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Abstract

It is shown that the AH algebras satisfy a certain splitting property at
the level of K-theory with torsion coefficients. The splitting property is used
to prove the following:

(i) There are locally homogeneous C∗-algebras which are not AH algebras.

(ii) The class of AH algebras is not closed under countable inductive limits.

(iii) There are real rank zero split quasidiagonal extensions of AH algebras
which are not AH algebras

1 Introduction

Classes of C∗-algebras defined from inductive limit descriptions have been a fertile
area of research in recent years. A fundamental example of such a class is of course
the AF algebras, defined as those C∗-algebras which can be written as countable
inductive limits of finite-dimensional C∗-algebras. As discovered already in the foun-
dational paper by Bratteli ([5]), this class — defined extrinsically by the inductive
limit description — can be characterized intrinsically by a local criterion:

(i) A is an AF algebra if and only if for every ε > 0 and every finite set of elements
F ⊆ A there exists a finite-dimensional C∗-algebra B and a ∗-homomorphism
ϕ : B → A with dist(F , ϕ(B)) < ε.

This basic result plays an important role in establishing the following two closure
properties of the class of AF algebras:

(ii) A countable inductive limit of AF algebras is again an AF algebra.
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(iii) An extension
0 // A // E // B // 0

of AF algebras A,B is again an AF algebra. This result is due to Brown [6].

It is the purpose of this note to demonstrate that the expected local criterion
fails for the class of AH algebras, defined as those C∗-algebras that can be written
as countable inductive limits of algebras of the form

k⊕
i=1

piMni
(C(Xi))pi

for some compact metrizable spaces Xi. This is achieved by proving that all AH
algebras must satisfy a certain splitting property involving K-groups with torsion
coefficients. Applying this necessary condition it is easy to construct a C∗-algebra
which satisfies the local criterion but is not AH.

This answers the question, mentioned in Remark 6.1.2 [3] and in [23], of whether
every locally homogeneous C∗-algebra is an AH algebra. The same example also
shows that there are no reasonable closure properties along the lines of (ii) and (iii)
for this class.

Much effort has gone into such generalizations of (i)–(iii). Local criteria for the so
called AT and AD algebras were given by Elliott in [18], in the second case based on
a stability result for the dimension drop intervals by Loring ([25]). A local criterion
for classes defined by more general subhomogeneous algebras with 1-dimensional
spectrum can also be found in [17]. However, since a fundamental technical tool in
establishing all of these results is semiprojectivity (or, rather, weak semiprojectivity,
cf. [26]) for the building blocks, and by Loring’s work this property is known to fail
for C(X) with dim(X) ≥ 2, it is maybe not so surprising that the result does not
generalize.

Before discussing generalizations of (iii) one must realize that the closure prop-
erty of AF algebras given here is deceptively simple. In fact, as was made clear in
[7], one needs the extension to be quasidiagonal to expect good closure properties.
This property implies that the corresponding K-theoretical six term exact sequence

K0(A) // K0(E) // K0(B)

��
K1(B)

OO

// K1(E) // K1(A)

comes apart into two pure exact sequences, and in fact it has been shown for the
class of AT algebras of real rank zero ([24]) and for certain subclasses of AD algebras
of real rank zero ([11]) that this K-theoretical obstruction is the only one. This,
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we shall prove, is not the case for AH algebras; as we will give an example of a
quasidiagonal (and split!) extension of AH algebras which is not itself AH.

The results in the present paper are closely related to the observation in [10],
obtained by comparing classification results, that not every ASH algebra of real
rank zero can be written as an AH algebra with slow dimension growth. We show
here that not every ASH algebra can be written as an AH algebra, with or without
slow dimension growth. Another proof of this result can be obtained by a suitable
modification of the argument in [10].

2 Notation

An AH algebra is a C∗-algebra that can be written as a countable inductive limit
of C∗-algebras of the form

k⊕
i=1

piMni
(C(Xi))pi

where Xi is a compact metrizable space, and pi is a projection in Mni
(C(Xi)). This

is the standard definition, but two comments are in order here: First, one must note
that the class is actually bigger than the class of C∗-algebras which can be written
as countable inductive limit of C∗-algebras of the form

k⊕
i=1

Mni
(C(Xi))

as seen in Proposition 4.23 [19]. Second, the class is smaller than the class of C∗-
algebras which can be written as countable inductive limits of C∗-algebras of the
form

k⊕
i=1

Ai

where Ai is homogeneous in the sense that all irreducible representations of Ai are of
the same finite dimension di, because we exclude algebras with nontrivial Dixmier-
Douady class. Hence the ’H’ in the acronym only stands for ’homogeneous’ in a
rather limited sense. By results of Blackadar [2] one may assume that all the spaces
Xi in the definition of AH algebras are finite connected CW complexes. The same
goes for the definition of ASH algebras below.

The class of ASH algebras consists of those C∗-algebras that are given as induc-
tive limits over [

k⊕
i=1

piMni
(C(Xi))pi

]
⊕

[
l⊕

j=1

Mmi
(Id̃i)

]
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where Id̃ = {f : [0, 1] → Md | f(0), f(1) ∈ C1}. The subclass of the AH algebras
obtained by requiring that every Xi is S1 is called AT . The subclass of the ASH
algebras obtained by Xi = S1 is called AD. K-theoretically, these classes are
distinguished in their superclasses by having torsion-free K0. We also use the version
of the slow dimension growth condition defined in [9].

When (G,G+) is any preordered group, we denote by S(G) the set of order
preserving homomorphisms f : G → R. We then define the infinitesimals of G as
the set of group elements vanishing on S(G), i.e.

Inf(G) = {g ∈ G | ∀f ∈ S(G) : f(g) = 0}.

Note that every order-preserving group homomorphism will map infinitesimals to
infinitesimals. Hence, since K0(−) is a functor sending ∗-homomorphisms to order
homomorphisms, we achieve by the definition

KInf
0 (A) = K0(A)/ Inf(K0(A))

a functor. This is not continuous, as AF examples will show, but there is a natural
map

k : lim
−→

KInf
0 (An)→ KInf

0 (lim
−→

An)

defined by the fact that Inf(K0(An)) is sent to Inf(K0(lim−→
An)) by the canonical

map.

3 A partial splitting

The invariant K(−) — which was proven in [9] to be complete for the class of ASH
algebras of real rank zero with slow dimension growth — consists of doubly graded
ordered groups

K0(A)⊕K1(A)⊕K0(A;Z/m)⊕K1(A;Z/m),

and natural maps

ρim : Ki(A)→ Ki(A;Z/m),

βim : Ki(A;Z/m)→ Ki+1(A),

κis,m : Ki(A;Z/m)→ Ki(A;Z/s).

There are two six term exact sequences involving ρ, β and κ (see [28]), and one of
these may be unspliced to yield group homomorphisms ρ̃m, β̃m fitting into a short
exact sequence

0 // K0(A)⊗ Z/m ρ̃m // K0(A;Z/m)
β̃m // Tor(K1(A),Z/m) // 0.
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It is a nontrivial fact due to Bödigheimer ([4]) that all of these sequences split.

We shall mainly be interested in the group homomorphisms in the diagram

K0(A) //

qm ''

K0(A)⊗ Z/m ρ̃m //

q̃m
��

K0(A;Z/m)

αmvv
KInf

0 (A)⊗ Z/m

The composition of the two horizontal maps is equal to ρ0m, and q̃m is the canonical
quotient map. Using the splitting map for ρ̃m we easily get a homomorphism αm
filling out the triangle above in a commuting fashion. However, as splitting maps of
this type are never natural, we can not expect a map thus defined to have any extra
properties reflecting the internal structure of A. The technical vehicle of this paper
is the non-trivial observation that α can always be chosen to be ideal-preserving in
a restricted sense, when A is AH. To make this more precise we give the following
definition — where, as in [8], F (A‖I) denotes the image of

F (I)
F (ι) // F (A)

whenever F (−) is a functor defined on C∗-algebras and ∗-homomorphisms:

Definition 3.1 We say that a C∗-algebra A has an IMIm-splitting (ideal-preserving
splitting modulo infinitesimals) when there exists a group homomorphism

αm : K0(A;Z/m)→ KInf
0 (A)⊗ Z/m

with the properties:

(i) αmρ
0
m = qm,

(ii) whenever I is an ideal of A which is generated by projections,

αm(K0(A‖I;Z/m)) ⊆ KInf
0 (A‖I)⊗ Z/m.

Our examples involve C∗-algebras A of real rank zero, in which case every ideal is
generated by projections. In the definition we restrict ourselves to ideals generated
by projections in order to obtain a splitting property valid for all AH algebras.

Recall from [28] that any group homomorphism

κs,m : Z/m→ Z/s

induces natural transformations κ0s,m : K0(A;Z/m)→ K0(A;Z/s).
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A sequence (αm) of IMIm-splittings is said to be coherent if for any m, s ∈ N
the following diagram is commutative

K0(A;Z/m)
αm //

κ0s,m
��

KInf
0 (A)⊗ Z/m

id⊗κs,m
��

K0(A;Z/s) αs
// KInf

0 (A)⊗ Z/s

We shall prove the following:

Theorem 3.2 Every AH algebra has a coherent sequence (αm) of IMIm-splittings.

We postpone the proof of this to Section 5 below, and we shall see in Section
4 how this necessary condition for A being an AH algebra allows us to prove the
statement in the title of the paper.

In the remainder of this section we shall show how to phrase the IMI-property
using the more economical invariant K∞(−) defined in [8]. This is particularly
interesting for applications, since it is clear from Definition 3.1 that in the case
where Inf K0(A) = 0, the partial splitting maps αm are in fact actual splitting maps
for ρ̃m. We note that the condition Inf K0(A) = 0 implies that torK0(A) = 0 and
hence that the condition [8, 1] is met.

Unsplicing a six term exact sequence from [8] we get a short exact sequence

0 // K0(A)⊗Q/Z ρ̃∞ // K0(A;Q/Z)
β̃∞ // torK1(A) // 0,

which clearly splits because the group on the left is divisible. Also, a splitting map
can be found by taking limits of a coherent family as given above. We get a diagram

K0(A)⊗Q //

q ((

K0(A)⊗Q/Z ρ̃∞ //

q̃
��

K0(A;Q/Z)

α∞vv
KInf

0 (A)⊗Q/Z

and define as above:

Definition 3.3 We say that a C∗-algebra A has an IMI∞-splitting when there
exists a group homomorphism

α∞ : K0(A;Q/Z)→ KInf
0 (A)⊗Q/Z

with the properties:
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(i) α∞ρ
0
∞ = q,

(ii) whenever I is an ideal of A which is generated by projections,

α∞(K0(A‖I;Q/Z)) ⊆ KInf
0 (A‖I)⊗Q/Z.

Lemma 3.4 Suppose that a C*-algebra A has a coherent sequence (αm) of IMIm-
splittings. Then A has an IMI∞-splitting.

Proof: Recall from [8] that K0(A,Q/Z) can be defined as the inductive limit of the
system (K0(A;Z/m), κsm,m). It is then clear that α∞ = lim

−→
αm is an IMI∞-splitting.

�

Remark 3.5 The existence of IMIm- and IMI∞-splittings is closely related to the
property defining ideally split C∗-algebras in [16]. This will be explained elsewhere.

4 Local homogeneity

Definition 4.1 We say that a C∗-algebra A is locally homogeneous when for every
ε > 0 and every finite set of elements F ⊆ A there exists a C∗-algebra

k⊕
i=1

piMni
(C(Xi))pi,

where Xi is a compact metrizable space, pi is a projection in Mni
(C(Xi)), and there

is a ∗-homomorphism ϕ : B → A with dist(F , ϕ(B)) < ε.

We show below that local homogeneity is not enough to ensure approximate
homogeneity, not even for real rank zero and stable rank one C∗-algebras.

Theorem 4.2 There exists a separable unital C∗-algebra E, which has real rank
zero and stable rank one and is not an AH algebra but has the following properties:

(i) E is locally homogeneous C∗-algebra.

(ii) E is an inductive limit of AH algebras.

(iii) E fits into a split and quasidiagonal extension

0 // A // E // B // 0

of AH algebras A and B.
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Proof: Our example is only superficially different from one given in [12]. It will be
clear from the proof that it satisfies a stronger version of local homogeneity in that
the local approximation is done by algebras of the form

B =
k⊕
i=1

Mni
(C(Xi)),

with the Xi finite CW -complexes of dimension three.

Denote by D the two by two matrix algebra over the 3∞ UHF algebra and by
C the unique simple unital AD algebra of real rank zero with K0(C) = Z[1

3
] and

K1(C) = Z/2 ordered by

K•(C)+ = {(x, y) | x > 0 or (x = 0, y = 0)}.

Recall that in the case

torK0(−) = 0 m torK1(−) = 0,

as described in [15] and [9], the invariant

K(−;m) : K0(−)
ρ0m // K0(−;Z/m)

β0
m // K1(−)

is complete for AD algebras with real rank zero and slow dimension growth. There is
by (a one-sided version of) Theorem 3.6 in [13] a unital ∗-homomorphism ϕ, unique
up to approximately inner equivalence, having K(ϕ; 2) given by

K(C; 2) : Z[1
3
]

ρ //

2
��

Z/2⊕ Z/2 β //

[ 0 1 ]

��

Z/2

0

��
K(D; 2) : Z[1

3
] ρ

// Z/2
β

// 0.

We are going to study the continuous field over the one point compactification
of N defined as

E =

{
(c, (dn)) ∈ C ⊕

∞∏
n=1

D

∣∣∣∣∣ ‖ϕ(c)− dn‖ → 0

}
.

Note that E is an inductive limit of C∗-algebras of the form

Ek = C ⊕
k⊕
1

D
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Since C and D are both AD algebras of real rank zero and stable rank one, so is
Ek, and the same can be said of E.

Since one immediately finds that

K0(E) =

{
(x, (yn)) ∈ Z[1

3
]⊕

∞∏
n=1

Z[1
3
]

∣∣∣∣∣ yn → 2x

}

equipped with the positive cone

K0(E)+ = {(x, (yn)) | x ≥ 0, yn ≥ 0}

it follows that Inf K0(E) = 0. We have K1(E) = Z/2 and choosing generators
appropriately, we get

K0(E;Z/2) =

{
(v, z, (wn)) ∈ Z/2⊕ Z/2⊕

∞∏
1

Z/2

∣∣∣∣∣wn → z

}

with
ρ02(x, (yn)) = (x, 0, (yn)) β0

2(v, z, wn) = z,

where x = x′ + 2Z for x = x′/3r.

Assume that E had an IMI2-splitting α2, and consider the ideals Ik / E given
by

Ik = {(c, (dn)) | dk = 0}.

We get
K0(E‖Ik)⊗ Z/2 = {(x, (yn)) ∈ K0(E)⊗ Z/2 | yk = 0}

K0(E‖Ik;Z/2) = {(v, z, (wn)) ∈ K0(E;Z/2) | wk = 0}

and since E has real rank zero, so that Ik is generated by projections, α2 must
preserve these sets. In particular, if

α2(v, z, (wn)) = (x, (yn)) and α2(v, z, (w
′
n)) = (x′, (y′n)),

then yk = y′k whenever wk = w′k for some k. On the other hand, as Inf K0(E) = 0
the map α2 would be a genuine splitting map, and hence if (x, 0, (yn)) ∈ Im ρ02 =
Z/2⊕ 0⊕

⊕
Z/2, then

α2(x, 0, (yn)) = (x, (yn)).

Let (wn) be the sequence with all elements equal to 1. Then

α2(0, 1, (wn)) = (x, (yn)) ∈ K0(E)⊗ Z/2,

and we note that the observations above show that yn = 1 for all n. This contradicts
the condition yn → 0 which follows from the definition of K0(E).
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We conclude from Theorem 3.2 that E is not an AH-algebra. On the other
hand by 4.11 and 4.12 of [19] K•(C) is a graded ordered group satisfying the Riesz
interpolation property as well as the weak unperforation property. By Theorem 4.18
in [19] there is then an AH algebra C ′ of real rank zero with K•(C) ' K•(C

′). In
fact, one may use only 3-dimensional finite CW -complexes in the construction of
C ′. By [9] or [20] C ′ is isomorphic to C hence C is AH. Since D is UHF it follows
that Ek is AH. This proves (ii). Note that (i) is a straightforward consequence of
(ii). Finally, to prove (iii), note that the ideal of E corresponding to requiring c = 0
gives rise to an extension

0 //
⊕∞

1 D // E // C // 0,

which splits by c 7→ (c, ϕ(c), ϕ(c), . . . ) and in which the projections

en = (

n︷ ︸︸ ︷
1, . . . , 1, 0, . . . )

are central in E and form an approximate unit for
⊕∞

1 D. �

5 Construction of IMI-splittings

This section is devoted to proving Theorem 3.2. We begin with a lemma related to
the work of Pasnicu ([27]):

Lemma 5.1 Let I be an ideal of an AH algebra A = lim
−→

(An, ψs,n). Then the

following are equivalent:

(i) I can be written as I = lim
−→

In with In consisting of direct sum of full blocks

of An.

(ii) I is generated, as an ideal, by its projections.

Proof: Let ψn : An → A denote the natural maps. For (i)=⇒(ii), note that if en is
the unit of In, then (ψn(en)) will generate I as an ideal. In the other direction, let
(pr) be a generating sequence of projections for I. We allow the possibility that the
sequence pr has constant tail. By induction we find a sequence i(1) < i(2) < · · ·
and projections e(1, r), e(2, r), ..., e(r, r) in Ai(r) such that

ψi(r+1),i(r)(e(j, r)) = e(j, r + 1), 1 ≤ j ≤ r (1)

and

ψi(r)(e(r, r)) = pr (2)
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for all r.

Let Ii(r) be the ideal ofAi(r) generated by the projections e(1, r), e(2, r), . . . , e(r, r).
It is clear that Ii(r) is equal to direct sum of full blocks of Ai(r). Moreover Ii(r) is
taken into Ii(r+1) by ψi(r+1),i(r) because of (1). And by (2), the image in A contains
every pr and hence must be all of I. Finally for i(r) < n < i(r+ 1) we let In be the
ideal of An generated by ψn,i(r)(e(j, r)) with 1 ≤ j ≤ r. �

Proposition 5.2 Let A =
⊕k

i=1 piMni
(C(Xi))pi with each Xi a finite, connected

CW -complex. There exists a sequence (αm) of group homomorphisms

αm = αA;m : K0(A;Z/m)→ KInf
0 (A)⊗ Z/m

such that

(i) αm ◦ ρ0m = qm.

(ii) αs ◦ κ0s,m = (idKInf
0 (A)⊗κs,m) ◦ αm for any s ∈ N.

(iii) ϕ∗ ◦ αA;m = αB;m ◦ ϕ∗ whenever ϕ : A → B is a ∗-homomorphism to a
C∗-algebra B of the same form.

In other words, (iii) says that αm is a natural transformation from K0(−;Z/m)
to KInf

0 (−) ⊗ Z/m on the category whose objects are C∗-algebras of this special
form, and whose morphisms all ∗-homomorphisms between them.

Proof: We introduce notation from [19]. When A is a C∗-algebra of the form

k⊕
i=1

piMni
(C(Xi))pi

as above, we choose in eachXi a base point and defineMni
(C0(Xi)) as the C∗-algebra

of matrix-valued functions vanishing at that point. We write

A0 =
k⊕
i=1

piMni
(C0(Xi))pi rA = A/A0.

The short exact sequences of C∗-algebras

0 // A0 ι // A π // rA // 0

11



induces a commutative diagram with exact rows and columns

K0(A
0)

×m //

ι∗
��

K0(A
0)

ρ0m //

ι∗
��

K0(A
0;Z/m) //

ι∗
��

K1(A
0)

ι∗
��

K0(A)
×m //

π∗
��

K0(A)
ρ0m //

π∗
��

K0(A;Z/m) //

π∗
��

K1(A)

π∗

��
0 // K0(rA)

×m //

��

K0(rA)
ρ0m //

��

K0(rA;Z/m) // 0

0 0

where the zeros in the last row result from the fact that dim rA <∞. The map π∗ :
K0(A)→ K0(rA) is surjective since if q ≥ dim(Xi) then pi ⊗ 1q has subprojections
of rank one, by stability properties of vector bundles.

Now ρ0m induces an isomorphism ρ̃m : K0(rA) ⊗ Z/m → K0(rA;Z/m) and
π∗ induces an isomorphism π̃ : K0(A)/ι∗(K0(A

0)) → K0(rA). Note also that
ι∗(K0(A

0)) = Inf(K0(A)) because the only positive group homomorphisms f :
K0(pMn(C(X))p)→ R are of the form

f(x) = γ rank(x)

with γ ∈ (0,∞) and rank([e] − [f ]) = rank(e) − rank(f) as sketched in Problem
6.3.10 of [1]. We define αm as the composite homomorphism

K0(A;Z/m)
π∗ // K0(rA;Z/m)

ρ̃−1
m // K0(rA)⊗ Z/mπ̃−1⊗id// KInf

0 (A)⊗ Z/m.

Using the naturality of ρ0m one sees that αm satisfies (i). Property (ii) is a
consequence of the definition of αm and the commutativity of the diagram

K0(A;Z/m)
π∗ //

κs,m

��

K0(rA;Z/m)
ρ̃−1
m //

κs,m

��

K0(rA)⊗ Z/m
id⊗κs,m
��

K0(A;Z/s) π∗
// K0(rA;Z/s)

ρ̃−1
s

// K0(rA)⊗ Z/s

The key observation for proving (iii), found in Corollary 3.15 of [19] (and implicit
in the case pi = 1 in 4.2.8 and 6.4.5 of [14]), is now that any ∗-homomorphism
ϕ : A→ B for A and B of this form is homotopic to ψ : A→ B with ψ(A0) ⊆ B0.
Because K-theory is a homotopy invariant, we may thus work with ψ∗, for which
the commutative diagram

0 // A0 ι //

ψ
��

A
π //

ψ

��

rA //

χ

��

0

0 // B0 ι // B
π // rB // 0
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is available. This induces the following commutative diagram

K0(A;Z/m)
π∗ //

ψ∗
��

K0(rA;Z/m)
(ρ̃m)−1

∗ //

χ∗

��

K0(rA)⊗ Z/m
χ∗

��

(π̃)−1
∗ ⊗id // KInf

0 (A)⊗ Z/m

ψ∗
��

K0(B;Z/m) π∗
// K0(rB;Z/m)

(ρ̃m)−1
∗

// K0(rB)⊗ Z/m
(π̃)−1
∗ ⊗id

// KInf
0 (A)⊗ Z/m

which in view of the definition of αm clearly implies (iii). �

Proof of Theorem 3.2: We write A = lim
−→

(An, ϕs,n), where

An =
kn⊕
i=1

pi,nM[i,n](C(Xi,n))pi,n

for [i, n] ∈ N, finite connected CW -complexesXi,n, and projections pi,n ∈M[i,n](C(Xi,n)).
Using Proposition 5.2 we get a commutative diagram

// K0(An;Z/m)
(ψn+1,n)∗ //

αm

��

K0(An+1;Z/m)

αm

��

// . . . // K0(A;Z/m)

α′A;m

��
// KInf

0 (An)⊗ Z/m
(ψn+1,n)∗

// KInf
0 (An+1)⊗ Z/m // . . . // (lim

−→
KInf

0 (An))⊗ Z/m

We set αA;m = (k ⊗ idZ/m) ◦ α′A;m, where

k : lim
−→

KInf
0 (An)→ KInf

0 (lim
−→

An).

Using (i) of 5.2 one checks that αm ◦ ρ0m = qm, so that property (i) of 3.1 is met.
For property (ii), we let an ideal I of A generated by projections be given and apply
Lemma 5.1 to get a diagram

. . . // In
(ψn+1,n)∗//

ι

��

In+1
//

ι

��

. . . // I

ι

��
. . . // An

(ψn+1,n)∗
// An+1

// . . . // A

where every In is of the form required in Proposition 5.2. By repeating the con-
struction for α′A;m we get a group homomorphism α′I;m, such that the diagram

K0(I;Z/m)
α′I;m //

ι∗

��

lim
−→

KInf
0 (In)⊗ Z/m k //

ι∗
��

KInf
0 (I)⊗ Z/m

ι∗

��
K0(A;Z/m)

α′A;m

// lim
−→

KInf
0 (An)⊗ Z/m

k
// KInf

0 (A)⊗ Z/m
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commutes. It follows that αm(K0(A‖I;Z/m)) ⊆ KInf
0 (A‖I)⊗ Z/m.

Therefore αm is an IMIm splitting. Finally using (ii) of 5.2 one checks that these
splittings are compatible in the sense that αs ◦ κs,m = (idKInf

0 (A)⊗κs,m) ◦ αm. �
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