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Let X be a compact connected space and (4,) , a sequence of finite-dimensional
C*-algebras. Each inductive limit L =lim C(X)® 4,, with C(X)-linear connecting
*_homomorphisms, is *-isomorphic as C(X)-module to the C*-algebra defined by a
certain continuous field &, of AF-algebras. We classify the C*-algebras L for which
&, has simple fibres. In the general case the classification is given in the category of

the C*-algebras which are C(X)-modules. © 1989 Academic Press, Inc.

INTRODUCTION

In [5] E. G. Effros posed the problem of studying inductive limits of
C*-algebras of the form C(X)® A, with A finite-dimensional, as a
generalization of the 4F-algebras.

Let X be a connected compact space. In this paper we give some
classification results concerning inductive limits lim C(X)® A4;, with 4,
finite-dimensional, where the bonding homomorphisms are unital, injective,
and C(X)-linear. The problem here is to measure and to store the possible
twistings over X of the embeddings of A4, into A,,,. The C(X)-linear
*-homomorphisms C(X)® A4;,» C(X)®A4;,, correspond to homo-
morphisms A4, - C(X)® 4;,, which are classified, modulo inner
equivalence, by matrices of complex vector bundles over X (see
Corollary 2.2). Each inductive limit L=1im C(X)® 4,, with C(X)-linear
connecting *-homomorphisms, is isomorphic to the C*-algebra defined by
a continuous field & of A4F-algebras canonically associated with L (see
" Proposition 3.1). This field is not always trivial as it is shown in
Proposition 5.1. Moreover, we are able to classify the inductive limits L in
the case when the fibres of &, are simple, using the semigroup of the
homotopy classes of projections in )%, M, ® L (see Theorem 4.4). If the
canonical map Vect(X)— K°(X) is injective (in particular, this occurs
provided that X is a connected finite CW-complex of dimension <3) this
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result may be given using the pointed ordered group (K,(L), Ky(L),,
[1,]) (see Theorem 4.6). Also we classify the C*-algebras L as C(X)-
modules (see Theorems 4.3 and 4.5).

1. PRELIMINARIES

If A, B are unital C*-algebras we shall denote by Hom(A4, B) the space
of all unital *-homomorphisms from A to B endowed with the topology of
pointwise convergence. Two homomorphisms @,, @, e Hom(A4, B) are said
to be inner equivalent if there is a unitary # € B such that @, =u®,u*. Let
Hom(4, B)/~ be the set of classes of inner equivalent homomorphisms
from 4 to B. If A and B are C(X)-modules, we shall denote by
Homy,(4, B) the subspace of Hom(4, B) consisting of all C(X)-linear
homomorphisms.

We shall use Vect(X) to denote the set of isomorphism classes of com-
plex vector bundles on X, and Vect,(X) to denote the subset of Vect(X)
given by bundles of dimension k. Vect(X) is a semiring under the
operations @ and ®. In Vect,(X) we have one naturally distinguished
element [k]—the class of the trivial bundle of dimension k.

As usual we denote by G(n, k) the Grassmann manifold of all subspaces
of C” of dimension k and by U(n) the Lie group of all unitaries of M,. Any
continuous map F: X — G(n, k) defines a vector bundle E.= {(x, F(x)n):
xeX, neC"}cXxC" Let H'(X, U(k),) denote the cohomology set
associated with the sheaf of germs of continuous functions X — U(k). We
have a bijection Vect,(X)— H'(X, U(k).) which takes classes of vector
bundles to classes of cocycles [8].

We describe below the cocycle of E.. The fibration

Ulk)x Un—k)—> Un)— G(n, k)
induces the exact sequence of pointed cohomology sets
C(X, U(n)) — C(X, G(n, k)) = H'(X, U(k),) x H\(X, U(n—k),)
— HY(X, U(n),)
(for details see [2]). Denote 8(F)=(5,(F), 8,(F)).

1.1. LEMMA. The vector bundle Er is given by the cocycle é (F).
Proof. Choose an open covering (U;) of X and continuous maps
u,;: U;— U(n) such that

F(x)=u,.(x)[1k O] uix)* on U,.

0 0
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Then

u(x)* u(x)= [uij(()x) u{.(()x):l on U;nU;

and O(F)=((U,uy), (U,uy)

by definition.
trivializations for E,

Consider the local

U,xCk—*, EF|U—{(x u(x)[l0 g] ,-(x)*n):er,-,neC"}

given by ¢,(x, §) = (x, u,(x)[§1), xe U;, {e C~.

The cocycle (U, b;;) of E,can be computed using the local trivializations

BRI = (07 (8)s =7 Do) |

~ G )" (o) | |

(41 uy(x) 0 ¢
~ (4; )xu,-(x)[ A u;.,.(x)] [0]
=0 | —ue xeviny,cect

1.2 COROLLAP:_Y. Let F: X - G(n, q) be a continuous map and define a
continuous map F: X — G(nk + p, gk)

| N CE S

P

where (U,) is an open covering of X and v;: U;— U(nk + p) are continuous
maps satisfying

1 i 0
o o =| O

], xeUnU;

i(X)

for some continuous maps a;: U;nU;— U(k) and aj;: U;n U;— U(p). Let
H be the vector bundle corresponding to the cocycle (U, a;). Then Ep is
isomorphic to E-& H.

Proof. We may assume that F(x)=u/ x)[} 9]ulx)* on U,, where
u;: U; > U(n) are continuous and

uix)* uj(X) = l:uij(()x) u’_.(()x)] on UnU,
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We get the following formula for F on U,:

®1, 0 .
F(x)ﬂi(x)[u,-(xz)@lk 10] 00 [uf(x)()@lk lo]vl-(x)*
4 O 0 P

so that we can compute 6(F). Indeed, for xe U;n U; we have

[ui(x)()@ L 10,,] 0i(x)* 0,(x) [“i(xz) ® L 10,, _
u(x)*®1, 0 1, ®a;(x) 0 [u(x)®1, O
=[ 0 1][ 0 a:-,-(x)] 0 1,,]
u;(x)® a;(x) 0 0 7
= 0 uz(x)®ay(x) 0o |
0 0 a;(x) |

Hence E is given by the cocycle (U, u;®a;).

2. HOMOMORPHISMS OF C(X)-MODULES

In this section we classify the homomorphisms in Hom ¢, (C(X)® 4,
C(X)® B) within inner equivalence, where A=M, ® ---®M,,
B=M,® --®M,, and X is compact and connected.

Any homomorphism & e Homgy, (C(X)® A4, C(X)® B) is uniquely
determined by its restriction to A. This allows us to identify
Hom, (C(X)® 4, C(X)® B) with Hom(4, C(X)® B) as topological
spaces, identification which preserves the inner equivalence classes. By
Proposition 1 in [3] it follows that there is a bijection

é: Homey, (C(X)® A, C(X)® B)/ ~
- {E=(E,)eM,, (Vect(X)): E[n]=[m1}, (1)

where [n]:=([~n,], .., [n.]), [m] :=([m,], ..., [m,]). Explicitly, E[n] =
[m] means

(Epl ® [’h])@ o @ (Epr® [nr]) = [mp]’ p= 1’ 2’ vy S

The description of & can be obtained using the local structure of
homomorphisms 4 - C(X)® B given in [10] or by Proposition 1 in [3].
For simplicity, suppose that B=M,. Thus, for a homomorphism
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& e Hom(A4, C(X)® B) there are an open covering (U,) of X, continuous
maps v;: U, - U(m), and positive integers k,,, ..., k,, such that

B(a)(x) = 0x)(@; ® 15, ® - B2, ® 1) v{x)*, 2)
where xeU;,, a=a,® --- @a,e4 and
1, ®al(x) 0
v{x)* v{x)= on U;nU,.
0 1, ®d(x)

If 5(®) = (E,,) then each vector bundle £, is given by the cocycle (U, af).
Note that rank E,, =k,,.

If C is a unital C*-algebra we shall denote by D(C) the set of homotopy
classes of selfadjoint projections in U=, M, ® C. Recall that D(C) is a
semigroup under the operation induced by the direct sum of projections
and D(-) is a covariant functor.

Let C=C(X)® A. It is' known that there is an isomorphism of semi-
groups D(C(X)® A) - Vect(X)" which maps the class of a projection
FeC(X)® A® M,, having the decomposition

F=F,® - ---®F,€ (—;3 CX)I®M, ®M,

k=1

to (Eg,, ... Er)€Vect(X). Any homomorphism @ e Hom, (C(X)® 4,
C(X)®B) induces a map @,:D(C(X)®A)-D(C(X)®B) or
equivalently a map @, : Vect(X) — Vect(X)'. Vect(X) is a free module
over the unital semiring Vect(X). Let e,, .. e, be its canonical basis,
e;=(0,.,[1],..,0) with [1] on the ith position. We denote by
Homy,qx) (Vect(X)’, Vect(X)*) the set of all homomorphisms of Vect(X)-
modules  Vect(V) — Vect(X)". As usual any element of
Homyex) (Vect(X)", Vect(X)®) is given by a unique matrix in
M, .(Vect(X)) with respect to the canonical bases.

2.1. PROPOSITION. The map @, is Vect(X)-linear and its matrix is equal
to (®)=(E,,).

Proof. We may assume that B=M,,. Using (2) and the canonical
bijection Hom(A4, C(X)® B) » Hom 4, (C(X)® 4, C(X)® B) we get the
following description for &:

P(G)(x) =vx)C,(X)® 14, ® -+ @G (x)®1,,) vi(x)*,
xeU, G=@7_,GeP;_, C(X)®M,, where k,, ..k, are positive

580/85/1-8
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integers (n,k,,+ --- +n,k,,=m), (U,) is an open covering of X, and
v;: U; = U(m) are continuous maps satisfying

I, ®al(x) 0
v(x)* v;(x)= , on xeUnU,
0 1, ®ay(x)

Let @,:C(X)Q@AQM,-»C(X)QOM,®@M,, D,:=PQid,, n=1.
Since @, is a homomorphism of semigroups it is enough to describe the
homotopy class of @,(F) for a projection Fe C(X)® M, ®M,c C(X)®
A® M,. One can easily obtain the following formula:

Fx)®1,, 0

&, (F)(x) = 0,(x)® 1,,[ Sl

]v,-(x)*@l,,, xeU,

P

where p=mn—k,,nn. Since

1, ®aj(x) 0

0O 1) (@)= G

], xeU,nU,

where aj(x) := @, _, ., ®aj(x), it follows by Corollary 1.2 that ®,(F)
gives a vector bundle isomorphic to E,® E,, where E,, is the vector bun-
dle corresponding to the cocycle (U, aj).

2.2. COROLLARY, The map ©@ — @ induces a bijection

Hom ¢y, (C(X)® 4, C(X)® B)/ ~
— {E € Homygey(x) (Vect(X)', Vect(X)*): E[n]=[m]}.

Proof. Use (1) and Proposition 2.1.

Let Ky(C(X)® A) be the Grothendieck group for the abelian semigroup
D(C(X)® A). Let K(C(X)®A), be the image of D(C(X)® A) in
Ky(C(X)® A). (Koy(C(X)® A), Ko(C(X)® A}, ) is an ordered group. The
isomorphism D(C(X)® A4) — Vect(X)" induces an isomorphism of ordered
groups  (Ko(C(X)®4), K(C(X)® A), )~ (K%X), K°X),), where
K°(X), is the image of Vect(X) in K°(X). Recall that K°(X) has a natural
structure of ring. In K (C(X)® A) we distinguish the class of the unity
[lene4)=[n]. We shall denote by Hom ko5, (K*(X), K%X),, [n]),
(K°(X)*, K°(X)%,,[m])) the set of all pointed ordered group homo-
morphisms which are K°(X)-linear.
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2.3. COROLLARY. Assume that the canonical map Vect(X)— K°(X) is
injective. Then the map ® — Ky(D) induces a bijection

Homy, (C(X)® 4, C(X)® B)/~
- Hom ko) (KXY, K%(X),, [n]), (K*(X), KX, (m])).

3. CoNTiINUOUS FIELDS OF AF-ALGEBRAS

Let X be a compact space and let (4,) , be a sequence of finite-dimen-
sional C*-algebras. We consider a system

o CX)® A, —2 CX)® Ay — -, 3)

where each *-homomorphism @, is unital, injective, and C(X)-linear. We
show that the corresponding C*-inductive limit L =lim (C(X)® 4;, ®;) is
*-isomorphic, by a C(X)-module isomorphism, to the C*-algebra of the
sections of some continuous field of 4F-algebras (see [4]).

Since we can canonically identify Hom(A4,, C(X)® 4,,,) with
C(X, Hom(4;, 4,,,)), each &, defines a continuous map Xax — d,(x)e
Hom(4,, A4, ). Note that each & (x) is injective.

For any x € X define the AF-algebra A(x)=1im (A4;, @,(x)). We want to
define a continuous field of AF-algebras &, = ((4(x)).cx, I'). Let L, be the
algebraic inductive limit of the system (3). Then define : Ly — [, x A(x)
by n([F])(x)=[F(x)], €X, FeL,y. ([a] denotes the image of a in the
corresponding inductive limit.)

Define I" to be the closure of n(Ly)=T1.cx A(x) with respect to the
norm |la|| =sup,.y lla(x)|l. It is easily seen that &, is a continuous field of
AF-algebras. Moreover, n extends to a C(X)-linear *-isomorphism from L
onto I". Thus, we have the following:

3.1. PrROPOSITION. The inductive limit L is *-isomorphic to I" by a C(X)-
module isomorphism.

3.2. Remark. If each A, is a factor or if the space X is connected, then
A(x)= A(p), x, ye X. If X is locally contractible, then the field &, is locally
trivial. ,

3.3. PROPOSITION. Let L, L' be inductive limits of the above type such
that the fibres A(x), A'(x) (xe X) of &,, &, are simple. Then, for any
*-isomorphism &: L — L' there is a homeomorphism ¢: X — X such that

&O(f-a)=fop-Pla), [feC(X),acl.
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Proof. Letn:L—TIand y': L' — I'' be the *-isomorphisms constructed
in the proof of Proposition 3.1. Let y be the *-isomorphism which makes
the diagram

L—"sr

of |y

L/ 0 F/

commutative. Since n and #’ are C(X)-linear, it is enough to prove that
Y(fay=f-¢-Y(a), feC(X), ael.

Since each A(x) is simple, the maximal ideals of I' are of the form
I.:={ael:a(x)=0}, xeX. Since ¥ is an isomorphism, it induces a
homeomorphism ¢: X—>X such that y(I,)=1I;-, :={a"el":
a'(¢~'(x))=0}. For feC(X) and ael" we have (f— f(x))ael, hence
Y((f—f(x))a)¢~'(x))=0, that is, Y(fa)(g~'(x))=f(x)¥(a)g '(x))

The proof is complete.

3.4. Remark. Assume that all the AF-algebras A(x) and A'(x) are
simple. Using Proposition 3.1 and a similar argument with that given in
the proof of Proposition 3.3 one can see that L =~ L' if and only if the field
&, is isomorphic to the pullback ¢*&,. for some homeomorphism
o:X-X.

4. CLASSIFICATION RESULTS

Let X be a compact connected space. In this section we shall consider
inductive limits L=1Iim (C(X)® 4, ¥,), where (4,) | is a sequence of
finite-dimensional C*-algebras and each @&,e Hom, (C(X)® 4,,
C(X)® A4,,,) is injective. Note that L inherits a natural structure of
C(X)-module. Consider D(L), the semigroup of homotopy classes of self-
adjoint projections in P M, ®L (see Section2). Since D(L)=
lim D(C(X)® A;), D(L) inherits a natural structure of module over the
semiring Vect(X). Our classification of the inductive limits L will be
given in terms of D(L) and Ky(L). Consider two inductive limits
L=lim (C(X)®A4,,®,) and L'=1lim (C(X)® A4;, ;) of the above type.
Set L,:'=C(X)®A,and L] =C(X)® A4..

4.1. LEMMA. Let @:L— L' be a *-isomorphism such that &(fa)=
fop-®(a), feC(X), ae L, for some homeomorphism ¢: X — X. Then there
is a commutative diagram of *-homomorphisms
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1(1) Ll(Z) Ll(3) T

NN

L; J(2)

such that a(f)=fo¢ and B{f)=f-¢ ', feC(X). The converse is also
true.

Proof. We prove only the nontrivial implication. Using Glimm’s
Lemma [7, Lemma 1.8] as in the proof of Lemma 2.6 in [1], we can get
suitable unitaries u;€ L', v;€ L such that the homomorphisms a;= u,Pu*
and B,=v,® 'v¥ have the desired properties.

Let S be a unital semiring. Consider two inductive limits 7=1im (S", 6,)
and T’ =lim (5", }), where 8, and 6, are homomorphisms (not necessarily
injective) of S-modules. Note that T and 7' inherit a natural structure of
S-modules. Set S;=S" and S;=S". We shall distinguish an element s,
(resp. s/} in S, (resp. S;) such that 0,(s,)=s,,, (resp. 8/(s/)=s;,,). Then T
and T’ will be pointed in the obvious way, by t=[s;] and ¢' = [s;]. Let
J: S — S be an isomorphism of semirings.

42. LeMMA. Let A:(T,t)—>(T',t') be an isomorphism of pointed
semigroups such that A(sa)=J(s) A(a), s€ S, aeT. Then there is a com-
mutative diagram of homomorphisms of pointed semigroups

(Sz(l)’ x(l) 1(2)’ 1(2) (SI(S)’ 1(3)) > oo

\/ N

(l)’ 1(1)) (S i(2)3 (2))

such that y,(sa)=J(s) y(a), 6,(sb)=J~'(s) 8,(b), s€S, ae Sy, be Siw)-
The converse is also true.

Proof. The proof uses the fact that S, and S, are finitely generated as
S-modules.

4.3. THEOREM. Let L=Ilim (C(X)®4;,¢,), L =lim (C(X)® A!, ®}).
Then L and L' are *-isomorphic by a C(X)-linear isomorphism if and only if
D(L) and D(L') are isomorphic as semigroups, by a Vect(X)-linear
isomorphism which takes the class of 1, to the class of 1,..

Proof. The proof uses Corollary 2.2, Lemma 4.1 (with ¢ =id,), and
Lemma 4.2 (with = Vect(X) and J = id).

4.4. THEOREM. Assume that the fibres of the continuous fields &, and &,.
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(see Section 3) are simple. Then L and L' are *-isomorphic if and only if
there is an isomorphism of semigroups A: D(L)— D(L') which takes the
class of 1, to the class of 1., and such that

A(sa) = J(s) A(a), seVect(X), ae D(L),

where J: Vect(X) — Vect(X) is an isomorphism of semirings induced by some
homeomorphism X — X,

Proof. The proof uses Corollary 2.2, Proposition 3.3, Lemma 4.1,
Lemma 4.2, and the following remarks:

(a) Let A4, B be finite dimensional C*-algebras and let
decHom(C(X)®4, C(X)®B) be a *-homomorphism satisfying
d(fay=fo¢-P(a), fe C(X), ae C(X)® A. Then we have a factorization
b= $*

CXR®A—E C(X)® A4 —2— C(X)® B,

where ¢*(F)=Fo¢ and &, is a C(X)-linear *-homomorphism.

(b) If y: Vect(X) — Vect(X)' is a semigroup homomorphism satisfy-
ing y(sa)=J(s)y(a), seVect(X), aeVect(X), then we have the
factorization y = aJ"

Vect(X)" —22 Vect(X) —2— Vect(X)',

where JU)(s,, ..., 5,) = (J(s5,), ..., J(5,)) and a is Vect(X)-linear.

We denote by Ky(L), the image of D(L) into Ky(L). Since Ky(L)=
lim Ko(L;) and K,(L), =lim K,(L,), it follows that Ky (L) inherits a
natural structure of K°(X)-module and the triplet (Ko(L), Ko(L),, [1.]) s
a pointed ordered group. When the canonical map Vect(X)— K°%(X) is
injective the above two Theorems can be formulated in terms of K,-groups in
the following way: (compare with [6])

4.5. THEOREM. L and L' are *-isomorphic by a C(X)-linear isomorphism
if and only if (Ko(L), Ko(L),, [1.]) and (Ko(L'), Ko(L') ., [1.]) are
isomorphic as pointed ordered groups by a K°(X)-linear isomorphism.

4.6. THEOREM. Assume that the fibres of the continuous fields &, and &,
are simple. Then L and L' are *-isomorphic if and only if there is an
isomorphism of pointed ordered groups

A (Ko(L), Ko(L) 1, [1.]) = (Ko(L'), Ko(L') 4, [12:])

such that A(sa)=J(s) A(a), s€ K°(X), ae Ky(L), where J: K°(X) - K°(X)
is a ring isomorphism induced by some homeomorphism X — X.
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5. APPLICATIONS

Assume that X is a finite connected CW-complex of dimension < 3. Then
there is an isomorphism of rings y: K°(X) —» (Z x H*(X, Z), +, -) given by
xLE] = (rank(E), c¢,(E)), Ee€ Vect(X), where ¢,(E) is the first Chern class
of E. The ring structure on Z x H*(X, Z) is given by

(k) + (L, By=(k+1a+p)
(k, a}- (L, B) = (kl, le + k),
where a, e H*(X, Z), k, € Z. Also, in this case the map Vect(X) = K°(X)

is injective. These facts follow from the properties of stability of vector
bundles (see [9]). When X = S? we obtain that

KSH)={s+1x:51teZ,x*=0} =Z[x]/(x?)

and
KS?Y),={s+tx:(s5,1)eN*xZ U {(0,0)}}.

Let 3<p,<p,< --- be a sequence of prime integers, a=[! 1], n, =[?]

and define
[n;]
n,= ”
n;

by n,,,=a;n;, where a;=p,a, izl Let 4,=M,®M, and consider a
simple AF-algebra 4 given by the Bratteli system

aj a3

a
A, > A, > e

4,

We shall consider a C*-algebra L=1im (C(S*)® 4,, ;) whose pointed
ordered K,-group is given by the inductive limit corresponding to the
following system of K°(S?)-linear homomorphisms:

KO(S2)2 a1+ bx KO(SZ)Z ay+ bx KO(S2)2 ai+ bx .

where b=["3 _3]. Note that &, is such that Ko(®,)=a;+ bx and &, is
injective.

The following proposition shows that the C*-algebras studied in this
paper do not reduce to the C*-algebras given by trivial fields of
AF-algebras.

5.1. PROPOSITION. The inductive limit L=1im (C(S?)® A,, D,) is not
*.isomorphic to any C*-algebra of the form C(S*)® B, with B an
AF-algebra.
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Proof. By reasons concerning the primitive spectrum of L, it is enough
to show that L is not *-isomorphic to C(S?)® 4. To get a contradiction
assume that K,(L) is isomorphic to Ky(C(S?)® A) as in Theorem 4.6.
Since any homeomorphism ¢: S? — §? has the degree +1, it follows, with
the notation of Theorem 4.6, that J = K°(¢): K°(S?) —» K°(S?) is given by
J(s+tx)=s+1tx. We shall consider only the case J(s+ tx)=s5—tx. The
case J=1id is simpler. By Theorem 4.6 and Lemma 4.2 we must have a
commutative diagram of the form (we have deleted the spaces K°(S?)?)

a1+bx‘“. ay + bx a,,+bx‘.“ ""’+bL\._ ay+ bx
aj L. (774 > R an R am > ar
where 7, =(c+dx)J?, &, =(e+xX)J?, 9y,=("+d'x)J?, §,=
(€' + f'x)J?, and JP =} 9].
The following computations use the identities ab=ba= —b and

J(g+hx)J? =g—hx, g, he M,(Z). The commutativity of the above
diagram implies

ec=a,; - a,---a, 4)

fc—ed=bla,a;---a,+aa;---a,+ --- +a,a,---a,_,) (3)

ce=ag - a, Ay (6)
de—c'f=0 (7)
e’c’ec:al...ak...an...am..-a" (8)

From (4), (5), (6), and (7) we get
dlal--.an—ak+1---a"...amd
=c'(paPs Put - P P2 P 1)1

so that we infer that [% 0 ] divides ¢'b in M,(Z). It follows that p, divides
det(c’). We obtain from (4) that p? divides det(ec) hence p} divides
det(e’c’ec) which contradicts (8) since det(a) = —3.

In contrast with the above Proposition we have the following:

5.2. PROPOSITION. Let X be a connected finite CW-complex of dimension
<3 and let A be a UHF-algebra, A =1im A;, where each A, is a finite dis-
crete factor. Then L =1im (C(X)® A;, ®,) is *-isomorphic by a C(X)-linear
isomorphism to C(X)® A, for any choice of @,eHome (C(X)® A4,
CX)®4;.y)
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Proof. By hypothesis we have Vect(X)N*x H*(X,Z)u{0}=
{s+nx:seN* ne H¥(X,Z), x*=0} U {0}. Hence
Hom v, (C(X)® A4, C(X)® 4, 1)/~
= {EeVeat(X): E® [n,]=[n,. 1)
x{s,+nx:ne H¥(X, Z), n,;n=0,x* =0},
where 4;,=M, and s,=n,, /n, (see Corollary 2.2). Consider an arbitrary
inductive limit L' =lim (C(X)® 4;, ®;) of the same type as L. We shall
apply Theorem 4.3 to show that L= L’ as C(X)-modules. To prove that

(D(L), [1, )3 (D(L), [1,.]) as pointed Vect(X)-modules we shall use
Lemma 4.2; i.e., we shall construct a commutative diagram of the type

S1+nx Sm+ NmX Sp+nrx
D, > > D, D,
Y2
\ 51‘]‘ \ 52‘[
,  Ssi+npx Sk + N x , Sg+ Ngx ,
—_— ) e ——— ) e —— T - e
Dl k+1 Dq+1 s

where D;= D)= (N*x H¥X,Z)u {0}, n,), (D), =s:+1n:x, (D)), =
S, =SSt 8% 01=Ski1 St X, V2= Smyr St 83X,
etc. Let T,:={ne H*(X,Z): n;n=0}. The torsion part of H*(X,Z) is
finite. Hence the sequence T, < T, < --- stops. Since ;€ T; we may assume
that n,e T,, i=1. After dropping finitely many terms in the sequence
5, 82, 53, .. We may also assume that any class §;e Z/n, Z occurs infinitely
many times. With these assumptions, the sequence (&) ,, &,=0, is
constructed inductively, using the following remark: given u<v and
¢eT, there are w>v and &'eT; such that if y=5,.--5,+&x and
0=5,.-85,+Ex, the diagram

Sy + uXx Syt QX
Du —> .. 'Dw+1
\ /
v+ 1

commutes, i.e.,

TT (5 700) = (S 11+ -5y + EX)(50 -5, + EX).

To prove this we choose w large enough such that
(s,---s,)" divides (s5,,,---5,)" in Z/n,Z.

Note added in proof. After this paper was circulated as a preprint, INCREST 1986, we
made the following remarks:
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(a) The conclusion of Theorem 4.5 remains also true if instead of the injectivity of the

canonical map Vect(X)— K%X) we assume that X is a finite CW-complex and that the
K,-groups of the AF-fibres of the continuous fields &, and &, are with large denominators, in
the sense of V. Nistor: On the homotopy group of the automorphisms group of
AF-C*-algebras (to appear in J. Operator Theory).

Co!

(b) Since the simple AF-algebras have the K,-groups with large denominators, the
nclusion of Theorem 4.6 also holds if instead of the injectivity of the canonical map

Vect(X) — K°(X) we assume that X is a finite CW-complex.

In addition to the previous arguments, the proofs of these statements use the stability

properties of vector bundles over finite CH#-complexes [9].

10.

11.

12.
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