n (S) sending

η to F e
∗ (cF e(η)) is injective. Since S is excellent Cohen-Macaulay and Sc is F -rational (and

c is not in any minimal prime of S), by Theorem 7.9, we see that S is F -rational. □

It is natural to ask whether we can drop “geometrically” in Theorem 7.6 or Theorem 7.12.
It turns out that both answers are no: the F -injective case was settled by Enescu [Ene09,
Proposition 4.2], which was based on [EH08, Example 2.16] (we leave the details in Exer-
cise 36); the F -rational case was settled by Quinlan-Gallego–Simpson–Singh [QGSS24]: they
constructed examples of flat local extensions of excellent rings (R,m, k)→ (S, n, ℓ) of prime
characteristic p > 0 such that R is F -rational and S/mS is regular (in fact a field), but S is
not even F -injective [QGSS24, Theorem 1.1].

Remark 7.14. Though the results in this chapter are stated for local rings, one can immedi-
ately deduce the corresponding global results (as these F -singularities are local properties).
Namely, if R→ S is a faithfully flat extension such that R is F -pure (resp., F -injective, excel-
lent and F -rational, F -finite and strongly F -regular) and all fibers of R→ S are Gorenstein
and F -pure (resp., Cohen-Macaulay and geometrically F -injective, geometrically F -rational,
Gorenstein F -finite and strongly F -regular), then S is F -pure (resp., F -injective, F -rational
if S is excellent, strongly F -regular if S is F -finite).

Exercise 33. With notation as in Discussion 6.6, prove that if RQ is F -injective (resp.,
F -pure), then RΓ

QΓ is F -injective (resp., F -pure) for all sufficiently small choices of Γ. Fur-
thermore, prove that the F -injective (resp., F -pure) locus of Spec(R) can be identified with
the F -injective (resp., F -pure) locus of Spec(RΓ) for all sufficiently small choices of Γ. (Hint:
Mimic the proof of Lemma 6.14: in the F -injective case use Lemma 6.13, while in the F -pure
case, Theorem 7.4 could be helpful.)

Exercise 34. Let (R,m, k) be an excellent local ring of prime characteristic p > 0. Prove
that the F -pure and F -injective locus of Spec(R) are open. (Hint: First mimic the proof
of Theorem 7.10, replacing the use of Theorem 7.8 by using Theorem 7.4 and Theorem 7.6,
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to reduce to the case that R is complete. Then mimic the proof of Corollary 6.15 by using
Exercise 30 and Exercise 33.)

The ideal Ie that shows up in the proof of Theorem 7.5 plays an important role in the
study of F -singularities (e.g., see Chapter 9).

Exercise 35. Let (R,m, k) be an F -finite ring of prime characteristic p > 0. Let ER
be the injective hull of the residue field and let u be a socle representative. Recall that
F e

∗ Ie := AnnER⊗RF
e
∗R(u⊗ F e

∗ 1). Prove that

Ie = {r ∈ R | for all ϕ ∈ HomR(F e
∗R,R), ϕ(F e

∗ r) ∈ m}.

Exercise 36. Let K be an F -finite field of prime characteristic p > 0 and let K → L be a
finite field extension that is not separable such that Lp∩K = Kp. Let x be an indeterminate
and let R = K + xL[[x]] ⊆ L[[x]]. Prove the following:

(1) R is a (Noetherian) complete local domain with dim(R) = 1.
(2) R is F -injective.
(3) K1/p ⊗K R is not reduced, and hence not F -injective.

In particular, R → S := K1/p ⊗K R is a flat local extension such that R is F -injective and
the closed fiber is a field, but S is not F -injective.

Exercise 37. Let k be a perfect field of prime characteristic p > 0. Set K = k(u, v) and
L = K[y]/(y2p + uyp + v). Prove that K, L satisfy the assumptions of Exercise 36.
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8. Examples

We start this chapter with a quick summary of the relations between the F -singularities
we have introduced so far (all the arrows that go to strongly F -regular also require F -finite
assumption as usual):

regular +3 strongly F -regular +3

��

F -rational

+Gorenstein
rz

+3

��

normal

F -pure +3 F -injective

+quasi-Gorenstein

rz
+3 reduced

A natural question one might ask is that whether there are other implications between
these F -singularities: for example, whether there are relations between F -rational and F -
pure singularities. However, Watanabe [Wat91] constructed examples of F -rational rings
that are not F -pure, and examples of F -rational and F -pure rings that are not strongly
F -regular. To study these examples, we first prove a very useful criterion of F -rationality
for graded rings [FW89] (the analogous criterion for rational singularities in characteristic 0
was proved by Watanabe [Wat83]).

Theorem 8.1 (Fedder–Watanabe’s criterion). Let R be an N-graded ring over a field k of
prime characteristic p > 0 with homogeneous maximal ideal m. Suppose dim(R) ≥ 1. Then
R is F -rational if and only if

(1) R is Cohen-Macaulay.
(2) RP is F -rational for all homogeneous prime P ̸= m.
(3) a(R) := max{n|Hd

m(R)n ̸= 0} < 0.
(4) R is F -injective.

Proof. If R is F -rational, then (1) and (4) clearly hold, (2) holds since F -rationality localizes
by Theorem 4.14, and (3) holds by Exercise 22.

Now we suppose R satisfies (1) – (4) and we want to prove R is F -rational. We first assume
R is F -finite, that is, k is an F -finite field. Note that R has a canonical module ωR such that
(ωR)P ∼= ωRP

for all P ∈ Spec(R). Moreover we can choose ωR such that it is graded (see
[BS98, Chapter 14]). Similar to Discussion 6.1, we have a graded trace map F e

∗ωR
Tre

−−→ ωR,
and it is easy to verify that the graded analogs of Proposition 6.2 and Proposition 6.3 (the
statments involving ωR) hold in this set up.

Condition (2) implies RP is a field for all minimal primes of R, so there exists a homo-
geneous c ∈ R not in any minimal prime of R such that Rc is regular. By condition (2)
again, for each homogenous prime P ̸= m, there exists e > 0 such that F e

∗ (cωR)P Tre

−−→ (ωR)P
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is surjective. Thus there exists a homogenous fP /∈ P such that F e
∗ (cωR)fP

Tre

−−→ (ωR)fP
is

surjective. At this point, we note that ∪D(fP ) = Spec(R) − {m} where the union is taken
over all homogenous primes P ̸= m. Since Spec(R) − {m} is quasi-compact, there exists a
finite collection {f1, . . . , fn} that generates m up to radical such that for each fi there is an
associated ei such that F ei

∗ (cωR)fi

Trei−−→ (ωR)fi
is surjective. Pick e ≫ ei for all i, it follows

that F e
∗ (cωR)fi

Tre

−−→ (ωR)fi
is surjective for all fi.8 But then we know that

Coker(F e
∗ (cωR) Tre

−−→ ωR)

is a graded finite length module supported only at m. It is enough to show that this cokernel
is 0, since then F e

∗ (cωR) Tre

−−→ ωR is surjective, and by the graded analog of Proposition 6.3
we will be done.

But the graded Matlis dual of this cokernel is Ne = {η ∈ Hd
m(R) | cF e(η) = 0}. For e≫ 0,

we know that Ne is a graded F -stable submodule of Hd
m(R), see the proof of Proposition 4.11,

where we need to use the Artinianness of Hd
m(R) and that R is F -injective by (4). But then

by (4) again, any graded F -stable submodule of finite length must concentrate in degree 0,
but then it vanishes by (3). We have completed the proof when k is an F -finite field.

Finally, if k is not F -finite, we can replace k by kΓ (and R by RΓ := R ⊗k kΓ) for Γ
sufficiently small and run the above argument for RΓ (it can be shown, in analogy with the
local case, that (1) – (4) are preserved9). The outcome is that RΓ is F -rational and hence R
is F -rational by Exercise 20. □

The rest of this chapter requires some knowledge of algebraic geometry, see [Har77, Chap-
ter II and III]. We will present Watanabe’s examples and we give more details than [Wat91].
We first collect some basic facts about section rings of divisors with rational coefficients. Let
X be a normal projective variety over an algebraically closed field k = k and let D be an
effective Q-divisor such that mD is an ample Cartier divisor on X. Then

R = R(X,D) := ⊕n≥0H
0(X,OX(⌊nD⌋)) · tn

is a normal N-graded ring over k. We can explicitly describe the graded canonical module
of R and its symbolic powers using sheaf cohomology as follows (see [Wat91], which follows

8We leave it to the readers to check this carefully, the point is that Tre : F e
∗ (ωR)fi

→ (ωR)fi
is surjective for all

e since Rfi
is F -injective, so we can enlarge the ei while preserving the surjectivity of F ei

∗ (cωR)fi

Trei

−−−→ (ωR)fi
.

9Only (2) requires some work and we omit the details, as the argument is entirely similar as in the local case
we carried out in Chapter 6. In fact, as we already mentioned before, the theory of Γ-construction can be
extended to all rings essentially finite type over a complete local ring (e.g., a field), see [HH94a] for details.
In the sequel we will apply Theorem 8.1 mainly in the case that k is perfect or algebraically closed.
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from [Wat81] and [Dem88]):

ωR =⊕n∈Z H
0(X,OX(⌊KX +D′ + nD⌋)) · tn,(8.1)

ω
(q)
R =⊕n∈Z H

0(X,OX(⌊q(KX +D′) + nD⌋)) · tn,

where KX is the canonical divisor of X and D′ is defined as follows: if D = ∑ ai

bi
Ei such that

(ai, bi) = 1 and Ei’s are prime divisors, then D′ = ∑ bi−1
bi
Ei.

Example 8.2. Let R = R(P1
k, D) where k is an algebraically closed field of prime charac-

teristic p > 0 and let D = 1
a
P1 + 1

b
P2 + 1

c
P3 be an effective Q-divisor where P1, P2, P3 are

distinct points on P1. Then we have

(1) R is F -rational for all a, b, c ≥ 1.
(2) R is not F -pure if 1

a
+ 1

b
+ 1

c
< 1.

(3) If a = b = c = 3, then R is F -pure if p ≡ 1 mod 3 but R is not strongly F -regular.

Proof. We first prove (1). We use Theorem 8.1. R is a two-dimensional normal N-graded
ring so it is Cohen-Macaulay and RP is regular for all P ̸= m. To see a(R) < 0, it is enough
to show that [ωR]≤0 = 0, which follows from (8.1) as

[ωR]n = H0(P1, O(−2)⊗O(⌊D′ + nD⌋)) · tn = 0

for n ≤ 0. Finally we show R is F -injective. Let x be the parameter of P1 and let P1, P2, P3

correspond to (x − α), (x − β), (x − γ). It is straightforward to check that R is generated
by t, y1 := 1

x−αt
a, y2 := 1

x−β t
b, y3 := 1

x−γ t
c. But then we observe that

R/tR ∼= k[y1, y2, y3]/(y1y2, y1y3, y2y3).

To see this, note that mod t, y1y2 = 1
(x−α)(x−β) · t

a+b = (α − β) · ( 1
x−β t

a+b − 1
x−αt

a+b) = 0
and similarly y1y3 = y2y3 = 0. Hence R/tR is Cohen-Macaulay and F -pure and thus R is
F -injective by Theorem 5.1. This completes the proof that R is F -rational.

We next prove (2) and (3). We note that the canonical map ER(k)→ F e
∗R⊗ER(k) can be

identified with H2
m(ωR) → F e

∗R ⊗R H2
m(ωR) ∼= H2

m(F e
∗ω

(pe)
R ), where the isomorphism results

from the fact that the natural map F e
∗R⊗R ωR → F e

∗ω
(pe)
R is an isomorphism in codimension

1 (after we localize at height one primes, ωR is a rank one free module). We then have the
degree-preserving identifications:

ER(k) ∼= H2
m(ωR) //

∼=
��

F e
∗R⊗ ER(k) ∼= H2

m(F e
∗ω

(pe)
R )

∼=
��

⊕n∈ZH
1(P1, OP1(⌊KP1 +D′ + nD⌋)) · tn // ⊕n∈ZH

1(P1, F e
∗OP1(⌊pe(KP1 +D′) + nD⌋)) · tn.
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It is easy to check that the socle of ER(k) corresponds to H1(P1, OP1(⌊KP1 +D′⌋)) ∼= k (the
point is that all the degree > 0 piece vanish by a simple computation). Thus by Proposition
2.2, R is F -pure if and only if the map

H1(P1, OP1(⌊KP1 +D′⌋))→ H1(P1, F∗OP1(⌊p(KP1 +D′)⌋))

is injective. But if 1
a

+ 1
b

+ 1
c
< 1, then a simple computation shows that

deg(⌊p(KP1 +D′)⌋) = −2p+ ⌊p · a− 1
a
⌋+ ⌊p · b− 1

b
⌋+ ⌊p · c− 1

c
⌋ ≥ −1

and thus H1(P1, F∗OP1(⌊p(KP1 +D′)⌋)) ∼= H1(P1, OP1(⌊p(KP1 +D′)⌋)) = 0. Hence R is not
F -pure if 1

a
+ 1

b
+ 1

c
< 1, which proves (2).

Finally, the same analysis (via Proposition 2.2) shows that R is strongly F -regular if and
only if for any 0 ̸= f ∈ H0(P1, OP1(⌊nD⌋)), there exists e > 0 such that the composition:

H1(P1, OP1(⌊KP1+D′⌋))→ H1(P1, F e
∗ OP1(⌊pe(KP1+D′)⌋)) ·F e

∗ f−−−→ H1(P1, F e
∗ OP1(⌊pe(KP1+D′)+nD⌋))

is injective. Now if a = b = c = 3, then again a simple computation shows that for n large,

deg(⌊pe(KP1 +D′) + nD⌋) = −2pe + 3⌊23p
e + 1

3n⌋ ≥ −1

for all e > 0 and thus H1(P1, F e
∗OP1(⌊pe(KP1 + D′) + nD⌋)) = 0. Hence R is not strongly

F -regular. On the other hand, if p ≡ 1 mod 3, then one checks that

H1(P1, F∗OP1(⌊p(KP1 +D′)⌋)) ∼= H1(P1, F∗OP1(−2)),

and if we use [z0 : z1] to denote the coordinate of P1, then the induced mapH1(P1, OP1(−2))→
H1(P1, F∗OP1(⌊p(KP1 +D′)⌋)) can be described as

1
z0z1

→ (z0 − αz1)⌊p· a−1
a

⌋(z0 − βz1)⌊p· b−1
b

⌋(z0 − γz1)⌊p· c−1
c

⌋

zp0z
p
1

= u

z0z1
∈ H1(P1, F∗OP1(−2))

where 0 ̸= u ∈ k. Thus the map is injective and hence R is F -pure. □

Remark 8.3. One can write some concrete examples: for instance let P1 = ∞, P2 = 0,
P3 = 1 and a = b = c = 4, then R ∼= k[t, xt4, x−1t4, (x−1)−1t4] is F -rational but not F -pure,
while if we take a = b = c = 3 and p ≡ 1 mod 3, then R ∼= k[t, xt3, x−1t3, (x − 1)−1t3]
is F -rational and F -pure but not strongly F -regular. We can complete at the homogenous
maximal ideal to obtain examples of complete local domains.

We next give Watanabe’s example that direct summand of F -rational rings are not neces-
sarily F -injective. Our construction slightly differs from [Wat97], and in fact, we will adapt
our construction with work of Kovács [Kov18] (which originates from [LR97]) to obtain also
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an example of a direct summand of F -rational ring that is not Cohen-Macaulay. We begin
with the following proposition.

Proposition 8.4. Let R be an N-graded ring over a field k of prime characteristic p > 0
with homogeneous maximal ideal m such that

(1) RP is regular for all homogeneous prime P ̸= m.
(2) ai(R) := max{n|H i

m(R)n ̸= 0} < 0 for each i.
(3) H0

m(R) = H1
m(R) = 0.

Then R is a direct summand of an F -rational ring.

Proof. First note that the first and third assumptions imply that dim(R) ≥ 2 and that R
satisfies Serre’s conditions (S2) and (R1), it follows that R is normal. Let Sn = k[x1, . . . , xn]
be a standard graded (i.e., deg(xi) = 1) polynomial ring and let Tn = R#Sn be the Segre
product, that is, Tn = ⊕j≥0(Rj ⊗k (Sn)j). Then R is a direct summand of Tn: we can map
R to Tn by sending r ∈ [R]j to r#xj1 and the map Sn → k[x1] sending xi to 0 for all i ≥ 2
induces a splitting Tn → R#k[x1] ∼= R.

We claim that Tn is F -rational for all n≫ 0 and we use Theorem 8.1. We use the following
formula to compute the local cohomology of Segre product [GW78, Theorem 4.1.5.]:

H i
m(Tn) = H i

m(R#Sn) ∼= R#H i
m(Sn)⊕H i

m(R)#Sn ⊕
(
⊕a+b=i+1H

a
m(R)#Hb

m(Sn)
)

where we abuse notation and use m to denote the corresponding homogeneous maximal
ideals of R, Sn, and Tn respectively. Set d = dim(R). By assumption (2), we know that
[Hj

m(R)]≥0 = 0 for all j and therefore R#H i
m(Sn) = H i

m(R)#Sn = 0 for all i and n. Therefore
the only possible nonzero contributions for the local cohomology modules of Tn are the
modules of the form H i

m(R)#Hn
m(Sn). In particular, H i+n−1

m (Tn) ∼= H i
m(R)#Hn

m(Sn) for
all integers i as Hj

m(Sn) = 0 for all j ̸= n. Since R is normal and RP is regular for all
homogeneous primes P ̸= m by assumption (1), we know that H i

m(R) has finite length for
all i < d by the graded version of Lemma 4.5. Hence H i

m(R) only lives in finitely many
(negative) degrees. Even further, the module Hn

m(Sn) is supported in degrees no more than
−n and so for each i < d and n≫ 0,

H i+n−1
m (Tn) ∼= H i

m(R)#Hn
m(Sn) = 0

and thus T is Cohen-Macaulay. Moreover, since Hd+n−1
m (T ) ∼= Hd

m(R)#Hn
m(S), we have

a(T ) ≤ min{a(R), a(S)} < 0.
We next show that T is F -rational for all homogeneous primes P ̸= mT . If we invert

a homogenous element r#s ∈ mT , then Tr#s is a direct summand of (R ⊗k S)r⊗s (since
T is a direct summand of R ⊗k S). But (R ⊗k S)r⊗s ∼= R[x1, . . . , xn]rs is a localization of
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Rr[x1, . . . , xn], hence regular (because Rr is regular by assumption (1)). Therefore Tr#s is a
direct summand of a regular ring and thus F -rational by Exercise 24.

Finally we show that T is F -injective. Our assumptions on R imply (see the proof of
Theorem 8.1) that the largest proper F -stable submodule of Hd

m(R) has finite length. In
particular, there exists m≫ 0 such that the Frobenius action on [Hd

m(R)]≤m is injective. Now
for n ≥ m, the Frobenius action on Hd+n−1

m (T ) ∼= Hd
m(R)#Hn

m(S) = [Hd
m(R)]≤m#[Hn

m(S)]≤m
is injective. □

Remark 8.5. Suppose that the field k in Proposition 8.4 is assumed to be an F -finite field.
Then the hypothesis that RP is a regular ring for all P ̸= m can be relaxed to the milder
assumption that RP is a strongly F -regular ring for all P ̸= m. The proof would not need
to be significantly altered and we encourage the reader to verify our claim.

Example 8.6. Perhaps the simplest example of a non-F -rational ring that is a direct sum-
mand of an F -rational ring is R = F2[x, y, z]/(x2 + y3 + z5) with deg(x) = 15, deg(y) = 10,
and deg(z) = 6. Since R is a two-dimensional normal domain with a(R) = −1, it satisfies all
the conditions in Proposition 8.4 and thus R is a direct summand of an F -rational ring. How-
ever, it is a straightforward computation that the Čech class [ x

yz
] ∈ H2

m(R) is nonzero, but
F ([ x

yz
]) = [ x2

y2z2 ] = 0 since x2 ∈ (y2, z2)R. Hence R is not F -injective (thus not F -rational).
Again, we can complete at m to obtain examples of complete local domains.

We next exhibit an example of a direct summand of F -rational ring that is not Cohen-
Macaulay.

Example 8.7. In [Kov18, Theorem 1.1 and Theorem 4.7], Kovács proved that there exists
a smooth projective Fano variety X over a field of characteristic 2 such that dim(X) = 6,
ω−1
X is very ample, H1(X,ω−1

X ) ∼= H5(X,ω2
X)∨ ̸= 0 (so ω−2

X violates Kodaira vanishing), and
H i(X,OX) = 0 for all 1 ≤ i ≤ 6.10 Now we let S = ⊕n≥0H

0(X,ω−n
X ). Since ω−1

X is very
ample, we know that S is a standard graded normal domain of dimension 7 with homogenous
maximal ideal m such that

[H i+1
m (S)]n = H i(X,ω−n

X ) for all n ∈ Z and all 1 ≤ i ≤ 6.

Set t = max{n|[H i+1
m (S)]n ̸= 0 for some 1 ≤ i ≤ 6}. Then as H1(X,ω−1

X ) ̸= 0, we know that
t ≥ 1. Let R = S(t+1) be the (t+ 1)-th Veronese subring of S.

Claim 8.8. We have ai(R) < 0 for all i and R is not Cohen-Macaulay.
10The fact that Hi(X, OX) = 0 for all 1 ≤ i ≤ 6 is mentioned on [Kov18, top of page 2], and can be
easily verified since the X constructed in [Kov18, Theorem 1.1] is certain Pn-bundle over a Pn-bundle over
a projective space, so H>0(X, OX) = 0 follows as the same is true for projective space.
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Proof. Since R is the (t+ 1)-th Veronese subring of S, it is easy to check that

[H i
m(R)]n =

0 if (t+ 1) ∤ n
[H i

m(S)]n if (t+ 1)|n.

It follows that ai(R) < 0 for all i by our choice of t (note that H0
m(R) = H1

m(R) = 0
and [H i

m(R)]0 = [H i
m(S)]0 = H i−1(X,OX) = 0 for i ≥ 2). To see that R is not Cohen-

Macaulay, note that by our choice of t, H i(X,ω−t
X ) ̸= 0 for some 1 ≤ i ≤ 5 (H6(X,ω−t

X ) =
H0(X,ωt+1

X )∨ = 0 since ωX is anti-ample and t ≥ 1), which implies that H6−i(X,ωt+1
X ) ̸= 0.

Thus

[Hj
m(R)]−(t+1) = [Hj

m(S)]−(t+1) = Hj−1(X,ωt+1
X ) ̸= 0 for some 2 ≤ j ≤ 6.

As dim(R) = dim(S) = 7, this shows that R is not Cohen-Macaulay. □

Finally, since Proj(R) = Proj(S) = X is nonsingular and R can be viewed as a standard
graded ring (as it is a Veronese subring of a standard graded ring), we know that RP is
regular for all P ̸= m. This combined with Claim 8.8 shows that R satisfies the conditions
of Proposition 8.4 and thus is R a direct summand of F -rational ring that is not Cohen-
Macaulay.

We next give Singh’s example [Sin99c] showing that if we drop the Q-Gorenstein assump-
tion on R, then R/xR is strongly F -regular does not even imply R is F -pure.

Example 8.9. Let m and n be positive integers satisfying m−m/n > 2. Consider the ring
R = k[a, b, c, d, t]/I where k is an F -finite field of characteristic p > 2 and I is generated by
the 2× 2 minors of the matrix a2 + tm b d

c a2 bn − d

 .
Then t is a nonzerodivisor on R and the ring R/tR is strongly F -regular. But if p and m

are relatively prime, then R is not F -pure.

Proof. Let S = k[a, b, c, d, b′, c′, d′, t]/J where J is the generic 2× 3 matrixc′ b d

c b′ d′

 .
Obviously we haveR = S/(c′−a2−tm, b′−a2, d′−bn+d) andR/(t, c, d) ∼= k[a, b]/(a4, a2bn, bn+1)
is Artinian. Since S is Cohen-Macaulay of dimension 6, it follows that R is Cohen-Macaulay
and t, c, d is a system of parameters of R. In particular, t is a nonzerodivisor on R. We note
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that
R/tR ∼= k[a, b, c, d]/(a4 − bc, a2(bn − d)− cd, b(bn − d)− a2d).

Note that we can assign weights to the variables to make R/tR N-graded. We first claim
that R/tR is normal, and hence a domain because it is N-graded. We know that R/tR is
Cohen-Macaulay of dimension 2 and c, d is a homogeneous system of parameters, thus it is
enough to show that (R/tR)c and (R/tR)d are regular. These are straightforward to check:
(R/tR)d ∼= k[a, b, d][ 1

d
]/( bn+1

d
− b− a2) and (R/tR)c ∼= k[a, c, d][1

c
]/(a4n+2

cn+1 − a2d
c
− d) are both

regular.
We next claim thatR/tR is isomorphic to the (2n+1)-th Veronese subring of k[a, x, y]/(a2−

xy(xn − y)) where the variables a, x, y have weights 2n + 1, 2, 2n respectively. To see this,
we define a map

R/tR ∼=
k[a, b, c, d]

(a4 − bc, a2(bn − d)− cd, b(bn − d)− a2d) → ( k[a, x, y]
(a2 − xy(xn − y)))(2n+1)

by sending b, c, d to xy2, x(xn−y)2, y2n+1 respectively. One easily checks that the map is well-
defined and is surjective: the Veronese subring is generated over k by a, y2x, xn+1y, x2n+1, y2n+1

and it is straightforward to check that all these generators are in the image (modulo the equa-
tion a2−xy(xn−y)). Now both rings have dimension 2 and we know that R/tR is a domain,
it follows that the map is injective and hence an isomorphism.

To prove R/tR is strongly F -regular, it is enough to show that k[a, x, y]/(a2−xy(xn− y))
is strongly F -regular by Theorem 3.9. We now apply Exercise 16 with c = x (since x is part
of a system of parameters and after inverting x the ring becomes regular), it is enough to
show that there exists e > 0 such that x(a2 − xy(xn − y))pe−1 /∈ (ape

, xp
e
, yp

e). Since p > 2,
for e = 1, the term ap−1x

p+1
2 yp−1 appears in x(a2 − xy(xn − y))p−1 with nonzero coefficient,

this term is not in (ap, xp, yp).
It remains to prove that R is not F -pure if p and m are relatively prime. The key is the

following elementary but tricky computation.

Claim 8.10 ([Sin99c, Lemma 4.2]). If s is a positive integer such that s(m−m/n− 2) ≥ 1,
then

(bntm−1)2ms+1 ∈ (a2ms+1, d2ms+1).

Proof. Let τ = a2 + tm and α = a2. It suffices to work in the polynomial ring k[τ, α, b, c, d]
and establish that

bn(2ms+1)(τ − α)2s(m−1) ∈ (αms+1, d2ms+1) + I ′



F -SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 71

where I ′ is the ideal generated by 2× 2 minors of the matrixτ b d

c α bn − d

 .
Taking the binomial expansion of (τ − α)2s(m−1), it is enough to show that for all 1 ≤ i ≤
ms+ 1, we have

bn(2ms+1)αms+1−iτms−2s+i−1 ∈ (αms+1, d2ms+1) + I ′.

Thus it is enough to show that

bn(2ms+1)τms−2s+i−1 ∈ (αi, d2ms+1) + I ′.

Since αd− b(bn − d) and bnτ − d(c+ τ) belongs to I ′, it suffices to establish that

bn(2ms+1)τms−2s+i−1 ∈ (bi(bn − d)i, d2ms+1, bnτ − d(c+ τ)).

Now we work modulo the element bi(bn − d)i, we may reduce bn(2ms+1) to a polynomial in b

and d such that the highest power of b that occurs is less than i(n + 1). Thus it suffices to
show that

bn(2ms+1−j)τms−2s+i−1dj ∈ (d2ms+1, bnτ − d(c+ τ))

where n(2ms+ 1− j) < i(n+ 1), i.e., j ≥ 2ms+ (1− i)(1 + 1/n). So it is enough to check

bn(2ms+1−j)τms−2s+i−1 ∈ (d2ms+1−j, bnτ − d(c+ τ)).

At this point, it only needs to check that ms − 2s + i − 1 ≥ 2ms + 1 − j, since modulo
bnτ − d(c+ τ), we can then express bn(2ms+1−j)τms−2s+i−1 as a multiple of d2ms+1−j. But

ms− 2s+ i− 1− (2ms+ 1− j) = j −ms− 2s+ i− 2

≥ ms+ (1− i)(1 + 1/n)− 2s+ i− 2

= ms− 2s+ (1− i)/n− 1

≥ ms− 2s− (ms)/n− 1

= s(m−m/n− 2)− 1 ≥ 0

where the second ≥ is because i ≤ ms+ 1 and the last ≥ follows from our assumption that
s(m−m/n− 2) ≥ 1. □

Finally, since p and m are relatively prime, p > 2, and m−m/n > 2 by our assumptions,
there exists e≫ 0 and s > 0 such that pe = 2ms+ 1 and s(m−m/n− 2) ≥ 1. Claim 8.10
then shows that (bntm−1)pe ∈ (ape

, dp
e). If R is F -pure, then R→ F e

∗R is pure and hence the
induced Frobenius map R/(a, d)→ F e

∗ (R/(ape
, dp

e)) is injective. Thus (bntm−1)pe ∈ (ape
, dp

e)
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implies bntm−1 ∈ (a, d). But R/(a, d) ∼= k[b, c, t]/(bn+1, bntm, bc) and it is clear that bntm−1 ̸=
0 in this ring, which is a contradiction. □

Remark 8.11. Take m = 5, n = 2, k = F3 in Example 8.9, we have

R = F3[a, b, c, d, t]
((a2 + t5)a2 − bc, (a2 + t5)(b2 − d)− cd, b(b2 − d)− a2d)

is not F -pure, but R/tR is strongly F -regular. We leave the interested and diligent reader
to check these using Theorem 2.5 and Exercise 16.

Finally, we explain that generic determinantal rings over a field k are F -rational [HH94c],
in fact strongly F -regular if k is F -finite.

Example 8.12. Let S = k[xij|1 ≤ i ≤ m, 1 ≤ j ≤ n] be a polynomial ring in m×n variables
with m ≤ n. Let It be the ideal of S generated by t× t minors of the matrix [xij]1≤i≤m,1≤j≤n.
Then R = S/It is F -rational. Moreover, if k is F -finite then R is strongly F -regular.

Proof. We will use Theorem 8.1 to show R is F -rational. First of all, property (1) and (3)
are well-known: for example see [HE71], [Grä88] and [BH92].

We now prove (2). For any homogeneous prime P ̸= m, there exists xij /∈ P . Without
loss of generality we may assume x11 /∈ P . After inverting the element x11, we may perform
row and column operations to transform our matrix:

x11 x12 . . . x1n

x21 x22 . . . x2n
... ... . . . ...

xm1 xm2 . . . xmn

 −→

x11 0 . . . 0
0 x′

22 . . . x′
2n

... ... . . . ...
0 x′

m2 . . . x′
mn


where x′

ij = xij− xi1x1j

x11
. The ideal ItSx11 is generated by (t−1)× (t−1) minors of the second

displayed matrix. Therefore,

Rx11 = Sx11/ItSx11
∼= (S ′/I ′

t−1)[x11,
1
x11

, x12, . . . , x1n, x21, . . . , xm1]

where S ′ = k[x′
ij|2 ≤ i ≤ m, 2 ≤ j ≤ n] and I ′

t−1 denotes the ideal generated by the
(t−1)× (t−1) minors of the matrix [x′

ij]. By induction, we know that S ′/I ′
t−1 is F -rational,

thus so is Rx11 by Theorem 7.8. Since RP can be viewed as a localization of Rx11 , RP is
F -rational by Theorem 4.14 again.

It remains to prove (4). In fact the method below will also reprove (1) along the way we
prove (4). We need the following result from combinatorial commutative algebra:

Theorem 8.13 ([Stu90]). The t × t minors of [xij]1≤i≤m,1≤j≤n form a Gröbner basis of It
with respect to the term order x11 > x12 > · · · > x1n > x21 > · · · · · · > xmn.
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At this point we follow the standard construction as in [Eis95, 15.16 and 15.17]. We choose
an appropriate weight function λ such that inλ(It) = in>(It). Let Ĩ be the λ-homogenization
of It in S[z]. We have

(S[z]/Ĩ)⊗k[z] k(z) ∼= R⊗k k(z) and (S[z]/Ĩ)/z ∼= S/ in>(It).

Therefore if we can show that S/ in>(It) is Cohen-Macaulay and F -injective, then so is
S[z]/Ĩ by the graded version of Theorem 5.1. But then R ⊗k k(z) is Cohen-Macaulay and
F -injective by Theorem 4.13 and so R is Cohen-Macaulay and F -injective by Exercise 20.
But since the t× t minors form a Gröbner basis by Theorem 8.13,

in>(It) = (xi1j1xi2j2 · · ·xitjt |1 ≤ i1 < i2 < · · · < it ≤ m, 1 ≤ j1 < j2 < · · · < jt ≤ n)

is a square-free monomial ideal. Thus S/ in>(It) is F -pure and hence F -injective, and one can
check that S/ in>(It) is Cohen-Macaulay using Hochster’s criterion [Hoc72] that a Stanley-
Reisner ring is Cohen-Macaulay if the corresponding simplicial complex is shellable (note
that even without knowing S/ in>(It) is Cohen-Macaulay, we can show that S[z]/Ĩ is F -
injective because we showed S/ in>(It) is F -pure and so we can invoke Theorem 5.5 instead
of Theorem 5.1). This completes the proof that R is F -rational.

Finally we prove that S/It is strongly F -regular when k is F -finite. Note that we can
enlarge the m×n generic matrix to an n×n generic matrix and consider the corresponding
quotients S ′/It of t×t minors in the n×n matrix. Then S/It → S ′/It splits (we can map the
new variables to zero to obtain a splitting), thus S/It is strongly F -regular provided S ′/It is
strongly F -regular by Theorem 3.9. But S ′/It is F -finite and Gorenstein (see [BV88]) and
thus F -rationality of S ′/It implies the strong F -regularity of S ′/It by Proposition 4.9. □

The proof of Example 8.12 given above requires non-trivial inputs from combinatorial
commutative algebra (such as Theorem 8.13). Below we give an alternative, and completely
elementary approach to show that generic determinantal rings of maximal minors are strongly
F -regular (over F -finite fields). This approach is taken from [PT24] (see also [DSMNB24,
Theorem 6.7] for another elementary proof of a stronger statement). We begin with a simple
lemma.

Lemma 8.14. Let S be a regular ring of prime characteristic p > 0 and let I, J be ideals in
S. Then we have

I [p] : I ⊆ (I : J)[p] : (I : J).

Proof. Since R is regular, by the flatness of Frobenius (Theorem 1.1), we have (I : J)[p] =
I [p] : J [p]. Take x ∈ I [p] : I and y ∈ I : J , it is thus enough to show that xy ∈ I [p] : J [p]. But
this follows as xyJ [p] ⊆ xyJ ⊆ xI ⊆ I [p]. □
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Alternative proof of Example 8.12 for maximal minors. We assume k is F -finite and t = m,
and we aim to show that R = S/Im is strongly F -regular. First of all, Im ⊆ S is a perfect
ideal of height n − m + 1 by examining the Eagon-Northcott complex (see [Eis95, A2.6]),
which resolves S/Im over S. In particular, this implies that S/Im is Cohen-Macaulay (see
also [BV88, Theorem 2.7] for a short and direct proof that S/Im is Cohen-Macaulay).

We next claim that ∆[1,m],∆[2,m+1], . . . ,∆[n−m+1,n] is a maximal regular sequence contained
in Im, where ∆[1,m] denotes the maximal minor corresponds to the first m columns, etc. To
see this, we observe that ∆[1,m],∆[2,m+1], . . . ,∆[n−m+1,n] together with the following elements:

(†) : x21, x31, x32, . . . , xm1, xm2, . . . , xm,m−1

x1,n−m+2, x1,n−m+3, . . . , x1n, x2,n−m+3, . . . , x2n, . . . , xm−1,n

x11 − x22, x11 − x33, . . . , x11 − xmm, x12 − x23, . . . , x1,n−m+1 − xm,n
form a full system of parameters of S. This is because there are

m(m− 1) + (m− 1)(n−m+ 1) = (m− 1)(n− 1)

elements in (†), and killing them corresponds to the following specialization of the matrix:

x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x2n
... ... . . . ...

xm1 xm2 . . . xmn


−→



x11 x12 . . . x1,n−m+1 0 . . . . . . 0
0 x11 x12 . . . x1,n−m+1 0 . . . 0
0 0 x11 . . . x1,n−m x1,n−m+1 . . . , 0
... ... ... . . . ... . . . . . . ...
0 0 0 . . . . . . . . . . . . x1,n−m+1


.

But for the matrix on the right hand side, it is easy to check that the radical of the ideal
(∆[1,m],∆[2,m+1], . . . ,∆[n−m+1,n]) agrees with (x11, . . . , x1,n−m+1), which is the maximal ideal.
This proves our claim. It also shows that each variable exhibited in (†) is a nonzerodivisor
on S/Im. In particular, x1n is a nonzerodivisor on S/Im.

Let a := (∆[1,m],∆[2,m+1], . . . ,∆[n−m+1,n]) ⊆ Im. We next claim that

(8.2) a : (a : Im) = Im.

This follows from basic linkage theory [PS74] and we give a short argument for completeness.
Clearly Im ⊆ a : (a : Im). To show a : (a : Im) ⊆ Im, it is enough to check this after localizing
at each associated prime p of Im. Since S/Im is Cohen-Macalay, p is a minimal prime of Im
and also a minimal prime of a. Since Sp/aSp is Artinian and Gorenstein,

Sp/ImSp
∼= Hom(Hom(Sp/ImSp, Sp/aSp), Sp/aSp) ∼= Hom((a : Im)Sp/aSp, Sp/aSp).
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It follows that (a : (a : Im))Sp, which annihilates the right hand side, is contained in the
annihilator of the left hand side, which is ImSp. This establishes our claim.

We now proceed by induction on m. When m = 1 the conclusion is clear. Suppose the
statement is proved for m − 1 ≥ 1. We apply Glassbrenner’s criterion (Exercise 16) with
c = x1n, which is a nonzerodivisor on (equivalently, not in any minimal prime of) S/Im.
Note that

Rx1n = Sx1n/ImSx1n
∼= (S ′/I ′

m−1)[x11, x12, . . . , x1n, x2n, . . . , xmn][ 1
x1n

]

where S ′ = k[x′
ij|2 ≤ i ≤ m, 1 ≤ j ≤ n − 1] with x′

ij = xij − xinx1j

x1n
are viewed as new

indeterminates and I ′
m−1 is the corresponding ideal of maximal minors. Thus by the inductive

hypothesis, Rx1n is strongly F -regular by Theorem 7.5. Therefore by Exercise 16, it is enough
to show that

x1n(I [p]
m : Im) ⊈ m[p].

By (8.2) and Lemma 8.14, it suffices to prove that

x1n(a[p] : a) ⊈ m[p].

Since a = (∆[1,m],∆[2,m+1], . . . ,∆[n−m+1,n]) is generated by a regular sequence, a simple com-
putation shows that (a[p] : a) = (∆[1,m]∆[2,m+1] · · ·∆[n−m+1,n])p−1. Thus it is enough to prove
that

x1n(∆[1,m]∆[2,m+1] · · ·∆[n−m+1,n])p−1 /∈ m[p].

Finally, we note that under the term order x11 > x12 > · · · > x1n > x21 > · · · · · · > xmn, the
leading monomial of ∆[t,t+m−1] is x1tx2,t+1 · · ·xm,m+t−1, and thus the leading monomial in
x1n(∆[1,m]∆[2,m+1] · · ·∆[n−m+1,n])p−1 is x1n

∏
0≤j−i≤n−m x

p−1
ij /∈ m[p]. Since m[p] is a monomial

ideal, it follows that x1n(∆[1,m]∆[2,m+1] · · ·∆[n−m+1,n])p−1 /∈ m[p]. □

Exercise 38. With notation as in Example 8.2, prove that R is not F -pure if a = b = c = 3
and p ≡ 2 mod 3.

Exercise 39. With notation as in Example 8.9, prove that R is not strongly F -regular
without assuming p and m are relatively prime.

Exercise 40. Prove that if R is an F -pure ring of prime characteristic p > 0, then R/P is
F -pure for any minimal prime P ∈ Spec(R). (Hint: Use Lemma 8.14.)

Exercise 41. Let k be a field of prime characteristic p ≡ 2 mod 3. Let A = k[x, y, z]/(x3 +
y3 + z3) and B = k[u, v], both with standard grading.
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(1) Prove that T := A#B is not F -injective.
(2) Let q be the height one prime of T generated by (xu, yu, zu). Prove that q is a

maximal Cohen-Macaulay T -module.
(3) Prove that the natural map H2

m(T ) → H2
m(T/q) is injective, and that the induced

Frobenius action on the cokernel is injective.
(4) Let S = k[x1, . . . , x6] and consider the map S ↠ T with x1 7→ xu, x2 7→ yu, x3 7→ zu,

x4 7→ xv, x5 7→ yv, x6 7→ zv. Let P = Ker(S → T ) and Q = (x1, x2, x3) ⊆ S. Prove
that R := S/P ∩Q is Cohen-Macaulay and F -injective.

Thus this construction gives an example of an F -injective ring R with a minimal prime
P ∈ Spec(R) such that R/P = T is not F -injective.
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9. F -signature: measuring Frobenius splittings

Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. Kunz’s theorem,
Theorem 1.1, tells us that R is regular if and only if F e

∗R is a finite free R-module for some
(or equivalently, all) e ∈ N. It is thus natural to consider the number of free summands the
R-modules F e

∗R admit as e ranges through the natural numbers. In doing so, we develop the
theory of F -signature to numerically measure the severity of a strongly F -regular singularity.

Suppose M is a finitely generated R-module. We let frkR(M) denote the largest number
of free summands appearing in all various direct sum decompositions of M into irreducible
R-modules. Equivalently, frkR(M) is the largest rank of a free module F so that there exists
a surjective R-linear map M → F . The free ranks of F e

∗R as e varies through the natural
numbers are called the Frobenius splitting numbers of R, denoted by ae(R) := frkR(F e

∗R).
Observe that if R is a domain then ae(R) ≤ rankR(F e

∗R). The F -signature of R, s(R), is
defined to be

s(R) := lim
e→∞

ae(R)
rankR(F e

∗R) .

We will discuss more precise information of rankR(F e
∗R) below. We point out that, since

0 ≤ ae(R)
rankR(F e

∗R) ≤ 1 for all e ∈ N, we have 0 ≤ s(R) ≤ 1 provided s(R) exists as a limit.

The purpose of this chapter is to cover three fundamental theorems on F -signature:

(1) [Tuc12, Main Result]: F -signature exists, i.e., the sequence of numbers
{

ae(R)
rank(F e

∗R)

}
e∈N

is a Cauchy sequence and s(R) is well-defined.
(2) [HL02, Corollary 16]: F -signature detects regularity, i.e., s(R) = 1 if and only if R

is a regular local ring.
(3) [AL03, Main Result] F -signature detects strong F -regularity, i.e., s(R) > 0 if and

only if R is strongly F -regular.

The origins of F -signature theory can be found in [SVdB97] and was formally developed
by Huneke and Leuschke in [HL02]. Researchers understood that F -signature served as a
numerical measurement of singularities long before it was shown to exist in full generality.
Under the assumption of existence, it was first shown in the early 2000’s that s(R) = 1 if and
only if R is regular by Huneke and Leuschke, and that s(R) > 0 if and only if R is strongly
F -regular by Aberbach and Leuschke. Tucker’s proof of the existence of F -signature came
nearly 10 years later.

Our presentation of F -signature theory will significantly deviate from the historical devel-
opment of the theory. We will not present the fundamental theorems of F -signature in the
order they were discovered nor we will follow the original techniques. We will utilize modern
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techniques developed in [PT18, PS21, Pol22] to present streamlined and elementary proofs
of (1), (2), and (3) respectively.

Before continuing with the theory of F -signature the reader should first observe that com-
puting the Frobenius splitting numbers of R does not require looking at all possible choices
of direct sum decompositions of F e

∗R into irreducibles and then counting free summands.
More specifically, we have the following lemma.

Lemma 9.1. Let (R,m, k) be a local ring. Suppose that M is a finitely generated R-module
and M ∼= R⊕t1 ⊕ N1 ∼= R⊕t2 ⊕ N2 are choices of direct sum decompositions of M so that
N1, N2 do not admit a free summand. Then t1 = t2.

In particular, if (R,m, k) is an F -finite local ring of prime characteristic p > 0 and
F e

∗R
∼= R⊕t⊕M is any choice of direct sum decomposition of F e

∗R so that M does not admit
a free summand, then t = ae(R).

Proof. There exists onto map φ : R⊕t1 ⊕ N1 → R⊕t2 . Because we are assuming that N1

does not admit a free summand we must have that φ(0⊕N1) ⊆ mR⊕t2 . In particular, if we
base change to the residue field k we find that there is an onto map k⊕t1 ↠ k⊕t2 . Therefore
t1 ≥ t2. By symmetry we conclude that t1 = t2. The second assertion follows by applying
the first assertion to M = F e

∗R. □

To establish the theory of F -signature, we first need to investigate the rank of F e
∗R.

Suppose that K is an F -finite field. Consider the Frobenius map F : K → F∗K; an element
F∗r ∈ F∗K satisfies the monic polynomial equation xp − r = 0. Therefore the degree of the
minimal polynomial of every element of F∗K divides p. It follows that [F∗K : K] = pγ for
some γ ∈ N and [F e

∗K : K] = peγ for every e ∈ N. If R is an F -finite domain with fraction
field K then we define γ(R) to be the unique integer such that [F e

∗K : K] = peγ(R) for all
e ∈ N, i.e., γ(R) is unique integer such that rankR(F e

∗R) = peγ(R) for all e ∈ N.

Lemma 9.2. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. Then
F e

∗ R̂
∼= (F e

∗R)⊗R R̂ for all e > 0. As a consequence, R̂ is reduced if R is reduced.

Proof. Since F e
∗R is a finitely generated R-module, we have (F e

∗R) ⊗R R̂ ∼= (̂F e
∗R). But

(̂F e
∗R) ∼= F e

∗ R̂: if we identify F e
∗R with R, then (̂F e

∗R) is the completion of R with respect
to the ideal m[pe] while F e

∗ R̂ is the completion of R with respect to m, so they are the same
since

√
m[pe] = m. If R is reduced, then R ↪→ F e

∗R and thus R̂ ↪→ F e
∗R ⊗ R̂ ∼= F e

∗ R̂, which
implies R̂ is reduced by Exercise 2. □
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Lemma 9.3. Let (R,m, k) be an F -finite local domain of prime characteristic p > 0 and let
K be the fraction field of R. Let P be a minimal prime of R̂ and let L = R̂P . Then L is a
field and F e

∗L
∼= F e

∗K ⊗K L. In particular, [F e
∗L : L] = [F e

∗K : K].

Proof. By Lemma 9.2, R̂ is reduced so L is a field. Now we have

F e
∗L
∼= (F e

∗ R̂)P ∼= F e
∗ R̂⊗R̂ R̂P

∼= F e
∗R⊗R R̂⊗R̂ R̂P

∼= F e
∗R⊗R R̂P

∼= F e
∗K ⊗K L

where the third isomorphism follows from Lemma 9.2. □

Theorem 9.4. Let (R,m, k) be an F -finite local domain of prime characteristic p > 0 and
of dimension d. Then for each e ∈ N we have that rankR(F e

∗R) = [F e
∗k : k]ped.

Proof. We first suppose that R is complete. By Cohen’s structure theorem, R module-finite
over A = k[[x1, x2, . . . , xd]]. Consider the following commutative diagram of local domains:

A //

��

R

��
F e

∗A // F e
∗R

.

Since rank is multiplicative across compositions, we have

rankA(F e
∗R) = rankR(F e

∗R) rankA(R) = rankF e
∗A(F e

∗R) rankA(F e
∗A).

The extension of local domains A→ R is isomorphic to F e
∗A→ F e

∗R. Therefore rankA(R) =
rankF e

∗A(F e
∗R) and hence rankR(F e

∗R) = rankA(F e
∗A). As mentioned in the proof of Theo-

rem 1.1 it is straightforward to check that F e
∗A is a free A-module with basis

{F e
∗ (λxi11 · · ·x

id
d ) | 0 ≤ ij < pe, where {F e

∗λ} is a free basis of F e
∗k over k}.

Therefore rankA(F e
∗A) = [F e

∗k : k]ped as wanted.
Now we suppose that R is not necessarily complete. Let P be a minimal prime of R̂

such that d = dim(R) = dim(R̂/P ). Let K be the fraction field of R and L the fraction
field of R̂/P . By Lemma 9.3 we have that [F e

∗K : K] = [F e
∗L : L], i.e., rankR(F e

∗R) =
rank

R̂/P
(F e

∗ (R̂/P )). This completes the proof as we already showed that for the complete
local domain R̂/P that rank

R̂/P
(F e

∗ R̂/P ) = [F e
∗k : k]ped. □

Remark 9.5. The proof of Theorem 9.4 shows something more. It shows that if (R,m, k)
is an F -finite local domain of dimension d with fraction field K then R̂ is (reduced and)
equidimensional. That is, for each minimal prime Q ∈ Spec(R̂) we have that dim(R̂/Q) = d.
Indeed, if Q is a minimal prime of R̂ and LQ is the fraction field of R̂/Q then [F e

∗K :
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K] = [F e
∗LQ : LQ] by Lemma 9.3. But by Theorem 9.4, [F e

∗K : K] = [F e
∗k : k]ped and

[F e
∗LQ : LQ] = [F e

∗k : k]pe dim(R̂/Q). Therefore d = dim(R̂/Q).
This observation that the completion of an F -finite local domain is reduced and equidi-

mensional is not surprising. Indeed, by Theorem 1.7 every F -finite ring is excellent (we will
prove this in Chapter 10), and the completion of any excellent local domain is known to be
reduced and equidimensional.

Corollary 9.6. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and
P ⊊ Q be prime ideals. Then γ(R/Q) < γ(R/P ).

Proof. Since dim(R/Q) < dim(R/P ), γ(R/Q) < γ(R/P ) by Theorem 9.4. □

9.1. F -signature exists. Let R be an F -finite ring of prime characteristic p > 0, not
necessarily a domain. We set γ(R) = max{γ(R/P ) | P ∈ Spec(R)}. Corollary 9.6 implies
that γ(R) = max{γ(R/P ) | P ∈ Min(R)}. If R is not necessarily a domain, so that the
notion of generic rank is not necessarily well-defined, then in the spirit of Theorem 9.4 we
set rankR(F e

∗R) = peγ(R). Equivalently, we set rankR(F e
∗R) to be the maximal generic rank

of F e
∗ (R/P ) over R/P as P varies through the (minimal) prime ideals of R.

Lemma 9.7. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and M a
finitely generated R-module. There exists a constant C ∈ R so that for all e ∈ N,

µR(F e
∗M) ≤ C rankR(F e

∗R).

Proof. Begin by considering a prime filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M so that
Mi/Mi−1 ∼= R/Pi for some prime Pi ∈ Spec(R). Counting minimal generators is subadditive
on short exact sequences, see Exercise 43, therefore µR(F e

∗R) ≤ ∑t
i=1 µR(F e

∗ (R/Pi)). Thus
we may assume M = R is an F -finite local domain.

We induct on γ(R), the unique integer so that rankR(F e
∗R) = peγ(R) for all e ∈ N. If

γ(R) = 0 is minimal then R is a perfect field by Theorem 9.4 and there is nothing to show.
Suppose that γ(R) > 0. Because we may assume that R is a domain we have that F∗R is
generically free of rank pγ(R) and hence there exists a short exact sequence

0→ R⊕pγ(R) → F∗R→ T → 0

where T is a finitely generated torsion R-module. In particular, T is a module over R/(c)
for some c ̸= 0. Since γ(R/(c)) < γ(R) by Corollary 9.6, we may assume by induction that
there exists a constant C so that µ(F e

∗T ) ≤ Cpe(γ(R)−1) for all e ∈ N.
Applying F e−1

∗ (−) to the above short exact sequence we find new short exact sequences

0→ F e−1
∗ R⊕pγ(R) → F e

∗R→ F e−1
∗ T → 0.
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Counting minimal number of generators is sub-additive on short exact sequences hence

µ(F e
∗R) ≤ µ(F e−1

∗ R⊕pγ(R)) + µ(F e−1
∗ T )

= pγ(R)µ(F e−1
∗ R) + µ(F e−1

∗ T )

≤ pγ(R)µ(F e−1
∗ R) + Cpe(γ(R)−1).

Dividing by rankR(F e
∗R) = peγ(R) we find that

µ(F e
∗R)

rankR(F e
∗R) ≤

µ(F e−1
∗ R)

rankR(F e−1
∗ R) + C

pe
.(9.1)

Similarly, there is an inequality
µ(F e−1

∗ R)
rankR(F e−1

∗ R) ≤
µ(F e−2

∗ R)
rankR(F e−2

∗ R) + C

pe−1 .(9.2)

Applying the inequality of (9.2) to (9.1) we find that

µ(F e
∗R)

rankR(F e
∗R) ≤

µ(F e−2
∗ R)

rankR(F e−2
∗ R) + C

pe−1 + C

pe
.

Inductively, we derive the inequality
µ(F e

∗R)
rankR(F e

∗R) ≤ 1 + C

p
+ · · ·+ C

pe−1 + C

pe
≤ C

(
1 + 1

p
+ · · ·+ 1

pe−1 + 1
pe

)
≤ C

1− 1
p

≤ 2C.

Therefore µ(F e
∗R) ≤ 2C rankR(F e

∗R) for all e ∈ N. □

Corollary 9.8. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and let
T be a finitely generated R-module not supported at any minimal prime of R. Then there
exists a constant C so that

µR(F e
∗T ) ≤ Cpe(γ(R)−1).

Proof. Let I = AnnR(T ). Clearly we have µR(F e
∗T ) = µR/I(F e

∗T ). By Lemma 9.7 there exists
an constant C so that µR/I(F e

∗T ) ≤ Cpeγ(R/I). But γ(R/I) < γ(R) by Corollary 9.6. □

Lemma 9.9. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. If R is
not strongly F -regular then s(R) = 0.

Proof. Let F e
∗R
∼= R⊕ae(R) ⊕Me be a choice of direct sum decomposition of F e

∗R so that
Me does not have a free summand, see Lemma 9.1. Set Ne = m⊕ae(R) ⊕Me. In particular,
Ne ⊆ F e

∗R is an R-submodule, F e
∗R/Ne

∼= k⊕ae(R), and ae(R) = ℓR(F e
∗R/Ne).

We are assuming R is not strongly F -regular. So there exists an element c ∈ R not in any
minimal prime of R such that R ·F e

∗ c−−→ F e
∗R does not split for all e ∈ N. Observe then that
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mF e
∗R + spanF e

∗R
{F e

∗ c} ⊆ Ne for all e ∈ N. Therefore we can estimate

ae(R) = ℓ(F e
∗R/Ne) ≤ℓR(F e

∗R/(mF e
∗R + spanF e

∗R
{F e

∗ c}))

=ℓR(F e
∗ (R/cR)⊗R R/m) = µR(F e

∗ (R/cR)).

By Corollary 9.8 there is a constant C such that

µ(F e
∗ (R/cR)) ≤ Cpe(γ(R)−1).

Dividing by peγ(R) and taking a limit as e→∞ shows that

0 ≤ s(R) = lim
e→∞

ae(R)
peγ(R) ≤ lim

e→∞

C

pe
= 0. □

The following is the key lemma in establishing the existence of F -signature.

Lemma 9.10. Let (R,m, k) be a local ring and let

0→M1 →M2 →M3 → 0

be a short exact sequence of finitely generated R-modules. Then

frkR(M2) ≤ frkR(M1) + µR(M3).

Proof. Begin by choosing direct sum decompositions M1 ∼= R⊕ frkR(M1) ⊕ M1 and M2 ∼=
R⊕ frkR(M2) ⊕M2 where M1 and M2 are R-modules without a free summand. Because M1 is
a module without a free summand we have that 0 ⊕M1 ⊆ m⊕ frkR(M2) ⊕M2. In particular,
there is an induced map

M1

0⊕M1
→ M2

m⊕ frkR(M2) ⊕M2
.

Equivalently, there is a right exact sequence

R⊕ frkR(M1) → k⊕ frkR(M2) →M ′
3 → 0

and the cokernel M ′
3 is a homomorphic image of M3. Counting minimal generators is sub-

additive on right exact sequences and therefore

frkR(M2) ≤ frkR(M1) + µR(M ′
3) ≤ frkR(M1) + µR(M3). □

Now we can prove the first main result of this chapter.

Theorem 9.11. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. Then
the F -signature of R exists, i.e., the sequence of numbers

{
ae(R)
peγ(R)

}
e∈N

defines a Cauchy se-
quence.
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Proof. By Lemma 9.9 we are reduced to the scenario that R is strongly F -regular. By
Lemma 3.2 we know that R is a domain. Let

s+(R) = lim sup
e→∞

ae(R)
peγ(R) , and s−(R) = lim inf

e→∞

ae(R)
peγ(R) .

We aim to show s+(R) ≤ s−(R).
Since rankR(F∗R) = pγ(R), we have a short exact sequence

0→ F∗R→ R⊕pγ(R) → T → 0

where T is a finitely generated torsion R-module. Applyig F e
∗ (−) gives us a short exact

sequence
0→ F e+1

∗ R→ F e
∗R

⊕pγ(R) → F e
∗T → 0.

By Lemma 9.10 we have that for each e ∈ N the inequality

frkR(F e
∗R

⊕pγ(R)) ≤ frkR(F e+1
∗ R) + µR(F e

∗T ),

that is,
pγ(R)ae(R) ≤ ae+1(R) + µR(F e

∗T ).

By Corollary 9.8 there exists a constant C so that µR(F e
∗T ) ≤ Cpe(γ(R)−1). Dividing by

p(e+1)γ(R) yields that
ae(R)
peγ(R) ≤

ae+1(R)
p(e+1)γ(R) + C

pe
.

We can similarly bound the ratio ae+1(R)
p(e+1)γ(R) from above by ae+2(R)

p(e+2)γ(R) + C
pe+1 and therefore

ae(R)
peγ(R) ≤

ae+2(R)
p(e+2)γ(R) + C

pe
+ C

pe+1 .

Inductively, we find that for all e, e0 ∈ N that
ae(R)
peγ(R) ≤

ae+e0(R)
p(e+e0)γ(R) + C

pe
+ C

pe+1 + · · ·+ C

pe+e0−1

= ae+e0(R)
p(e+e0) + C

pe

(
1 + 1

p
+ · · ·+ 1

pe0−1

)
≤ ae+e0(R)

p(e+e0) + 2C
pe
.

Taking a limit infimum as e0 →∞ shows that for all e ∈ N that
ae(R)
peγ(R) ≤ s−(R) + 2C

pe
.

Taking a limit supremum as e→∞ then shows that

s+(R) ≤ s−(R),

i.e., the F -signature of R exists. □
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9.2. F -signature and strong F -regularity. We aim to prove that an F -finite local ring
(R,m, k) is strongly F -regular if and only if s(R) > 0. Lemma 9.9 establishes the simpler
direction of the equivalence: if s(R) > 0, then R is strongly F -regular. It remains to show
the converse: if R is strongly F -regular, then s(R) > 0.

This result was first proved by Aberbach and Leuschke in [AL03], invoking multiple deep
theorems and advanced techniques. For example, their approach relies on a “valuative cri-
terion” for tight closure provided by Hochster and Huneke in [HH91], later generalized by
Aberbach in [Abe01]. Additionally, they use the Izumi–Rees theorem [Ree89], which gives
a linear bound on any two Rees valuations centered on the maximal ideal of an analytically
irreducible local domain.

In contrast, we do not invoke these advanced techniques. Instead, we present two novel and
more elementary proofs, detailed in Theorem 9.23 and Theorem 9.25. Presenting multiple
simplified proofs of Aberbach and Leuschke’s theorem are further benefited with additional
insights of prime characteristic rings. The method of proof in Theorem 9.23 complements the
theory of linear comparison of ideal topologies in rings of prime characteristic. Meanwhile,
the techniques underlying the proof of Theorem 9.25 are enriched by insights into the divisor
class group of a local strongly F -regular domain.

Fundamental to the study of Noetherian local rings is the concept of completion. If
(R,m, k) is a Noetherian local ring, M a finitely generated R-module, and I ⊆ R an ideal, the
completion M̂I

∼= lim←−M/InM is the collection of Cauchy sequences in M with respect to the
I-adic topology (or metric) on M . Here, the “distance” between two elements m1,m2 ∈ M
is the reciprocal of sup{t | m1 −m2 ∈ I tM}, where the reciprocal of ∞ is defined to be 0.

Definition 9.12. A Noetherian local ring (R,m, k) is said to be analytically irreducible if
the completion R̂ with respect to the maximal ideal m is a domain.

The following lemma of Chevalley highlights an important property of a module over a
local ring with maximal ideal m. Chevalley’s Lemma serves as the foundation for several
deep theorems in commutative algebra and algebraic geometry.

Lemma 9.13 ([Che43]). Let (R,m, k) be a Noetherian local ring and M a finitely generated
R-module. Suppose that I ⊆ R is an m-primary ideal and {Mn}n∈N is a descending sequence
of submodules of M so that ⋂n∈N M̂n = 0. There exists an t > 0 such that Mt ⊆ IM .

In particular, if {In}n∈N a descending chain of ideals so that ⋂n∈N InR̂ = 0. Then there
exists t > 0 such that It ⊆ J .

Proof. The completion map R→ R̂ is faithfully flat, therefore Mn ⊆ IM if and only if M̂n ⊆
IM̂ . We therefore can replace R by R̂, I by IR̂, M by M̂ , and {Mn}n∈N by {M̂n}n∈N and
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assume that (R,m, k) is a complete local domain. Since M/IM us Artinian, the descending
chain of submodules {(Mn + IM)/IM}n∈N eventually stabilizes. Thus there exists n1 so
that for all n ≥ n1 we have that (Mn + IM)/IM = (Mn1 + IM)/IM . Similarly, there
exists n2 > n1 so that (Mn + I2M)/I2M = (Mn2 + I2M)/I2M for all n ≥ n2. Inductively
choose nt so that nt+1 > nt and (Mn + I tM)/I tM = (Mnt + I tM)/I tM for all n ≥ nt.
Replacing Mt by Mnt , we may assume that the sequence of modules {Mn}n∈N is such that
(Mn + I tM)/I tM = (Mt + I tM)/I tM for all n ≥ t.

We claim that M1 ⊆ IM . Choose an element η1 ∈ M1. Because (M2 + IM)/IM =
(M1 + IM)/IM we can choose η2 ∈ M2 so that η2 ≡ η1 mod IM . Inductively, we choose
elements ηt ∈ Mt so that ηt+1 ≡ ηt mod I tM . The sequence of elements {ηt} forms a
Cauchy sequence. Let η̃ ∈ M denote its limit (which exists since M is complete: it is a
finitely generated module over a complete local ring). Because each ηt ∈ Mt and ⋂Mt = 0
we must have that η̃ = 0. In particular, there exists a t such that ηt ∈ IM . Recall that
ηt ≡ ηt−1 mod I t−1M . Hence ηt−ηt−1 ∈ I tM ⊆ IM and therefore ηt−1 ∈ IM . By induction
η1 ∈ IM and hence M1 ⊆ IM as claimed. □

Lemma 9.14. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and M a
finitely generated R-module. For each e ∈ N let

Ie(M) = {η ∈M | R ·F e
∗ η−−→ F e

∗M does not split}.

(1) For each e ∈ N the set Ie(M) is a submodule of M containing m[pe]M .
(2) For each e ∈ N we have that ae(M) = ℓ(M/Ie(M))[F e

∗k : k].
(3) {Ie(M)}e∈N is a descending chain of submodules of M .
(4) If R is strongly F -regular and M is torsion-free then ⋂

e∈N Ie(M) = 0.
(5) For each ∈ N, Ie(M) = {η ∈M | φ(F e

∗ η) ∈ m, ∀φ ∈ HomR(F e
∗M,R)}.

If M = R then we refer to Ie := Ie(R) as the eth splitting ideal of R.

Proof. (1) Suppose that η1, η2 ∈ Ie(M) and r ∈ R we aim to show that rη1 + η2 ∈ Ie(M).
Suppose by way of contradiction that there exists φ ∈ HomR(F e

∗M,R) so that φ(F e
∗ (rη1 +

η2)) = φ(F e
∗ rη1) + φ(F e

∗ η2) = 1. Because R is local we must have that either φ(F e
∗ rη1) is a

unit of R or φ(F e
∗ η2) is a unit of R. If φ(F e

∗ rη1) is a unit then η1 ̸∈ Ie(M) if φ(F e
∗ η2) is a

unit then η2 ̸∈ Ie(M).
(2) Suppose that F e

∗M
∼= R⊕ae(M)⊕N is a choice of direct sum decomposition of F e

∗M so
that N does not admit a free summand. Under this choice of direct sum decomposition we
have that F e

∗ Ie(M) = m⊕ae(M) ⊕N . Therefore

ℓR(M/Ie(M)) = ℓF e
∗R(F e

∗ (M/Ie(M))) = ℓR(F e
∗M/F e

∗ Ie(M))
[F e

∗k : k] = ae(M)
[F e

∗k : k] .
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(3) We want to show Ie(M) ⊇ Ie+1(M), this is clear if Ie(M) = M and so we assume
Ie(M) ̸= M . Suppose η ̸∈ Ie(M) and choose splitting φ : F e

∗M → R so that φ(F e
∗ η) = 1.

We will show that η ̸∈ Ie+1(M). Observe that R is F -pure: consider R ·η−→ M , then ψ:
F e

∗R
·F e

∗ η−−→ F e
∗M

φ−→ R is a splitting of R→ F e
∗R. Then ψ(F∗φ(F e+1

∗ η)) = 1 and η ̸∈ Ie+1(M)
as claimed.

(4) See Lemma 5.9.
(5) Given η ∈M , then R ·F e

∗ η−−→ F e
∗M does not split if and only if for all φ ∈ HomR(F e

∗M,R),
φ(F e

∗ η) is a non-unit of R. Equivalently, φ(F e
∗ η) ∈ m for all φ ∈ HomR(F e

∗M,R). □

The following is a sufficient criteria to assert positivity of F -signature.

Lemma 9.15. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and
dimension d. Suppose that there exists an e0 ∈ N so that for all e ∈ N, Ie+e0 ⊆ m[pe]. Then
s(R) ≥ 1

pe0 > 0.

Proof. By Lemma 9.14 and Theorem 9.4,
ae+e0(R)

[F e+e0∗ k : k] = ℓ(R/Ie+e0) ≥ ℓ(R/m[pe]) = µ(F e
∗R)

[F e
∗k : k] ≥

rankR(F e
∗R)

[F e
∗k : k] = ped.

Dividing by p(e+e0)d and taking a limit as e→∞ shows that

s(R) ≥ 1
pe0d

> 0. □

9.2.1. Positivity of F -signature via the Artin-Rees Lemma. Kunz’s theorem equates the
property R is non-singular with F e

∗R being a flat R-module. When R is singular, then
the following lemma allows us to identify an element c ∈ R and flat, even free submodules,
Fe ⊆ F e

∗R for all e ∈ N so that cF e
∗R ⊆ Fe. The existence of such elements are related to

the theory of test elements in tight closure theory (see Chapter 12).

Lemma 9.16. Let R be an F -finite domain of prime characteristic p > 0. There exists
0 ̸= c ∈ R and choices of free submodules Fe ⊆ F e

∗R for all e ∈ N so that cF e
∗R ⊆ Fe.

Proof. Let K denote the fraction field of R. Then (F∗R)(0) ∼= F∗K is a free K-vector space
of rank pγ for some γ ∈ N. By clearing denominators of a basis of F∗K over K, we can
select elements of F∗R that form a basis of F∗K over K. Let F1 be the R-submodule of F∗R

generated by this choice of elements.
The submodule F1 ⊆ F∗R is necessarily a free R-module, i.e., F1 ∼= R⊕pγ , as any non-

trivial relation among the chosen elements would imply a non-trivial relation among the
chosen basis of F∗K over K. Let F2 ∼= R⊕p2γ be the natural choice of free R-module defined
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by F⊕pγ

1 ⊆ F∗F1 ⊆ F∗F∗R ∼= F 2
∗R. Inductively, we define Fe+1 as the natural free module

Fe+1 := F⊕pγ

e ⊆ F∗Fe ⊆ F∗F
e
∗R
∼= F e+1

∗ R,

built from the inclusion F1 ⊆ F∗R.
Since the inclusion of R-modules F1 ⊆ F∗R agrees upon localization at the 0-prime of R,

there exists some 0 ̸= c ∈ R such that cF∗R ⊆ F1. In particular, cF∗Fe ⊆ Fe+1 for all e ∈ N.
By induction, assume c2F e

∗R ⊆ Fe. Then:

c2F e+1
∗ R ∼= c2F∗F

e
∗R = cF∗(cpF e

∗R) ⊆ cF∗Fe ⊆ Fe+1.

Thus, the element c2 satisfies the desired property of the lemma. □

The following definition is a generalization of the “Frobenius splitting submodules” intro-
duced in Lemma 9.14.

Definition 9.17. Let R be an F -finite ring of prime characteristic p > 0, M a finitely
generated R-module, I ⊆ R an ideal, and e ∈ N. The eth generalized splitting ideal of M
with respect to the ideal I is the set

Ie(I;M) = {η ∈M | φ(F e
∗ η) ∈ I, ∀φ ∈ HomR(F e

∗M,R)}.

Remark 9.18. Note that if (R,m, k) is local then Ie(m;M) = Ie(M) and Ie(m;R) = Ie as
defined in Lemma 9.14. More generally, the sets Ie(I;M) defined above are easily verified to
be submodules of M and enjoy properties similar to those discussed in Lemma 9.14. Details
are left to the readers in Exercise 42.

The following lemma provides to us some elementary but useful relationships among gen-
eralized splitting submodules of an F -finite ring.

Lemma 9.19. Let R be an F -finite ring of prime characteristic p > 0 and I ⊆ R an ideal.
(1) For all e, e0 ∈ N,

Ie+e0(I;R) ⊆ Ie(Ie0(I;R);R).

(2) For every c ∈ R and e ∈ N, cpe
Ie(I;R) ⊆ Ie(cI;R).

Proof. (1) Suppose that r ∈ R\Ie(Ie0(I;R);R). This implies there exists φ ∈ HomR(F e
∗R,R)

so that φ(F e
∗ r) ∈ R \ Ie0(I;R), which in turn implies there exists ψ ∈ HomR(F e0

∗ R,R) so
that ψ(F e0

∗ (φ(F e
∗ r))) ∈ R \ I. Therefore the composition of R-linear maps

γ : F e+e0
∗ R

F
e0
∗ φ−−−→ F e0

∗ R
ψ−→ R

is so that γ(F e+e0
∗ r) ∈ R \ I, hence r ∈ R \ Ie+e0(I;R).
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(2) Suppose that r ∈ Ie(I;R). Then for all φ ∈ HomR(F e
∗R,R), φ(F e

∗ r) ∈ I. Therefore
cφ(F e

∗ r) = φ(cF e
∗ r) = φ(F e

∗ c
pe
r) ∈ cI for all φ ∈ HomR(F e

∗R,R). Therefore cpe
Ie(I;R) ⊆

Ie(cI;R) as claimed. □

If (R,m, k) is an F -finite regular local ring of prime characteristic p > 0, then F e
∗R is a

finitely generated free R-module for all e ∈ N, by Theorem 1.1. If I ⊆ R is an ideal and
x ∈ R, then x ∈ R\I [pe] if and only if F e

∗x ∈ F e
∗R\IF e

∗R if and only if there exists a choice of
projection onto a free summand π : F e

∗R→ R such that π(F e
∗x) ̸∈ I. Consequently, x ̸∈ I [pe]

if and only if x ̸∈ Ie(I;R), which implies that I [pe] = Ie(I;R) for all ideals I ⊆ R when R is
regular.

When R is singular, the following proposition shows that the element c described in
Lemma 9.16 provides a bounded comparison between the Frobenius powers of an ideal I and
the generalized splitting ideals of R with respect to I.

Proposition 9.20. Let R be an F -finite domain of prime characteristic p > 0 and let
0 ̸= c ∈ R be an element so that for all e ∈ N there exists a free submodule Fe ⊆ F e

∗R so that
cF e

∗R ⊆ Fe, see Lemma 9.16 for the existence of such elements. Then for all ideals I ⊆ R

and e ∈ N,
Ie(I;R) ⊆ (I [pe] :R cp

e).

Proof. Suppose that r ∈ R \ I [pe]. This implies F e
∗ r ∈ F e

∗R \ IF e
∗R ⊆ F e

∗R \ IFe. Then
cF e

∗ r = F e
∗ c

pe
r ∈ Fe \ cIFe. Therefore for an appropriate choice of projection π onto a free

summand of Fe, the composition of R-linear maps

φ : F e
∗R

·c−→ Fe
π−→ R

is so that φ(F e
∗ r) ∈ R\cI. Consequently, Ie(cI;R) ⊆ I [pe]. By Lemma 9.19 (2), cpe

Ie(I;R) ⊆
Ie(cI;R) ⊆ I [pe]. Therefore Ie(I;R) ⊆ (I [pe] :R cp

e) for every e ∈ N. □

The following characteristic-free lemma is an application of the Artin-Rees Lemma.

Lemma 9.21. Let R be a ring, c ∈ R a nonzerodivisor, and I ⊆ R an ideal. Let A be an
Artin-Rees number of (c) ⊆ R with respect to the ideal I ⊆ R, i.e., (c)∩ In = In−A((c)∩ IA)
for all n ≥ A. Then for all t ≥ A+ 1 and n ∈ N, (I tn :R cn) ⊆ I(t−A)n.

Proof. Observe that (c) ∩ I t = c(I t :R c) and I t−A((c) ∩ IA) ⊆ cI t−A. Therefore for all
t ≥ A + 1, c(I t : c) ⊆ cI t−A. We are assuming c is a nonzerodivisor of R. We may cancel c
and have ideal containments (I t :R c) ⊆ I t−A for all t ≥ A + 1. Observe that if t ≥ A + 1
and n ≥ 2 then

(I tn :R cn) = ((I tn :R c) :R cn−1) ⊆ (I tn−A :R cn−1).
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Descending induction on n provides the containment (I tn :R cn) ⊆ I tn−An = I(t−A)n. □

Lemma 9.22. Let R be an F -finite domain and I ⊆ R an ideal. There exists a constant C
so that for all e ∈ N Ie(IC ;R) ⊆ I [pe].

Proof. By Lemma 9.16 there exists an element 0 ̸= c ∈ R and for every e ∈ N a free
submodule Fe ⊆ F e

∗R so that cF e
∗R ⊆ Fe. By Proposition 9.20, for every e, A, s ∈ N,

Ie(IA+s;R) ⊆ ((IA+s)[pe] :R cp
e) ⊆ (I(A+s)pe :R cp

e).

By Lemma 9.21, if A ∈ N is chosen to be an Artin-Rees bound of (c) ⊆ R with respect to
the ideal I ⊆ R, then (I(A+s)pe :R cp

e) ⊆ Isp
e for all e, s ∈ N. If s is chosen to be the number

of generators of the ideal I, then Isp
e ⊆ I [pe] for all e ∈ N. Consequently for all e ∈ N, if A

is an Artin-Rees number of (c) ⊆ R with respect to the ideal I ⊆ R and s is the minimal
number of generators of I, then for all e ∈ N,

Ie(IA+s;R) ⊆ I [pe]. □

Theorem 9.23. Let (R,m, k) be an F -finite and strongly F -regular ring of prime charac-
teristic p > 0.

(1) There exists a constant e0 ∈ N so that for all e ∈ N, Ie+e0(m;R) ⊆ m[pe].
(2) The F -signature of R is positive.

Proof. The second assertion is a corollary of the first by Lemma 9.15. By Lemma 9.22, there
exists a constant C so that for all e ∈ N,

(9.3) Ie(mC ;R) ⊆ m[pe].

Lemma 9.14 implies ⋂e∈N Ie(m;R) = 0. The ringR is analytically irreducible by Lemma 3.2
and Corollary 3.12. Chevalley’s Lemma, Lemma 9.13, implies there exists e0 ∈ N so that
Ie0(m;R) ⊆ mC . By Lemma 9.19 (1), for every e ∈ N,

(9.4) Ie+e0(m;R) ⊆ Ie(Ie0(m;R);R).

The ideal containment Ie0(m;R) ⊆ mC implies

(9.5) Ie(Ie0(m;R);R) ⊆ Ie(mC ;R).

Combining (9.3), (9.4), and (9.5), for every e ∈ N, Ie+e0(m;R) ⊆ m[pe]. □

9.2.2. Positivity of F -signature via Maximal Cohen-Macaulay Modules. Our second presen-
tation that the F -signature of a local strongly F -regular ring is positive, first presented in
[Pol22], is derived from from a representation theoretic statement on the Frobenius pushfor-
wards of Cohen-Macaulay modules. We start with a proof of [Pol22, Main Theorem].
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Theorem 9.24. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0. Then there exists an e0 ∈ N so that if M is a finitely generated maximal
Cohen-Macaulay R-module and η ∈M \mM then there exists φ ∈ HomR(F e0

∗ M,R) so that
φ(F e0

∗ η) = 1, i.e., F e0
∗ η generates a free R-summand of F e0

∗ M .

Proof. First of all we observe that the finitely generated R-module F e0
∗ M has a free R-

summand if and only if F e0
∗ M̂ has a free R̂-summand (see Exercise 44). Therefore one can

replace R by R̂ to assume that R is complete (note that strong F -regularity is preserved
under completion by Corollary 3.12). In particular, R admits a canonical module ωR. Given
a finitely generated R-module N , we use N∗ to denote the ωR-dual HomR(N,ωR) for the
rest of this proof.

We map a free module R⊕N onto M∗, let K denote the kernel, and consider the short
exact sequence

0→ K → R⊕N →M∗ → 0.

The module R⊕N is Cohen-Macaulay by Theorem 4.6, M∗ is Cohen-Macaulay by [BH93,
Theorem 3.3.10], and therefore K is seen to be Cohen-Macaulay by examining the induced
long exact sequence of local cohomology modules with support in the maximal ideal m. If we
apply HomR(−, ωR) to the above short exact sequence and utilize [BH93, Theorem 3.3.10] a
second time we find that there is a short exact sequence of Cohen-Macaulay R-modules

0→M → ω⊕N
R → K∗ → 0.(9.6)

Let x = x1, . . . , xd be a system of parameters of R and let I = (x). Then TorR1 (R/I,K∗)
agrees with the first Koszul homology module H1(x;K∗) and H1(x;K∗) = 0 as x is a regular
sequence on K∗. Therefore if we apply − ⊗R R/I to the short exact sequence in (9.6) we
produce a new short exact sequence

0→ M

IM
→ ω⊕N

R

Iω⊕N
R

→ K∗

IK∗ → 0.

Consequently, if η ∈M\IM then under the inclusion M ⊆ ω⊕N
R we find that η ∈ ω⊕N

R \Iω⊕N
R .

Recall that for each natural number e ∈ N the eth splitting submodule of ωR is the
submodule

Ie(ωR) = {m ∈ ωR | R
·F e

∗m−−−→ F e
∗ωR does not split}.

By Lemma 9.14, ⋂e∈N Ie(ωR) = 0. By Lemma 9.13 there exists an integer e0, depending
only on ωR and I, so that Ie0(ωR) ⊆ IωR. Thus if η ∈ M \ IM then under the inclusion
M ⊆ ω⊕N

R we must have that η ∈ ω⊕N
R \ Ie0(ωR)⊕N . In particular, there exists an R-linear
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map φ : F e0
∗ ω⊕N

R → R so that φ(F e0
∗ η) = 1. Restricting the domain of φ to F e0

∗ M shows
that F e0

∗ M admits a free summand. □

Theorem 9.25. Let (R,m, k) be an F -finite and strongly F -regular ring of prime charac-
teristic p > 0.

(1) If e0 ∈ N is chosen as in Theorem 9.24, then for all e ∈ N, Ie+e0(m;R) ⊆ m[pe].
(2) The F -signature of R is positive.

Proof. The second assertion is a corollary of the first by Lemma 9.15. If r ∈ R \ m[pe] if
and only if F e

∗ r ∈ F e
∗R \ mF e

∗R. The modules F e
∗R are maximal Cohen-Macaulay. By

Theorem 9.24 there exists φ : F e+e0
∗ R → R so that φ(F e+e0

∗ r) = 1, i.e., r ∈ R \ Ie+e0(m;R).
Therefore Ie+e0(m;R) ⊆ m[pe] for all e ∈ N. □

9.3. F -signature and regularity. Let (R,m, k) be an F -finite local ring of prime charac-
teristic p > 0. Huneke–Leuschke were the first to prove in [HL02] that R is a regular local
ring if and only if s(R) = 1. They showed that s(R) = 1 implies that a related numerical
invariant called the Hilbert–Kunz multiplicity of R, eHK(R), must also be equal to 1. Then
they appeal to a result of Watanabe–Yoshida [WY00] that analytically irreducible local rings
with Hilbert–Kunz multiplicity equal to 1 must be regular. The proof of Huneke–Leuschke’s
theorem presented here follows the methodology of [PS21] and allows us to bypass Hilbert–
Kunz theory.

Our proof that s(R) = 1 if and only if R is regular is a consequence of developing an
equimultiplicity theory of F -signature in strongly F -regular rings. More specifically, we need
to study the behavior of F -signature and Frobenius splitting numbers under localization.

Suppose that F e
∗R
∼= R⊕ae(R) ⊕Me and the module Me does not admit a free summand.

If P ∈ Spec(R) then
F e

∗R⊗R RP
∼= F e

∗RP
∼= R

⊕ae(R)
P ⊕ (Me)P .

By Lemma 9.1 we find that ae(RP ) ≥ ae(R) and equality holds if and only if (Me)P does
not admit a free RP -summand. Therefore to keep track of the differences of the Frobenius
splitting numbers of R and a localization of R at a prime ideal P it is beneficial to keep
track of the number of summands F e

∗R isomorphic to a particular module. To this end, if
M is a finitely generated R-module we let

aMe (R) = max{n |M⊕n is a direct summand of F e
∗R}.

Observe that if M does not admit a free summand and M is a direct summand of F e
∗R so

that MP has at least one free RP -summand, then ae(RP ) ≥ ae(R) + aMe (R).
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The following lemma is an elementary observation that for a strongly F -regular local ring
R, if a finitely generated R-module M is a direct summand of F e0

∗ R for some e0, then the
numbers aMe (R) are asymptotically comparable to the numbers rankR(F e

∗R) = peγ(R).

Lemma 9.26. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime char-
acteristic p > 0 and let M be a finitely generated R-module. If aMe0 (R) ≥ 1 for some e0 ∈ N
then

lim inf
e→∞

aMe (R)
peγ(R) > 0.

Proof. Suppose that F e0
∗ R ∼= M ⊕N and then consider a direct sum decomposition of F e

∗R

as F e
∗R
∼= R⊕ae(R) ⊕ P . Then

F e+e0
∗ R ∼= F e0

∗ R⊕ae(R) ⊕ F e0
∗ P ∼= (M ⊕N)⊕ae(R) ⊕ F e0

∗ P.

In particular,
aMe+e0(R) ≥ ae(R).

Dividing by p(e+e0)γ(R) and taking a limit infimum as e→∞ reveals that

lim inf
e→∞

aMe (R)
peγ(R) ≥

s(R)
pe0γ(R) ,

a quantity that is positive by Theorem 9.25. □

A consequence of Lemma 9.26 is an equimultiplicity theory of F -signature. The following
corollary gives us that F -signature is unchanged under localization at a prime ideal if and
only if each of the Frobenius splitting numbers too are unchanged under localization.

Corollary 9.27. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0. Suppose that P ∈ Spec(R). Then the following are equivalent:

(1) ae(R) = ae(RP ) for all e ∈ N;
(2) s(R) = s(RP ).

Proof. If ae(R) = ae(RP ) for all e ∈ N then s(R) = s(RP ): The sequences of numbers
{ ae(R)
peγ(R)} and { ae(RP )

peγ(RP )} converging to the F -signature of R and RP respectively are identical
sequences, see Exercise 45.

Suppose that ae0(R) ̸= ae0(RP ), or equivalently, F e0
∗ R ∼= R⊕ae0 (R)⊕Me0 whereMe0 does not

admit a free summand but (Me0)P has a free RP -summand (see Lemma 9.1). By Lemma 9.26
we have that

lim inf
e→∞

a
Me0
e (R)
peγ(R) > 0.
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For each e ∈ N consider a direct sum decomposition of the form

F e
∗R
∼= R⊕ae(R) ⊕M⊕a

Me0
e (R)

e0 ⊕Ne.

Localizing at P and counting free summands gives us

ae(RP ) ≥ ae(R) + aMe0
e (R).

Diving by peγ(R) = peγ(RP ) and taking a limit infimum as e→∞ shows that

s(RP ) ≥ s(R) + lim inf
e→∞

a
Me0
e (R)
peγ(R) > s(R). □

Now we can prove the following.

Theorem 9.28. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0. Then
s(R) = 1 if and only if R is a regular local ring.

Proof. If R is regular then F e
∗R is a finite free R-module for all e ∈ N by Theorem 1.1. Hence

ae(R)
peγ(R) = 1 for all e ∈ N and so s(R) = 1.

Conversely, if s(R) = 1 then R is strongly F -regular by Theorem 9.25 and hence a domain
by Lemma 3.2. Consider the localization of R at the prime ideal 0 and observe then that
1 = s(R) = s(R0). By Corollary 9.27 we must have that ae(R) = ae(R0) = rankR(F e

∗R) for
all e ∈ N. Therefore F e

∗R is a free R-module for all e ∈ N and therefore R is a regular local
ring by Theorem 1.1. □

We end this chapter with an application of Theorem 9.24 to the divisor class group of
strongly F -regular singularities.

Proposition 9.29. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0. Then, up to linear equivalence, there are only finitely many divisors D
such that R(peD) is maximal Cohen-Macaulay for all e > 0.

Proof. Let e0 be the constant in Theorem 9.24. Let D be a divisor such that R(peD) is
maximal Cohen-Macaulay for all e > 0. Then F e0

∗ R(pe0D) admits an R-summand, that
is, there exists a (split) surjection F e0

∗ R(pe0D) ↠ R. Tensoring with R(−D) and applying
(−)∗∗, we obtain a split surjection F e0

∗ R ↠ R(−D). Thus, R(−D) is a summand of F e0
∗ R.

Since F e0
∗ R can only have finitely many rank one summand up to isomorphism, we see that

there are only finitely many isomorphism classes of such R(−D). Hence there are only
finitely many such divisors D up to linear equivalence. □

Corollary 9.30. Let (R,m, k) be a two-dimensional F -finite and strongly F -regular local
ring of prime characteristic p > 0. Then the divisor class group Cl(R) is finite.
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Proof. By Proposition 9.29, it is enough to observe that R(D) is maximal Cohen-Macaulay
for all divisors D: this is because R(D) is (S2) over a two dimensional normal domain R. □

Corollary 9.31. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0 and of dimension d. Then the torsion part of Cl(R) is finite.

Proof. By Proposition 9.29, it is enough to show that R(D) is maximal Cohen-Macaulay for
all torsion divisors D, which follows from Proposition 5.10. □

Corollary 9.30 and Corollary 9.31 are in some sense the best possible: it is not true that
Cl(R) is finite for all strongly F -regular local rings in higher dimension. In Example 3.10, we
see that R = k[[x, y, u, v]]/(xy−uv) is a three-dimensional strongly F -regular local ring, and
it is easy to check that Cl(R) ∼= Z with the ideal (x, u) representing a generator of Cl(R).

Exercise 42. Let R be an F -finite ring, M a finitely generated R-module, I ⊆ R an ideal,
and e ∈ N.

(1) Show that Ie(I;M) is a submodule of M containing I [pe]M .
(2) Show that if I ⊆ J are ideals then Ie(I;M) ⊆ Ie(J ;M).
(3) Show that {Ie(I;M)}e∈N is a descending chain of submodules of M .

Exercise 43. Let (R,m, k) be a local ring and M ′ →M →M ′′ → 0 a right exact sequence
of finitely generated R-modules. Show that µR(M) ≤ µR(M ′)+µR(M ′′) where µR(N) counts
the minimal number of elements needed to generate a finitely generated R-module N .

Exercise 44. Let (R,m, k) be a local ring and M a finitely generated R-module. Show that
frkR(M) = frk

R̂
(M̂).

Exercise 45. Let (R,m, k) be an F -finite local ring of prime characteristic p > 0 and P ⊆ Q

be prime ideals of R. Prove that γ(R) ≥ γ(R/P ) = γ(RQ/PRQ) and that ae(R) ≤ ae(RQ).
Prove that s(R) ≤ s(RQ) for all Q ∈ Spec(R).

Exercise 46. Let (R,m, k) → (S, n, ℓ) be a flat local extension of F -finite rings of prime
characteristic p > 0. Prove that s(R) ≥ s(S). (Hint: Use Exercise 45 to reduce to the case
that dim(R) = dim(S).)

In connection with Corollary 9.30 and Corollary 9.31, the following question is open.

Open Problem 4. Let (R,m, k) be an F -finite and strongly F -regular local ring of prime
characteristic p > 0. Is it true that Cl(R) is finitely generated?
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10. Radu–André’s theorem, Kunz’s theorem, and Gabber’s theorem

In this chapter, we utilize modern techniques to prove some foundational results unique
to prime characteristic commutative algebra. The first theorem is obtained by Radu and
André [Rad92, And93] and can be viewed as a relative version of Kunz’s theorem, Theorem
1.1. The second and third theorems are mentioned earlier: see Theorem 1.7 and Theorem
1.6, and they both indicate that F -finite rings have nice geometric properties and are not
pathological from the view of algebraic geometry.

We begin with the Radu–André Theorem. Recall that a map R → S of (Noetherian)
rings is called regular if it is flat and all fibers are geometrically regular, i.e., κ(P ) ⊗R S is
geometrically regular over κ(P ) for all P ∈ Spec(R).

Theorem 10.1 (Radu–André Theorem). A homomorphism R → S of (Noetherian) rings
of prime characteristic p > 0 is regular if and only if F e

∗R ⊗R S → F e
∗S is flat for some

(equivalently, all) e > 0.

The difficulty of the theorem is that it is not clear in priori that F e
∗R⊗R S is a Noetherian

ring (though it will follow from the conclusion of the theorem that F e
∗R ⊗R S is in fact

Noetherian, see Exercise 48).11 We thus proceed carefully. We first record some criteria for
flatness, see [Sta, Tag 00MD] for more details.

Lemma 10.2 ([Sta, Tag 0523]). Let R → S be a map of (Noetherian) rings. Let I ⊆ R be
an ideal and let M be a finitely generated S-module. Suppose for each n ≥ 1, M/InM is
flat over R/In. Then for each prime Q ∈ Spec(S) such that I ⊆ Q, MQ is flat over R. In
particular, if (S, n, ℓ) is local and IS ⊆ n, then M is flat over R.

Lemma 10.3 ([Sta, Tag 051C]). Let A be a ring that is not necessarily Noetherian, I ⊆ A

an ideal, and M an A-module. If M/IM is flat over A/I and TorA1 (A/I,M) = 0, then
(1) M/InM is flat over A/In for all n ≥ 1.
(2) For any A-module N that is annihilated by Im for some m ≥ 0, TorA1 (N,M) = 0.

In particular, if I is nilpotent, then M is flat over A.

The next lemma is well-known to experts, as we cannot find a good reference beyond the
Noetherian set up, we deduce it from Lemma 10.3.

Lemma 10.4 (Fiberwise criteria for flatness). Let A be a ring that is not necessarily Noe-
therian, and let M be an A-module. Let t ∈ A such that t is a nonzerodivisor on both A and
M . If M/tM is flat over A/tA and Mt is flat over At, then M is flat over A.
11If we know F e

∗ R ⊗R S is Noetherian in priori (e.g., if R is F -finite), then at least one direction of the
theorem follows quite easily from Kunz’s theorem and the local criterion for flatness [Sta, Tag 00ML].
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Proof. By Lemma 10.3 applied to I = (t), we know that TorA1 (N,M) = 0 for all t∞-torsion
A-modules N (by taking a direct limit). For any tm-torsion A-module N , we have 0→ K →
F → N → 0 where F is a free A/tmA-module and K is tm-torsion. Since t is a nonzerodivisor
on A and M , TorAj (F,M)=0 for all j > 0. The long exact sequence of Tor then shows that
TorAj (N,M) = 0 for all j > 0. By taking direct limit we know that TorAj (N,M) = 0 for all
j > 0 and all t∞-torsion A-modules N .

For an arbitrary A-module N , if we let Γ(t)N = {n ∈ M | tℓn = 0 for some ℓ}, then we
have two short exact sequences:

0→ Γ(t)N → N → N → 0, and 0→ N → N t → N ′ → 0

Now TorAj (Γ(t)N,M) = TorAj (N ′,M) = 0 for all j > 0 since Γ(t)N,N
′ are both t∞-torsion,

and TorAj (N t,M) ∼= TorAt
j (N t,Mt) = 0 for all j > 0 since Mt is flat over At. By examining

the long exact sequence of Tor, it is easy to see that TorAj (N,M) = 0 for all j > 0. Thus M
is flat over A. □

Proof of Theorem 10.1. We first prove that if F e
∗R⊗R S → F e

∗S is flat for some e > 0, then
R→ S is regular. We observe that if F e

∗R⊗R S → F e
∗S is flat, then applying F e

∗ (−), we see
that F 2e

∗ R⊗F e
∗RF

e
∗S → F 2e

∗ S is flat, while applying F 2e
∗ R⊗F e

∗R (−), we see that F 2e
∗ R⊗RS →

F 2e
∗ R ⊗F e

∗R F
e
∗S is flat. Thus composing these two maps we see that F 2e

∗ R ⊗R S → F 2e
∗ S

is flat. Thus iterating this process, we find that there are infinitely many e > 0 such that
F e

∗R⊗R S → F e
∗S is flat.

We set κ = κ(P ) and aim to show κ ⊗R S is geometrically regular over κ. Note that
for any finite and purely inseparable field extension κ′ of κ, we can pick e ≫ 0 such that
κ′ ⊆ F e

∗κ and F e
∗R ⊗R S → F e

∗S is flat. Base change the flat map F e
∗R ⊗R S → F e

∗S along
F e

∗R→ F e
∗κ, we know that F e

∗κ⊗R S → F e
∗ (κ⊗R S) is flat. Consider the composition:

κ′ ⊗R S → F e
∗κ⊗R S → F e

∗ (κ⊗R S)→ F e
∗ (κ′ ⊗R S)

where the first and third maps are flat as they are base changed from field extensions, and
the middle map is flat by previous discussion. Thus the composition is flat and so κ′ ⊗R S
is regular by Theorem 1.1. Therefore κ⊗R S is geometrically regular over κ.

To show R → S is flat, we may localize at a prime ideal of S and localize R at the
contraction of that prime ideal. Thus we may assume that (R,m, k) → (S, n, ℓ) is a local
homomorphism. By Lemma 10.2, it is enough to show that R/m[pe] → S/m[pe]S is flat for
infinitely many e > 0. Base change the flat map F e

∗R⊗R S → F e
∗S along R→ R/m, we see

that F e
∗ (R/m[pe])⊗R/m S/mS → F e

∗ (S/m[pe]S) is flat. Thus the composition:

F e
∗ (R/m[pe])→ F e

∗ (R/m[pe])⊗R/m S/mS → F e
∗ (S/m[pe]S)
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is flat (the first map is flat since it is base changed over a field), and hence R/m[pe] → S/m[pe]S

is flat as desired.
We now prove the other direction that if R→ S is regular, then F e

∗R⊗RS → F e
∗S is flat for

all e > 0. For any ideal J ⊆ R, consider the ideal F e
∗J(F e

∗R⊗R S) ∼= F e
∗J ⊗R S ⊆ F e

∗R⊗R S.
Since R→ S (and hence F e

∗R→ F e
∗R⊗R S) is flat, we know that

TorF
e
∗R⊗RS
j (F e

∗S, (F e
∗R⊗R S)/F e

∗J(F e
∗R⊗R S)) ∼= TorF

e
∗R
j (F e

∗S, F
e
∗R/F

e
∗J) = 0

for all j > 0. Apply the above discussion to the nilradical J of R, since Jn = 0 for n≫ 0 as
R is Noetherian, if we can show that

F e
∗ (R/J)⊗R/J (S/JS) ∼= (F e

∗R⊗R S)/F e
∗J(F e

∗R⊗R S)→ F e
∗S/F

e
∗J(F e

∗S) ∼= F e
∗ (S/J)

is flat, then by Lemma 10.3 (applied to A = F e
∗R⊗R S and I = F e

∗J(F e
∗R⊗R S)) we will get

that F e
∗R⊗R S → F e

∗S is flat as desired. Therefore, we may replace R by R/J to assume R
is reduced.

We next note that, to show F e
∗R ⊗R S → F e

∗S is flat, it is enough to check this at each
prime ideal of S. Thus we may localize S at a prime ideal and localize R at the contraction
to assume (R,m, k)→ (S, n, ℓ) is a regular local homomorphism.

Now we use induction on dim(R). If dim(R) = 0, then since we may assume R is local
and reduced, R = k is a field and our hypothesis becomes that S is geometrically regular
over k. Consider the composition:

F e
∗k ⊗k S → F e

∗S → F 2e
∗ k ⊗F e

∗ k F
e
∗S
∼= F e

∗ (F e
∗k ⊗k S).

This composition is flat: F e
∗k⊗kS = lim−→k′ k

′⊗kS where k′ runs over all finite field extensions
of k contained in F e

∗k, since each k′⊗k S is regular by our assumption, k′⊗k S → F e
∗ (k′⊗k S)

is flat by Theorem 1.1, and a direct limit of flat maps is flat. But the second map in the
composition is obviously faithfully flat as it is base changed from field extensions. Thus the
first map in the composition, F e

∗k ⊗k S → F e
∗S, is flat. This proves the case dim(R) = 0.

Finally, we assume dim(R) > 0. We may assume (R,m, k) is local and reduced. Thus there
exists a nonzerodivisor t ∈ m. Since (R,m, k)→ (S, n, ℓ) is flat, F e

∗ t⊗1 is a nonzerodivisor on
F e

∗R⊗RS and F e
∗ t is a nonzerodivisor on F e

∗S. By Lemma 10.4, to show (F e
∗R⊗RS)→ F e

∗S

is flat, it is enough to show that

(1) (F e
∗R⊗R S)/F e

∗ t(F e
∗R⊗R S)→ F e

∗S/F
e
∗ t(F e

∗S) is flat, and
(2) (F e

∗R⊗R S)[ 1
F e

∗ t⊗1 ]→ (F e
∗S)[ 1

F e
∗ t

] is flat.

Now the first map is the same as F e
∗ (R/tR)⊗R/tRS/tS → F e

∗ (S/tS), while the second map is
the same as F e

∗ (Rt)⊗Rt St → F e
∗ (St). Since t is a nonzerodivisor, dim(R/tR) < dim(R) and
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dim(Rt) < dim(R). Thus by induction on dimension, we know both maps are flat (note that
Rt is not local, but this doesn’t matter, since to show F e

∗ (Rt)⊗Rt St → F e
∗ (St) is flat, we can

localize at primes of St and their contractions to Rt again). This completes the proof. □

Our second goal is to show the following Kunz’s theorem, proved in [Kun76], that every
F -finite ring is excellent and a partial converse.

Theorem 10.5. If R is an F -finite ring of prime characteristic p > 0 then R is excellent.
Moreover, if (R,m, k) is a local ring of prime characteristic p > 0, then R is F -finite if and
only if R is excellent and k is F -finite.

We start with a lemma.

Lemma 10.6. Let (R,m, k) be an F -finite local domain of prime characteristic p > 0 and
let K be the fraction field of R. Then for any finite field extension L of K, L⊗R R̂ is regular.

Proof. For all e > 0, we have

F e
∗ (L⊗R R̂) = F e

∗L⊗F e
∗R F

e
∗ R̂
∼= F e

∗L⊗F e
∗R F

e
∗R⊗R R̂ = F e

∗L⊗R R̂

where the isomorphism in the middle follows from Lemma 9.2. Since F e
∗L is free over L,

F e
∗L⊗R R̂ is free over L⊗R R̂. Thus by Theorem 1.1, L⊗R R̂ is regular (note that here we

are implicitly using that L⊗R R̂ is Noetherian: it is module-finite over K ⊗R R̂, which is a
localization of R̂). □

We will also need the following fact about excellent rings, see [Sta, Tag 032E] for more
details.

Lemma 10.7 ([Sta, Lemma 10.160.2]). Let R be an excellent reduced ring with total quotient
ring K. Then the integral closure of R in any finite reduced extension L of K is module-finite
over R.

Now we are ready to prove Kunz’s theorem. Recall that R is excellent if R satisfies the
following:

(1) R is universally catenary.
(2) If S is an R-algebra of finite type, then the regular locus of S is open in Spec(S).
(3) For all P ∈ Spec(R), the map RP → R̂P has geometrically regular fibers.

Proof of Theorem 10.5. We first show that if R is F -finite, then R is excellent. Since any
ring finite type over an F -finite ring is still F -finite (see Exercise 5), to show R is universally
catenary, it is enough to show that any F -finite ring is catenary.
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Now let P ⊆ Q be two prime ideals in R, we want to show any saturated chain of primes
between P and Q have the same length. Suppose we have two saturated chains:

P = P0 ⊆ P1 ⊆ · · · ⊆ Pn = Q, and P = Q0 ⊆ Q1 ⊆ · · · ⊆ Qm = Q.

Applying Theorem 9.4 to RPi+1/PiRPi+1 , we find that

[F e
∗κ(Pi) : κ(Pi)] = pe · [F e

∗κ(Pi+1) : κ(Pi+1)] for all i.

Thus [F e
∗κ(P ) : κ(P )] = pen · [F e

∗κ(Q) : κ(Q)], but then the same argument for the other
chain shows that [F e

∗κ(P ) : κ(P )] = pem · [F e
∗κ(Q) : κ(Q)]. It follows that n = m.

We next show that for any finite type R-algebra S, the regular locus of S is an open subset
of Spec(S). But since S is F -finite, F e

∗S is a finitely generated S-module. By Theorem 1.1,
SP is regular if and only if (F e

∗S)P is a finite free SP -module. Since F e
∗S is finitely generated,

it is easy to see that if (F e
∗S)P is finite free over SP , then there exists f /∈ P such that (F e

∗S)f
is finite free over Sf . Thus the regular locus of S is open in Spec(S) and we have completed
the proof that F -finite implies excellent.

It remains to show RP → R̂P has geometrically regular fibers. That is, for any Q ⊆ P and
any finite field extension κ(Q)′ of κ(Q), κ(Q)′ ⊗RP

R̂P is regular. This follows immediately
from Lemma 10.6 applied to RP/QRP .

We now prove that if (R,m, k) is an excellent local ring with k an F -finite field, then R is
F -finite. By Exercise 4 we may assume R is reduced. Let K be the total quotient ring of R,
which is a product of fields K = K1 ×K2 × · · · ×Ks. Since R is excellent, each Ki ⊗R R̂ is
regular and thus K ⊗R R̂ is regular and hence reduced. But since R̂ ↪→ K ⊗R R̂, we see that
R̂ is reduced. By Cohen’s structure theorem, R̂ is a homomorphic image of k[[x1, . . . , xn]]
and so by Exercise 5, R̂ is F -finite since k is F -finite. We next claim the following.

Claim 10.8. F e
∗K ⊗R R̂ is finitely generated over K ⊗R R̂ for all e > 0.

Proof. For any L = L1×L2×· · ·×Ls where Li is a finite field extension of Ki, since R→ R̂

has geometrically regular fibers, we know that L ⊗R R̂ is regular. Thus by Theorem 1.1,
L⊗R R̂ → F e

∗ (L⊗R R̂) is faithfully flat. By considering all finite extensions Li between Ki

and F e
∗Ki and taking a direct limit, we find that F e

∗K ⊗R R̂ → F e
∗ (F e

∗K ⊗R R̂) is faithfully
flat. But this map factors as

F e
∗K ⊗R R̂→ F e

∗ (K ⊗R R̂)→ F e
∗ (F e

∗K ⊗R R̂)

and obviously, K ⊗R R̂→ F e
∗K ⊗R R̂ is faithfully flat as K is a product of field (or one can

use Theorem 1.1 since K is regular). Therefore we find that F e
∗K ⊗R R̂ → F e

∗ (K ⊗R R̂) is
faithfully flat, in particular it is injective. But since R̂ is F -finite, K⊗R R̂ is F -finite since it
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is a localization of R̂, we know that F e
∗ (K⊗R R̂) is finitely generated over K⊗R R̂. Therefore

F e
∗K ⊗R R̂ is finitely generated over K ⊗R R̂ as desired. □

Finally, since R̂ is faithfully flat over R, by Claim 10.8 we see that F e
∗K is finitely generated

over K. Now we apply Lemma 10.7, we know that the integral closure of R inside F e
∗K is

module-finite over R. But clearly F e
∗R is contained inside this integral closure, hence F e

∗R

is module-finite over R, that is, R is F -finite. □

Our final goal is to explain in detail the following result of Gabber [Gab04].

Theorem 10.9. If R is an F -finite ring of prime characteristic p > 0 then R is a homomor-
phic image of an F -finite regular ring. In particular, every F -finite ring admits a canonical
module.

Proof. Let Rp be the subring of R consisting of p-th powers of elements of R. Note that R is
F -finite is equivalent to saying that R is module-finite over Rp. Let a1, . . . , as be generators
of R as a module over Rp. Set

Rn := R[z1, . . . , zs]
(zpn

1 − a1, . . . , z
pn

s − as)
.

Consider the inverse system:

· · ·↠ Rn ↠ Rn−1 ↠ · · ·↠ R0 = R

where each Rn → Rn−1 is the Frobenius map on R and the identity map on z1, . . . , zs, it is
easy to see that the map is surjective for all n. Set R∞ := lim←−nRn and we will show R∞ is
a (Noetherian) F -finite regular ring. By Theorem 1.1, it is enough to show:

(1) R∞ is Noetherian
(2) R∞ is reduced
(3) R∞ is generated over Rp

∞ freely by {zi11• · · · ziss•}0≤ij≤p−1 where zj• denotes the constant
sequence (· · · → zj → zj → · · · → zj) ∈ R∞.

We first prove (3). Since R is generated by a1, . . . , as over Rp. By the definition of Rn, it
is easy to check that Rn is generated freely over Rp

n by {zi11 · · · ziss }0≤ij≤p−1 for any n ≥ 1.12

Thus the conclusion follows as we pass to the inverse limit.
We next prove (2). To ease the presentation we will use the following notations for the rest

of the argument: i denotes an s-tuple i1, . . . , is, λi means λi1, . . . , λis, i ≡ j means ik ≡ jk

for each k, and α ≤ i ≤ β means α ≤ ik ≤ β for each k. Moreover, we set zi := zi11 · · · ziss
and ai := ai11 · · · aiss .
12We caution the reader that one cannot invoke Theorem 1.1 to say that Rn is regular, this is because Rn

is not reduced so we cannot identify Rp
n → Rn with Rn → F∗Rn.
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Claim 10.10. Ker(Rn → Rn−1) = {x ∈ Rn|xp = 0}.

Proof. Suppose x = ∑
0≤i<pn aiz

i ∈ Rn where ai ∈ R. Then xp = ∑
0≤i<pn api z

pi. Write∑
0≤i<pn

api z
pi =

∑
0≤j<pn−1

∑
i≡j

mod pn−1

api z
p(i−j)zpj =

∑
0≤j<pn−1

(
∑
i≡j

mod pn−1

api a
1

pn−1 (i−j))zpj,

we see that
xp = 0 if and only if for each j,

∑
i≡j

mod pn−1

api a
1

pn−1 (i−j) = 0.

But this is equivalent to saying that∑
0≤j<pn−1

∑
i≡j

mod pn−1

api a
1

pn−1 (i−j)
zj = 0 in Rn−1

since Rn−1 is finite free over R with basis {zj}0≤j<pn−1 . But note that in Rn−1, we have∑
0≤j<pn−1

∑
i≡j

mod pn−1

api a
1

pn−1 (i−j)
zj =

∑
0≤i<pn

api z
i,

which is precisely the image of x under the map Rn → Rn−1 (by definition of this map).
Therefore xp = 0 if and only if x ∈ Ker(Rn → Rn−1). □

Claim 10.10 immediately implies that R∞ = lim←−nRn is reduced. We have completed the
proof of (2).

Finally, we prove (1). This will take some work. We first let

Kn+m,n := Ker(Rn+m → Rn)

and we claim the following.

Claim 10.11. For all n ≥ 0 and m ≥ 1, Kn+m,n = (Kn+m,0)[pn] as ideals in Rn+m.

Proof. By Claim 10.10 (and an easy induction), we have that (Kn+m,0)[pn] ⊆ Kn+m,n. Now
let r ∈ Kn+m,n. We write

r =
∑

0≤i<pn+m

riz
i =

∑
0≤j<pn

(
∑
i≡j

mod pn

riz
i−j)zj

where ri ∈ R. Since a generates R over Rp, {ak}0≤k<pn generates R over Rpn . Thus we can
write

ri =
∑

0≤k<pn

bp
n

i,ka
k =

∑
0≤k<pn

bp
n

i,kz
pn+mk in Rn+m,
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where bi,k ∈ R. Thus we have

r =
∑

0≤j<pn

(
∑
i≡j

mod pn

∑
0≤k<pn

bi,kz
pmkz

1
pn (i−j))pn

zj.

In order to show r ∈ K [pn]
n+m,0, it is enough to show that for each j,∑

i≡j
mod pn

∑
0≤k<pn

bi,kz
pmkz

1
pn (i−j) ∈ Kn+m,0.

But its image in R = R0 is (note that in R0, z = a)

cj :=
∑
i≡j

mod pn

∑
0≤k<pn

bp
n+m

i,k ap
mka

1
pn (i−j),

and our hypothesis r ∈ Kn+m,n implies that∑
0≤j<pn

(
∑
i≡j

mod pn

rp
m

i zi−j)zj =
∑

0≤j<pn

(
∑
i≡j

mod pn

rp
m

i a
1

pn (i−j))zj = 0 in Rn.

Since Rn is finite free over R with basis {zj}0≤j<pn , this implies that for every j,

0 =
∑
i≡j

mod pn

rp
m

i a
1

pn (i−j) =
∑
i≡j

mod pn

∑
0≤k<pn

bp
n+m

i,k ap
mka

1
pn (i−j) = cj,

which is exactly what we want. □

At this point, we set Jn := Ker(R∞ → Rn). Note that we have

J := J0 ⊇ J1 ⊇ · · · ⊇ Jn ⊇ · · ·

We next claim the following

Claim 10.12. For each n ≥ 0, Jn ⊆ ∩m≥0(J [pn] + Jm) ⊆ ∩m≥0(Jn + Jm).

Proof. The second inclusion is trivial. We prove the first inclusion. Pick x• ∈ Jn, which can
be thought of as a sequence

x• = · · · → xm+1 → xm → · · · → xn = 0→ · · · → x0 = 0.

In particular, xm ∈ Km,n = K
[pn]
m,0 by Claim 10.11 and thus we can write xm = ∑

rimy
pn

im

where rim ∈ Rm and yim ∈ Km,0. Since the inverse system has surjective transition maps,
rim, yim are images of ri•, yi• ∈ R∞ and yi• ∈ J0 = J by construction. Thus by looking at
the m-th entry we find that x• −

∑
ri•y

pn

i• ∈ Jm. Therefore Jn ⊆ J [pn] + Jm as desired. □
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Next we set In = ∩m(Jn + Jm). It is clear that J = I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · and that
{In}n≥1 is a graded family of ideals in R∞ (i.e., InIm ⊆ In+m).

Claim 10.13. R∞ is complete with respect to the topology defined by {In}n≥1.

Proof. By Claim 10.12, Jn ⊆ In for each n ≥ 1. Consider the following commutative diagram

· · · // In+1/Jn+1 //
� _

��

In/Jn //
� _

��

In−1/Jn−1 //
� _

��

· · ·

· · · // // Rn+1 = R∞/Jn+1 // //

����

Rn = R∞/Jn // //

����

Rn−1 = R∞/Jn−1 // //

����

· · ·

· · · // // R∞/In+1 // // R∞/In // // R∞/In−1 // // · · · .

The inverse limit of the second row is R∞ by definition. Thus to prove the claim it is enough
to show that the first row is a null system, that is, for each n ≥ 1 there exists k ≫ 0 such
that Ik ⊆ Jn.

For each y• = (· · · → yn+1 → yn → · · · → 0) ∈ I1 = J , we have yn+1 ∈ Kn+1,0 for all n ≥ 0.
Since Kn+1,n = (Kn+1,0)[pn] by Claim 10.11, we can pick k ≫ 0 (depends on n) such that
(Kn+1,0)k ⊆ (Kn+1,0)[pn] = Kn+1,n (this is possible since Kn+1,0 is finitely generated, as it is an
ideal in a Noetherian ring Rn+1). Therefore for each x• ∈ Ik = ∩m≥0(Jk + Jm) ⊆ Jk + Jn+1,
the (n + 1)-th entry xn+1 is contained in (Kn+1,0)k as this holds for all elements in Jk and
elements in Jn+1 have (n+ 1)-th entry 0. Thus xn+1 ∈ Kn+1,n by our choice of k and hence
xn = 0, which implies x• ∈ Jn. So Ik ⊆ Jn as desired. □

Finally, we claim the following.

Claim 10.14. The associated graded ring grI•R∞ := (R∞/I1)⊕ (I1/I2)⊕· · · is Noetherian.

Proof. First we note that R∞/I1 = R∞/J ∼= R is Noetherian and I1/I2 is finitely generated:
it can be viewed as an ideal in R∞/I2, which is Noetherian since it is a quotient of R∞/J2 ∼=
R2. Thus to show grI•R is Noetherian, it is enough to show that In/In+1 = (I1/I2)n, that is,
In ⊆ In1 + In+1 for all n ≥ 1 (the other inclusion is clear). Since In+1 ⊇ Jn+1 by Claim 10.12,
it is enough to show In ⊆ In1 + In+1 modulo Jn+1. But recall that In = ∩m≥0(Jn + Jm), thus
after modulo Jn+1, In is generated by Jn = In1 . □

Now the conclusion of (1) that R∞ is Noetherian follows from Claim 10.13 and Claim
10.14. For any ideal I ⊆ R∞, its image in grI•R∞ is finitely generated, say by f 1, . . . , f t.
We claim that I is generated by f1, . . . , ft: given any x ∈ I, suppose x ∈ In − In+1, then
we can find x1, . . . , xt such that x′ := x− (f1x1 + · · · ftxt) ∈ In+1 ∩ I, now pick n′ > n such
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that x′ ∈ In′ − In′+1, we can find x′
1, . . . , x

′
t such that x′′ := x′ − (f1x

′
1 + · · · ftx′

t) ∈ In′+1 ∩ I,
continuing this process and using R∞ is complete with respect to {In}n≥1, it is easy to check
that eventually we can write x = f1y1 + · · ·+ fnyn, so I is generated by f1, . . . , fn.

We have completed the proof that R is a homomorphic image of an F -finite regular ring,
call it S. By Exercise 49, we have dim(R) = d < ∞ and dim(S) = n < ∞. Therefore
Extn−d

S (R, S) is a canonical module of R. □

Remark 10.15. It is worth pointing out that not all excellent local rings admit canonical
modules, for example see [Nis12, Example 6.1].

Exercise 47. Let R → S be a homomorphism of rings of prime characteristic p > 0 such
that F e

∗R⊗R S → F e
∗S is pure. Prove that all fibers of R→ S are F -pure.

Exercise 48. Let R→ S be a regular homomorphism of (Noetherian) rings of prime char-
acteristic p > 0. Prove that F e

∗R ⊗R S is a Noetherian ring. (Hint: Use Theorem 10.1 and
the hint in Exercise 31.)

Exercise 49. Let R be a (not necessarily local) F -finite ring of prime characteristic p > 0
and let P ⊆ Q be two prime ideals of R. Prove that

ht(P ) + logp rankκ(P )(F∗κ(P )) = ht(Q) + logp rankκ(Q)(F∗κ(Q)).

Use this to show that dim(R) <∞.

Exercise 50. Let R be an excellent ring of prime characteristic p > 0. Prove that if RP is
F -finite for all P ∈ Spec(R), then R is F -finite. (Hint: Use Lemma 10.7.)

Remark 10.16. It is natural to ask whether the property of being F -finite is a local property
without assuming excellence. It turns out that this is not always true and counter-examples
can be found in [DI22]. Here we point out another construction that simultaneously give an
example of a ring which is locally F -split but not F -split: in [Hei22, Example One], Heitmann
constructed a non-excellent PID R such that for every P ∈ Spec(R), RP is isomorphic to
a localization of k[x, y] where k is a countably infinite field of characteristic p > 0. For
example, one can take k = Fp so that RP is F -finite and F -split for every P ∈ Spec(R). But
since R has an F -finite fraction field and R is not excellent, by [DS18, Theorem 3.2], R is
neither F -finite nor F -split.
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11. Connections with module of differentials

In this chapter, we revisit some results relating module of differentials of a homomorphism
A → B of rings of prime characteristic p > 0 and intrinsic properties of the map. More
precisely, under suitable Noetherian hypotheses, we will prove a result of Fogarty [Fog80]
which says that ΩB/A is finite if and only if B is F -finite over A (i.e., F∗B is finite over
F∗A⊗AB), and a result of Tyc [Tyc88] which says that ΩB/A is free if and only if B admits a
p-basis over A. The difficulty in establishing these results is that it is not clear a priori that
certain auxiliary rings are Noetherian (and without suitable assumptions, we do not think
this is true). Therefore we proceed carefully, and, throughout this chapter, we will no longer
assume that all rings are Noetherian and we will explicitly state the Noetherian assumptions
whenever we need them.

Remark 11.1. In [Fog80, Proposition 1], it was stated that if R is a Noetherian ring of
prime characteristic p > 0 that contains a subring k (not necessarily Noetherian), then the
module of differentials ΩR/k is finite if and only if R is finite over its subring k[Rp] (or
equivalently, F∗R is finite over F∗k ⊗k R). However, it was pointed out in [And91] that the
proof in [Fog80] requires certain extra Noetherian assumptions. In [Has15, Remark 13], it
was claimed that [Fog80, Proposition 1] follows from [And91, Proposition 57] when both k

and R are Noetherian. We have not been able to verify this claim. We are only able to
prove [Fog80, Proposition 1] under the assumption that both R and k[Rp] are Noetherian
(see Corollary 11.4 for a more precise statement). The results in [Fog80] were used in [Tyc88,
Proof of Theorem 1] to generalize earlier results in [Mat70] and [KN84] on the existence of
p-basis. Due to the incompleteness of the argument in [Fog80], [Tyc88, Theorem 1] also
requires extra Noetherian assumptions (this was observed in [And91, Proposition 58]). Due
to these issues, we will present complete arguments of [And91, Propositions 57 and 58], as
well as [Fog80, Proposition 1] and [Tyc88, Theorem 1] under suitable Noetherian hypotheses.

Before we proceed, we collect some notations and definitions that will be used throughout.
Let φ: A → B be a map of not necessarily Noetherian rings of prime characteristic p > 0.
We say φ is invertible up to a power of Frobenius if there exists ϕ: B → A so that ϕ ◦φ and
φ◦ϕ are the e-th Frobenius map on A and B respectively for some e ∈ N. This is equivalent
to the existence of ϕ′: B → F e

∗A so that ϕ′ ◦ φ and (F e
∗φ) ◦ ϕ′ are the e-th Frobenius map

A→ F e
∗A and B → F e

∗B respectively.
Let A ⊆ B be an inclusion of not necessarily Noetherian rings of prime characteristic p > 0.

A set of elements Γ of B is called p-independent over A if the monomials {f i11 f
i2
2 · · · f inn },

where f1, . . . , fn are distinct elements in Γ and 0 ≤ ij ≤ p− 1, are linearly independent over
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A[Bp]. Γ is called a p-basis of B over A if it is p-independent over A and A[Bp][Γ] = B.
When k ⊆ ℓ is an extension of fields of prime characteristic p > 0, a p-basis of ℓ over k
always exists and it corresponds to a free basis of Ωℓ/k, see [Sta, Tag 07P2]. When A = Fp,
we simply call a p-basis over A a p-basis.

We start with the following theorem which is essentially [And91, Proposition 57]. Our
proof is largely based on [Fog80, Proof of Proposition 1].

Theorem 11.2. Suppose φ: A → B is map of Noetherian rings of prime characteristic
p > 0 that is invertible up to a power of Frobenius and ΩB/A = 0. Then φ is surjective.

Proof. We may replace A by φ(A) ⊆ B to assume that A is a subring of B that contains Bpe

for some e ∈ N (and replace φ by the natural inclusion map). We will make this assumption
throughout.

Since Bpe ⊆ A, we can identify Spec(A) and Spec(B). In order to show A = B, it is then
enough to show AQ = BQ for all Q ∈ Spec(A). Thus without loss of generality, we may
assume (A,m, k)→ (B, n, ℓ) is a local extension of Noetherian local rings.

Set B′ := B/mB. Since ΩB/A = 0, we have ΩB′/k = 0 and in particular Ωℓ/k = 0. The
latter implies that the empty set is a p-basis of ℓ over k (see [Sta, Tag 07P2]), i.e., ℓ = k[ℓp].
But since Bpe ⊆ A, we have B′pe ⊆ k and thus ℓpe ⊆ k. It follows that ℓ = k. Now B′ is
an Artinian local ring with residule field k, thus the natural map k → B′ identifies k as a
coefficient field of B′. By Cohen’s structure theorem, we have (B′, n, k) ∼= k[[x1, . . . , xn]]/I
for some I ⊆ n2. It is straightforward to check that {dx1, . . . , dxn} are linearly independent
in ΩB′/k ⊗B′ k (in fact, they are a minimal set of generators of ΩB′/k since B′ is finite over
k). Therefore, our assumption that ΩB′/k = 0 implies that n = 0, which means that B′ ∼= k.

We have proved that A/m ∼= B/mB. By [Sta, Tag 0315], we know that the natural map
Â → B̂ is surjective. Moreover, since A → B is invertible up to a power of Frobenius, so
is A/mn → B/mnB by Exercise 52. Taking the inverse limit, we know that Â → B̂ is also
invertible up to a power of Frobenius. We next consider the ideal

I := Ker(B ⊗A Â↠ B̂).

Note that, as Bpe ⊆ A, for any element ∑ bi ⊗ ai ∈ B ⊗A Â, we have

(
∑

bi ⊗ ai)p
e =

∑
bp

e

i ⊗ a
pe

i =
∑

1⊗ bp
e

i a
pe

i = 1⊗
∑

bp
e

i a
pe

i ∈ Im(Â 1⊗id−−→ B ⊗A Â).

It follows that if∑ bi⊗ai ∈ I, then∑ bp
e

i a
pe

i ⊆ Ker(Â→ B̂). By Exercise 52, (∑ bp
e

i a
pe

i )pe = 0.
Thus we have I [p2e] = 0 in B ⊗A Â.

Claim 11.3. B ⊗A Â is a Noetherian ring.
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Proof of Claim. We first prove the claim under the additional assumption that B (and thus
A) is reduced. In this case, let K and L be the total quotient rings of A and B respectively.
Note that we have K ∼=

∏
Ki and L ∼=

∏
Li such that each Lp

e

i ⊆ Ki. But as ΩL/K = 0, we
know that ΩLi/Ki

= 0 for each i and thus the empty set is a p-basis of Li over Ki (see [Sta,
Tag 07P2]). It follows that Ki

∼= Li and thus K ∼= L. We now have an injection

B ⊗A Â ↪→ L⊗A Â ∼= K ⊗A Â.

Since K⊗AÂ is Noetherian (it is a localization of Â) and I [p2e] = 0, we have (I(K⊗AÂ))n = 0
for some n≫ 0. By the injection above, it follows that In = 0. We next consider the ideal

J := Ker(B ⊗A B̂ ↠ B̂).

Since we have a factorization

B ⊗A Â↠ B ⊗A B̂ ↠ B̂,

we know that J = I(B ⊗A B̂) and in particular Jn = 0. On the other hand, we also have
J ∼= Ker(µ) ⊗B B̂ where µ : B ⊗A B → B is the multiplication map. Since ΩB/A = 0,
Ker(µ) = Ker(µ)2 and thus J = J2. It follows that J = 0 and thus B ⊗A B̂ ∼= B̂.

Now from the short exact sequence

0→ Ĩ → Â→ B̂ → 0,

we have a commutative diagram:

B ⊗A Ĩ //

����

B ⊗A Â // B ⊗A B̂ // 0

0 // I // B ⊗A Â // B̂ // 0

.

It follows that I is a finitely generated ideal of B ⊗A Â (since Ĩ is finitely generated, as it is
an ideal in the Noetherian ring Â) such that In = 0 and (B⊗A Â)/I ∼= B̂ is Noetherian. By
Exercise 51, B ⊗A Â is Noetherian. This completes the proof when B is reduced.

Finally, in general, we have A ↪→ B which implies
√

0B ∩ A =
√

0A and thus induces
Ared ↪→ Bred. By Exercise 52, Ared → Bred is invertible up to a power of Frobenius and it is
easy to see that ΩBred/Ared = 0. Therefore by the reduced case already established, we have

(B ⊗A Â)/
√

0B(B ⊗A Â) ∼= (B/
√

0B)⊗A Â ∼= Bred ⊗Ared Âred
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is Noetherian. Setting N :=
√

0B(B⊗A Â), we have that N is a finitely generated ideal such
that Nn = 0 for some n≫ 0 and (B ⊗A Â)/N is Noetherian. By Exercise 51 again, B ⊗A Â
is Noetherian. □

We have proved that B⊗A Â is Noetherian, thus it is a Noetherian local ring with maximal
ideal m(B ⊗A Â) and residue field k (by the discussion before Claim 11.3). Consider the
short exact sequence

0→ I → B ⊗A Â→ B̂ → 0.

After modulo mn, we have that

B/mnB ⊗A/mn Â/mnÂ
∼=−→ B̂/mnB̂

is an isomorphism. This implies that

I ⊆ ∩nmn(B ⊗A Â) = 0

by Krull’s Intersection Theorem (as B ⊗A Â is a Noetherian local ring). Therefore we have
B ⊗A Â ∼= B̂. Finally, tensoring the map A→ B by Â we obtain

Â→ B ⊗A Â ∼= B̂

which we have shown to be surjective. It follows that A→ B is surjective by faithful flatness
of A→ Â. This completes the proof of the theorem. □

We next observe that, if R → S is a map of (not necessarily Noetherian) rings of prime
characteristic p > 0 such that F e

∗S is finitely generated over F e
∗R⊗R S for some e ∈ N, then

ΩF e
∗S/F

e
∗R
∼= ΩF e

∗S/(F e
∗R⊗RS) is a finitely generated F e

∗S-module and thus ΩS/R is a finitely
generated S-module (see Exercise 53). We next prove a converse of this fact under suitable
Noetherian assumptions, which is essentially [Fog80, Proposition 1].

Corollary 11.4. Let R→ S be a map of rings of prime characteristic p > 0 such that S and
Im(F e

∗R⊗R S → F e
∗S) are Noetherian for some e ∈ N. Then the following are equivalent:

(1) ΩS/R is finitely generated over S by {df1, . . . , dfn}.
(2) F e

∗S is finitely generated over F e
∗R⊗R S by {F e

∗ f1, . . . , F
e
∗ fn}.

In particular, a Noetherian ring S of prime characteristic p > 0 is F -finite if and only if
ΩS/Fp is a finitely generated S-module.

Proof. We leave (2)⇒ (1) as an Exercise 53, and we will show (1)⇒ (2). Consider the map

φ : A := Im(F e
∗R⊗R S → F e

∗S)[z1, . . . , zn]
(zpe

1 − f1, . . . , z
pe

n − fn)
→ F e

∗S =: B
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sending zi to F e
∗ fi for each i. Then φ is invertible up to a power of Frobenius: we can simply

set ϕ to be the natural map B → F e
∗A and check that ϕ ◦ φ (resp., (F e

∗φ) ◦ ϕ) is the e-th
Frobenius map A → F e

∗A (resp., B → F e
∗B). Moreover, our assumptions imply that A, B

are Noetherian and ΩB/A = 0, to see the latter, use the exact sequence

ΩA/F e
∗R ⊗A B → ΩB/F e

∗R → ΩB/A → 0

and note that the first map above is surjective as the image of dzi is d(F e
∗ fi). Now by

Theorem 11.2, A→ B is surjective, which is precisely saying that F e
∗S is finitely generated

over F e
∗R ⊗R S by {F e

∗ f1, . . . , F
e
∗ fn}. The last conclusion is the case R = Fp and note that,

in this case, Im(F e
∗R⊗R S → F e

∗S) = Im(S → F e
∗S) is Noetherian as S is so. □

We next prove the following version of [Tyc88, Theorem 1], which is essentially [And91,
Proposition 58].

Theorem 11.5. Let A ⊆ B be an inclusion of Noetherian rings of prime characteristic
p > 0 such that Bp ⊆ A. Then the following are equivalent:

(1) ΩB/A is a free B-module generated by {dfi|i ∈ I}.
(2) {fi|i ∈ I} is a p-basis of B over A.

Proof. We first prove (2)⇒ (1). For any B-module M , giving an A-linear derivation B →M

is the same as giving a g ∈ HomA(B,M) so that g satisfies the Leibniz rule. Now condition
(2) implies that B is free over A[Bp] = A with basis

{f i1t1 · · · f
in
tn |t1, . . . , tn ∈ I, 0 ≤ ij ≤ p− 1}.

Thus any such g ∈ HomA(B,M) is determined by g(fi) where i ∈ I: once we know g(fi),
we can extend via the Leibniz rule to obtain the value of g on each basis element. By the
universal property of module of differentials, it is easy to see that ΩB/A is free with generators
{dfi|i ∈ I}, i.e., (1) holds.

Now we will prove (1)⇒ (2). It is easy to see that the set {fi|i ∈ I} is p-independent over
A: for if ∑ ai1...int1...tnf

i1
t1 · · · f

in
tn = 0 for some t1, . . . , tn ∈ I, 0 ≤ ij ≤ p − 1, and ai1...int1...tn ∈ A, is a

relation on ft1 , . . . , ftn of minumum degree, then taking differential, we obtain a nontrivial
B-relation on {dft1 , . . . , dftn} contradicting the freeness of ΩB/A. Thus it remains to show
that A[fi|i ∈ I]→ B is surjective (and hence an isomorphism).

To show A[fi|i ∈ I]→ B is surjective, we can localize at each prime ideal of A to assume
that (A,m, k) ↪→ (B, n, ℓ) is a local extension of Noetherian local rings. We have a natural
surjection ΩB/A⊗B ℓ↠ Ωℓ/k, thus we have a subset I ′ ⊆ I so that the images of {dfi|i ∈ I ′}
in Ωℓ/k form a basis of Ωℓ/k over ℓ. By [Sta, Tag 07P2], the images {f i|i ∈ I ′} in ℓ form a
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p-basis of ℓ over k and thus k[f i|i ∈ I ′] = ℓ as k → ℓ is purely inseparable. Next we note
that A′ := A[fi|i ∈ I ′] is a direct limit of the system

{Aλ := A[fi|i ∈ Iλ]}Iλ⊆I′ finite subset.

Since {fi|i ∈ Iλ} is part of a p-basis of B over A and Bp ⊆ A, we have

Aλ ∼=
A[zi|i ∈ Iλ]

(zpi − f
p
i |i ∈ Iλ)

.

In particular, Aλ/mAλ ∼= k[fi|i ∈ Iλ] is a subfield of ℓ and thus each (Aλ,mλ) is a Noetherian
local ring, where mλ = mAλ. It follows from [Ogo91, Theorem 1] (we sketch this in Exer-
cise 55) that A′ = lim−→λ

Aλ is a Noetherian local ring13 with maximal ideal m′ := mA′ and
residue field k[f i|i ∈ I ′] = ℓ.

Now we note that the local extensions A→ A′ → B induces

ΩA′/A ⊗A′ B → ΩB/A → ΩB/A′ → 0.

Since the image of the first map is exactly the B-submodule of ΩB/A generated by {dfi|i ∈ I ′},
it follows that ΩB/A′ is a free B-module generated by {dfi|i ∈ I − I ′}. But the extension
(A′,m′, ℓ) → (B, n, ℓ) induces a surjection n/n2 ↠ ΩB/A′ ⊗B ℓ. Therefore ΩB/A′ is a finite
free B-module, i.e., the set I − I ′ is finite. In particular, the ring

A[fi|i ∈ I] = A′[fi|i ∈ I − I ′]

is Noetherian, as it is finitely generated over the Noetherian ring A′.
We now have a map of Noetherian rings A[fi|i ∈ I]→ B that is invertible up to a power

of Frobenius (since Bp ⊆ A), and it is easy to see that ΩB/A[fi|i∈I] = 0. By Theorem 11.2,
the map is surjective. □

Corollary 11.6. A Noetherian ring R of prime characteristic p > 0 admits a p-basis if and
only if ΩR/Fp is a free R-module, and when these conditions hold and R is reduced,14 R is
regular.

Proof. This follows by applying Theorem 11.5 to A = Rp and B = R and note that ΩR/Fp =
ΩR/Rp . For the last conclusion, note that when R is reduced, R is free over Rp is equivalent
to F∗R is free over R, hence R is regular by Theorem 1.1. □

13In our context, the transition maps in lim−→λ
Aλ are flat, and in this case [Ogo91, Theorem 1] is essentially

due to Nagata.
14Note that the condition ΩR/Fp

is free alone does not imply R is regular, for example if R = Fp[x]/(xp),
then it is easy to see that ΩR/Fp

∼= R.
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In general, for a (Noetherian) reduced ring R, having a p-basis is much stronger than being
regular. For instance, it implies that F e

∗R is free (and not merely flat) over R for all e ∈ N.
In other words, any regular ring R such that F∗R is not free over R cannot have a p-basis.
Such examples exist even for excellent regular local rings (see Exercise 54 or [DM23]). On
the other hand, it is well-known that F -finite regular local rings always admit p-basis, see
[KN80, Corollary 3.2]. We include a slightly different argument here via quasi-coefficient
field [Mat70, 38.F and Theorem 91].

Proposition 11.7. Let (R,m, k) be a Noetherian F -finite regular local ring of prime char-
acteristic p > 0. Then R admits a p-basis.

Proof. By [Mat70, Theorem 91], there exists a commutative diagram:

k′

��

// k

��

R // R̂

where the right vertical map is a choice of a coefficient field k of R̂ and k′ → k is a field
extension so that Ωk/k′ = 0. It follows that Ωk′/Fp ⊗k′ k ↠ Ωk/Fp and thus we may choose
λ1, . . . , λn ∈ k′ so that their images in k form a p-basis for k by [Sta, Tag 07P2] (note that k is
F -finite since R is F -finite). By Cohen’s structure theorem, we know that R̂ ∼= k[[x1, . . . , xd]]
where we may assume that x1, . . . , xd are elements of R. It is straightforward to check that

{λ1, . . . , λn, x1, . . . , xd}

is a p-basis of R̂, i.e., F∗R̂ is free over R̂ with basis {F∗λ
i1
1 · · ·λinn x

h1
1 · · ·xhd

d }, where 0 ≤
ij, hj ≤ p− 1. But since F∗R̂ ∼= F∗R⊗R R̂ (see Lemma 9.2) and each F∗λ

i1
1 · · ·λinn x

h1
1 · · ·xhd

d

belongs to F∗R, it follows from the faithful flatness of R→ R̂ that {F∗λ
i1
1 · · ·λinn x

h1
1 · · ·xhd

d },
0 ≤ ij, hj ≤ p− 1, is a free basis of F∗R over R. That is, {λ1, . . . , λn, x1, . . . , xd} is a p-basis
of R. □

It was also proved in [KN80, Theorem 3.4] that every regular local ring essentially of finite
type over a field of prime characteristic p > 0 admits a p-basis. On the other hand, there
exist complete regular local rings over a field of prime characteristic p > 0 that do not admit
p-basis, see Exercise 54.

Exercise 51. Let R be a not necessarily Noetherian ring and I ⊆ R be a finitely generated
ideal such that R/I is Noetherian and R is I-adically complete (e.g., In = 0 for some n).
Prove that R is Noetherian. (Hint: Mimic the argument after the proof of Claim 10.14).
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Exercise 52. Let A→ B be a map of not necessarily Noetherian rings of prime characteristic
p > 0 that is invertible up to a power of Frobenius. Prove the following:

(1) For any A-algebra R, R→ R⊗A B is invertible up to a power of Frobenius.
(2) We have Ared → Bred is invertible up to a power of Frobenius.
(3) If I = Ker(A→ B), then I [pe] = 0 for some e ∈ N.

Exercise 53. Suppose R → S is a map of not necessarily Noetherian rings of prime char-
acteristic p > 0 such that F e

∗S is generated over F e
∗R⊗R S by {F e

∗ fi|i ∈ I} for some e ∈ N.
Prove that ΩS/R is generated over S by {fi|i ∈ I}.

Exercise 54 ([KN80, Example 3.8]). Let k be a field of prime characteristic p > 0 such
that [k : kp] = ∞. Prove that R := k[[x]] does not have a p-basis. (Hint: Use the proof of
Theorem 11.5 and the existence of coefficient field to show that if R has a p-basis {fi|i ∈ I},
then we may assume that f0 = x and {fi|i ∈ I, i ̸= 0} is a p-basis of k, then prove that
k[Rp][x] ̸= R. Alternatively, show that F∗R is not free over R.)

Exercise 55 ([Ogo91, Theorem 1.1]). Let {(Aλ,mλ, kλ)}λ∈Λ be a directed system of Noe-
therian local rings such that mµ = mλAµ for µ > λ and let A := lim−→λ

Aλ. Note that (A,m, k)
is a local ring, where m = mλA for all λ and k = lim−→λ

kλ. Prove that A is Noetherian via
the following steps:

(1) Let Â be the m-adic completion of A. Prove that Â is Noetherian ([Nag62, (31.7)]).
(2) Let I be an ideal of A. Prove that Â/I ∼= Â/IÂ.
(3) Prove that there is λ0 ∈ Λ such that the induced map (grmλ

Aλ)⊗kλ
k → grmA is an

isomorphism for all λ ≥ λ0. In particular, grmλ
Aλ → grmA is injective for all λ ≥ λ0.

(4) Use Step (3) to prove that A→ Â is injective.
Now let I be an ideal of A. Since Â is Noetherian by Step (1), there exists λ′ ∈ Λ such that
IÂ = I ′Â for some I ′ ⊆ I ∩ Aλ′ . Applying Step (4) to the directed system {Aλ/I ′Aλ}λ≥λ′ ,
we obtain an injection A/I ′A ↪→ Â/I ′A ∼= Â/IÂ, where the isomorphism follows from Step
(2). But clearly, I/I ′A is in the kernel and thus I = I ′A is finitely generated.
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12. Tight closure, Frobenius closure, and big Cohen-Macaulay algebras

In this chapter, we provide a brief and minimal introduction to tight closure and Frobe-
nius closure of ideals, focusing on their relationship with the four prominent types of F -
singularities. The theory of closure operations and F -singularities is then connected to an
algebra map R → B(R), where B(R) is a specific non-Noetherian algebra. Under mild
hypotheses, B(R) is shown to be balanced big Cohen-Macaulay. Throughout this chapter,
we continue to assume all rings are Noetherian, we will remind the readers whenever we
encounter non-Noetherian rings such as Rperf and B(R).

12.1. Tight closure and Frobenius closure. We start with the definition of tight closure
and Frobenius closure of ideals, in fact, these closure operations can be defined for all submod-
ules of all modules, but we will not discuss the more general theory. For a more detailed and
thorough treatment of tight closure theory, we refer the readers to some excellent texts such
as [Hun96, Hun98, Hoc07], or Hochster–Huneke’s original papers [HH90, HH94a, HH94c].

Definition 12.1. Let R be a ring of prime characteristic p > 0 and let I ⊆ R be an ideal.

• The Frobenius closure of I, denoted by IF , are elements x ∈ R such that xpe ∈ I [pe]

for some e > 0 (or equivalently, all e≫ 0).
• The tight closure of I, denoted by I∗, are elements x ∈ R such that there exists an

element c ∈ R not in any minimal prime of R so that cxpe ∈ I [pe] for all e≫ 0.

We say R is weakly F -regular if I∗ = I for all ideals I ⊆ R, and we say R is F -regular if all
localizations of R are weakly F -regular.

It is straightforward to see that IF ⊆ I∗ are both ideals of R. It is also easy to see that
(IF )F = IF . We next observe that (I∗)∗ = I∗. For suppose I∗ = (y1, . . . , yn), then for each
yi, there exists ci not in any minimal prime of R so that ciyp

e

i ∈ I [pe] for all e ≥ ei. We set
c0 := c1 · · · cn and e0 := max{e1, . . . , en}. It follows that c0(I∗)[pe] ⊆ I [pe] for all e ≥ e0. Now
if y ∈ (I∗)∗, then there exists c not in any minimal prime of R so that cype ∈ (I∗)[pe] for all
e ≫ 0 by definition. Multiplying by c0, we then obtain that (c0c)yp

e ∈ c0(I∗)[pe] ⊆ I [pe] for
all e≫ 0 and thus y ∈ I∗.

Example 12.2. Let R be a regular ring of prime characteristic p > 0. Then R is F -regular.
To see this, it is enough to show that R is weakly F -regular. Since R is a product of
regular domains (and it is easy to check that a product of weakly F -regular rings is weakly
F -regular), we may assume that R is a domain. Now if cxpe ∈ I [pe] for all e ≫ 0, then
c ∈ (I [pe] : xpe) = (I : x)[pe] by the flatness of Frobenius (Theorem 1.1). But if x /∈ I, then
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(I : x) is contained in some maximal ideal m and thus c ∈ ⋂em[pe] ⊆ ⋂empe
Rm = 0. Thus R

is weakly F -regular as desired.

As a generalization of Example 12.2, we will show that strongly F -regular rings are F -
regular, in particular weakly F -regular. This relates strong F -regularity with tight closure
of ideals. Whether the three notions of F -regularity are equivalent is a central open problem
in tight closure theory, see Discussion 3.13 and Open Problem 1.

Proposition 12.3. Let R be an F -finite and strongly F -regular ring of prime characteristic
p > 0. Then R is F -regular.

Proof. By Lemma 3.3, it is enough to show that R is weakly F -regular. Suppose x ∈ I∗,
then by definition there exists c ∈ R not in any minimal prime of R such that cxpe ∈ I [pe]

for all e ≫ 0, which is equivalent to saying that x · F e
∗ c ∈ I(F e

∗R) for all e ≫ 0. Since R
is strongly F -regular, there exists e ≫ 0 such that the map R → F e

∗R sending 1 → F e
∗ c is

split. Let ϕ be the splitting. It follows that x = ϕ(x · F e
∗ c) ∈ ϕ(I · F e

∗R) ⊆ I. Thus I∗ = I

and hence R is weakly F -regular. □

In general, tight closure and Frobenius closure in singular rings can be tricky to compute.
We leave the first part of the next example as Exercise 56. The second part is a challenge,
see [Sin98, Theorem 5.2] for the actual computation.

Example 12.4. Let R = Fp[x, y, z]/(x3 + y3 + z3). Then we have
(1) z2 ∈ (x, y)∗, and if p ≡ 2 mod 3, then z2 ∈ (x, y)F .
(2) xyz ∈ (x2, y2, z2)∗, and if p ≡ 2 mod 3, then xyz ∈ (x2, y2, z2)F .

We next show that for principal ideals, tight closure agrees with integral closure, which is
a consequence of the following Briançon-Skoda theorem.

Proposition 12.5. Let R be a ring of prime characteristic p > 0 and let I ⊆ R be an ideal
generated by n elements. Then we have I∗ ⊆ I and In ⊆ I∗, where I denotes the integral
closure of I. In particular, I∗ = I for principal ideals I, and that weakly F -regular rings are
normal.

Proof. By [SH06, Corollary 6.8.12], x ∈ I if and only if there exists c ∈ R not in any minimal
prime of R so that cxm ∈ Im for infinitely (or equivalently, all) m≫ 0. Then I∗ ⊆ I follows
since I [pe] ⊆ Ip

e . The other containment In ⊆ I∗ follows similarly by noting that if I is
generated by n elements, then Inpe ⊆ I [pe]. Now if R is weakly F -regular, then in particular
0 = 0∗ ⊇ 0F =

√
0 and thus R is reduced. Since all principal ideals are tightly closed and

thus integrally closed, it follows that R is normal (by [SH06, Proposition 1.5.2]). □
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Remark 12.6. It follows from Proposition 12.5 and Example 12.2 that in a regular ring of
prime characteristic p > 0, if an ideal I can be generated by n elements, then In ⊆ I. In
fact, this holds for regular rings in arbitrary characteristics, see [LS81].

We next relate F -injectivity with Frobenius closure of ideals generated by system of pa-
rameters for Cohen-Macaulay rings.

Proposition 12.7. Let (R,m, k) be a Cohen-Macaulay local ring of prime characteristic
p > 0 and dimension d. Then the following conditions are equivalent.

(1) R is F -injective.
(2) (x1, . . . , xd)F = (x1, . . . , xd) for every system of parameters x1, . . . , xd.
(3) (x1, . . . , xd)F = (x1, . . . , xd) for some system of parameters x1, . . . , xd.

Proof. We consider the commutative diagram:

R/(x1, . . . , xd) �
� //

F e

��

Hd
m(R)

F e

��

R/(xp
e

1 , . . . , x
pe

d ) � � // Hd
m(R)

where the vertical maps are the natural e-th Frobenius actions, and the horizontal maps
are injective since R is Cohen-Macaulay. If R is F -injective, then the right vertical map
is injective and chasing the diagram we know that the left vertical map is injective, i.e.,
yp

e ∈ (xp
e

1 , . . . , x
pe

d ) implies y ∈ (x1, . . . , xd) for every system of parameters x1, . . . , xd

and every e. This clearly implies (x1, . . . , xd)F = (x1, . . . , xd). On the other hand, if
(x1, . . . , xd)F = (x1, . . . , xd) for some system of parameters x1, . . . , xd, then the left verti-
cal map is injective and chasing the diagram we find that Ker(F e|Hd

m(R)) ∩ Soc(Hd
m(R)) = 0

(since Soc(R/(x1, . . . , xd)) maps isomorphically onto Soc(Hd
m(R)) as R is Cohen-Macaulay).

It follows that Ker(F e|Hd
m(R)) = 0 and thus the natural Frobenius action on Hd

m(R) is injec-
tive, i.e., R is F -injective. □

Remark 12.8. In general, if (R,m, k) is a local ring of prime characteristic p > 0 such that
every ideal generated by a system of parameters is Frobenius closed, then R is F -injective,
see [QS17, Theorem 3.7]. However, it is not true that F -injectivity implies that every ideal
generated by a system of parameters is Frobenius closed, see [QS17, Theorem 6.5]. We will
outline the example constructed in [QS17] (which is based on [Sin99b]) in Exercise 66.

We next characterize F -purity via Frobenius closure of ideals.

Proposition 12.9. Let R be a ring of prime characteristic p > 0. Then R is F -pure if and
only if every ideal is Frobenius closed. In particular, weakly F -regular rings are F -pure.
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Proof. If R is F -pure, then R/I → R/I ⊗R F e
∗R
∼= F e

∗ (R/I [pe]) is injective for all e and
all ideals I ⊆ R. This is saying that xpe ∈ I [pe] implies x ∈ I, i.e., IF = I. Thus every
ideal is Frobenius closed. Conversely, by Exercise 11 and the fact that IFRP = (IRP )F (see
Exercise 57), we may assume (R,m, k) is local. Now we note that for every m-primary ideal
J ⊆ R, we have a commutative diagram

R/J //

∼=
��

F e
∗ (R/J [pe])

∼=
��

R̂/JR̂ // F e
∗ (R̂/J [pe]R̂)

where the horizontal maps are the e-th Frobenius map. Since JF = J , the top horizontal map
is injective for all e and thus so is the bottom horizontal map. It follows that (JR̂)F = JR̂ for
all m-primary ideal J ⊆ R. In particular, R̂ is reduced, since the nilradical of R̂ is contained
in ⋂n(mnR̂)F = ⋂

nm
nR̂ = 0. Now by [Hoc77, Theorem 1.7], in order to show R → F e

∗R is
pure it is enough to show that R/I → R/I ⊗R F e

∗R
∼= F e

∗ (R/I [pe]) is injective, which follows
since IF = I. The last conclusion follows since IF ⊆ I∗. □

12.2. Big Cohen-Macaulay algebras and F -rational rings. We next study tight closure
and Frobenius closure via certain non-Noetherian algebras. The idea in the construction of
B(R) in the discussion below comes from Gabber [Gab18].

Discussion 12.10. Let R be a ring of prime characteristic p > 0. We use Rperf := lim−→e
F e

∗R

to denote the perfection of R, which is a non-Noetherian ring when dim(R) > 0. If R is
reduced, then Rperf = ⋃

e∈NR
1/pe . It is easy to see (Exercise 58) that for any ideal I ⊆ R,

IF = IRperf ∩R, i.e., the contraction of IRperf to R. Next, we set

B(R) :=W−1
N∏
Rperf

where W denotes the multiplicative set generated by (c, F∗c, F
2
∗ c, . . . ) for all c not in any

minimal prime of R. Note that B(R) is not a Noetherian ring. We further define

IB := IB(R) ∩R.

Note that x ∈ IB if and only if there exists w ∈ W so that

w(x, x, . . . ) ∈ I
N∏
Rperf =

N∏
IRperf .
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By our definition ofW , this is the case exactly when there exists c not in any minimal prime
of R so that F e

∗ (cxpe) = (F e
∗ c) · x ∈ IRperf for all e ∈ N, that is,

cxp
e ⊆ I [pe]Rperf ∩R = (I [pe])F

for all e ∈ N.

Lemma 12.11. With notations as above, we have I∗ ⊆ IB. Conversely, if there exists
c0 ∈ R not in any minimal prime of R such that c0I

F ⊆ I +
√

0 for all ideals I ⊆ R, then
I∗ = IB.

Proof. If x ∈ I∗, then by definition there exists c ∈ R not in any minimal prime of R such
that cxpe ∈ I [pe] for all e ≥ e0. Thus for every e ∈ N, (cxpe)pe0 ∈ I [pe+e0 ] = (I [pe])[pe0 ] and thus
cxp

e ∈ (I [pe])F . It follows from Discussion 12.10 that x ∈ IB.
Conversely, if x ∈ IB, then by Discussion 12.10 there exists c ∈ R not in any minimal prime

of R such that cxpe ∈ (I [pe])F for all e ∈ N. By assumption we have (c0c)xp
e ∈ I [pe] +

√
0 for

all e ∈ N. Let e0 ∈ N be such that (
√

0)[pe0 ] = 0. It follows that

(c0c)p
e0xp

e+e0 = ((c0c)xp
e)pe0 ∈ (I [pe] +

√
0)[pe0 ] = I [pe+e0 ] + (

√
0)[pe0 ] = I [pe+e0 ]

for all e ∈ N and thus x ∈ I∗. □

Remark 12.12. The existence of c0 in Lemma 12.11 holds in either of the following cases,
and consequently, under either of the following conditions we have I∗ = IB.

• R is F -pure.
• R is F -finite.
• (R,m, k) is excellent local.

In the first case, we can take c0 = 1 since IF = I by Proposition 12.9. In the second and
third cases, we can work modulo

√
0 to assume R is reduced. If R is F -finite, then there is

an R-linear map ϕ: F∗R → R such that ϕ(F∗1) = c for a nonozerodivisor c ∈ R (since the
map R→ F∗R is split after tensoring with the total quotient ring of R, and in fact, for any
c′ such that Rc′ is regular, we can take c to be a large power of c′). We prove by induction
that for all e ≥ 1, there is an R-linear map ϕe: F e

∗R→ R such that ϕe(F e
∗ 1) = c2 =: c0. For

e = 1 we simply take ϕ1 = cϕ. For e > 1, by inductive hypothesis, F∗ϕe−1 defines a map
F e

∗R→ F∗R sending F e
∗ 1 to F∗c

2. Thus a multiple of this map sends F e
∗ 1 to F∗c

p = c · F∗1.
Composing with ϕ then defines a map ϕe: F e

∗R→ R sending F e
∗ 1 to c2. Now if x ∈ IF , then

there exists e so that xpe ∈ I [pe], i.e., x ·F e
∗ 1 ∈ I ·F e

∗R. Applying ϕe then gives that c0x ∈ I.
Finally, if (R,m, k) is excellent local (and reduced), then there exists c ∈ R such that Rc
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and hence R̂c is regular. We consider

R→ R̂→ R̂Γ.

By Lemma 6.12, for all sufficiently small choices of Γ, we have (R̂Γ)c is regular. Thus by the
F -finite case discussed above, there exists N ≫ 0 so that cNJF ⊆ J for all ideals J ⊆ R̂Γ.
Now if I ⊆ R, then we have

cNIF ⊆ cN(IF R̂Γ) ∩R ⊆ cN(IR̂Γ)F ∩R ⊆ IR̂Γ ∩R = I

where the last equality follows from the fact that R̂Γ is faithfully flat over R (see Discus-
sion 6.6). It follows that we can take c0 = cN .

An element c not in any minimal prime of R is called a test element of tight closure if
cI∗ ⊆ I for all ideals I ⊆ R. Remark 12.12 can be generalized to prove the following result on
existence of test elements, see [HH94a] and [ST12] for more intense studies of test elements
and the theory of test ideals.

Theorem 12.13. Let R be a reduced ring of prime characteristic p > 0. Suppose one of the
following conditions hold:

• R is F -finite.
• (R,m, k) is excellent local.

Then for any c ∈ R not in any minimal prime of R such that Rc is regular, there exists N
depending only on c so that cNI∗ ⊆ I for all ideals I ⊆ R, i.e., cN is a test element.

Proof. We first assume R is F -finite. Suppose x ∈ I∗. We know there exists d not in any
minimal prime of R such that dxpe ∈ I [pe] for all e≫ 0. Since Rc is F -finite and regular and
hence strongly F -regular, we know there exists e0 depending on d such that Rc → F e0

∗ Rc

sending 1 to F e0
∗ d splits. Unlocalizing, we find that there exists an integer L depending on

d and an R-linear map ϕ : F e0
∗ R → R sending F e0

∗ d to cL. Now from dxp
e0+e ∈ I [pe0+e] we

obtain that xpe
F e0

∗ d ∈ I [pe]F e0
∗ R. Applying ϕ we obtain that cLxpe ∈ I [pe] for all e ≫ 0. In

particular, choosing e ≥ L we have cx ∈ IF . By Remark 12.12, there exists a fixed power
cN0 of c such that cN0IF ⊆ I. Thus we can take N = N0 + 1 and cNI∗ ⊆ I.

Now suppose (R,m, k) is excellent local and Rc is regular. Then R̂c is regular. We consider

R→ R̂→ R̂Γ.

By Lemma 6.12, for all sufficiently small choices of Γ, we have R̂Γ is reduced and (R̂Γ)c is
regular. Thus by the F -finite case discussed above, there exists N so that cNJ∗ ⊆ J for all



F -SINGULARITIES: A COMMUTATIVE ALGEBRA APPROACH 119

ideals J ⊆ R̂Γ. Now for any I ⊆ R, we have

cNI∗ ⊆ cN(I∗R̂Γ) ∩R ⊆ cN(IR̂Γ)∗ ∩R ⊆ IR̂Γ ∩R = I

where the second inclusion and the last equality follows from the fact that R̂Γ is faithfully
flat over R (see Exercise 60). □

We have the following characterization of weakly F -regular rings in terms of the non-
Noetherian algebra B(R).

Proposition 12.14. Let R be a ring of prime characteristic p > 0. Then R is weakly
F -regular if and only if R→ B(R) is pure.

Proof. If R → B is pure, then by Lemma 12.11, I∗ ⊆ IB = I for all ideals I ⊆ R and
thus R is weakly F -regular. Now we suppose R is weakly F -regular. In particular, R is
F -pure and thus by Remark 12.12, we have IB = I∗ = I. But since R is F -pure, by
Exercise 11 and Corollary 2.3, R̂m is F -pure and in particular reduced for every maximal
ideal m ⊆ R. Now by [Hoc77, Proposition 1.2, Proposition 1.4, and Theorem 1.7], in order
to show R→ B(R) is pure it is enough to show that R/I → B(R)/IB(R) is injective, which
follows since IB = I. □

We next prove that, under mild assumptions on a local ring (R,m, k) of prime characteristic
p > 0, the non-Noetheiran R-algebra B(R) constructed in Discussion 12.10 is balanced big
Cohen-Macaulay, that is, every system of parameters of R is a regular sequence on B(R) and
mB(R) ̸= B(R).

Theorem 12.15. Let (R,m, k) be a local ring of prime characteristic p > 0 and dimension
d. Suppose R is a homomorphic image of a Cohen-Macaulay ring. Then the following are
equivalent:

(1) R is equidimensional.
(2) B(R) is a balanced big Cohen-Macaulay algebra over R.

Proof. We first prove (2)⇒ (1). We suppose B(R) is a balanced big Cohen-Macaulay algebra
over R but R is not equidimensional. Let P1, . . . , Pn be the minimal primes of R such that
dim(R/Pi) = d and let Q1, . . . , Qm be the minimal primes of R such that dim(R/Qj) < d.
We choose x ∈ ∩mj=1Qj − ∪ni=1Pi and y ∈ ∩ni=1Pi − ∪mj=1Qj. Then xy ∈

√
0 and so by

replacing x and y by their powers, we may assume that xy = 0. Since x is part of a system
of parameters in R, we know that x is a nonzerodivisor on B(R) and thus the image of y is
0 in B(R). This implies y ∈ 0B and by Discussion 12.10, this means there exists c ∈ R not
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in any minimal primes of R so that cype ∈ 0F =
√

0. It follows that y ∈
√

0 ⊆ Q1 which is a
contradiction.

We next prove (1)⇒ (2). Write R = S/I where (S,m, k) is a Cohen-Macaulay local ring
and let x1, . . . , xd be a system of parameters of R. By Exercise 61 we may choose y1, . . . , yh

in I, where h = ht(I), so that y1, . . . , yh, x1, . . . , xd is a system of parameters of S (we abuse
notations and use xi to denote the chosen lift of xi to S).

Claim 12.16. There exists c0 ∈ R not in any minimal prime of R and a fixed e0 ∈ N such
that for all e ∈ N and all 1 ≤ i ≤ d− 1,

c0
(
(xp

e

1 , . . . , x
pe

i ) :R xp
e

i+1

)[pe0 ]
⊆ (xp

e+e0
1 , . . . , xp

e+e0
i ).

Proof of Claim. Suppose zxp
e

i+1 ∈ (xp
e

1 , . . . , x
pe

i ), lift this to S we have that

zxp
e

i+1 ∈ (xp
e

1 , . . . , x
pe

i ) + I.

Let
√

(y1, . . . , yh) = P1 ∩ · · · ∩Pn ∩Q1 ∩ · · · ∩Qm where P1, . . . , Pn are those minimal primes
of (y1, . . . , yh) that contain I and Q1, . . . , Qm are those minimal primes of (y1, . . . , yh) that
do not contain I. Since R = S/I is equidimensional, P1, . . . , Pn are exactly the minimal
primes of I. We can pick c ∈ ∩mj=1Qj − ∪ni=1Pi (if no such Q’s exist, we simply take c = 1).
Then cI ⊆

√
(y1, . . . , yh) and the image of c in R is not in any minimal prime of R. We have

czxp
e

i+1 ∈ (xp
e

1 , . . . , x
pe

i ) +
√

(y1, . . . , yh).

Let e0 ∈ N such that
(√

(y1, . . . , yh)
)[pe0 ]

⊆ (y1, . . . , yh) and let c0 = cp
e0 , it follows that

c0z
pe0xp

e+e0
i+1 ∈ (xp

e+e0
1 , . . . , xp

e+e0
i , y1, . . . , yh).

Since S is Cohen-Macaulay, y1, . . . , yh, x1, . . . , xd is a regular sequence on S, and thus

c0z
pe0 ∈ (xp

e+e0
1 , . . . , xp

e+e0
i , y1, . . . , yh).

Therefore, after modulo I, we obtain that

c0z
pe0 ∈ (xp

e+e0
1 , . . . , xp

e+e0
i )

in R. This completes the proof of the claim. □

By Claim 12.16, we know that for all e ∈ N,

(F e+e0
∗ c0) ·

(
((x1, . . . , xi)F e

∗R :F e
∗R xi+1) · F e+e0

∗ R
)
⊆ (x1, . . . , xi)F e+e0

∗ R.
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Thus after taking a direct limit over all e, we find that

(c1/p∞

0 ) ·
(
(x1, . . . , xi)Rperf :Rperf xi+1

)
⊆ (x1, . . . , xi)Rperf

where (c1/p∞

0 ) denote the ideal in Rperf generated by all (the images of) F e
∗ c0. It follows that( N∏

(c1/p∞

0 )
)
·
(

(x1, . . . , xi)(
N∏
Rperf) :(∏N

Rperf)
xi+1

)
⊆ (x1, . . . , xi)

N∏
Rperf .

Thus after inverting the multiplicative set W (which contains (c0, F∗c0, F
2
∗ c0, . . . ) since c0 is

not in any minimal prime of R), we have

(x1, . . . , xi)B(R) :B(R) xi+1 ⊆ (x1, . . . , xi)B(R)

for every i, that is, x1, . . . , xd is a regular sequence on B(R). Finally, to show mB(R) ̸= B(R),
it is enough to prove that 1 /∈ mB(R). If this is the case, then by the definition of B(R),
there exists c ∈ R not in any minimal prime of R such that

(c, F∗c, F
2
∗ c, . . . ) ∈ m

N∏
Rperf =

N∏
mRperf .

This means F e
∗ c ∈ mRperf for all e ∈ N, which in turn implies that

c ∈ (m[pe])F ⊆ (m[pe])∗ ⊆ m[pe]

for all e≫ 0, where the last containment follows from Proposition 12.5. Thus we have

c ∈ ∩em[pe] =
√

0

by [SH06, Exercise 5.14], contradicting our choice of c. □

Corollary 12.17. Let (R,m, k) be a local ring of prime characteristic p > 0. Then R admits
a balanced big Cohen-Macaulay algebra.

Proof. Let P be a minimal prime of R̂ such that dim(R̂/P ) = dim(R). Then B(R̂/P ) is a
balanced big Cohen-Macaulay algebra over R̂/P by Theorem 12.15. It follows that B(R̂/P )
is also a balanced big Cohen-Macaulay algebra over R. □

Remark 12.18. Corollary 12.17 holds without assuming the local ring (R,m, k) has prime
characteristic p > 0, see [And18, Gab18, HM18].

We now use Theorem 12.15 to obtain the characterization of F -rational rings in terms of
tight closure of ideals generated by system of parameters (the latter is the original definition
of F -rationality in [HH94c]).
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Proposition 12.19. Let (R,m, k) be a local ring of prime characteristic p > 0 that is
a homomorphic image of a Cohen-Macaulay ring. Then R is F -rational if and only if
(x1, . . . , xd)∗ = (x1, . . . , xd) for every system of parameters x1, . . . , xd.

Proof. Suppose R is F -rational and let z ∈ (x1, . . . , xd)∗. Then there exists c ∈ R not in
any minimal prime of R such that czpe ∈ (xp

e

1 , . . . , x
pe

d ) for all e ≫ 0. Consider the class
η := [ z

x1···xd
] ∈ Hd

m(R). We thus have that

cF e(η) = [ czp
e

xp
e

1 · · ·x
pe

d

] = 0

in Hd
m(R) for all e≫ 0. Since R is F -rational, we know there exists e > 0 such that cF e(−)

is injective on Hd
m(R). It follows that η = 0 in Hd

m(R), which implies z ∈ (x1, . . . , xd) as R is
Cohen-Macaulay.

Conversely, if every ideal generated by a system of parameters is tightly closed, then
for every part of a system of parameters x1, . . . , xi, we can complete it to a full system of
parameters x1, . . . , xd and we have

(x1, . . . , xi)∗ ⊆ ∩n(x1, . . . , xi, x
n
i+1, . . . , x

n
d)∗ = ∩n(x1, . . . , xi, x

n
i+1, . . . , x

n
d) = (x1, . . . , xi).

In particular, (x1, . . . , xi)F = (x1, . . . , xi) and thus by Lemma 12.11 (applied to all ideals
generated by part of a system of parameters with c0 = 1) we have

(x1, . . . , xi)B = (x1, . . . , xi)∗ = (x1, . . . , xi)

for every x1, . . . , xi part of a system of parameters. In particular, every principal ideal
of height one is tightly closed and thus integrally closed by Proposition 12.5. It follows
that R is normal by [SH06, Proposition 1.5.2]. In particular, R is equidimensional and
thus B(R) is balanced big Cohen-Macaulay by Theorem 12.15. Now if yxi+1 ∈ (x1, . . . , xi),
then yxi+1 ∈ (x1, . . . , xi)B(R) and thus y ∈ (x1, . . . , xi)B = (x1, . . . , xi). Thus R is Cohen-
Macaulay, and by Proposition 12.7, R is F -injective.

Finally, for every c ∈ R not in any minimal prime of R, we consider

Ne := {η ∈ Hd
m(R) | cF e(η) = 0}.

Since R is F -injective, we know that Ne ⊇ Ne+1 for all e ∈ N. It follows that there exists
e′ ≫ 0 so that Ne′ = Ne for all e ≥ e′ as Hd

m(R) is Artinian. Now if η = [ z
x1···xd

] ∈ Ne′ ,
then η ∈ Ne for all e ≥ e′, i.e., cF e(η) = 0. Since R is Cohen-Macaulay, this implies that
czp

e ∈ (xp
e

1 , . . . , x
pe

d ) for all e ≥ e′ and thus z ∈ (x1, . . . , xd)∗ = (x1, . . . , xd). Hence η = 0
which means Ne′ = 0, i.e., cF e′(−) is injective on Hd

m(R). Thus R is F -rational. □
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The following submodule of the top local cohomology module Hd
m(R) implicitly appeared

multiple times (see Chapter 4, and also the proof of Proposition 12.19) and so we formally
introduce it here.

Definition 12.20. Let (R,m, k) be a local ring of prime characteristic p > 0 and dimension
d. We define

0∗
Hd

m(R) = {η ∈ Hd
m(R) | cF e(η) = 0 for some c not in any minimal prime of R and all e≫ 0}

to be the tight closure of 0 in Hd
m(R).15

Lemma 12.21. Let (R,m, k) be an excellent and equidimensional local ring of prime char-
acteristic p > 0 and dimension d. Then for every system of parameters x1, . . . , xd of R, we
have

0∗
Hd

m(R)
∼= lim−→

n

(xn1 , . . . , xnd)∗

(xn1 , . . . , xnd)
∼= lim−→

n

(xn1 , . . . , xnd)B

(xn1 , . . . , xnd)
∼= Ker

(
Hd

m(R)→ Hd
m(B(R))

)
,

where the transition map in the direct limit is multiplication by x1 · · ·xd.

Proof. If z ∈ (xn1 , . . . , xnd)∗, then there exists c not in any minimal primes of R so that
czp

e ∈ (xnp
e

1 , . . . , xnp
e

d ) for all e ≫ 0. It is straightforward to see that the class η := [ z
xn

1 ···xn
d
]

belongs to 0∗
Hd

m(R). To establish the first isomorphism, it suffices to show that each η ∈ 0∗
Hd

m(R)
is the image of some class [ z

xn
1 ···xn

d
] such that z ∈ (xn1 , . . . , xnd)∗. Now for each η ∈ Hd

m(R),
we may write η = [ z

xn
1 ···xn

d
], i.e., η is the image of z ∈ R/(xn1 , . . . , xnd) under the identification

Hd
m(R) ∼= lim−→n

R
(xn

1 ,...,x
n
d

) . If η ∈ 0∗
Hd

m(R), then we have that [ czpe

xnpe

1 ···xnpe

d

] = 0 ∈ Hd
m(R) for all

e≫ 0. This means there exists s > 0 such that

czp
e(x1 · · ·xd)s ∈ (xnp

e+s
1 , . . . , xnp

e+s
d ).

It follows that

czp
e ∈ (xnp

e+s
1 , . . . , xnp

e+s
d ) : (x1 · · · xd)s ⊆ (xnp

e

1 , . . . , xnp
e

d )B = (xnp
e

1 , . . . , xnp
e

d )∗

by Theorem 12.15 and Remark 12.12. By Theorem 12.13, there exists c′ not in any minimal
prime of R such that

cc′zp
e ∈ (xnp

e

1 , . . . , xnp
e

d ) +
√

0

for all e≫ 0. Fix e0 ∈ N such that (
√

0)[pe0 ] = 0, we have

(cc′)pe0zp
e+e0 ∈ (xnp

e+e0
1 , . . . , xnp

e+e0
d )

15As we mentioned at the beginning of this chapter, there is a more general notion of tight closure of
submodules of modules, and 0∗

Hd
m(R) ⊆ Hd

m(R) fits into this general context.
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for all e ≫ 0. Thus z ∈ (xn1 , . . . , xnd)∗ as wanted. This completes the proof of the first iso-
morphism. The second isomorphism follows from Remark 12.12. For the third isomorphism,
note that if η := [ z

xn
1 ···xn

d
] ∈ Ker

(
Hd

m(R)→ Hd
m(B(R))

)
, then by Theorem 12.15 we have that

z ∈ (xn1 , . . . , xnd)B(R) ∩R = (xn1 , . . . , xnd)B. This completes the proof. □

A local ring (R,m, k) of prime characteristic p > 0 and dimension d is called F -nilpotent
(resp., weakly F -nilpotent) if the Frobenius action is nilpotent on (⊕i<dH i

m(R))⊕0∗
Hd

m(R) (resp.,
⊕i<dH i

m(R)). These singularities were introduced and studied in [ST17, PQ19, Quy19]. We
end this chapter by providing characterizations of F -nilpotent and weakly F -nilpotent rings
via the non-Noetherian algebras Rperf and B(R).

Proposition 12.22. Let (R,m, k) be a local ring of prime characteristic p > 0. Then R is
weakly F -nilpotent if and only if Rperf is a balanced big Cohen-Macaulay algebra.

Proof. First we suppose Rperf is balanced big Cohen-Macaulay. Then every system of pa-
rameters x1, . . . , xd is a regular sequence on Rperf . It follows that Hi(xn1 , . . . , xnd ;Rperf) = 0
for all i ≥ 1 and in particular Hj

m(Rperf) ∼= lim−→n
Hd−j(xn1 , . . . , xnd ;Rperf) = 0 for all j < d.

Therefore lim−→e
Hj

m(F e
∗R) = 0 and thus the Frobenius action is nilpotent on Hj

m(R) for every
j < d, that is, R is weakly F -nilpotent.

We next prove the converse. We observe that when R is weakly F -nilpotent, we have that

H i
m(Rperf) = lim−→

e

Hj
m(F e

∗R) = 0.

If the conclusion does not hold, then we can choose an example with dim(R) = d minimum.
Let x1, . . . , xd be a system of parameters of R. By induction on i we may assume that
x1, . . . , xi is a regular sequence on Rperf . If i = d then there is nothing to prove so we
assume that i < d. Consider (x1, . . . , xi) :Rperf xi+1. Since RP is weakly F -nilpotent for all
P ∈ Spec(R) by Exercise 64. For all P ∈ Spec(R)\{m}, we have

(x1, . . . , xi) :(RP )perf xi+1 = (x1, . . . , xi)(RP )perf .

As a consequence, we have

(12.1)
(x1, . . . , xi) :Rperf xi+1

(x1, . . . , xi)Rperf
⊆ H0

m

( Rperf

(x1, . . . , xi)Rperf

)
.

Since x1, . . . , xi is a regular sequence on Rperf , by examining the long exact sequence on local
cohomology induced by the short exact sequence

0→ Rperf

(x1, . . . , xj)Rperf

·xj+1−−−→ Rperf

(x1, . . . , xj)Rperf
→ Rperf

(x1, . . . , xj+1)Rperf
→ 0
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for each 0 ≤ j ≤ i− 1, we obtain via a straightforward induction that

H<d−i
m

( Rperf

(x1, . . . , xi)Rperf

)
= 0.

In particular, since i < d, we have H0
m(Rperf/(x1, . . . , xi)Rperf) = 0 and thus by (12.1), xi+1

is a nonzerodivisor on Rperf/(x1, . . . , xi)Rperf . We have shown that x1, . . . , xd is a regular
sequence on Rperf . Since it is clear that mRperf ̸= Rperf , Rperf is a balanced big Cohen-
Macaulay algebra. □

Proposition 12.23. Let (R,m, k) be an excellent local ring of prime characteristic p > 0
and dimension d. Then the following are equivalent:

(1) R is F -nilpotent.
(2) Rperf is balanced big Cohen-Macaulay and Hd

m(Rperf)→ Hd
m(B(R)) is injective.

Proof. By Lemma 12.21 and the fact that B(R) is perfect, we have

(12.2) Ker
(
Hd

m(Rperf)→ Hd
m(B(R))

) ∼= lim−→
e

F e
∗ 0∗

Hd
m(R).

In particular, Hd
m(Rperf)→ Hd

m(B(R)) is injective if and only if the Frobenius action on 0∗
Hd

m(R)
is nilpotent. The conclusion follows immediately from this and Proposition 12.22. □

Exercise 56. Verify Example 12.4 part (1).

Exercise 57. Let R be a ring of prime characteristic p > 0. Let I ⊆ R be an ideal and
W ⊆ R a multiplicative set. Prove that W−1IF = (IW−1R)F and that W−1I∗ ⊆ (IW−1R)∗.

We point out that it is not true in general that W−1I∗ = (IW−1R)∗, see [BM10]. On the
other hand, it is not known whether tight closure commutes with localization at one element,
i.e., whether we always have I∗Rf = (IRf )∗.

Exercise 58. Let R be a ring of prime characteristic p > 0 and let I ⊆ R be an ideal. Prove
that IF = IRperf ∩R.

Exercise 59. Let R → S be a module-finite extension of domains of prime characteristic
p > 0. Prove that IS ∩ R ⊆ I∗ for all ideals I ⊆ R. Prove that if R is weakly F -regular,
then R→ S splits for all module-finite extensions S.

Exercise 60. Let R→ S be a faithfully flat extension of rings of prime characteristic p > 0.
Prove that I∗S ⊆ (IS)∗ for all ideals I ⊆ R.
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In fact, for any homomorphism R → S of rings of prime characteristic p > 0, if R is
essentially of finite type over an excellent local ring, then I∗S ⊆ (IS)∗ for all ideals I ⊆ R

(see [HH94a]). This is called the persistence of tight closure.

Exercise 61. Let (R,m, k) be a local ring that is a homomorphic image of a Cohen-Macaulay
ring S. Write R = S/I and suppose x1, . . . , xd is a system of parameters of R. Prove that
there exists a sequence of elements y1, . . . , yh in I, where h = ht(I), and lifts zi of xi to S
such that y1, . . . , yh, z1, . . . , zd is a system of parameters of S.

The next exercise is the so-called “colon-capturing” property of tight closure.

Exercise 62. Let (R,m, k) be an excellent and equidimensional local ring of prime charac-
teristic p > 0 and dimension d. Prove that for every system of parameters x1, . . . , xd of R,
we have

(x1, . . . , xi) : xi+1 ⊆ (x1, . . . , xi)∗ and (x1, . . . , xi)∗ : xi+1 = (x1, . . . , xi)∗

for every i. (Hint: Use Remark 12.12 and Theorem 12.15.)

The next exercise shows that under mild assumptions, to check F -rationality, it is enough
to show one system of parameters is tightly closed.

Exercise 63. Let (R,m, k) be an excellent and equidimensional local ring of prime charac-
teristic p > 0 and dimension d. Suppose there is a system of parameters x1, . . . , xd such that
(x1, . . . , xd) = (x1, . . . , xd)∗. Prove R is F -rational via the following steps:

(1) Use Exercise 62 and descending induction to show that (x1, . . . , xi)∗ = (x1, . . . , xi)
for every i. Conclude that x1, . . . , xd is a regular sequence and R is Cohen-Macaulay.

(2) Show that Hd
m(R)→ Hd

m(B(R)) is injective.
(3) Use Lemma 12.21 to show that (y1, . . . , yd)∗ = (y1, . . . , yd) for all system of parameters

y1, . . . , yd. Conclude that R is F -rational.

In fact, the conclusions of Exercise 62 and Exercise 63 hold under the weaker assumption
that (R,m, k) is (equidimensional and) a homomorphic image of a Cohen-Macaulay ring, see
[HH90, HH94a] for more general statements.

Exercise 64. Prove that if (R,m, k) is a weakly F -nilpotent (resp., an excellent and F -
nilpotent) local ring of prime characteristic p > 0. Then RP is weakly F -nilpotent (resp.,
F -nilpotent) for all P ∈ Spec(R). (Hint: Mimic the strategy in the proof of Theorem 4.13.)

Exercise 65. Prove that if (R,m, k) is an excellent F -nilpotent local ring of prime charac-
teristic p > 0, then (x1, . . . , xd)F = (x1, . . . , xd)∗ for every system of parameters x1, . . . , xd.
(Hint: Use Proposition 12.23.)
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In fact, if (R,m, k) is excellent, equidimensional, and (x1, . . . , xd)F = (x1, . . . , xd)∗ for
every system of parameters, then R is F -nilpotent (i.e., the converse of Exercise 65 holds),
we refer the readers to [PQ19, Theorem A].

Exercise 66 ([QS17, Example 6.3] and [Sin99b, Example 3.2]). Let k be a field of prime
characteristic p > 0 and let

R = k[[x, y, z, w, t]]/(t) ∩ (xy, xz, y(z − w2)).

Prove the following:
(1) w2(x2 − y4) is part of a system of parameters of R.
(2) w3y4t ∈ (w2(x2 − y4)R)F .
(3) w3y4t /∈ w2(x2 − y4)R.
(4) w is a nonzerodivisor on R and R/wR is F -pure (so R is F -injective by Theorem 5.5).

It follows that for all a2, a3, a4 ∈ R so that w2(x2−y4), a2, a3, a4 form a system of parameters
of R, we have w3y4t ∈ (w2(x2 − y4), an2 , an3 , an4 )F but w3y4t /∈ (w2(x2 − y4), an2 , an3 , an4 ) for
n ≫ 0. Therefore, R is an F -injective local ring but not every ideal generated by a system
of parameters of R is Frobenius closed.

Note that the local ring (R,m, k) constructed in Exercise 66 is not normal (it is not even
equidimensional). To the best of the authors’ knowledge, the following question is open.

Open Problem 5. Let (R,m, k) be a complete and F -injective local ring of prime char-
acteristic p > 0. Suppose R is normal (or merely equidimensional). Then is every ideal
generated by a system of parameters of R Frobenius closed?
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13. Linear comparisons of ideal topologies in rings of prime characteristic

Throughout this chapter, we will continue to assume that all rings are Noetherian (unless
otherwise stated). Many fundamental theorems in commutative algebra are formulated and
proved in terms of ideal containments. A particular example, discussed in Chapter 9, is a
result of Aberbach and Leuschke [AL03]: an F -finite local ring (R,m, k) of prime charac-
teristic p > 0 is strongly F -regular if and only if its F -signature is positive. The approach
taken in this text, as well as in [AL03], to show positivity of the F -signature of a strongly
F -regular ring is to establish a linear containment relationship between the splitting ideals

Ie(R) := {r ∈ R | R ·F e
∗ r−−→ F e

∗R does not split}

and the Frobenius powers of the maximal ideal m[pe]. The critical argument of the proof is
to show that if R is strongly F -regular then there exists a natural number e0 ∈ N such that
for all e ≥ e0, Ie(R) ⊆ m[pe−e0 ], see Lemma 9.15 for details.

In this chapter, we will explore other ideal containment problems in F -finite domains of
prime characteristic p > 0. After a brief discussion on the notion of an ideal topology of a
ring, we present an elementary proof, in the prime characteristic setting, of an important
characteristic-free theorem of Swanson [Swa00] on the linear comparison between symbolic
and ordinary powers of an ideal. A key feature of the approach taken here is the avoidance
of a deep and technical result from birational geometry, the Izumi-Rees Theorem [Ree89].

The main results of [AL03] and [Swa00] establish linear containments of relevant sequences
of ideals through the Izumi-Rees Theorem. On the other hand, the proofs presented in this
chapter (as well as the two proofs of positivity of F -signature presented in Chapter 9) bypass
the Izumi-Rees Theorem entirely.16

Our efforts to bypass the Izumi-Rees Theorem in our proofs are not intended to downplay
its importance or beauty, but rather to highlight and share powerful prime characteristic
techniques that are relatively more elementary. Additionaly, at the end of this chapter, we
present a novel and elementary proof of the Izumi-Rees Theorem for F -finite rings in prime
characteristic p > 0.

13.1. Ideal topologies. Let R be a ring and I = {In}n∈N a descending chain of ideals. The
collection I induces a topology on R. For any x ∈ R, the sets {y ∈ R | x − y ∈ It} form a
basis of open neighborhoods of x, where t varies over the natural numbers.

If τ1 and τ2 are two topologies on a space X, then the τ1-topology is finer than the τ2-
topology if every open set of τ2 contains an open set of τ1. The topologies τ1 and τ2 are
16Two other independent proofs of Aberbach and Leuschke’s theorem that do not rely on the Izumi-Rees
Theorem can be found in [PT18, Section 5].
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equivalent if both topologies are finer than one another. The notions of finer and equivalent
topologies of a ring R defined by descending chains of ideals enjoy the following algebraic
characterization.

Definition 13.1. Let I = {In}n∈N and J = {Jn}n∈N be two sets of descending chains of
ideals of a ring R.

• The I-topology of R is finer than the J-topology of R if for all s ∈ N there exists
t ∈ N so that It ⊆ Js.
• The I-topology of R is equivalent to the J-topology of R if the I-topology of R is finer

than the J-topology of R and the J-topology of R is finer than the I-topology of R.

If I = {In}n∈N is a descending chain of ideals of a ring R, then a Cauchy sequence in R

with respect to I is a sequence of elements (xn)n∈N such that for all t ∈ N, there exists m ∈ N
such that for all n1, n2 ≥ m, xn1 − xn2 ∈ It. The condition ⋂

n∈N In = 0 on the descending
chain of ideals I ensures distinct elements of R can be separated by open sets with respect
to the topology defined by I, meaning the I-topology is Hausdorff. Indeed, if ⋂n∈N InR = 0,
f ̸= g ∈ R, then there exists n ∈ N so that f − g ̸∈ In, implying {f + y | y ∈ In} and
{g + y | y ∈ In} are distinct open sets separating the elements f and g.

The completion of R with respect to I is the collection of all Cauchy sequences with
respect to I and can be identified with the projective limit lim←−R/It. The completion inherits
a ring structure from R, and there is a natural ring homomorphism R → lim←−R/It that
identifies an element r ∈ R with the constant sequence (r)n∈N. If I and J are descending
chains of ideals of R so that the I-topology is finer than the J-topology, then every Cauchy
sequence of R with respect to I is a Cauchy sequence with respect to J, inducing a ring
homomorphism lim←−R/It → lim←−R/Jt. If the topologies defined by I and J are equivalent,
then lim←−R/It

∼= lim←−R/Jt.
Fundamental theorems in commutative algebra describe the algebraic properties of the

completion lim←−R/I
t and the ring homomorphism R → lim←−R/I

t. For instance, the Krull’s
Intersection Theorem provides a general criteria for R→ lim←−R/I

t to be injective, while the
Artin-Rees Lemma underpins foundational results that lim←−R/I

t is a Noetherian ring and
that R→ lim←−R/I

t is flat. Chevalley’s Lemma provides a criteria for the topology described
by a descending chain of ideals to be finer than the topology of a local ring (R,m, k) defined
by the powers of m.

Definition 13.2. Let R be a ring and I ⊆ R an ideal. Let W be the complement of the
union of the associated primes of I. Recall that the nth symbolic power of I is the ideal
I(n) = InW−1R ∩R. Then
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• The I-adic topology of R is the topology of R defined by the descending chain of
ideals {In}n∈N.
• The I-symbolic topology of R is the topology of R defined by the descending chain of

ideals {I(n)}n∈N.

We first observe that the symbolic topology of an ideal in a domain is Hausdorff.

Lemma 13.3. Let R be a domain and I ⊆ R an ideal. Then ⋂
n∈N I

(n) = 0.

Proof. Let p be a minimal prime of I. We have

I(n)Rp = (IRp)(n) = InRp ⊆ pnRp.

Consequently, if x ∈ ⋂n∈N I
(n), then x ∈ ⋂n∈N p

nRp = 0 in Rp by the Krull’s Intersection
Theorem. Thus, there exists c ∈ R \ p such that cx = 0, implying x = 0 since R is assumed
to be a domain. □

It is clear from the definition of the symbolic powers of an ideal I that In ⊆ I(n) for every
n ∈ N. In particular, the I-adic topology of R is finer than the I-symbolic topology of R. An
application of Chevalley’s Lemma shows that, under mild hypotheses, the symbolic topology
of an ideal is equivalent to its adic topology.

Definition 13.4. A local ring (R,m, k) is called analytically irreducible if R̂, the m-adic
completion of R, is a domain.

Corollary 13.5. Let R be a ring and I ⊆ R an ideal. Suppose that for all p ∈ ⋃n∈N Ass{In},
Rp is analytically irreducible. Then the I-adic topology of R is equivalent to the I-symbolic
topology of R.

Proof. Since In ⊆ I(n) for every n ∈ N, it suffices to show that for every s ∈ N, there exists
t ∈ N such that I(t) ⊆ Is. Given s ∈ N, choose a primary decomposition Is = q1 ∩ · · · ∩ qℓ

and let pi = √qi. Since qi is primary to pi, we have I(t) ⊆ qi if and only if I(t)Rpi
⊆ qiRpi

. By
assumption, R̂pi

is a domain, thus ⋂n∈N I
(n)R̂pi

⊆ ⋂
n∈N(IR̂pi

)(n) = 0 by Lemma 13.3. Since
qiRpi

is primary to the maximal ideal piRpi
, it follows from Chevalley’s Lemma, Lemma 9.13,

that there exists ti such that I(ti)Rpi
⊆ qiRpi

. Thus we have

I(ti) ⊆ I(ti)Rpi
∩R ⊆ qiRpi

∩R = qi

where the last equality follows from the fact that qi is pi-primary. Now it is easy to see that
if t = max{ti}1≤i≤ℓ, then I(t) ⊆ q1 ∩ · · · ∩ qℓ = Is. □
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13.2. Prime characteristic methods and linear equivalence of ideal topologies. A
remarkable property of a Noetherian ring R is described by an important theorem of Swanson
[Swa00], which asserts that if I ⊆ R is an ideal for which the adic and symbolic topologies
are equivalent, then they are “linearly equivalent”.

Theorem 13.6 ([Swa00, Main Result]). Let R be a domain and I ⊆ R an ideal. If the I-adic
and I-symbolic topologies of R are equivalent, then there exists a constant C, depending on
I, so that for all n ∈ N, I(Cn) ⊆ In.

A distinguishing tool in prime characteristic not available in other characteristics are the
splitting ideals of an ideal I ⊆ R. Recall that if R is an F -finite ring, I ⊆ R an ideal, and
e ∈ N, then Ie(I;R) := {r ∈ R | φ(F e

∗ r) ∈ I, ∀φ ∈ HomR(F e
∗R,R)}, see Definition 9.17.

A particularly important property of splitting ideals is that if I is an ideal of an F -
finite domain R, then there exists a constant C0 so that for all e ∈ N, Ie(IC0) ⊆ I [pe], see
Lemma 9.22. Consequently, if the I-adic and I-symbolic topologies of R are equivalent,
then there exists a constant C so that I(C) ⊆ IC0 , which in turn implies that for all e ∈ N,
Ie(I(C)) ⊆ I [pe]. We record this observation for reference.

Lemma 13.7. Let R be an F -finite domain of prime characteristic p > 0 and I ⊆ R an
ideal whose adic and symbolic topologies are equivalent. There exists a constant C so that
for all e ∈ N,

Ie(I(C);R) ⊆ I [pe].

An ideal I ⊆ R of an F -finite ring R of prime characteristic p > 0 enjoys the property
that for every e ∈ N, I [pe] ⊆ Ie(I). The next lemma is a similar observation as it pertains to
symbolic powers of ideals.

Lemma 13.8. Let R be an F -finite ring and I ⊆ R an ideal generated by t elements. Then
for every C ∈ N, I(Ctpe) ⊆ Ie(I(C);R).

Proof. Let x ∈ I(Ctpe). We need to show that for every φ ∈ HomR(F e
∗R,R), φ(F e

∗x) ∈ I(C).
It suffices to show φ(F e

∗x) ∈ I(C) after localization at an associated prime of I. Let p be an
associated prime of I. We have I(C)Rp = ICRp and x ∈ I(Ctpe)Rp = ICtp

e
Rp ⊆ (I [pe])CRp =

(IC)[pe]Rp. Therefore φ(F e
∗x) ∈ φ((IC)[pe]Rp) ⊆ ICRp as φ is Rp-linear. □

Theorem 13.9. Let R be an F -finite domain of prime characteristic p > 0 and I ⊆ R an
ideal. If the adic and symbolic topologies of I are equivalent, then there exists a constant C
so that for all n ∈ N, I(Cn) ⊆ In.
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Proof. By Lemma 13.7, there exists a constant C such that for all e ∈ N, Ie(I(C);R) ⊆ I [pe].
Let t denote the minimal number of generators of I. Let n ∈ N and x ∈ I(Ctn). For every
e ∈ N, write pe = aen + re with 0 ≤ re < n. Fix an element 0 ̸= d ∈ I(Ctn). We have
xae ∈ I(Ctaen), which implies that dxae ∈ I(Ctpe). By Lemma 13.8, I(Ctpe) ⊆ Ie(I(C);R),
which implies that for every e ∈ N, dxae ∈ I [pe].

Next we note that dnxaen ∈ (I [pe])n = (In)[pe]. Multiplying by xre we obtain that for every
e ∈ N, dnxpe ∈ (In)[pe]. The element dn is independent of e, therefore x ∈ (In)∗, the tight
closure of In. Let 0 ̸= c ∈ R be a test element of R, see Theorem 12.13, so that c(In)∗ ⊆ In

for all n ∈ N, i.e., (In)∗ ⊆ (In :R c). If A is an Artin-Rees number of (c) ⊆ R with respect
to the ideal I ⊆ R, then Lemma 9.21 implies that (In :R c) ⊆ In−A for all n ≥ A + 1. It
follows that for all n ≥ A+ 1,

I(Ctn) ⊆ In−A.

Consequently, for all n ∈ N,

I(Ct(A+1)n) ⊆ I(A+1)n−A ⊆ In. □

13.3. Discrete valuations and the Izumi-Rees Theorem. We now turn our attention to
the Izumi-Rees Theorem for F -finite rings in prime characteristic p > 0. Let K be a field and
K× the multiplicative group of nonzero elements of K. A discrete valuation is a non-trivial
group homomorphism ν : K× → Z so that for all x, y ∈ K×, ν(x + y) ≥ min{ν(x), ν(y)}.
We extend ν to a function ν : K → Z ∪ {∞} by letting ν(0) = ∞. If ν is a valuation
then Vν , or V if ν is clear from context, is the valuation ring of ν and described as the set
Vν = {x ∈ K | ν(x) ≥ 0}. The ring Vν is a local principal ideal domain (PID). If x ∈ Vν is
an element so that ν(x) = min{ν(z) | z ∈ Vν}, then xVν is the unique maximal ideal Vν . If
I ⊆ Vν is a nonzero proper ideal of Vν , then IV = xtVν for some t ∈ N.

Definition 13.10. Let R be a domain and K its field of fractions. A discrete valuation of
R is a discrete valuation ν : K× → Z so that R ⊆ Vν . The center of ν in R is the prime
ideal pν := mν ∩ R ∈ Spec(R). The valuation ideal of R with respect to ν is defined as
Iν≥n := {r ∈ R | ν(x) ≥ n} = mn

νVν ∩R.

Lemma 13.11. Let R be a domain with field of fractions K, ν a discrete valuation of R,
and pν the center of ν. Then for each n ∈ N the valuation ideal Iν≥n is an ideal of R primary
to pν so that p(n)

ν ⊆ Iν≥n.

Proof. Suppose x, y ∈ R so that xy ∈ Iν≥n and y ̸∈ pν . Then we have ν(y) = 0 and

ν(x) = ν(x) + ν(y) = ν(xy) ≥ n.
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Therefore x ∈ Iν≥n and thus Iν≥n is primary to pν . It is clear that pnν ⊆ Iν≥n. Thus Iν≥n

being primary to pν implies that p(n)
ν = pnνRpν ∩R ⊆ Iν≥nRpν ∩R = Iν≥n. □

Let (R,m, k) be an excellent analytically irreducible local ring. First developed by Izumi in
[Izu85] in the analytic setting, and generalized by Rees in [Ree89], the Izumi-Rees Theorem
establishes a linear relationship between two discrete valuations of R that belong to the class
of divisorial valuations of R that are centered on the maximal ideal. Divisorial valuations
are a subclass of discrete valuations and will be discussed in subsection 13.4.

Theorem 13.12 (Izumi-Rees Theorem, [Ree89]). Let (R,m, k) be an excellent analytically
irreducible local ring. If ν1 and ν2 are divisorial valuations of R centered on m, then there
exists a constant E so that for all x ∈ R,

ν1(x) ≤ Eν2(x).

Rees’s characteristic-free proof of Izumi’s Theorem requires the full scope of the theory of
surface singularities found in [Lip78] when R has dimension 2. Higher dimensions are then
reduced to the dimension 2 case through methods similarly used in the study of properties
stable under generic grade reductions found in [Hoc73b], relying upon cohomology vanishing
theorems of Faltings in [Fal80] in the dimension reduction process.

We will present a streamlined and novel perspective to an improvement of the Izumi-Rees
Theorem for F -finite domains of prime characteristic p > 0, see Theorem 13.15. Specifically,
we will show that under suitable assumptions, if νp and νq are discrete valuations centered
on p and q respectively, where p ⊆ q ∈ Spec(R), then there exists a constant E so that for
all x ∈ R, νp(x) ≤ Eνq(x). The materials in subsection 13.4 provide relevant information
on divisorial valuations so that the Izumi-Rees Theorem, Theorem 13.12 (for F -finite local
domains) follows from Theorem 13.15, see Remark 13.16. We highlight some details of our
approach.

(1) Equate the Izumi-Rees Theorem to finding a constant C so that for each e ∈ N there
is a containment of valuation ideals Iνp≥Cpe ⊆ Iνq≥pe .

(2) For each e ∈ N, realize Iνq≥pe as the set of elements x ∈ R so that φ(F e
∗x) ∈ mνqVνq

for all Vνq-linear maps φ : F e
∗Vνq → Vνq . This is essentially a consequence of the fact

that mνq is principal and F e
∗Vνq is a free Vνq-module.

(3) There is a bounded family Λe of maps F e
∗Vνq → Vνq and 0 ̸= c ∈ R with the following

property: if x ̸∈ Iνq≥pe , then there exists φ ∈ Λe so that φ(F e
∗x) ̸∈ mνq and cφ ∈

HomR(F e
∗R,R).

We begin with the reduction of the Izumi-Rees Theorem to linear containment properties
of valuation ideals of R.
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Lemma 13.13. Let R be a domain with field of fractions K and ν, ω diecrete valuations of
R. Then the following holds

(1) If E is a constant so that for all x ∈ R, ν(x) ≤ Eω(x), then for all n ∈ N,

Iν≥En ⊆ Iω≥n.

(2) If C is a constant so that for all n ∈ N, Iν≥Cn ⊆ Iω≥n, then for all x ∈ R,

ν(x) ≤ 2Cω(x).

(3) If R is an F -finite domain of prime characteristic p > 0 and C is a constant so that
for all e ∈ N, Iν≥Cpe ⊆ Iω≥pe, then for all x ∈ R,

ν(x) ≤ 2Cω(x).

Proof. We will only show (3). The remaining details are left as Exercise 68. We may assume
x ∈ p so that ν(x), ω(x) ≥ 1 since otherwise ν(x) = 0 and the conclusion is obvious. The
claimed inequality is trivial if ν(x) < C. Thus we may also assume ν(x) ≥ C. For each
e ∈ N, write pe = ae⌊ν(x)

C
⌋+ re with 0 ≤ re < ⌊ν(x)

C
⌋ and fix a nonzero element y ∈ I

ν≥C⌊ ν(x)
C

⌋.
Then for all e ∈ N,

ν(yxae) = ν(y) + aeν(x) ≥ ν(y) + Cae

⌊
ν(x)
C

⌋
≥ Cpe.

We are assuming Iν≥Cpe ⊆ Iω≥pe and the above inequality implies yxae ∈ Iν≥Cpe . Hence for
every e ∈ N,

ω(yxae) ≥ pe = ae

⌊
ν(x)
C

⌋
+ re.

Note that the element y was chosen independent of e and re is a natural number bounded
above for all e ∈ N. The sequence ae tends to infinity as e tends to infinity. Therefore

ω(x) = lim
e→∞

ω(yxae)
ae

≥ lim
e→∞

ae
⌊
ν(x)
C

⌋
+ re

ae
=
⌊
ν(x)
C

⌋
≥ ν(x)

C
− 1.

It follows that
ν(x) ≤ Cω(x) + C ≤ 2Cω(x). □

Let R be an F -finite domain of prime characteristic p > 0 and K its field of fractions.
Then we have HomR(F e

∗R,R)⊗RK ∼= HomK(F e
∗K,K). Since HomR(F e

∗R,R) is torsion-free,
the natural localization map HomR(F e

∗R,R)→ HomK(F e
∗K,K) is injective and identifies

HomR(F e
∗R,R) = {φ ∈ HomK(F e

∗K,K) | φ(F e
∗R) ⊆ R}.
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For any φ ∈ HomK(F e
∗K,K), the image φ(F e

∗R) ⊆ K is a finitely generated R-module. If
c ̸= 0 is a common multiple of the denominators of a generating set of the R-module φ(F e

∗R),
then φ(F e

∗R) ⊆ R · 1
c
. Multiplying by c then shows that cφ ∈ HomR(F e

∗R,R). The following
lemma bounds the image of F e

∗R in K for a family of maps formed by restricting scalars
under Frobenius and composition of a bounded collection of functions in HomK(F∗K,K).

Lemma 13.14. Let R be an F -finite domain of prime characteristic p > 0, K the fraction
field of R, and φ1, φ2, · · ·φt ∈ HomK(F∗K,K).

For each e ∈ N and index i⃗ = (i1, i2, . . . , ie) ∈ {1, 2, 3, . . . , t}⊕e, let φ⃗i ∈ HomK(F e
∗K,K)

be the composition of maps

φ⃗i = φi1 ◦ F∗φi2 ◦ · · · ◦ F e−1
∗ φie : F e

∗K
F e−1

∗ φie−−−−−→ F e−1
∗ K

F e−2
∗ φie−1−−−−−−→ · · ·

F∗φi2−−−→ F∗K
φi1−−→ K.

Then there exists 0 ̸= c ∈ R so that for all e ∈ N and indexes i⃗ ∈ {1, 2, . . . , t}⊕e,

φ⃗i(F
e
∗R) ⊆ R · 1

c
.

Proof. Since R is F -finite, for each 1 ≤ i ≤ t, the image φi(F∗R) of the map F∗R
φi−→ K

is a finitely generated R-module. Choosing a common multiple of the denominators of a
generating set of φi(F∗R), we can assume that φi(F∗R) ⊆ R · 1

c
for each 1 ≤ i ≤ t. We

will show by induction on e that for each index (i1, i2, . . . , ie) ∈ {1, 2, . . . , t}⊕e, we have
φ⃗i(F e

∗R) ⊆ R · 1
c2 . The case e = 1 follows by our choice of c.

Now we suppose φ⃗i(F e
∗R) ⊆ R · 1

c2 for all indexes (i1, i2, . . . , ie) ∈ {1, 2, . . . , t}⊕e. Let
i⃗ = (i0, i1, i2, . . . , ie) ∈ {1, 2, . . . , t}⊕e+1 and let i⃗′ = (i1, i2, . . . , ie). Then

φ⃗i(F
e+1
∗ R) = φi0 (F∗φ⃗i′ (F e

∗R)) ⊆ φi0

(
F∗

(
R · 1

c2

))
= φi0

(
F∗R ·

1
F∗c2

)
.

Multiplying by c we obtain that

cφ⃗i(F
e+1R) ⊆ cφi0

(
F∗R ·

1
F∗c2

)
= φi0

(
F∗R · F∗c

p−2
)
⊆ φi0 (F∗R) ⊆ R · 1

c
.

Dividing by c, we have
φ⃗i(F

e+1
∗ R) ⊆ R · 1

c2 . □

We are now ready to prove a version of the Izumi-Rees Theorem for discrete valuations of
an F -finite domain of prime characteristic p > 0.

Theorem 13.15. Let R be an F -finite domain of prime characteristic p > 0, and p ⊆ q ∈
Spec(R) prime ideals so that Rp is analytically irreducible and the p-symbolic topology of R
is finer than the q-symbolic topology of R. Let ν and ω be discrete valuations of R centered
on p and q respectively. Suppose ⋂n∈N Iν≥nR̂p = 0. Then there exists a constant E so that
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for all x ∈ R,
νp(x) ≤ Eνq(x).

Proof. By Lemma 13.13, it suffices to show there exists a constant C so that for all e ∈ N,

Iν≥Cpe ⊆ Iω≥pe .

An element x ∈ R belongs to Iω≥pe if and only if x ∈ mpe

ω Vω. The Vω-module F∗Vω is a free
Vω-module. Let {F∗w1, F∗w2, . . . , F∗wt} be a basis of F∗Vω over Vω, and let πi : F∗Vω → Vω

be the projection of F∗Vω onto the free Vω-summand generated by F∗wi with respect to the
chosen basis. For each index i⃗ = (i1, i2, . . . , ie) ∈ {1, 2, . . . , t}⊕e, define

F e
∗ w⃗i = F e

∗wieF
e−1
∗ wie−1 · · ·F∗wi1

as an element of F e
∗V through the composition of the first eth iterates of the Frobenius

endomorphism V → F∗V → · · · → F e−1
∗ V → F e

∗V .
The collection {F e

∗ w⃗i | i⃗ ∈ {1, 2, . . . , t}⊕e} forms a basis of F e
∗Vω over Vω. For each index

i⃗ ∈ {1, 2, . . . , t}⊕e, let π⃗i be the projection of F e
∗Vω onto the free Vω-summand generated by

F e
∗ w⃗i with respect to the basis {F e

∗ w⃗i | i⃗ ∈ {1, 2, . . . , t}⊕e}. If i⃗ = (i1, i2, . . . , ie) then π⃗i is
factored as

π⃗i = πi1 ◦ F∗πi2 ◦ · · · ◦ F e−2
∗ πie−2 ◦ F e−1

∗ πie .

By Lemma 13.14 (applied to Vν and R respectively), there exists 0 ̸= c1 ∈ Vν and 0 ̸= d ∈ R
such that for each index i⃗ ∈ {1, 2, . . . , t}⊕e,

π⃗i(F
e
∗Vν) ⊆ Vν ·

1
c1

and π⃗i(F
e
∗R) ⊆ R · 1

d
.

Now we choose 0 ̸= c2 ∈ Iν≥ν(c) ⊆ R. Then Vν · 1
c1
⊆ Vν · 1

c2
. Setting c := dc2 ∈ R, we obtain

that for each i⃗,
π⃗i(F

e
∗Vν) ⊆ Vν ·

1
c

and π⃗i(F
e
∗R) ⊆ R · 1

c
.

By our assumption ⋂n∈N Iν≥nR̂p = 0 and Chevalley’s Lemma (Lemma 9.13), for each s ∈ N
there is t ∈ N so that Iν≥tRp ⊆ psRp and thus Iν≥t ⊆ p(s). Combined with Lemma 13.11, it
follows that the topology defined by the descending chain of ideals {Iν≥n}n∈N is equivalent to
the p-symbolic topology of R and thus finer than the q-symbolic topology of R by assumption.
By Lemma 13.11, the q-symbolic topology is finer than the topology defined by {Iω≥n}n∈N.
Thus the topology defined by {Iν≥n}n∈N is finer than the topology defined by {Iω≥n}n∈N.

Let C be a constant so that Iν≥C ⊆ Iω≥ω(c)+1. If x ∈ R \ Iω≥pe , then there exists some i⃗
such that π⃗i(F e

∗x) ̸∈ mωVω. Let φ := cπ⃗i. We have φ ∈ HomVω(F e
∗Vω, Vω) satisfies

φ(F e
∗x) ̸∈ mω(c)+1

ω Vω.
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Since π⃗i(F e
∗Vν) ⊆ Vν · 1

c
and π⃗i(F e

∗R) ⊆ R · 1
c
, we have φ(F e

∗Vν) ⊆ Vν and φ(F e
∗R) ⊆ R, which

means that
φ ∈ HomVν (F e

∗Vν , Vν) and φ ∈ HomR(F e
∗R,R).

Thus by our choice of C, we have

φ(F e
∗x) ∈ R \ Iω≥ω(c)+1 ⊆ R \ Iν≥C .

It follows that φ(F e
∗x) ̸∈ mC

ν Vν and thus x ̸∈ (mC
ν )[pe]Vν = mCpe

ν Vν , implying x ̸∈ Iν≥Cpe .
Therefore, for every e ∈ N, there is a containment of valuation ideals

Iν≥Cpe ⊆ Iω≥pe . □

13.4. Divisorial valuations. Let R be a domain, K its fraction field, ν a discrete valuation
of R, Vν the valuation ring of ν, mν the maximal ideal of Vν , and pν ∈ Spec(R) the center of
ν. We say that ν is a divisorial valuation of R if tr. degRp/pRp

(Vν/mνVν) = ht(p)− 1.
Divisorial valuations are central in the study of singularities through birational geometry,

especially in the study of singularities over C through embedded resolutions of singularities.
They measure the vanishing orders at the generic point of exceptional components of bira-
tional models of Spec(R). Moreover, over an excellent domain R, divisorial valuations enjoy
the following property (see [SH06, Proposition 10.4.3])

• If ν is a divisorial valuation of R centered on p ∈ Spec(R) so that Rp is analytically
irreducible, then ν extends uniquely to a divisorial valuation v̂ of R̂p.17 In particular,
we have ∩n∈NIν≥nR̂p = 0.

Remark 13.16. Suppose (R,m, k) is an F -finite (and thus excellent) analytically irreducible
local ring. If ν is a divisorial valuation of R centered on m and ω is a discrete valuation of R
centered on m, then the above property of divisorial valuations tells us that the assumptions
of Theorem 13.15 are satisfied (by taking p = q = m). It follows that there exists a constant
E so that ν(x) ≤ Eω(x) for all x ∈ R, which is exactly the conclusion of Theorem 13.12 in
this setting.

For the convenience of the reader, we also list the following equivalent characterizations of
divisorial valuations of an excellent domain R, see [SH06, Chapter 10] for proofs and more
general statements.

(1) ν is a divisorial valuation of R.
(2) There exists a projective birational morphism Y

π−→ Spec(R) from a normal scheme
Y to Spec(R) so that ν is the valuation of an exceptional component of π.

17If {rn}n∈N is a Cauchy sequence in Rp with respect to the pRp-adic topology, then we can always extend
ν to ν̂ in the following way: ν̂ ({rn}n∈N) := limn→∞ ν(rn).
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(3) The valuation ν is a Rees valuation of some ideal I ⊆ R. That is, there exists an ideal
I ⊆ R and 0 ̸= x ∈ I so that if R

[
I
x

]
is the finitely generated R-algebra generated by

the fractions {a
x
| a ∈ I}, R

[
I
x

]
is the normalization of R

[
I
x

]
in its field of fractions

K, and ν is the valuation of the discrete valuation ring of the localization of R
[
I
x

]
at a height 1 prime ideal containing x.

(4) There exists an ideal I ⊆ R so that if T is a variable, R[IT, T−1] = ⊕
n∈Z I

nT n the
Z-graded extended Rees algebra of I, R[IT, T−1] the integral closure of R[IT, T−1]
in its field of fractions K(T ), and ν is the valuation of the discrete valuation ring of
the degree 0 piece of the homogeneous localization of R[IT, T−1] with respect to a
homogeneous height 1 prime ideal containing T−1.

We next give a nontrivial example of divisorial valuations.

Example 13.17 (Divisorial valuations of the point blowup of an At-singularlity, t ≥ 3). Let
k be a field, t ≥ 3, R = k[x1, x2, x3]/(x1x2 − xt3), and m = (x1, x2, x3). The extended Rees
algebra R[mT, T−1] has dimension 3 and is a homomorphic image of the Z-graded polynomial
ring k[x1, x2, x3, Y1, Y2, Y3, T

−1] defined by xi 7→ xi, Yi 7→ xiT , and T−1 7→ T−1. The degrees
of x1, x2, x3 are 0, the degrees of Y1, Y2, Y3 are 1, and the degree of T−1 is −1. One can easily
determine that (Y1Y2 − T−(t−2)Y t

3 , T
−1Y1 − x1, T

−1Y2 − x2, T
−1Y3 − x3) is a height 4 prime

of k[x1, x2, x3, Y1, Y2, Y3, T
−1] contained in the kernel, which implies that

R[mT, T−1] ∼=
k[x1, x2, x3][Y1, Y2, Y3, T

−1]
(Y1Y2 − T−(t−2)Y t

3 , T
−1Y1 − x1, T−1Y2 − x2, T−1Y3 − x3)

∼=
k[Y1, Y2, Y3, T

−1]
(Y1Y2 − T−(t−2)Y t

3 ) .

The singular locus of the Cohen-Macaulay ring R[mT, T−1] is the codimension 2 set

Sing(R[mT, T−1]) = V ((Y1, Y2, T
−1Y3)),

which implies R[mT, T−1] = R[mT, T−1] is normal. The associated graded ring

grmR ∼=
R[mT, T−1]

T−1R[mT, T−1]
∼=
k[Y1, Y2, Y3]

(Y1Y2)

has two minimal primes, or equivalently, T−1R[mT, T−1] = (T−1, Y1)∩ (T−1, Y2). Thus there
are two Rees valuations of R associated to m. The degree 1 element Y3 = x3T ∈ R[mT, T−1]
avoids the two height 1 primes of T−1R[mT, T−1] and

(R[mT, T−1]Y3)0 = R
[
x1

x3
,
x2

x3

]
∼=

k
[
x1
x3
, x2
x3
, x3

]
(x1
x3

x2
x3
− xt−2

3 )
.
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Therefore the valuation rings of two Rees valuations of m are k
[
x1
x3
, x2
x3
, x3

]
(x1
x3

x2
x3
− xt−2

3 )

(
x3,

x1
x3

) and
 k

[
x1
x3
, x2
x3
, x3

]
(x1
x3

x2
x3
− xt−2

3 )

(
x3,

x2
x3

) .
Discussion 13.18. Let R be an excellent domain and I ⊆ R an ideal. If IR denotes the
integral closure of I expanded to the normalization R of R, then by Exercise 72,

R[IT, T−1] = · · · ⊕RT−2 ⊕RT−1 ⊕R⊕ IRT ⊕ I2RT 2 ⊕ · · · .

Consequently, we have
T−nR[IT, T−1] ∩R = In.

It follows that if ν1, ν2, . . . , νt are the Rees valuations of R and νi(I) is the natural number
such that IVνi

= mνi(I)
νi

Vνi
, then

In =
t⋂
i=1

Iνi≥νi(I)n.

Therefore, the Rees valuations of an ideal I ⊆ R provide a canonical (though potentially
non-minimal) primary decomposition of In. Since primary decompositions are not unique
at non-minimal components, establishing containment in an ideal with embedded associated
primes can be challenging. This creates a natural appeal for using divisorial valuations in
the study of ideal topologies, as the primary decompositions of the integral closures of the
powers of an ideal as valuation ideals are uniquely determined by the divisorial valuations
arising through the normalized blowup of the ideal.

Exercise 67. Let R be an excellent normal domain. Show that for all ideals I ⊆ R, the
I-symbolic topology of R is equivalent to the I-adic topology of R. (Hint: Use Corollary 13.5)

Exercise 68. Complete the proof of Lemma 13.13.

Exercise 69. Let k be a perfect field of prime characteristic p > 0 and R = k[x1, x2, . . . , xd].
For each i⃗ ∈ {1, 2, 3, . . . , pe − 1}⊕d let x = x1x2 · · ·xd. Let Λe be the collection of basis
elements {F e

∗x
i⃗ | i⃗ ∈ {1, 2, . . . , pe − 1}⊕d} of F e

∗R over R. Let πe,⃗i : F e
∗R→ R be the dual of

the basis element F e
∗x

i⃗. Let V be the divisorial valuation ring k
[
x1,

x2
x1
, . . . , xd

x1

]
(x1)

. Determine
which of the projection maps πe,⃗i are well-defined maps F e

∗V → V , i.e., πe,⃗i(F e
∗V ) ⊆ V .

Exercise 70. Let R be an F -finite normal domain of prime characteristic p > 0. Suppose
HomR(F e0

∗ R,R) is principally generated as an F e0
∗ R-module by Φ1. Show that for all t ∈ N,

Φt := Φ1 ◦ F e0
∗ Φ1 ◦ · · · ◦ F (t−1)e0

∗ Φ1 ∈ HomR(F te0
∗ R,R)
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principally generates HomR(F te0
∗ R,R) as an F te0

∗ R-module. (Hint: The cyclic module gener-
ated by Φt and the module HomR(F te0

∗ R,R) are both (S2). By Proposition A.2, it is enough
to check the assertion after localizing at any height 1 prime ideal of R. Thus we can assume
R is a regular local ring and F e0

∗ R has an R-basis. Now mimic the methods in the proof of
Theorem 13.15 to describe the bases of F te0

∗ R and maps that generate HomR(F te0
∗ R,R) as

an R-module.)

Exercise 71. Let (R,m, k) be a one-dimensional local domain and assume the normalization
map R→ R is finite. Show that the collection of divisorial valuations of all ideals of R is a
finite set in bijection with the maximal ideals of R.

Exercise 72. Let R be a domain and I ⊆ R an ideal. Let R be the normalization of R and
for each n ∈ N, InR the integral closure of the expanded ideal InR. Show that

R[IT, T−1] = · · · ⊕RT−2 ⊕RT−1 ⊕R⊕ IRT ⊕ I2RT 2 ⊕ · · · .

Exercise 73. Let R be a standard graded normal domain with homogeneous maximal ideal
m and fraction field K. Show that the function νord : K× → Z defined on an element
0 ̸= f ∈ R by νord(f) = max{t ∈ N | f ∈ mt} is a divisorial valuation of R. (Hint: Start by
showing the associated graded ring grm(R) ∼= R[mT, T−1]/T−1R[mT, T−1] ∼= R. Conclude
that R[mT, T−1] = R[mT, T−1] and T−1 generates a prime ideal of R[mT, T−1].)

Exercise 74. Let k be a field, t ≥ 3, Rt = k[x1, x2, x3]/(x1x2 − xt3), and mt the maximal
ideal (x1, x2, x3)Rt. Show that the set of divisorial valuations of R associated to the maximal
ideal mt is a two-element set {ν1, ν2} so that ν1(x1) = t − 1, ν1(x2) = 1, ν2(x2) = 1, and
ν2(x2) = t − 1. Conclude that {Rt} is a family of two-dimensional normal domains with
isomorphic associated graded rings that do not share a common Izumi-Rees bound described
by Theorem 13.12 and Theorem 13.15 with respect to the divisorial valuations associated to
their respective maximal ideals. (Hint: Use Example 13.17.)
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Appendix A. Generalized divisors and class groups

We collect the basics of generalized divisors and the divisor class group of a Noetherian ring
which is not necessarily assumed to be normal. We refer to the reader to [Har94, Section 2]
for details.

Let R be a (Noetherian) ring and let K denote its total ring of fractions. We assume
that R satisfies Serre’s condition (S2) and is (G1), i.e., R is Gorenstein in codimension 1. A
finitely generated R-submodule I of K is a fractional ideal. We say that I is non-degenerate
if IP = KP for each minimal prime P of R. The inverse of a fractional ideal I is the
fractional ideal I−1 := {f ∈ K | fI ⊆ R}. Observe that I−1 = HomR(I, R) := I∗ and so
if I is non-degenerate then so is I−1. If a fractional ideal I is reflexive, i.e., I → I∗∗ is an
isomorphism, then I is called a generalized divisor. Note that since we are assuming R is (S2)
and (G1), I is reflexive if and only if I is (S2) as an R-module, see Exercise 78. If I ⊆ R then
I is called effective. There is a one-to-one correspondence between non-degenerate effective
reflexive fractional ideals of R and codimension 1 subschemes of Spec(R) without embedded
components.

We aim to describe the divisor class group of R. To do so, it is convenient to use additive
notation. So if D1, D2 represents generalized divisors I1, I2, then we use D1 +D2 to represent
the generalized divisor

((I1I2)−1)−1 = HomR(HomR(I1I2, R), R) = (I1I2)∗∗

and −D1 to represent I−1
1 (note that, with the additive notion, 0 represents R). A generalized

divisor D is almost Cartier if its corresponding fractional ideal I is principal in codimension
1. If R is normal then every divisor is almost Cartier.

Let D be a generalized divisor correspond to a fractional ideal I. We define the divisorial
ideal associated to D to be R(D) := I−1. Note that, with this notation, D is effective if
and only if R ⊆ R(D). We will say D1 ≥ D2 if D1 −D2 is effective. For any nonzerodivisor
f ∈ K, we use div(f) to denote the principal divisor that corresponds to the fractional ideal
(f), i.e., R(div(f)) = R · 1

f
. Now if D1, D2 are almost Cartier generalized divisors then D1

is linearly equivalent to D2, D1 ∼ D2, if D1−D2 is a principal divisor. It is easy to see that
D1 −D2 = div(f) if and only if (f) · R(D1) = R(D2), in other words, D1 ∼ D2 if and only
if R(D1) ∼= R(D2) as R-modules.

The divisor class group of R, denoted by Cl(R), is the abelian group of almost Cartier
generalized divisors modulo linear equivalence. Abusing notations a bit, a divisor is a choice
of an almost Cartier generalized divisor that represents an element of Cl(R).
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Suppose further that R admits a canonical module ωR. The assumption that R is (S2)
and (G1) insures that ωR ∼= R(KX) for some (almost Cartier generalized) divisor KX of
X = Spec(R). Any such divisor is referred to as a canonical divisor. If KX is a torsion
element of Cl(R) then R is said to be Q-Gorenstein. The Q-Gorenstein index of R is the
least positive integer N so that NKX is a principal divisor. Whenever a ring is described as
being Q-Gorenstein, it is implicitly assumed that R is (S2) and (G1) and admits a canonical
module. We say that R is quasi-Gorenstein if R is Q-Gorenstein of Q-Gorenstein index 1.

Remark A.1. If (R,m, k) is local, then R admits a canonical module if R is a homomorphic
image of a Gorenstein local ring. If, in addition, R is equidimensional (which holds if R is (S2)
and is a homomorphic image of a Gorenstein local ring), then we have (ωR)P is a canonical
module for RP for all P ∈ Spec(R), see [Aoy83, HH94b] or [Sta, Sections 47.16–47.19] for
more details.

It is important for us to understand when maps of (S2)-modules are isomorphisms, see
Exercise 79. To this end we present a proposition. For simplicity of our presentation, we
make a convention that a finitely generated (S2)-module has no associated primes that are not
minimal (e.g., when R is a domain, then we are assuming (S2)-modules are automatically
torsion-free), this condition holds for all divisorial ideals R(D) discussed above so there
should be no ambiguity.

Proposition A.2. Let R be an (S2) ring and N → M a map of finitely generated (S2)
R-modules. Then the following are equivalent:

(1) N →M is an isomorphism;
(2) N →M is an isomorphism in codimension 1, i.e., NP →MP is an isomorphism for

each height ≤ 1 prime ideal P ∈ Spec(R).

Proof. Suppose that NP → MP is an isomorphism for each height ≤ 1 prime ideal P ∈
Spec(R). Let K be the kernel of N → M . Then K is a submodule of N and if K ̸= 0,
then the associated primes of K has height at least two, which is not possible since K is
a submodule of an (S2) R-module (see our convention above). Thus we have a short exact
sequence of the form

0→ N →M → C → 0

and the module C localizes to 0 at every height ≤ 1 prime ideal of R. Suppose by way of
contradiction that C ̸= 0 and choose P ∈ Spec(R) that is minimal as an element of the
support of C. Then P has height at least 2. In particular, we can localize at P and consider
the short exact sequence

0→ NP →MP → CP → 0
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where the modules NP ,MP have depth at least 2 and CP is a nonzero finite length RP -
module. This is impossible, if we consider the long exact sequence of local cohomology
modules we find that there is an exact sequence

H0
PRP

(MP )→ H0
PRP

(CP )→ H1
PRP

(NP )

and hence either MP has depth 0 or NP has depth no more than 1. □

If R is normal, then the divisor class group of R described above agrees with the standard
definition. Specifically, if R is normal then a divisor can be defined to be an element of the
free abelian group generated by the irreducible codimension 1 subvarieties of X = Spec(R)
and Cl(R) is the group of Weil divisors modulo linear equivalence.

A.1. Cyclic covers. Let (R,m, k) be a local (S2) and (G1) ring and let D be a torsion
divisor of index N , i.e., ND is a principal divisor. Suppose that R(ND) = R · f where f
is a nonzerodivisor of the total ring of fractions K of R. For every pair of natural numbers
i, j we have that R(iD)R(jD) ⊆ R((i + j)D) and so we can consider the following graded
R-algebra

T :=
∞⊕
i=0

R(iD)ti.

It is not difficult to see that T is finitely generated over R by elements of degree no more than
N and S := T/(ftN−1) decomposes as an R-module as R⊕R(D)⊕· · ·⊕R((N−1)D). The
ring S is referred to as a cyclic cover of R with respect to the divisor D. Observe that if g is a
different choice of generator of R(ND) then we can form the cyclic cover S ′ := T/(gtN − 1).
The rings S and S ′ need not be isomorphic.

Example A.3. Let k be a field, R = k[[x, y, z]]/(xy + z3), and consider the height 1 prime
P = (x, z). Consider the divisor D corresponds to the fractional ideal P−1 (so D is anti-
effective) and observe that D is torsion of index 3 with

• R(D) = P = (x, z);
• R(2D) = P (2) = (x, z2);
• R(3D) = P (3) = (x).

As an R-module, a cyclic cover of R with respect to D decomposes as

R→ S = R⊕R(D)t⊕R(2D)t2 = R⊕ Pt⊕ P (2)t2 = R⊕ (x, z)t⊕ (x, z2)t2.

To understand the multiplicative structure of S, with respect to the choice of generator x of
R(3D), let us consider the product of the elements zt and xt2 of S as an example. Then

zt · xt2 = z(xt3) = z · 1 = z.
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The following lemma shows two important pieces of information concerning cyclic covers.

Lemma A.4. Let (R,m, k) be a local (S2) and (G1) ring. Suppose that D is a torsion divisor
of index N and S = ⊕N−1

i=0 R(iD)ti a cyclic cover of R by D.
(1) The ring S is local with unique maximal ideal m⊕⊕N−1

i=0 R(iD)ti;
(2) If π : S → R is the projection of S onto the degree 0 component of S then π principally

generates HomR(S,R), i.e., if ψ ∈ HomR(S,R) then there exists s ∈ S so that
ψ = π(s−).

Proof. We first check that m ⊕⊕N−1
i=0 R(iD)ti is an ideal of S. Once this is established it

is easy to see that m ⊕⊕N−1
i=0 R(iD)ti is the unique maximal ideal of S (we leave it to the

reader to check that every element not belonging to this ideal is a unit). Showing that
m ⊕⊕N−1

i=0 R(iD)ti is an ideal of S amounts to checking that if 1 ≤ i ≤ N − 1, a ∈ R(iD),
and b ∈ R((N − i)D) then ati · btN−i is an element of m. Suppose that f is a choice of
principal generator of R(ND) defining the multiplicative structure of S. Suppose by way
of contradiction that ati · btN−i = ab

f
= u for some unit u of R. Then ab = uf and so

div(a) + div(b) = div(f). This provides us the following information:
(1) a ∈ R(iD) and therefore div(a) ≥ −iD;
(2) b ∈ R((N − i)D) and therefore div(b) ≥ −(N − i)D;
(3) div(f) = div(ab) = div(a) + div(b) = −ND = −iD − (N − i)D.

Properties (1), (2), and (3) can only hold if div(a) = −iD and div(b) = −(N − i)D, contra-
dicting the initial assumption that the index of D is N .

We now aim to show that HomR(S,R) is a principal S-module. There is an isomorphism
of S-modules

HomR(S,R) ∼=
N−1⊕
i=0

HomR(R(iD)ti, R).

Furthermore, HomR(R(iD), R) ∼= R(−iD), i.e., if λ : R(iD) → R is R-linear then there
exists x ∈ R(−iD) so that λ(η) = xη for all η ∈ R(iD). To show that HomR(S,R) is
principally generated as an S-module by the projection map π it is enough to show that
if ψ : S → R is the composition of S projected onto R(iD) followed by the multiplication
map λ : R(iD) → R defined by λ(η) = xη then ψ = π(s−) for some s ∈ S. This is indeed
the case, suppose that R(ND) = R · f . Then fx ∈ R((N − i)D) and we consider the
element s = fxtN−i of S. Then s · ηti = fxηtN = xη. It readily follows that ψ = π(s−) as
claimed. □

Proposition A.5. Let (R,m, k) be a local (S2) and (G1) ring. Suppose that D is a torsion
divisor of index N and S = ⊕N−1

i=0 R(iD)ti is a cyclic cover of R by D. Let π ∈ HomR(S,R)
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be the projection of S onto R. Then S → HomR(S,R) defined by mapping s 7→ π(s−) is
an isomorphism. Under this isomorphism, the evaluation-at-1 map e1 : HomR(S,R) → R

defined by ψ 7→ ψ(1) corresponds to the projection map π.

Proof. The map S → HomR(S,R) sending s 7→ π(s−) is onto by Lemma A.4. We leave as
an exercise to the reader to verify that S s 7→π(s−)−−−−−→ HomR(S,R) is injective, see Exercise 77.

Showing that π corresponds to the evaluation-at-1 map e1 under the isomorphism

S
s 7→π(s−)−−−−−→ HomR(S,R)

is equivalent to observing the following diagram commutes:

S
s 7→π(s−)

//

π
((

HomR(S,R)
e1
��
R.

□

We point out that the (S2) and (G1) properties are preserved when we pass from a local
ring to a cyclic cover, a proof of this fact is contained in the proof of Lemma A.7 below. We
caution the reader that in prime characteristic p > 0 it might happen that a cyclic cover of a
normal domain fails to be normal (though it is always a domain in our context), see [TW92]
for more detailed discussions. For this reason, it is important for us to relax ourselves to
work with (S2) and (G1) rings.

A.2. Pull back divisors. Let R→ S be a map of (S2) and (G1) rings that corresponds to
a map of schemes π: Spec(S)→ Spec(R). Given a divisor D on R, we want to pull it back
along π to obtain a divisor π∗D on S – this is not always possible if D is not Cartier. We
thus restrict ourselves in the following two cases:

• R→ S is a module-finite extension.
• S = R := R/xR where x is a nonzerodivisor of R.

Discussion A.6. Recall that a divisor D on R corresponds to a fractional ideal R(D) that is
principal in codimension 1. In the case R→ S is a module-finite extension, we define π∗D to
be the divisor on S such that S(π∗D) = (R(D)S)∗∗, where (−)∗ := HomS(−, S). In the case
that S = R/xR, we need to replace the divisor D by D′ linearly equivalent to D such that
D′ has no component in V (x) (which is always possible by Lemma A.8), and then define
π∗D′ to be the divisor such that S(π∗D′) = (R(D′)S)∗∗, in this case we will also write D′

for π∗D′ to indicate that D′ is a divisor of R. Note that in the second case, we are actually
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defining a map Cl(R)→ Cl(S). We leave it to the reader in Exercise 75 to check that these
are well-defined.

Lemma A.7. Let (R,m, k) be a Q-Gorenstein local ring with choice of canonical divisor KX

on X = Spec(R) that has index NM , with N and M positive integers. If D = NKX and
R→ S the cyclic cover of R with respect to D then S is Q-Gorenstein of index N .

Proof. We first check that S is (S2) and (G1). The extension R → S is finite and S de-
composes as a finite direct sum of R-modules which are (S2), thus S is (S2) as a ring. If
Q ∈ Spec(S) is a height 1 prime then P = R ∩ Q is a height 1 prime of R and SQ is a
localization of SP := S⊗RRP . The canonical module R(KX)P is a principal fractional ideal
of RP . Thus SP is isomorphic to a ring of the form RP [Z]/(f) where Z is a variable. In
particular, SP and its localization SQ are Gorenstein.

To compute the Q-Gorenstein index of S, note that we have

ωS ∼= HomR(S, ωR) ∼= HomR(⊕M−1
i=0 R(iD)ti, R(KX))

∼= ⊕M−1
i=0 R(KX − iD)t−i

∼= ⊕M−1
i=0 R(KX + (M − i)D)tM−i

∼= (R(KX) · S)∗∗.

Therefore π∗KX is linearly equivalent to KY where π : Y = Spec(S)→ X = Spec(R). Thus
NKY is linearly equivalent to π∗(NKX) = π∗D which is principal, see Exercise 76. On the
other hand if N ′ < N , then we have

S(N ′KY ) ∼= (R(N ′KX) · S)∗∗ ∼= ⊕M−1
i=0 R(N ′KX + iNKX)ti.

It is readily checked that the right hand side is not principally generated over S: if it is, then
we have R(N ′KX + iNKX) ∼= R for some 0 ≤ i ≤ M − 1, which contradicts that the index
of KX is NM . Thus S is Q-Gorenstein of index N . □

Lemma A.8. Let R be an (S2) and (G1) ring and let x ∈ R be a nonzerodivisor of R. Then
for every divisor D there exists D′ linearly equivalent to D such that D′ has no component
in V (x).

Proof. Let P1, . . . , Pn be the associated primes of (x). Since R is (S2), all the Pi’s have height
one. Set W = R − ∪iPi and note that, as D is almost Cartier, W−1R(D) = f ·W−1R for
some element f in the total ring of fractions of R. Now it is easy to see that D′ := D+div(f)
does the job. □
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Lemma A.9. Let R be an (S2) and (G1) ring and let x ∈ R be a nonzerodivisor of R such
that R := R/xR is also (S2) and (G1). Suppose D is a torsion divisor on R with index
N , such that D has no component in V (x). Then D is a torsion divisor on R whose index
divides N .

Moreover, if (R,m, k) is local and R(iD)/xR(iD) is an (S2) module over R for each i,
then the torsion index of D equals N .

Proof. We have R(ND) ∼= R and thus

R(ND) = R(ND) = (R(ND)/xR(ND))∗∗ ∼= R.18

This proves the first assertion. Now if R(iD)/xR(iD) is (S2), then R(iD) = R(iD)/xR(iD),
so if R(iD) ∼= R for some i, then R(iD) ∼= R since R is local. Thus the torsion index of D
equals N . □

Lemma A.10. Let (R,m, k) be an (S2) and (G1) local ring and let x ∈ R be a nonzerodivisor
of R such that R := R/xR is also (S2) and (G1). Suppose R admits a canonical module and
that KX is a choice of the canonical divisor of X = Spec(R) such that KX has no component
in V (x). Then KX is a canonical divisor of R.

Proof. It is enough to show that (R(KX)/xR(KX))∗∗ ∼= ωR, that is, (ωR/xωR)∗∗ ∼= ωR.
Recall that we always have ωR/xωR ↪→ ωR, and as the latter module is reflexive, we have an
induced map (ωR/xωR)∗∗ → ωR. Now by Proposition A.2, it is enough to observe that this
map is an isomorphism in codimension 1 as R is (G1). □

Exercise 75. With notation as in Discussion A.6, show that the definition π∗D, π∗D′ induces
a well-defined group homomorphism π∗: Cl(R)→ Cl(S).

Exercise 76. Let (R,m, k) be an (S2) and (G1) local ring. Suppose that D is a torsion
divisor of index N and S = ⊕N−1

i=0 R(iD)ti is a cyclic cover of S with respect to D. Prove
that π∗D is a principal divisor where π : Spec(S)→ Spec(R).

Exercise 77. Let (R,m, k) be an (S2) and (G1) local ring. Suppose that D is a torsion
divisor of index N and S = ⊕N−1

i=0 R(iD)ti is a cyclic cover of S with respect to D. Let
φ ∈ HomR(S,R) be as in Proposition A.4. Show that the map S → HomR(S,R) defined by
mapping s 7→ φ(s−) is injective.
18Here, the first equality actually requires one to check that the pull back of divisors yields a well-defined
map Cl(R)→ Cl(S), see Exercise 75.
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Exercise 78. Let R be an (S2) and (G1) ring, M a finitely generated R-module. Prove the
following:

(1) M →M∗∗ is injective if and only if M has no associated primes that are not minimal.
(2) M → M∗∗ is an isomorphism if and only if M is an (S2)-module. (Recall our

convention on (S2)-modules in the paragraph above Proposition A.2.)

Exercise 79. Let R be an (S2) and (G1) ring and let D1, D2 be two divisors. Prove the
following:

(1) HomR(R(D1), R(D2)) ∼= R(D2 −D1);
(2) (R(D1)⊗R R(D2))∗∗ ∼= R(D1 +D2);
(3) If R is additionally F -finite of prime characteristic p > 0, then

(F e
∗R(D1)⊗R R(D2))∗∗ ∼= F e

∗R(D1 + peD2).

(Hint: Exercise 78 and Proposition A.2 could be helpful.)
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[Stu90] Bernd Sturmfels. Gröbner bases and Stanley decompositions of determinantal rings. Math. Z.,
205(1):137–144, 1990. 72

[SVdB97] Karen E. Smith and Michel Van den Bergh. Simplicity of rings of differential operators in prime
characteristic. Proc. London Math. Soc. (3), 75(1):32–62, 1997. 77

[Swa00] Irena Swanson. Linear equivalence of ideal topologies. Math. Z., 234(4):755–775, 2000. 128, 131
[Tuc12] Kevin Tucker. F -signature exists. Invent. Math., 190(3):743–765, 2012. 77
[TW92] Masataka Tomari and Keiichi Watanabe. Normal Zr-graded rings and normal cyclic covers.

Manuscripta Math., 76(3-4):325–340, 1992. 145
[Tyc88] Andrzej Tyc. Differential basis, p-basis, and smoothness in characteristic p > 0. Proc. Amer.

Math. Soc., 103(2):389–394, 1988. 105, 109
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