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1. Introduction

Two of the most in¯uential works on C�-algebras from the mid-seventies ±
Brown, Douglas and Fillmore's [6] and Elliott's [21] ± both contain uniqueness
and existence results in the now standard sense which we shall outline below.
These papers served as keystones for two separate theories ± KK-theory and the
classi®cation program ± which for many years parted ways with only moderate
interaction. But with this common origin in mind, it is not surprising that recent
years have seen a fruitful interaction which has been one of the main engines
behind rapid progress in the classi®cation program.

In the present paper we take this interaction even further. Combining a concept
of quasidiagonality for representations and a new characterization of equivalence
in the Cuntz picture of KK-theory, we achieve a general uniqueness result. And
from the quasidiagonality notion we derive a corresponding general existence
result by comparing well-known realizations of the KK-groups. These results are
then employed to obtain new classi®cation results for certain classes of
quasidiagonal C�-algebras introduced by H. Lin. An important novel feature of
these classes is that they are de®ned by a certain local approximation property,
rather than by an inductive limit construction.

We emphasize that our fundamental uniqueness result does not depend on the
universal coef®cient theorem (UCT), nor on nuclearity of the C�-algebras
involved. On the other hand, when we re®ne the uniqueness result for use in
classi®cation, we need to gradually add such conditions on the C�-algebras. It is
to be expected that requirements of this type are necessary, but we have found
that holding them back as long as possible leads to more conceptual proofs while
clarifying the role of the UCT and nuclearity in classi®cation. Further, since
uniqueness results answer fundamental questions about KK- and K-theory, they
are of interest in themselves. We have pursued this theme in [14], and defer to
this paper the proof of the new characterization of KK-theory which lies behind
our uniqueness results.

Our existence and uniqueness results are in the spirit of the classical Ext-theory
from [6]. The main complication overcome in the paper is to control the
stabilization which is necessary when one works with ®nite C�-algebras. In the
in®nite case, where programs of this type have already been successfully carried
out, stabilization is unnecessary. Yet, our methods are suf®ciently versatile to
allow us to reprove, from a handful of basic results, the classi®cation of purely
in®nite nuclear C�-algebras of Kirchberg and Phillips.
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Indeed, it is our hope that this can be the starting point of a uni®ed approach to
the classi®cation of nuclear C�-algebras.

1.1. Existence and uniqueness

Existence and uniqueness theorems can be found in most, if not all,
classi®cation papers to combine with re®nements of Elliott's intertwining
argument to yield classi®cation theorems.

In this framework, a uniqueness result allows one to conclude that if the K-
theoretical elements induced by two �-homomorphisms J; w: A! B coincide,
where A and B are C�-algebras satisfying extra conditions, then J and w are
equivalent in a sense which generalizes unitary equivalence. In [21], one
concludes from the fact that J� � w� on K0�A� that J and w are approximately
unitarily equivalent when A and B are both approximately ®nite-dimensional (AF,
cf. [4]). In [6] one shows that if �J�K K � �w�K K , then J and w are unitarily

equivalent whenever A � C�X� and B �L�H�=K�H�.
The role of the equally important existence results is to provide means of

realizing given K-theoretical data by a suf®ciently multiplicative completely
positive contractive map. In [21], one realizes any positive element of
Hom�K0�A�; K0�B�� by a �-homomorphism when A and B are AF. In [6], any
element of KK�C�X�; L�H�=K�H�� is realized by a �-monomorphism.

One of the main obstacles in achieving general existence and uniqueness results
has been the fact that, as soon as one ventures beyond these classical examples,
one only can expect to achieve stable versions of such theorems in a sense that
involves adding or subtracting maps of the form m: A!Mn�B�. The challenge
has been to control the complexity of the stabilization, in order to be able to
incorporate these versions into classi®cation results.

This has been quite successfully carried out, using maps m with ®nite-
dimensional images, in important classes of quasidiagonal C�-algebras. But in
most existence and uniqueness results so far the source A has been required to be
a member of a small class of C�-algebras forming building blocks for the class of
C�-algebras one has tried to classify, leading to restrictions on the ensuing
classi®cation results.

We offer, in the present paper, existence and uniqueness results valid for sources
way beyond even the full class of nuclear quasidiagonal C�-algebras. More precisely,
we consider a unital separable source A and a unital target B, and require that this
pair allows a nuclearly absorbing and quasidiagonal unital representation
g: A!M�K�H� 
 B� as de®ned in § 2 below. Such a map exists automatically
when A is quasidiagonal, or by Theorem 2.22 whenever A can be embedded in B such
that each non-zero a 2 A generates a dense ideal of B. In this case, our uniqueness
result, Theorem 4.5, states that if J; w: A! B are two nuclear �-homomorphisms
inducing the same KKnuc-class, we may conclude that J is stably approximately
unitarily equivalent to w in a sense involving adding `®nite pieces' of g.

As mentioned above, our fundamental uniqueness result does not depend on the
universal coef®cient theorem of [47], nor on nuclearity of the C�-algebras
involved. For a nuclear source algebra A which satis®es the UCT, our result is
predated by one of a similar nature, valid when A or the target algebra is simple,
which appears in [34]. However, the approach in [34] had the drawback of relying
on a certain result of [50] whose proof was not complete at the time.
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In fact, we shall require uniqueness results which hold also for suf®ciently
multiplicative completely positive contractive maps, and this entails the
problem of associating to such maps a kind of partial KK-elements to
substitute for the globally de®ned group homomorphisms one gets from
�-homomorphisms. This is done using the universal multicoef®cient theorem of
[19] in a fashion explained by the ®rst named author in his talk at the Workshop
on the classi®cation of amenable C �-algebras at the Fields Institute in December
of 1994. As soon as we have made sense out of this concept, a uniqueness result
for completely positive contractive maps, Theorem 4.15, can be derived from
those for �-homomorphisms using a procedure originating with [37] in the
torsion-free case. This method also requires keeping a close eye on the K-theory
for products of C �-algebras.

In our existence result Theorem 5.5 we manage to realize ± partially, in a sense
corresponding to the one used in the uniqueness result ± a given element from
KKnuc�A; B� as a difference of nuclear completely positive contractive maps from
A to MN�B�. Again, all we require is that there exists a strictly nuclear nuclearly
absorbing quasidiagonal representation g: A!M�K�H� 
 B�. Furthermore, one
of the maps in the difference can be chosen as a `®nite piece' of g.

In the building block approach, establishing existence has typically been
somewhat easier than achieving uniqueness results. This may still be the case in
our setting, but at the current stage it is in fact the existence which is causing
problems. Indeed, the existence result offered in our paper has shortcomings in the
®nite case which are responsible for a number of unwanted, and hopefully
redundant, restrictions in the resulting classi®cation results. For instance, we do
not have suf®cient technology to prove in full generality that a positive
KK-element can be realized by a single map, as one would expect to be the case.

As a main application, we apply our existence and uniqueness results to the
class of tracially AF C�-algebras introduced and studied by H. Lin. Using a
factorization property of these C�-algebras, we are able to prove in Theorem 6.12
that, up to an isomorphism, there is only one unital, separable, nuclear and simple
tracially AF C�-algebra satisfying the UCT with K0�A� � Q and K1�A� � G,
where G is a countable ®xed arbitrary group, thus proving that every such
C�-algebra falls in the well-studied class of AD-algebras of real rank 0.

We believe, however, that our existence and uniqueness results will be
applicable to a wide range of classi®cation problems, extending well beyond the
tracially AF case. In fact, it might be that at least the uniqueness result will be
suf®ciently versatile to serve as a unifying element for many future efforts to
classify nuclear C�-algebras. To substantiate this claim, we apply our methods to
the case of purely in®nite C�-algebras, reproving in Theorem 6.21, rather easily,
the classi®cation theorem of purely in®nite simple unital nuclear C�-algebras (see
[30] and [41]) from a handful of fundamental results about such algebras.

We reported on the present paper at the 1998 Great Plains Operator Theory Seminar.
At the same conference, H. Lin reported results which ± although the methods differ ±
overlap with our classi®cation results in the tracially AF C�-algebra case. More details
are given in the notes of the present paper. The exposition of the paper, and many
intermediate results, have been improved since the ®rst ®nal version as regards the
role of nuclearity as described above. However, the end results are the same.

We owe tremendous thanks to Takeshi Katsura who read a previous version of
the paper, pointed out a number of errors, and suggested corrections.
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1.2. Methods

Apart from KK-theory, the main technical tools are approximate morphisms and
partial KK-elements, de®ned using K-theory with coef®cients.

We arrive at uniqueness and existence results from the existence of an
absorbing and quasidiagonal representation. To achieve such representations, one
may use the Kasparov Weyl±von Neumann±Voiculescu theorem, along with the
concept of quasidiagonality. One can also employ a related result by H. Lin [34]
stating that a certain representation associated to a unital inclusion i: A! B is
absorbing when A is nuclear and B is simple. A generalization of this result is
offered in Theorem 2.22.

To re®ne uniqueness results we depend on a number of basic properties about
the K-theory of products of C�-algebras. Furthermore, to apply our results to
classify tracially AF C�-algebras, we use several results by Lin about structural
properties of such C�-algebras. We prove classi®cation for purely in®nite algebras
by appealing to the embedding theorem for exact C�-algebras of [31], as well as
structural results by Kirchberg, Phillips and Rùrdam.

2. Absorbing and quasidiagonal representations

In the paper, a representation refers to a �-homomorphism from a general
C�-algebra to a C�-algebra of the form L�E�, where E is a Hilbert C�-algebra
module. The reader is referred to [29] for an introduction to these objects.
Throughout the paper, all Hilbert C�-algebra modules are assumed to be
countably generated over a j-unital C�-algebra B. As usual, the canonical such
module is denoted by HB .

In this section we are going to de®ne two properties for representations of a
C�-algebra which are re®nements of known properties. Of these notions, the
de®nition of nuclearly absorbing representations is going to ensure that a given
representation, in a sense to be made precise, contains the full representation
theory of the C�-algebra, whereas the quasidiagonality property ensures that the
representation can be approximated by ®nite-dimensional compressions. These two
properties combine to allow uniqueness and existence results in the following.

2.1. Two properties of representations

De®nition 2.1. Fix a j-unital C�-algebra B. When g: A!L�E� and
g 0: A!L�E 0 � are two representations, with E and E 0 Hilbert B-modules, we
say that g and g 0 are approximately unitarily equivalent, and write g , g 0, if
there exists a sequence of unitaries un 2L�E 0; E� such that

(i) limn!1 kg�a� ÿ ung
0�a�u�nk � 0,

(ii) g�a� ÿ un g 0�a�u�n 2K�E�
for any a 2 A.

We say that a representation g is absorbing if g , g� j for any j. We now
give a generalization of that notion.

De®nition 2.2 [51, De®nition 1.1.d]. A completely positive contraction
p: A!L�E� is said to be strictly nuclear if there exist integers �nl� and
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generalized sequences wl: A!Mn l
and Jl: Mn l

!L�E� of completely positive
contractions such that

lim
l!1

Jlwl�a� � p�a�

in the strict topology, for all a 2 A.

Remark 2.3. If either A or B is nuclear, then any completely positive
contraction p: A!L�E� is strictly nuclear, by [51, 1.7]. Any scalar representa-
tion v: A!L�H� Ì L�HB� is strictly nuclear, since it factors through a module
over the nuclear C�-algebra C.

De®nition 2.4. A non-unital representation p: A!L�E� is called nuclearly
absorbing if p� j , p for any strictly nuclear representation j: A!L�F�. A
unital representation p: A!L�E� is called nuclearly absorbing if p� j , p for
any unital strictly nuclear representation j: A!L�F�.

We emphasize that we have two different versions of nuclearly absorbing
representations, one for unital representations and a different one for non-unital
representations. We are going to explain how they interrelate in Lemma 2.17 below.

De®nition 2.5. A representation g: A!M�K�H� 
 B� is quasidiagonal if
there exists an approximate unit of projections �en� for K�H� 
 B with the
property that

�en ; g�a�� ! 0;

for any a 2 A. It is clear that if g is quasidiagonal, one may assume that �en� has
the property that en 2Mr n

�B� for some sequence of integers �rn�. When this is the
case, we de®ne a sequence of completely positive maps gn: A!Mrn

�B� by
gn�a� � en g�a�en . We call �gn�n2 N a quasidiagonalization of g by �en�n2 N .

The concept of relative quasidiagonality that we use in this paper was studied
in [48] and [50].

Remark 2.6. (i) One notes that a nuclearly absorbing representation need not
be strictly nuclear.

(ii) If a representation is both strictly nuclear and quasidiagonal, then it
follows from [51] that any element of a quasidiagonalization is a nuclear map.
Indeed, p is strictly nuclear precisely when for any v 2K�E�, the map
A!K�E�, de®ned by a 7! v�p�a�v, is nuclear.

(iii) If g is quasidiagonal and g , g 0, then g 0 is quasidiagonal. Thus if there
exists a strictly nuclear nuclearly absorbing and quasidiagonal representation
g: A!M�K�H� 
 B�, then any strictly nuclear nuclearly absorbing representation
will be quasidiagonal.

2.2. Fundamental examples

De®nition 2.7. Let A be a separable C�-algebra. An admissible scalar
representation v: A!M�K�H� 
 B� is a �-homomorphism which factors as

Aÿÿÿÿ!v 0
L�H�ÿÿÿÿ!ÿ
 1

L�H� 
M�B�aM�K�H� 
 B�
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where v 0 is faithful and of in®nite multiplicity, that is, of the form 1 ´ g for some
representation g.

De®nition 2.8. A unital �-homomorphism i: A a B is called a full
embedding if span Bi�a�B is dense in B for all non-zero a 2 A.

The following de®nition gives a class of examples of full embeddings.

De®nition 2.9. We say that a unital �-homomorphism i: A! B is a unital
simple embedding if it can be factored

Aa
i 0

Ca
i 00

B

where i 0 and i 00 are injective and C is simple.

This implies that C, i 0 and i 00 are unital. Note that the composition (on either
side) of a simple embedding with a unital injective �-homomorphism is a simple
embedding. In this setting, we de®ne a representation di : A!M�K�H� 
 B� by

di�a� � 1
 i�a�:
With all the de®nitions in place we can now state the main results of the

ensuing sections as follows. Let A be a unital separable C�-algebra.

(i) If v: A!L�HB� is a unital admissible scalar representation, then v is
nuclearly absorbing (Proposition 2.18).

(ii) If i: A a B is a unital full embedding, then di is nuclearly absorbing
(Theorem 2.22).

Here (i) follows from the arguments of [29], as pointed out in [51]. As we need
many of the elements involved in proving this, we are going to supply details for
the bene®t of the reader. Further, (ii) is a generalization of a result in [34], where
it was proved for i: A! B a unital embedding, with A nuclear, and either A or
B simple.

The results combine with the quasidiagonality condition. Indeed, note that di is
always quasidiagonal, as it commutes with projections en � n ´ 1B . Thus by
Remark 2.6(iii) all unital strictly nuclear nuclearly absorbing representations
g: A!M�K�H� 
 B� are quasidiagonal when there is a unital nuclear full
embedding of A into B.

If A is a quasidiagonal C�-algebra, then by de®nition, it has an admissible
scalar representation v: A!M�K�H� 
 B� which is quasidiagonal. Therefore any
strictly nuclear nuclearly absorbing representation of A is quasidiagonal. We are

going to need the following subclass of the quasidiagonal C�-algebras.

De®nition 2.10. Let A be a separable C�-algebra and let �pn� be a sequence
of ®nite-dimensional representations of A. We say that �pn� is a separating
sequence if for every a 2 A there is n such that pn�a� 6� 0. If this is the case, we
say that A is residually ®nite dimensional or RFD.

Finally, note that, as in Remark 2.3, the map v is always strictly nuclear. The
map di is strictly nuclear precisely when i is nuclear; cf. Remark 2.6(ii).
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2.3. Absorbing representations (after Kasparov)

De®nition 2.11. If p: A!L�E� is a representation and J: A!K�F� is a
completely positive map, we write J a p if there is a bounded sequence
vi 2K�F; E� such that

(i) limi!1 kJ�a� ÿ v�i p�a�vik � 0 for all a 2 A,

(ii) limi!1 kv�i yk � 0 for all y 2 E.

The condition (ii) above is equivalent to

(ii 0 ) limi!1 kv�i xk � 0 for all x 2K�E�.
If j: A!L�F� is a representation, we de®ne j1: A!L�F1� by j1� j�j� . . . ;

where F1 � F � F � . . . .
The proof of the following lemma is routine; we leave it to the reader.

Lemma 2.12. Let p and p 0 be representations of A on L�E� and L�E 0 �, and
let J and J 0 be completely positive maps from A to K�F� and K�F 0 �. We have
the following.

(i) If J a p and J 0 a p, then J� J 0 a p.

(ii) If J a p, then J a p� p 0.
(iii) If J a p, and p , p 0, then J a p 0.
(iv) If v 2K�E�, then vp� ? �v� a p1 .

We can now state the main result of this section.

Theorem 2.13. Let A be a unital separable C �-algebra and let B be a j-unital
C �-algebra. Let p: A!L�E� and j: A!L�F� be two unital representations
where E and F are Hilbert B-modules. The following assertions are equivalent:

(i) p , j1 � p;

(ii) for any v 2K�F�, if J � v�j� ? �v, then J a p;

(iii) there is an increasing approximate unit �en� of K�F�, with e1 � 0 and
quasicentral in j�A� �K�F�, such that

�en� kÿen�1=2j� ? ��en� kÿen�1 =2 ap

for all n; k > 1.

The proof of the theorem, given at the end of the section, is based on the
following three results, due essentially to Kasparov [29].

Lemma 2.14. Let A and B be as in Theorem 2.13, and let j: A!L�F� be a
representation. Let �en� be an increasing approximate unit of K�F�, quasicentral
in j�A� �K�F�. Then for any compact subset F Ì A and any « > 0 there is a

subsequence �en�k�� of �en� such that if f1 � e1=2
n�2� and fk � �en�k�1� ÿ en�k��1=2 for

k > 2, then

(i) l�a� �P1
k�1 fk j�a� fk is strictly convergent, for all a 2 A,

(ii) j�a� ÿ l�a� 2K�F� for all a 2 A,

(iii) kj�a� ÿ l�a�k < « for all a 2F.
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Proof. This is a reformulation of [29, Lemma 10]. . . . . . . . . . . . . . . . .A

Proposition 2.15. Let A; B; p: A!L�E� and j: A!L�F� be as in
Theorem 2.13, satisfying condition (iii) there. Then there is a sequence of
isometries vi 2L�F; E� such that

(i) vi j�a� ÿ p�a�vi 2K�F; E�,
(ii) limi!1 kvi j�a� ÿ p�a�vik � 0 for all a 2 A.

Proof. The result is implicit in the proof of [29, Theorem 5] and the remark
following it. We outline the proof for the bene®t of the reader. Since j is a
�-homomorphism, it suf®ces to ®nd a sequence of isometries vi with

lim
i!1 kj�a� ÿ v�i p�a�vik � 0; and j�a� ÿ v�i p�a�vi 2K�F�;

for each a 2 A. Indeed, as in [2], this follows from the identity

�vi j�a� ÿ p�a�vi���vi j�a� ÿ p�a�vi�
� ÿ�j�a�a� ÿ v�i p�a�a�vi� � �j�a�� ÿ v�i p�a��vi�j�a�
� j�a���j�a� ÿ v�i p�a�vi�:

Fix « > 0 and F Ì A a compact subset with dense span, such that 1A 2F �F �.
We need to ®nd an isometry v 2L�F; E� such that

kj�a� ÿ v�p�a�vk < h�«� and j�a� ÿ v�p�a�v 2K�F� �2:1�
for all a 2F. Here h is a universal function with lim«! 0 h�«� � 0.

Let �en� be as in condition (iii) of Theorem 2.13. Let l�a� �P1
k�1 fk j�a� fk be

given by Lemma 2.14. Using condition (iii), we ®nd inductively a sequence
zk 2K�F; E� such that for all a 2F and j; k,

k fk j�a� fk ÿ z�k p�a�zkk< « ´ 2ÿ k;

kz�k p�a�z jk< « ´ 2ÿ jÿ k for j < k;

kz�k gjk< 2ÿ k for j < k;

where �gj� is a countable approximate unit of K�F�. Then, as in the proof of
[29, Theorem 5], one shows that

P1
k�1 zk converges strictly to an element

z 2L�F; E� satisfying

kj�a� ÿ z�p�a�zk < 3« and j�a� ÿ z�p�a�z 2K�F�
for all a 2F. Since j�1� � p�1� � 1 and 1 2F, kz�zÿ 1k < 3«. To obtain (2.1),

one replaces z by the isometry v � z�z�z�ÿ1=2. . . . . . . . . . . . . . . . . . . . . .A

Let w1 : F1! F � F1 be de®ned as w1�y1; y2 ; y3 ; . . . � � y1 � �y2 ; y3 ; . . . �.
Lemma 2.16. Let p: A!L�E� and j: A!L�F� be two representations.

Then for any isometry v: F1! E, the unitary

u � �1F � v�w1 v� � 1E ÿ vv� 2L�E; F � E�
satis®es

kj�a� � p�a� ÿ up�a�u�k< 6kvj1�a� ÿ p�a�vk � 4kvj1�a�� ÿ p�a��vk:
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Moreover, if vj1�a� ÿ p�a�v 2K�F1 ; E�, for a 2 A, then

j�a� � p�a� ÿ up�a�u� 2K�F � E�;
for a 2 A.

Proof. Although the proof of the lemma is implicit in the proof of [29,
Theorem 6], we supply a complete argument. Note that the two summands of u are
partial isometries. If p � vv� and p' � 1E ÿ p, then �1F � v�w1v�: pE! F � pE
and p': p'E! p'E act as unitaries. Abbreviate q�a� � kvj1�a� ÿ p�a�vk.

First assume that p�a� and p commute. We have

up�a�u� � �1F � v�w1 v�pp�a�pvw�1�1F � v�� � p'p�a�p'

<q �1F � v�w1 j1�a�w�1�1F � v�� � p'p�a�p'

� j�a� � vj1�a�v� � p'p�a�p'

<q j�a� � pp�a�p� p'p�a�p'

� j�a� � p�a�;
where `<q' indicates that the error is dominated in norm by q�a� and that it is
compact if vj1�a� ÿ p�a�v is.

For general p�a�, we consider instead

p 0�a� � pp�a�p� p'p�a�p':

Note that q 0�a� � kvj1�a� ÿ p 0�a�vk< q�a� and that vj1�a� ÿ p 0�a�v is compact
under the compactness assumption on v. We have kj1�a� ÿ v�p�a�vk< q�a�,
so that

k p'p�a�pk< kp�a�pÿ pp�a�k
< kp�a�vv� ÿ vj1�a�v�k � kvj1�a�v� ÿ vv�p�a�k
< q�a� � q�a��;

it is also clear that p'p�a�p is compact if vj1�a� ÿ p�a�v is. This completes the
proof by reducing it to the ®rst case, up to an error of 4�q�a� � q�a��� which is
compact under the compactness assumption on v. . . . . . . . . . . . . . . . . . . .A

Proof of Theorem 2.13. Using three observations from Lemma 2.12 we get
(i)) (ii) via

J � v�j� ? �v a j1 � p , p:

If J � v�j� ? �v a j1 , then J a j1 � p; hence J a p by Lemma 2.12(iii). The
implication (ii)) (iii) is obvious; take �en� to be any countable approximate unit
of K�F�, quasicentral in j�A� �K�F� (cf. [2]). To prove (iii)) (i) we ®rst

notice that if j, p and en 2K�F� satisfy (iii), then so do j1 , p and

e 0n � en � . . .� en|���������{z���������}
n

� 0� . . . 2K�F1�;

by Lemma 2.12(i). Since �j1�1 � j1 , from Proposition 2.15 we ®nd a sequence
of isometries vi 2L�F1 ; E� such that

vi�j1�1�a� ÿ p�a�vi 2K�F1 ; E� and lim
i!1 kvi�j1�1�a� ÿ p�a�vik � 0
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for all a 2 A. Let �ui� be a sequence of unitaries given by Lemma 2.16 applied to
p, j1 and vi . Then

j1�a� � p�a� ÿ ui p�a�u�i 2K�F1 � E� and lim
i!1 kj1 � p�a� ÿ ui p�a�u�i k � 0

for all a 2 A. Thus j1 � p , p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

2.4. Nuclearly absorbing representations

If p: A!L�E� is a representation, we denote by eA the C�-algebra obtained

by adjoining an external unit e1 to A, and de®ne ep: eA!L�E� byep�a� le1� � p�a� � l1E .
A unital representation g: A!M�K�H� 
 B� cannot absorb a non-unital

representation. However, if bg � 0� g: A!M�K�H � H� 
 B�, where the zero
summand acts on H 
 B, then we have the following result.

Lemma 2.17. Let A be a separable C �-algebra and let B be a j-unital
C �-algebra. If p is a non-unital nuclearly absorbing representation, then ep is
a unital nuclearly absorbing representation. Suppose that A is unital. If
g: A!M�K�H� 
 B� is a unital nuclearly absorbing representation, then bg is a
non-unital nuclearly absorbing representation.

Proof. The ®rst part of the lemma is obvious. For the second part, we need to
show that if J: A!L�E� is a strictly nuclear representation, then J� bg , bg.
If p � J�1�, then E > pE � p'E and J � J1 � 0p 'E , with J1 � pJ� ? �p. We

have J1 � g , g, since g is nuclearly absorbing. Since p'E � HB > HB by
[29, Theorem 2], we obtain

J� bg � J1 � 0p 'E � 0HB
� g , J1 � g� 0HB

, 0HB
� g � bg: A

Proposition 2.18. Let A be a unital separable C �-algebra. If v: A!L�HB�
is a unital admissible scalar representation, then v is nuclearly absorbing.

Proof. Given a unital strictly nuclear representation j: A!L�F�, we want to
show that j � v , v. Assume ®rst that F � HB . We are going to use the
implication (ii)) (i) of Theorem 2.13. If v 2K�HB� and J � v�j� ? �v, we need
to show that J a v. The set of all completely positive maps J: A!K�HB� with
J a v is closed in the point-norm topology. Thus, without loss of generality, we
may assume that v 2Mn�B� for some n. Therefore J: A!Mn�B�. Since J is a
nuclear map, because j is strictly nuclear, J a v by [29, Theorem 4]. Hence
j1 � v , v by Theorem 2.13. This implies that j � v , v.

The case F > HB follows from the previous case, after replacing j by uj� ? �u�,
where u is a unitary implementing the isomorphism F > HB . Indeed,

j � v , uj� ? �u� � v , v:

If F 6> HB , we de®ne j 0 � j � v: A!L�F � HB�. Since F � HB > HB by
[29], j 01 � v , v by the previous part of the proof. Since j � j 01 , j 01 , we
infer that j � v , v.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Proposition 2.19. Let A be a unital, separable C �-algebra, and let B be a
unital C �-algebra. Let p: A!L�E� be a unital representation. Suppose that
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v: A!L�HB� is a unital admissible scalar representation. Then the following
are equivalent:

(i) p is nuclearly absorbing;

(ii) p , v� p;

(iii) for any unital completely positive map J: A!Mn�C� Í L�Bn�, we
have J a p.

Proof. To prove (ii)) (i), let j: A!L�F� be a unital strictly nuclear
representation and note that v� j , v by Proposition 2.18. Using (ii) twice, we get

p , p� v , p� v� j , p� j:

The opposite implication is clear since v is strictly nuclear, and (ii)) (iii) follows
again from [29, Theorem 4], since by Lemma 2.12(iii), J a p� v , p implies
J a p. It remains to prove (iii)) (ii), and we shall do so using the implication
(iii)) (i) from Theorem 2.13 with j � v � v 0 
 1 with v0 as in De®nition 2.7.
Embed Mn�C� into K�H� under an increasing sequence of projections � fn�.
There exist a sequence of natural numbers m�1� < m�2� < . . . < m�n� < . . .
and ®nite rank operators xn 2 convf fi : m�nÿ 1� < i < m�n�g such that
�en� � �xn 
 1B� is an approximate unit of K�HB� which is quasicentral in
v�A� �K�HB�. Note that xn < fm�n� < xn�1. For any n and i we write

�en� i ÿ en�1= 2v� ? ��en� i ÿ en�1=2 � Jn; i� ? � 
 1B ;

with

Jn; i� ? � � �xn� i ÿ xn�1=2v 0� ? ��xn� i ÿ xn�1=2� �xn� i ÿ xn�1= 2wn; i� ? ��xn�i ÿ xn�1=2

where wn; i� ? � � fm�n� i � v
0� ? � fm�n� i �: A!Mm�n� i ��C� is a unital completely

positive map. Our assumption gives wn; i 
 1B a p; hence Jn; i 
 1B a p, and so
by Theorem 2.13 we conclude that p� v1 , p. Hence also p� v , p. . . . . .A

The following result can be found in [1].

Lemma 2.20. Let A be a unital separable C �-algebra and let J 2 P�A� be a
pure state. Then there is a sequence �xn� in A� with kxnk � 1 and

kxn�aÿ J�a��xnk ! 0;

for all a 2 A.

A sequence �xn� with these properties is said to excise the state J.

Lemma 2.21. Let A be a unital separable C �-algebra and let i: A a B be a
unital full embedding. Then J a di for any unital completely positive map
J: A!Mn�C� Í Mn�B� �L�Bn�.

Proof. To simplify notation we identify A with i�A�. Fix a ®nite set F Í A
and a positive «. It suf®ces to ®nd an isometry V 2L�Bn; Bm� with

kJ�a� ÿ V ��a
 1m�Vk < « �2:2�
for each a 2F. We may assume that in fact n � 1 after replacing J by J: Mn�A� ! B
as in [29, Lemmas 5, 6], for Mn�A�a Mn�B� is also a full embedding.
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First assume that J is a pure state. Apply Lemma 2.20 to get an excising
sequence �xn� for J, and choose n0 such that x � xn 0

satis®es

kJ�a�x2 ÿ xaxk < « �2:3�
when a 2F. For every h 2 �0; 1� we de®ne fh ; gh: �0; 1� ! �0; 1� by

fh�t� �
0 if t � 0;

1 if t > h;

affine if 0 < t < h;

gh�t� �
0 if t < h;

1 if t > 1
2
�h� 1�;

affine if h < t < 1
2
�h� 1�:

8><>:
8><>:

Note that for a suf®ciently large h0 , x � fh 0
�xn 0
� also satis®es (2.3). Hence if we

let y � gh 0
�xn 0
�, we get a pair of positive norm-one elements x, y such that

xy � yx � y and x satis®es (2.3). Since A a B is a full embedding and y 6� 0,
there are b1; . . . ; bm 2 B such that

b�1 y2b1 � . . .� b�m y2bm � 1B :

This is proved in the same way as [9, 1.10].
De®ne V 2L�B; Bm� by arranging yb1; . . . ; ybm into a column matrix. Then V

is an isometry because V �V � 1B , and since y acts as a unit on x, we have
�x
 1m�V � V . This implies that

kJ�a�1B ÿ V ��a
 1m�Vk
� kJ�a�V ��x2 
 1m�V ÿ V ��x
 1m��a
 1m��x
 1m�Vk
< kJ�a��x2 
 1m� ÿ xax
 1mk < «

for any a 2F, using (2.3).
For J an arbitrary state, we argue as follows. By Krein±Milman theory we may

approximate J by a convex combination of pure states, say



J�a� ÿ
Xk

i�1

l i Ji�a�




 < «;

where a 2F. Let Vi 2L�B; Bm k� be given by the ®rst part of the proof, with

V �i Vi � 1B ; Vi V
�

i < �0; . . . ; 0; 1m 
 1B|����{z����}
i

; 0; . . . ; 0�:

Then V �Pk
i�1

�����
l i

p
Vi de®nes an isometry of L�B; Bmk�, such that

kJ�a� ÿ V ��a
 1m k�Vk �




J�a� ÿ

Xk

i�1

l iV
�

i �a
 1m�Vi






<





J�a�ÿ
Xk

i�1

l i Ji�a�




�Xk

i�1

l ikJi�a�ÿV �i �a
1m�Vik

< 2«;

where a 2F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

The following generalizes a result of Lin [34].

Theorem 2.22. Let A be a unital separable C �-algebra and let i: A a B be a
unital full embedding. Then di is nuclearly absorbing.
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Proof. Combine Lemma 2.21 and Proposition 2.19. . . . . . . . . . . . . . . . .A

3. K-theoretical preliminaries

In this section we collect preliminary results and de®nitions behind our use of
K- and KK-theory.

3.1. KK-theory

In all of the paper, except in the proof of the lemma below, we are going to
work exclusively with the Cuntz picture of the Kasparov groups KK�A; B�. We
are only going to give a brief description of this realization here; more details are
given in [14], but for complete information we refer the reader to the original
sources [11, 25, 51], or to [28] for a detailed exposition.

The Cuntz picture is described in terms of pairs of representations

�J; w�: A!M�K�H� 
 B�;
where

J�a� ÿ w�a� 2K�H� 
 B; for a 2 A:

Such a pair will be called a Cuntz pair. They form a set denoted by Eh�A; B�. A
homotopy of Cuntz pairs consists of a Cuntz pair �F; W�: A!M�K�H� 
 B�0; 1�� ,
and the quotient of Eh�A; B� by homotopy equivalence becomes the Kasparov
group KK�A; B�.

One de®nes groups KKnuc�A; B� by restricting attention to Cuntz pairs (and
homotopies) consisting of strictly nuclear representations. Hence KK � KKnuc

when A or B is nuclear. And one proves the following.

Lemma 3.1. Let A be a unital separable C �-algebra and let B be a unital
C �-algebra. Let an admissible scalar representation v be given. Then any

a 2 KKnuc�A; B� is represented by a strictly nuclear Cuntz pair of the form �r; bv �.
Proof. We use the fact that KKnuc�A; B� also has a Fredholm realization

based on triples �J0 ; J1; u� consisting of strictly nuclear �-homomorphisms
Ji : A!L�Ei� intertwined up to compacts by u 2L�E0 ; E1� acting as a unitary,
up to compacts, on the ranges of Ji . In fact, according to [51, 2.6], a is

represented by a triple of the form �bv; bv; x�. By using the standard simpli®cation
given by Proposition 17.4.3 of [3] we may assume that x is a contraction. Finally
we may replace x by the unitary

u �
�

x �1ÿ xx��1=2

ÿ�1ÿ x�x�1=2 x�

�
:

Hence, in KK�A; B� we have a � �bv; bv; u� � �ubvu�; bv; 1�, and this translates in the

Cuntz picture to the desired identity a � �ubvu�; bv �.. . . . . . . . . . . . . . . . . . .A

Note that any �-homomorphism J: A! B induces an element �J� 2 KK�A; B�
via the Cuntz pair �J; 0�. Similarly, any nuclear �-homomorphism J: A! B
induces an element �J� 2 KKnuc�A; B�.
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3.2. K-theory

When Bi is a sequence of C �-algebras we denote by
Q

Bi their (,1-)product,
and by

P
Bi their (c0-)sum. It is well known, although perhaps not as well

known as it should be, that the natural map K��
Q

Bi� !
Q

K��Bi� is not an
isomorphism in general. In this section we are going to study, for large classes of
C�-algebras Bi , injectivity properties of the natural map

h: K

�Y
Bi

�
!
Y

K�Bi�;

where K�ÿ� denotes the sum of all K-theory groups with Z=n coef®cients for all
n > 1, de®ned by collecting the maps

h i: K�

�Y
Bi

�
!
Y

K� �Bi�; h i
n: K�

�Y
Bi ; Z=n

�
!
Y

K��Bi ; Z=n�

induced by the projections pi :
Q

Bi! Bi . We also use this information to prove
that surprisingly often, Pext�ÿ; K��

Q
Bi =

P
Bi�� will vanish.

When discussing maps from K�A� to K�B�, we are only interested in
collections of group homomorphisms which preserve the natural set of coef®cient
transformations and the Bockstein operations (see [49] and [18]). We denote the
group of such maps by HomL�K�A�; K�B��.

If B is a C�-algebra we denote by Proj�B� the set of all self-adjoint projections
in B. The K-theory class of a projection p is denoted by � p� 2 K0�B�. If B is
unital, we let Un�B� denote the unitary group of Mn�B�.

K-theory of products. We are going to de®ne quantities cco (`cancellation
order'), pfo (`perforation order'), elo0 , elo1 (`element lifting order') and ipo
(`in®nite height perturbation order') in N È f1g for any unital C�-algebra B
by declaring

cco�B�< , if whenever p; q 2 Proj�B
K� , then � p� � �q� implies that
p� , ´ 1B , q� , ´ 1B ,

pfo�B�< , if for any x 2 K0�B� such that nx > 0 for some n > 0, one has
x� ,�1B�> 0,

elo0�B�< , if the canonical map Proj�M,�B�� ! K0�B� is surjective,

elo1�B�< , if the canonical map U,�B� ! K1�B� is surjective,

ipo�B�< , if for any x in K0�B� and any n 6� 0, there is y in K0�B� such that
ÿ,�1B�< y < ,�1B� and xÿ y 2 nK0�B�,

and declaring the value to be 1 when no such , exists. For instance, elo0�B� � 1
if K0�B�� 6� K0�B�. When fBigi2 I is a family of C�-algebras, we de®ne
cco�fBig� � supi cco�Bi�, and so forth. We also write rr�fBig� � 0 when each
Bi has real rank 0.

The following results ± some of which are known, cf. [20] ± demonstrate the
relevance of these quantities to the map h. We denote the unit of Bi by 1i and the
units of

Q
Bi and

Q
Bi =

P
Bi by 1P and 1P=S , respectively.
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Lemma 3.2. Let Bi be a sequence of unital C �-algebras for which
cco�fBig� < 1. Then h0 is injective, and the image of h0 equals�

�xi� 2
Y

K0�Bi�
���� $M 2N"i 2N:ÿM �1i �< xi < M �1i �

�
:

Furthermore, if h0�x� � �xi� with each xi > 0, then x > 0. If in addition

pfo�fBig� < 1, then Im h0 is a pure subgroup of
Q

K0�Bi�. If elo0�fBig� < 1,

then h0 is surjective.

Proof. Assume that cco�fBig�< ,. To prove injectivity, let

x � �� pi�� ÿ ��qi�� 2 K0

�Y
Bi

�
be given by pi ; qi 2 MN�Bi� and assume that h0�x� � 0. We have
pi � , ´ 1i , qi � , ´ 1i , so that � pi� � , ´ 1P , �qi� � , ´ 1P , proving x � 0. To
prove that the image is contained in the set of bounded sequences, write
x 2 K0�

Q
Bi� as x � �� pi�� ÿ ��qi�� with pi ; qi 2MN�Bi�. By de®nition of

positivity, ÿN �1P�< x < N �1P � and we get the result by applying pi . For the
other inclusion, assume that xi 2 K0�Bi� is given with ÿM �1i �< xi < M �1i �. We can
write xi �M �1i � � �ri � for some projection ri in Bi 
K, and since �ri �< 2M �1i �, we
get 2M �1i � � �ri � si � for some projection si in Bi 
K. Since cco�fBig�< ,, we see
that �2M � ,� ´ 1i , ri � si � , ´ 1i ; hence there is qi 2M2 M�,�Bi� with ri , qi .
Consequently, xi � �ri � ÿM �1i � can be represented as a difference of projections
�qi � ÿM �1i � where qi 2M2 M�,�Bi�. De®ning q � �qi� 2M2 M�,�

Q
Bi�, we ®nd

that �q� ÿM �1P � is a preimage of �xi�.
If h0�x� � �xi� and every xi is positive, we have 0 < xi < M �1i � for some ®xed

M. Hence xi � � pi � for some pi which we may assume lies in MM�,�Bi� as
above. Consequently p � � pi� de®nes an element of K0�

Q
Bi�, and x � � p� by

injectivity of h0. To establish purity when pfo�fBig�< , 0, assume that x � ny inQ
K0�Bi�, where x 2 Im h0, so that for some M, Mn�1i �6 xi > 0. We conclude

that �M � , 0 ��1i �6 yi > 0, whence y 2 Im h0. Proving surjectivity of h0 when

elo0�fBig� is ®nite is straightforward. . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Lemma 3.3. Let Bi be a sequence of C �-algebras. If rr�fBig� � 0, then h1 is
injective. If elo1�fBig� < 1, then h1 is surjective.

Proof. To prove injectivity, we assume that h1�x� � 0 with x � ��ui�� and
ui 2Mn�Bi�. By [33], ui is homotopic to n ´ 1i within Un�Bi�, and because
rr�Bi� � 0 the exponential lengths of Mn�Bi� are uniformly bounded (by 2p, see
[32]), so we can choose short paths and combine them to one from �un� to the
unit of Un�

Q
Bi�. Proving surjectivity of h1 when elo1�fBig� is ®nite is

straightforward.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Lemma 3.4. Let Bi be a sequence of unital C �-algebras and abbreviate
P � Q Bi and P=S �Q Bi =

P
Bi . Then

(i) cco�P�; cco�P=S�< cco�fBig�,
(ii) pfo�P�; pfo�P=S�< pfo�fBig� if cco�fBig� < 1,

(iii) elo0�P�; elo0�P=S�< elo0�fBig� if cco�fBig� < 1,

(iv) elo1�P�; elo1�P=S�< elo1�fBig� if rr�fBig� � 0,

(v) ipo�P�; ipo�P=S�< ipo�fBig� if cco�fBig�; pfo�fBig� < 1.
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Proof. These claims all follow in a straightforward fashion from the properties of
h� established in Lemmas 3.2 and 3.3. We only prove (v), which is the most involved
result. Let x 2 K0�

Q
Bi� and n be given and assume that ipo�fBig�< ,. With

h0�x� � �xi�, we can ®nd yi 2 K0�Bi�withÿ,�1i �< yi < ,�1i � and xi ÿ yi 2 nK0�Bi�.
We know from Lemma 3.2 that � yi� � h0� y� for some y 2 K0�

Q
Bi� with

ÿ,�1P �< y < ,�1P �. Since h0�xÿ y� 2 n
Q

K0�Bi� by construction, we further

conclude by purity that h0�xÿ y� 2 n Im h0 and, since h0 is injective, that
xÿ y 2 nK0�

Q
Bi�.

To prove the result for P=S , we note that

0ÿ! K��S� ÿ! K��P� ÿ! K��P=S� ÿ! 0

is exact and apply the argument above to an x 2 K0�P� lifting the given element
in K0�P=S�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Algebraically compact K-groups. An abelian group G is algebraically compact
when Pext�ÿ; G� vanishes. This class of groups is well studied (cf. [24, VII]), and
we are going to use the characterization of it as those groups for which the
following hold [26]:

(i) the subgroup
T

n2N nG is divisible;

(ii) G is complete.

Here completeness refers to the Z-adic topology (cf. [24, 7]), and completeness
does not (as it does in [24]!) imply any separation properties.

Note that the quantities pfo and ipo make sense for general ordered abelian
groups with order unit. We extend the notions to such groups and families of
them in the obvious way. When �Gi ; 1i� is a family of groups and order units, we
de®ne a `bounded product'

Q
b byY

b
Gi � f�gi� j $M 2N"i 2 I:ÿM1i < gi < M1ig:

Lemma 3.5. Whenever Gi is a sequence of abelian groups, then
Q

Gi =
P

Gi

is algebraically compact. If, furthermore, all Gi are ordered with order units, thenQ
b Gi =

P
Gi is algebraically compact provided that both pfo�fGig� and

ipo�fGig� are ®nite.

Proof. When X �Q Gi =
P

Gi , then X is algebraically compact by [27].
When the Gi are also ordered, let Xb �

Q
b Gi =

P
Gi and consider Xb as a

subgroup of X . We are going to prove that (i) and (ii) above hold for Xb from the
fact that they hold for X .

Since pfo�fGig� < 1, we immediately see that if x 2 Xb and x � my in X , then
y 2 Xb if m 6� 0, by an argument very similar to the one at the end of the proof of
Lemma 3.2. Note that this is stronger than mere purity of Xb as a subgroup of X .
Fix m 6� 0 and x 2Tn2N nXb and write x � my for y 2Tn2N nX . Applying this
observation twice, we get

y 2 Xb Ç
\

n2N
nX �

\
n2N
�nX Ç Xb� �

\
n2N

nXb :

It remains to show that Xb is complete. To do so, we ®rst note that for any
given x 2 X there is y 2 Xb such that xÿ y 2Tn2N nX . For when ipo�fGig�< ,
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and x � �xi� �
P

Gi is given, we may ®nd yi such that ÿ,1i < yi < ,1i and
xi ÿ yi 2 i!Gi . Clearly y � � yi� �

P
Gi has the desired property. Now let �xn� be

Cauchy in Xb , and recall that it converges to some x 2 X . With y chosen as
above, �xn� also converges to y 2 Xb in the Z-adic topology of Xb . This is
because the Z-adic topology of Xb coincides with the topology of Xb induced by
the Z-adic topology of X , since Xb is a pure subgroup of X. . . . . . . . . . . . .A

Corollary 3.6. Let Bi be a sequence of unital C �-algebras. Then

(i) K1�
Q

Bi =
P

Bi� is algebraically compact if

rr�fBig� � 0 and elo1�fBig� < 1;

(ii) K0�
Q

Bi =
P

Bi� is algebraically compact if either

cco�fBig�; elo0�fBig� < 1 or cco�fBig�; pfo�fBig�; ipo�fBig� < 1:

Proof. Part (i) follows from Lemmas 3.3 and 3.5. Part (ii) follows from
Lemmas 3.2 and 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

3.3. Partial maps on K�ÿ�
In this section we concern ourselves with associating K-theoretical data to

completely positive contractions. Starting from such maps, say from A to B, we
shall be able to induce maps sending a ®nite set of projections representing a
®nite part of the K-theory of A to elements of the K-theory of B.

Although there are advantages of doing this even for subsets representing
elements of K0�A�, the real strength of this approach only surfaces when we work
with all of K�A� and K�B�. Our partial maps do not descend to well-de®ned
maps on subsets of K�A�, let alone to all of K�A�, but this fact does not cause
any problems except notational and technical inconveniences.

As noted on page 661 of [15] we can realize any element of K�ÿ� as a
difference of classes of projections from

Proj�A� �
[

m > 1

Proj�A
 C�T� 
 C�Wm� 
K�

where the Wm are the Moore spaces of order m . This picture of K�A�
encompasses the standard pictures of K0�A� and K��A� using projections of
A
K and A
 C�T� 
K, respectively, but not the standard picture of K1�A�
using unitaries of �A
K�e. We need to pay special attention to this. Checking
the facts stated as lemmas below is tedious but straightforward. We leave it to the
reader with due apologies.

De®nition 3.7. Let A be a C�-algebra. A K-triple �P; G; d� consists of ®nite
subsets P Í Proj�A� and G Í A and a d > 0 chosen such that whenever J is a

completely positive contraction which is d-multiplicative on G, then
1
2
62 sp��J
 id�� p��

for each p 2P, where id is the identity of C�T� 
 C�Wm� 
K for suitable m. A
K1-triple �V; G; d� consists of ®nite subsets V Í U��A
K�e� and G Í A and a
d > 0 chosen such that whenever J is a completely positive contraction which is
d-multiplicative on G, then

0 62 sp��J
 id��v��
for each v 2V.
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We de®ne K0- and K�-triples analogously to the K-triple case, by using
projections in A
K and A
 C�T� 
K, respectively.

The following lemma shows that any ®nite subset of projections or unitaries can
be augmented to a triple of the appropriate kind.

Lemma 3.8. Let A and C be C �-algebras, and ®x ®nite sets P; V Í �A
 C�e
consisting of projections and unitaries, respectively. Then there exist d > 0 and a
®nite set G Í A such that whenever J: A! B is a unital completely positive map
which is d-multiplicative on G, then

1
2
62 sp��J
 idC�� p��; 0 62 sp��J
 idC��v��

for every p 2P and v 2V.

Let x0: �0; 1
2
�È � 1

2
; 1� ! �0; 1� be 0 on �0; 1

2
� and 1 on � 1

2
; 1�, and let

x1: �0; 1� ! �0; 1� be given by x1�x� � xÿ1=2.

De®nition 3.9. Let �P; G; d� be a K-triple, and assume that J: A! B is a
completely positive contraction which is d-multiplicative on G. We de®ne
J]: P!K�B� by

J]� p� � �x0�J
 id�� p��:
When �V; G; d� is a K1-triple, we de®ne J]: V! K1�B� by

J]�v� � �Vx1�V �V ��
where V � �J
 id��v�.

Maps into K0�B� and K��B� are de®ned from K0-triples and K�-triples similarly
to the K-triple case.

Lemma 3.10. Let A be a unital C �-algebra and �P; G; d� a K-triple. Let
J: A! B be a completely positive contraction which is d-multiplicative on G and
let j: B! C be a unital �-homomorphism. Then � jJ�]� p� � j�J]� p� for all p 2P.

To establish the next two results, one may use the fact that the canonical map
from K0�A� to K1�SA� is de®ned using scalar rotation matrices. The last result
follows from the de®nitions.

Lemma 3.11. Whenever a K�-triple �P�; G; d� is given, there exist a K0-triple
�P0 ; G0 ; d0� and a K1-triple �V; G1; d1� with di < d and Gi Ê G such that if for two
unital completely positive contractions J and w which are di -multiplicative on Gi ,

J]� p� � w]� p� and J]�v� � w]�v�
for all p 2P0 and all v 2V, then J]� p� � w]� p� for all p 2P� .

Lemma 3.12. Whenever a K0-triple �P0 ; G0 ; d0� and a K1-triple �V; G1; d1�
are given, there exists a K�-triple �P� ; G; d� with d < di and G Ê Gi such that if
for two unital completely positive contractions J and w which are d-multiplicative
on G, J]� p� � w]� p� for all p 2P� , then

J]� p� � w]� p� and J]�v� � w]�v�
for all p 2P0 and all v 2V.
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Lemma 3.13. Let �P; G; d� be a K-triple on A. There exist « > 0 and a ®nite
set F Í A such that if J and w are completely positive contractions which are
d-multiplicative on G and satisfy kJ�a� ÿ w�a�k < « for all a 2F, then
J]� p� � w]� p� for all p 2P.

4. Uniqueness

In the present section we present our uniqueness results as a sequence of
successive re®nements, at the cost of added assumptions.

We summarize our results in Table 1; the reader should be able to deduce the
precise meaning of the various columns by comparing with the actual statements
of the uniqueness results below. In the table we require tacitly that every A is a
separable C�-algebra and every map J; w is nuclear.

4.1. Stable uniqueness

We repeat the following de®nition and main result from [14].

De®nition 4.1. If p; j: A!L�E� are representations, we say that p and j
are properly asymptotically unitarily equivalent and write p ² j if there is a
continuous path of unitaries u: �0; 1� !U�K�E� � C1E�, u � �ut�t2 �0;1� such
that for all a 2 A,

(i) limt!1 kut p�a�u�t ÿ j�a�k � 0,

(ii) ut p�a�u�t ÿ j�a� 2K�E�, for all t 2 �0; 1�.

Theorem 4.2. Let A be a (unital) separable C �-algebra and let B be a
j-unital C �-algebra. Let �J; w�: A!M�K�H� 
 B� be a Cuntz pair consisting of
(unital) strictly nuclear representations. Then the following are equivalent:

(i) �J; w� � 0 in KKnuc�A; B�;

186 marius dadarlat and sùren eilers

Table 1

Ref. A B �A; B� J; w �

4.4 $g: A!M�K
 B� morphisms g
nuclearly absorbing �J� � �w�

4.5 unital unital $g: A!M�K
 B� morphisms gn

unital �J� � �w�
nuclearly absorbing J�1�, w�1�
quasidiagonal

4.12 unital unital $ i: A a B morphisms n ´ i
simple 4.9 unital morphism J� � w�
exact J�1�, w�1�
UCT

4.15 unital unital $t: A a B CP-maps n ´ t
simple 4.9 unital CP-map J] j P � w] j P
exact J�1�, w�1�
UCT



(ii) there exists a (unital) strictly nuclear representation j: A!M�K�H� 
 B�
with J� j ² w� j;

(iii) for any (unital) nuclearly absorbing and strictly nuclear representation
g: A!M�K�H� 
 B�, J� g1 ² w� g1 .

It is proved in [14] that

J� j ² w� j () J� g ² w� g

if j and g are asymptotically equivalent in a sense made precise in that paper.
The same proof shows the following.

Lemma 4.3. Let J; w; g; j: A!M�K�H� 
 B� be representations. If
J� g ² w� g, and g , j, then there exists a sequence of unitaries
vn 2K�H� 
 B� C1 such that

kvn�J� j��a�v�n ÿ �w� j��a�k ! 0 as n!1
for any a 2 A.

The previous lemma simpli®es matters when working with uniqueness ± it is
necessary to work with asymptotic equivalence of cycles to characterize
KK-theory as above, but to prove uniqueness results one only needs an
approximate version of (i)) (iii) above. Hence we get the following.

Corollary 4.4. Let A be a separable C �-algebra and let B be a j-unital C �-
algebra. Assume that J and w are two nuclear �-homomorphisms from A to
K�H� 
 B which satisfy �J� � �w� in KKnuc�A; B�. Let g: A!M�K�H� 
 B� be
a nuclearly absorbing representation. Whenever a ®nite subset F Í A and « > 0
are given, there exists a unitary v 2M3�K�H�� 
 B� C1 such that

v

J�a�
0

g�a�

264
375v� ÿ

w�a�
0

g�a�

264
375
















 < «

for all a 2F.

Proof. The corollary follows from the non-unital version of Theorem 4.2 after
the following remarks. Since J and w assume only compact values, we have

�J; w� � �J; 0� ÿ �w; 0� � 0

in KKnuc�A; B�. From Theorem 4.2, J� j ² w� j for some strictly nuclear
representation j: A!M�K�H� 
 B�. Now bg � 0� g is (non-unital) nuclearly
absorbing by Lemma 2.17, whether or not g is unital. Since J� j � bg ² w� j � bg
and j � bg , bg, we conclude that v exists by Lemma 4.3. . . . . . . . . . . . . . .A

Achieving stable uniqueness. We are now going to employ the quasi-
diagonality condition of De®nition 2.5 to truncate the absorbing representation in
Corollary 4.4 to something more manageable in terms of classi®cation.

We consider two �-homomorphisms J and w, between unital C�-algebras A and B.
To ®x notation, let g: A!M�K�H� 
 B� be a quasidiagonal unital representation.
We consider a quasidiagonalization �gn�: A!Mr n

�B� by �en� (see the paragraph
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following De®nition 2.5), where we may and shall assume that �en� has the
additional property that

en J�a�en � J�a� and en w�a�en � w�a�;
where n > 1.

Theorem 4.5. Let A be a unital, separable C �-algebra and let B be a
unital C �-algebra. Assume that there exists a unital quasidiagonal nuclearly
absorbing representation g: A!M�K�H�B�, and let �gn�: A!Mr n

�B� be a
quasidiagonalization of g by �en� as above.

Suppose that J; w: A! B are two nuclear �-homomorphisms with �J� � �w� in
KKnuc�A; B�, such that J�1� is unitarily equivalent to w�1�. Then for any ®nite subset
F Í A and any « > 0, there exist an integer n and a unitary u 2Ur n�1�B� satisfying

u
J�a�

gn�a�
� �

u� ÿ w�a�
gn�a�

� �



 



 < «

for all a 2F. Moreover we may arrange that u�J�1� � gn�1��u� � w�1� � gn�1�.
Proof. After conjugating w by a unitary in B we may assume that J�1� � w�1�.

We are going to compress by e 0n � en � en � en (which is a quasicentral sequence
in M3�K�H�� 
 B� C13), in the conclusion of Corollary 4.4. We have

e 0n

J�a�
0

g�a�

264
375e 0n �

J�a�
0

gn�a�

264
375

and a similar equation for w. It is crucial to our argument that the unitary v provided
by Corollary 4.4 satis®es k�v; e 0n �k ! 0 because v 2M3�K�H�� 
 B� C13. There-
fore by perturbing e 0n ve 0n to a unitary z within U3r n

�B�, for some large n, we obtain

z

J�a�
0

gn�a�

264
375z� ÿ

w�a�
0

gn�a�

264
375
















 < «

for all a 2F. Consider the projection e � J�1� � gn�1� � w�1� � gn�1�. After a
small perturbation of z we may assume that zez� � e. Then w � eze is a partial
isometry in Mr n�1�B� with w�w � ww� � e, and the unitary

u � w� 1r n�1 ÿ e 2Ur n�1�B�
will satisfy the conclusion of the theorem. . . . . . . . . . . . . . . . . . . . . . . . .A

The following corollary is a good illustration of Theorem 4.5.

Corollary 4.6. Let A be a separable unital residually ®nite-dimensional
C �-algebra and let B be a unital C �-algebra. Let �pn� be a separating sequence of
®nite-dimensional representations of A such that each pn is repeated in®nitely
many times. De®ne gn � p1 � . . .� pn , with gn : A!Mr n

�C� Í Mr n
�C1B�. Let

J; w: A! B be two unital nuclear �-homomorphisms with �J� � �w� in KKnuc�A; B�.
Then there is a sequence of unitaries un 2Ur n�1�B� such that

lim
n!1 kun�J�a� � gn�a��u�n ÿ w�a� � gn�a�k � 0;

for a 2 A.
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Proof. This follows from Theorem 4.5 with g � p1 � p2 � . . . . Note that since g
is an admissible scalar representation, g is nuclearly absorbing by Proposition 2.18.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

4.2. Some classes of C �-algebras

We single out several classes of C�-algebras for easy reference.

De®nition 4.7. We say that a separable C�-algebra A satis®es the UCT if
the diagram

0ÿ! Ext�K��A�; K��1�B�� ÿ! KK�A; B� ÿ! Hom�K��A�; K��B�� ÿ! 0

is a short exact sequence for every j-unital algebra B.

A large class of algebras satisfying the UCT was exhibited in [47]. If the
separable C�-algebra A satis®es the UCT, then for any j-unital C�-algebra B
the sequence

0ÿ! Pext�K��A�; K��1�B�� ÿ! KK�A; B� ÿ! HomL�K�A�; K�B�� ÿ! 0 �4:1�
is also exact by [18].

Remark 4.8. It is not known whether there exist separable nuclear
C�-algebras not satisfying the UCT. If a separable C�-algebra A satis®es the
UCT, then A is KK-equivalent to a commutative C�-algebra; hence it is
K-nuclear. In particular, KKnuc�A; B� � KK�A; B� by [51].

De®nition 4.9. A C�-algebra B is called an admissible target algebra if it is
unital, has real rank 0 [7], and is such that

(i) whenever p; q 2 Proj�B
K� , then � p� � �q� implies p� 1B , q� 1B , and

(ii) the canonical map U1�B� ! K1�B� is surjective,

and if either

(iii.1) the canonical map Proj�B� ! K0�B� is surjective

or both of the following hold:

(iii.1) for any x 2 K0�B� such that nx > 0 for some n > 0, one has x� �1B �> 0,

(iv.1) for any x 2 K0�B� and any n 6� 0, there is y 2 K0�B� such that
ÿ�1B�< y < �1B� and xÿ y 2 nK0�B�.

When needed, we distinguish between admissible target algebras satisfying
(iii.1)±(iv.1) or (iii.1) by calling them admissible of ®nite type or in®nite type,
respectively. Examples will be given in Propositions 6.6 and 6.15.

The point of this de®nition is that whenever a sequence of admissible targets is
given, then both of the natural maps

HomL

�
K�A�; K

�Y
Bi

��
ÿ!

Y
HomL�K�A�; K�Bi��; �4:2�

KK

�
A;
Y

Bi

�X
Bi

�
ÿ! HomL

�
K�A�; K

�Y
Bi

�X
Bi

��
�4:3�

will be injective (the latter is in fact an isomorphism) for an A satisfying the UCT.
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Theorem 4.10. Let Bi be a sequence of admissible target algebras of the
same type and let A be any C �-algebra. Then:

(i) h: K�Q Bi� !
Q

K�Bi� is injective;

(ii) the natural map HomL�K�A�; K�Q Bi�� !
Q

HomL�K�A�; K�Bi�� is
injective;

(iii) the natural map KK�A; Q Bi =
P

Bi� ! HomL�K�A�; K�Q Bi =
P

Bi��
is an isomorphism if A satis®es the UCT;

(iv)
Q

Bi and
Q

Bi =
P

Bi are admissible targets.

Proof. For (i), decompose h into maps h� and h�n . We ®nd from Lemmas 3.2
and 3.3 that the h� are injections whose images are pure subgroups. Injectivity of
h�n then follows by a diagram chase on

K��
Q

Bi�ÿÿÿ!´ n
K��

Q
Bi�ÿÿÿ!

r�n
K��

Q
Bi ; Z=n�ÿÿÿ!b�n

K��1�
Q

Bi�
h�
???y h�

???y h�n

???y h��1

???yQ
K��Bi�ÿÿÿÿ!´ n

Q
K��Bi�ÿÿÿÿ!Q

r�n

Q
K��Bi ; Z=n�ÿÿÿÿ!Q

b�n

Q
K��1�Bi�

Claim (ii) is a direct consequence of (i), and (iii) follows by combining the
UMCT (4.1) with Corollary 3.6. Finally, (iv) follows by Lemma 3.4. . . . . . . .A

Remark 4.11. As is clear from § 3.2, we can get injectivity for the maps
discussed above by asserting considerably weaker versions of (iii)±(iv). On the
other hand, Bi � C��0; 1�� is a counterexample to injectivity in (4.2) and Bi � C
is a counterexample to injectivity in (4.3).

4.3. Stable uniqueness with bounds

Let A be a separable unital C�-algebra and let i: A! B be a unital full
embedding. If one specializes to the case g � di in Theorem 4.5, one obtains a
stable approximate unitary equivalence of the form

u
J�a�

n ´ i�a�
� �

u� ÿ w�a�
n ´ i�a�

� �



 



 < «:

To make such a result useful in our quest to classify C�-algebras, we need to
re®ne our uniqueness results to the effect of controlling the number n . More
speci®cally, we need to know that these integers can be chosen uniformly with
respect to the targets; that is, only depending on the source algebra and, of course,
the requirements on how closely the two morphisms are to agree after
composition by the unitary.

We also need to strengthen the theorem to allow for maps which are not
�-homomorphisms and only induce the same element locally in HomL�K�A�; K�B��,
rather than in KK�A; B�. To achieve such results, we are going to work with
products of C�-algebras, and we are going to depend on the results in § 3.2
regarding their K-theory. If A satis®es the UCT, then it follows from (4.1) that
HomL�K�A�; K�B�� is isomorphic to Rùrdam's group KL�A; B� [46].
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Bounded stable uniqueness for �-homomorphisms

Theorem 4.12. Let A be a simple, unital, exact, separable C �-algebra
satisfying the UCT. Then for any ®nite subset F Í A and any « > 0, there exists
n 2N with the following property. For any admissible target B, any unital
embedding i: A! B and any pair of nuclear �-homomorphisms J; w: A! B such
that J� � w� in HomL�K�A�; K�B��, and J�1� is unitarily equivalent to w�1�,
there exists a unitary u 2Un�1�B� such that

u
J�a�

n ´ i�a�
� �

u� ÿ w�a�
n ´ i�a�

� �



 



 < «;

for all a 2F. Moreover we may arrange that u�J�1� � n ´ 1�u� � w�1� � n ´ 1.

Proof. We have KKnuc�A; B� � KK�A; B� by Remark 4.8. Seeking a contra-
diction, ®x F and « for which the theorem fails. Then for any i we choose an
admissible target algebra Bi equipped with an embedding ii : A! Bi , and Ji and wi

nuclear �-homomorphisms with Ji� � wi�, and Ji�1� unitarily equivalent to wi�1�, yet

inf
u2Ui� 1�B�

max
a2F





u

�
Ji�a�

i ´ ii�a�
�

u� ÿ
�

wi�a�
i ´ ii�a�

�



> «:

We de®ne F; W; I : A!Q Bi in the obvious way. The homomorphisms F and W
are nuclear since Ji and wi are nuclear and A is exact (see [12, 3.3]). By
composing with the canonical map we get ÇF; ÇW; ÇI : A!Q Bi =

P
Bi , with ÇF and

ÇW nuclear. Since F and W induce the same element of
Q

HomL�K�A�; K�Bi�� by

construction, we get, from Theorem 4.10(ii), F� � W� in HomL�K�A�; K�Q Bi��.
Then of course � ÇF�� � � ÇW�� also, and by Theorem 4.10(iii) we get � ÇF�K K � � ÇW�K K

in KK�A; Q Bi =
P

Bi�.
Since ÇI : A!Q Bi =

P
Bi is a unital full embedding, we conclude by Theorem

4.5 that there exist n and a unitary w 2Un�1�
Q

Bi =
P

Bi� intertwining ÇF� n ´ ÇI
and ÇW� n ´ ÇI up to « on F. Let u � �ui� 2Un�1�

Q
Bi� be a unitary lifting w. Then

lim sup
i

max
a2F





ui

�
Ji�a�

n ´ ii�a�
�

u�i ÿ
�

wi�a�
n ´ ii�a�

�



 < «;

yielding a contradiction after projecting onto Mn�1�Bi� for large i. The last part
of the proof is done exactly as the last part of the proof of Theorem 4.5. . . . .A

Remark 4.13. If J and w are as in the conclusion of either Theorem 4.5 or
Theorem 4.12, it follows immediately from the cancellative nature of K-theory
that J� � w�: K�A� !K�B�.

Remark 4.14. Under assumptions restricting the algebraic complexity on
K��A� and K��B� the result above can be simpli®ed somewhat. If we add, for
instance, the assumptions that K0�A� be torsion free and K0�B� be divisible, we
need only require that J� � w� on K��A�. This is done by basing the proof instead
on injectivity of the maps

Hom

�
K��A�; K�

�Y
Bi

��
!
Y

Hom�K��A�; K��Bi��;

KK

�
A;
Y

Bi

�X
Bi

�
! Hom

�
K��A�; K�

�Y
Bi

�X
Bi

��
:
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We get the latter by applying the UCT and noting that since K0�A� is torsion free,

Ext

�
K0�A�; K1

�Y
Bi

�X
Bi

��
� Pext

�
K0�A�; K1

�Y
Bi

�X
Bi

��
� 0

from Corollary 3.6(i), and that

Ext

�
K1�A�; K0

�Y
Bi

�X
Bi

��
� 0

since, along the lines of the ®rst half of Lemma 3.5, if all K0�Bi� are divisible,
then so is K0�

Q
Bi�.

Bounded stable uniqueness for approximate morphisms. We refer the reader to
§ 3.3 for a discussion of partially de®ned maps on K�ÿ� and a de®nition of K-triples.

Our next result was inspired by the main result in the version of [34] that we
had received from the author when we began our work in February 1998. The
original statement is corrected and generalized below. A signi®cant dif®culty in
the proof below comes from handling the K-theory for products of C�-algebras; a
point which was overlooked in that version. Our methods for overcoming this
dif®culty were developed in § 3.2, leading us to Theorem 4.10.

Theorem 4.15. Let A be a simple, unital, exact, separable C �-algebra
satisfying the UCT. For any ®nite subset F Í A and any « > 0, there exist n 2N,
and a K-triple �P; G; d� with the following property. For any admissible target B,
and any three completely positive contractions J; w; t: A! B which are
d-multiplicative on G, with t unital, J and w nuclear, and J]� p� � w]� p� in
K�B� for all p 2P, and such that J�1� and w�1� are unitarily equivalent
projections, there exists a unitary u 2Un�1�B� such that



u

�
J�a�

n ´ t�a�
�

u� ÿ
�

w�a�
n ´ t�a�

�



 < «

for all a 2F. One may arrange that u�J�1� � n ´ 1�u� � w�1� � n ´ 1.

Proof. We have KKnuc�A; B� � KK�A; B� by Remark 4.8. Seeking a contra-
diction we suppose that there are F and « such that with n � n�A; F; «�
provided by Theorem 4.12, no K-triple will work. We choose sequences of
K-triples �Pi ; Gi ; di� with the following properties:

(i) Pi Í Pi�1, and
S

i2N Pi exhausts the semigroup[
m2N

Proj�A
 C�T� 
 C�Wm� 
K�= < ;

(ii) Gi Í Gi�1 and
S

i Gi � A;

(iii) di > di�1 and di! 0.

By our assumption, we can then choose admissible targets Bi , which we may
assume are of the same type, and Ji , wi and ti which are di-multiplicative on Gi ,
with Ji and wi nuclear, and satisfy �Ji�]� p� � �wi�]� p� in K�B� for all p 2Pi ,
and Ji�1� and wi�1� are unitarily equivalent projections; yet

inf
u2Un� 1�B�

max
a2F





u

�
Ji�a�

n ´ ti�a�
�

u� ÿ
�

wi�a�
n ´ ti�a�

�



> «:
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De®ne F; W; T : A!Q Bi from the sequences �Ji�, �wi� and �ti�, and compose

with the canonical map to get ÇF; ÇW; ÇT : A!Q Bi =
P

Bi . These maps are in fact

�-homomorphisms by (ii) and (iii) above, so ÇT provides a unital full embedding of
A into

Q
Bi =

P
Bi , and ÇF and ÇW induce maps

ÇF� ; ÇW�: K�A� !K

�Y
Bi

�X
Bi

�
:

We are going to show that ÇF� � ÇW� .
We may check this on p 2Pj by (i) above. Let C � C�T� 
 C�Wm� 
K, with

m chosen appropriately. In the diagram

0 ÿÿÿ! K0��
P

Bi� 
 C� ÿÿÿ! K0��
Q

Bi� 
 C� ÿÿÿ! K0

�Q
BiP
Bi


 C

�
ÿÿÿ! 0???y>

???yh

???yÇh

0ÿÿÿÿÿ!P K0�Bi 
 C� ÿÿÿÿÿ!Q K0�Bi 
 C�ÿÿÿÿÿÿ!k
Q

K0�Bi 
 C�P
K0�Bi 
 C� ÿÿÿÿ! 0

h is injective from Theorem 4.10(i) because it can be naturally identi®ed with a
component of h. It is not hard to check that the above diagram has exact rows.

(The ®rst row is induced by a quasidiagonal extension.) By the ®ve-lemma, Çh is
also injective, and hence it suf®ces to show that

Çh�� ÇF
 idC�� p�� � Çh�� ÇW
 idC�� p��:
With x0 as in § 3.3, lift � ÇF
 id�� p� ®rst to a self-adjoint element �F
 id�� p�

in �Q Bi� 
 C, and then to a projection q in

x0��F
 id�� p�� �
�X

Bi

�

 C Í

�Y
Bi

�

 C:

Then h��q�� � ��qi �� where qi � x0��Ji 
 id�� p�� for all i larger than some iF ,
since h is induced by a family of �-homomorphisms. We conclude that

Çh�� ÇF
 id��� p�� � kh��q�� � �x0��Ji 
 id�� p���i > iF
�
X

K0�Bi 
 C�:
Similarly,

Çh�� ÇW
 id��� p�� � �x0��wi 
 id�� p���i > iW
�
X

K0�Bi 
 C�;
and these elements agree since the sequences coincide for i > iF ; iW ; j .

Note that F and W, and hence also ÇF and ÇW, are nuclear since Ji and wi are
nuclear and A is exact [12]. Having proved that ÇF� � ÇW� , and since ÇF�1� is
unitarily equivalent to ÇW�1�, we may thus apply Theorem 4.12 to ®nd a unitary
w 2Un�1�

Q
Bi =

P
Bi� such that



w

� ÇF�a�
n ´ ÇT �a�

�
w� ÿ

� ÇW�a�
n ´ ÇT �a�

�



 < «;

for all a 2F. Note that we may apply Theorem 4.12 since whenever Bi is a

sequence of admissible targets,
Q

Bi =
P

Bi is an admissible target by Theorem
4.10(iv). We ®nish the argument by lifting the unitary as above. . . . . . . . . . .A
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Remark 4.16. As in Remark 4.14, the premises of Theorem 4.15 simplify
under extra assumptions on K��A� and K��B�. If K0�A� is torsion free and K0�B�
is divisible, one needs only check that J and w agree on a K�-triple. This is
because divisibility passes from K0�Bi� to K0�

Q
Bi =

P
Bi� as outlined in

Remark 4.14.

5. Existence

In this section we show how to realize locally a given KK-element by a
difference of completely positive contractions (see Theorem 5.5).

5.1. Realizing group homomorphisms

We refer the reader to § 3.3 for the de®nition of K-triples. Let x0 be the
characteristic function of � 1

2
; 1�.

Lemma 5.1. Let D be a unital C �-algebra. Let p 2 D be a projection and let
x 2 D be a positive contraction. Then:

(i) jxÿ 1
2
j> � 1

2
ÿ kxÿ pk�1;

(ii) sp�x� Ì �0; l�È �1ÿ l ; 1�, where l is the smaller root of

l2 ÿ l� kx2 ÿ xk � 0;

thus if kx2 ÿ xk < 1
4

, then x0�x� 2 D is a projection with kxÿ x0�x�k< l;

(iii) if � fn� is a sequence of projections such that � p; fn � ! 0 as n!1, then
there is a sequence of unitaries �vn� in D, such that �vn pv�n ; fn � � 0, for
n > 1, and kvn ÿ 1k ! 0 as n!1.

Proof. For (i), we may assume that D acts on a Hilbert space H, and for (ii),
that D � C�X� with X compact. After these assumptions the claims become
elementary. In (iii), we may assume that k� p; fn�k < 1

4
for all n. De®ne

qn � x0� pfn p� � x0� p'fn p'�. Then �qn ; p� � 0, for n > 1, and kqn ÿ fnk! 0
as n!1. By functional calculus, there is a sequence of unitaries �vn� in D
such that qn � v�n fn vn and kvn ÿ 1k! 0 as n!1. The sequence �vn� has the
desired properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Lemma 5.2. Let Ei and Fi be projections in M�K�H� 
 B� with

kE0 ÿ E1k < 1
2
; kF0 ÿ F1k < 1

2
; Ei ÿ Fi 2K�H� 
 B

for i 2 f0; 1g. Then �E0 ; F0 � � �E1; F1� in KK�C; B�.

Proof. If Xt � �1ÿ t�E0 � tE1 and Yt � �1ÿ t�F0 � tF1, then

sp�Xt�; sp�Yt� Í �0; 1
2
�È � 1

2
; 1�

for all t 2 �0; 1�, by Lemma 5.1(i). De®ne Et � x0�Xt� and Ft � x0�Yt�. Then
�Et ; Ft�, for 0 < t < 1, is a homotopy of Cuntz pairs from �E0 ; F0� to �E1; F1�.. . A

Lemma 5.3. If E and F are projections in M�K�H� 
 B� with
E ÿ F 2K�H� 
 B (that is, �E; F� is a Cuntz pair), and e is a projection in
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K�H� 
 B with

k�e; E �k < 1
9
; k�e; F �k < 1

9
; ke'�E ÿ F�e'k < 1

9
;

then the natural isomorphism between KK�C; B� and K0�B� takes �E; F � to

�x0�eEe�� ÿ �x0�eFe��:

Proof. Note that

k�eEe�2 ÿ eEek< k�e; E�k< 1
9
:

Therefore keEeÿ x0�eEe�k< l with l � 1
6
�3ÿ ���

5
p � by Lemma 5.1(ii). We have

similar estimates for e'Ee' , eFe and e'Fe'.
Let g � x0�eEe�, g 0 � x0�e'Ee'�, h � x0�eFe�, and h 0 � x0�e'Fe'�. Then

kE ÿ �g� g 0 �k< kE ÿ eEeÿ e'Ee'k
� keEeÿ x0�eEe�k � ke'Ee' ÿ x0�e'Ee'�k

< 2
9
� 2l < 1

2
:

Similarly, one shows that

kF ÿ �h� h 0 �k< 2
9
� 2l < 1

2
; kg 0 ÿ h 0k< 2

9
� l < 1

2
;

and all those quantities are compact. Moreover g, g 0, h and h 0 are all projections
and we may apply Lemma 5.2 to get

�E; F � � �g� g 0; h� h 0 � � �g; h� � �g 0; h 0� � �g; h� � �g 0; g 0� � �g; h�
in KK�C; B�. Since g; h 2K�H� 
 B, the isomorphism between KK�C; B� and
K0�B� takes �g; h� to �g� ÿ �h�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

We now come to the main results in this section. The reader is referred to § 2.2
for examples of quasidiagonal strictly nuclear nuclearly absorbing representations.

Any element a 2 KK�A; B� induces a morphism a�: K�A� !K�B�. Let us
®rst describe the map induced by a on K0 . If A is unital and if p is a projection in
Mn�A�, and a is given by a Cuntz pair �t; g�, then a� takes

� p� 2 K0�A�> KK�C; A� to ��t
 idn�� p�; �g
 idn�� p�� 2 KK�C; B�. More gener-
ally, if D is a unital C�-algebra, then aD � �t
 idD ; g
 idD� induces a map
a�: K0�A
 D� ! K0�B
 D�. In particular a induces a map on K�ÿ�.

Theorem 5.4. Let A be a unital, separable, C �-algebra and let B be a unital
C �-algebra. Let a 2 KKnuc�A; B�. Assume that there exists a quasidiagonal strictly
nuclear unital nuclearly absorbing representation g: A!M�K�H� 
 B�, and let
gn : A!Mr n

�B� be a quasidiagonalization of g by �en� as in De®nition 2.5.
For any K-triple �P; F; d� there exist N and a completely positive contraction

j: A!M2 rN
�B�

such that j and gN are both nuclear, d-multiplicative on F, and satisfy

j]� p� ÿ �gN�]� p� � a�� p�
for all p 2P. We may arrange that j�1� and gN�1� are both projections.

195on the classi®cation of nuclear c�-algebras



Proof. By Lemma 3.1 we may represent a by the Cuntz pair �r; bv� consisting
of strictly nuclear representations. Recall that this entails that

r�a� ÿ bv�a� 2K�H� 
 B

for all a 2 A.
Since bg and bv are both nuclearly absorbing, we have bv , bg in the sense of

De®nition 2.1. Thus we get a sequence ui 2U�M�K�H� 
 B�� withbg�a� ÿ ui
bv�a�u�i 2K�H� 
 B; kbg�a� ÿ ui

bv�a�u�i k! 0: �5:1�
Note that for each i, �ui ru�i ; ui

bvu�i � is a Cuntz pair representing a. Then
Xi � �ui ru�i ; bg� is also a strictly nuclear Cuntz pair, and �Xi ��: K�A� !K�B�
converges pointwise to the group homomorphism induced by a as a consequence
of Lemma 5.2. Fix i large enough that �Xi ��� p� � a�� p� for each p 2P.

Let t � ui ru�i and let en 2 Mr n
�B� be as in the statement. Then

fn � en � en 2M2 rn
�B� is an approximate unit of projections which in the

obvious sense quasidiagonalizes bg into gn : A!M2 rn
�B�. We set jn � fn t fn ; the

maps thus achieved are nuclear maps by Remark 2.6(ii).
Note now that

� fn ; t�a�� ! 0; f '
n �t�a� ÿ bg�a�� f '

n ! 0

for a 2 A , since t�a� ÿ bg�a� 2K�H� 
 B. We have P Í C where

C �
M

m < M

A
 C�T� 
 C�Wm� 
MK :

Therefore for N large enough, jN is d-multiplicative on F and

k� fN 
 1C ; �t
 idC�� p��k < 1
9
; k� fN 
 1C ; �bg
 idC�� p��k < 1

9
;

k f '
N 
 1C��t
 idC�� p� ÿ �bg
 idC�� p�� f '

N 
 1Ck < 1
9
;

for all p 2P. By § 3.3 and Lemma 5.3 we have

�jN�]� p� ÿ �gN�]� p�
� �x0� fN 
 1C�t
 idC�� p� fN 
 1C�� ÿ �x0� fN 
 1C�bg
 idC�� p� fN 
 1C��
� ��t
 idC�� p�; �bg
 idC�� p�� � �Xi ��� p� � a�� p�:

By Lemma 5.1(iii) there is a sequence of unitaries �vn� in M�K�H� 
 B� such
that �vn t�1�v�n ; fn� � 0 and kvn ÿ 1k! 0 as n!1. By replacing jn � fn t fn by
jn � fn vn tv�n fn , we ®nd that jn�1� is a projection. Note that if N is large enough,
� fN t fN�]� p� � � fN vN tv�N fN�]� p�, for p 2P , by Lemma 3.13. . . . . . . . . . .A

Next we specialize the result to the case of a quasidiagonal source A. An
application of the general existence result for purely in®nite C�-algebras can be
found in Theorem 6.17.

We say, cf. De®nition 2.10, that A is locally RFD if for any ®nite set F and
any « > 0, there exists an RFD subalgebra A0 of A, containing all elements of F
up to «.

Theorem 5.5. Let A and B be unital C �-algebras with A quasidiagonal, and
let a 2 KKnuc�A; B�. For any K-triple �P; F; d� there exist N and completely
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positive nuclear contractions

j: A!MN�B� and m: A!MN�C1B�
which are d-multiplicative on F and satisfy

j]� p� ÿ m]� p� � a�� p�
for all p 2P. We may arrange that j�1� and m�1� are both projections. Moreover if A is
locally RFD and if « > 0 is given, we can arrange that there is a unital RFD subalgebra
D of A such that F Í« D and the restriction of m to D is a �-homomorphism.

Proof. Since A is quasidiagonal, it has a quasidiagonal admissible scalar
representation v. Note that, using projections en 2K�H� 
 1B we obtain a
quasidiagonalization consisting of maps vn : A!Mr n

�C1B�. The ®rst part follows
from Theorem 5.4, by taking m � vn for some large n.

In case A is locally RFD, we ®nd ®rst a unital RFD subalgebra D of A such
that F Í«1

D. Then we work with an admissible representation v whose restriction
to D is a direct sum of ®nite-dimensional representations. It is then clear that one
can choose the quasidiagonalization such that the restriction of vn to D is a
�-homomorphism for all n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

6. Classi®cation

In this section, we present applications of the uniqueness and existence results
to classi®cation problems. The ®rst part is devoted to a class of ®nite C�-algebras
which allow a further re®nement of the uniqueness result, leading to a complete
classi®cation of C�-algebras in this class having K0-group Q. In the last part, we
show how the results also apply to reprove the classi®cation theorem for purely
in®nite C�-algebras of Kirchberg and Phillips.

6.1. Approximate unitary equivalence

In a class of C�-algebras studied by H. Lin it is possible to absorb the
stabilization required in Theorem 4.15, leading to further improved uniqueness
results. Furthermore, this class is contained in our class of admissible targets. In
this section, we develop these points.

De®nition 6.1 [35]. A simple unital C�-algebra A is called tracially AF
(tracially approximately ®nite dimensional) if for any ®nite subset F Í A, any
« > 0, and any non-zero projection q 2 A, there is a projection p 2 A, with p 6� 1A ,

and there is a ®nite-dimensional C�-algebra C Í p'Ap' with p' 2 C such that

(i) k� p; a�k < « for all a 2F,

(ii) dist� p'ap'; C� < « for all a 2F,

(iii) upu� < q for some unitary u 2 A.

Example 6.2. The approximately (sub)homogeneous C�-algebras with real
rank 0 classi®ed in [23, 4.6] and [15, 9.1] are all tracially AF algebras. Also the
class of examples of non-nuclear subalgebras of AF algebras constructed in [13]
consists entirely of tracially AF algebras.
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The conditions (i)±(ii) from [42] imply quasidiagonality of A. Let us
summarize a few other structural results on tracially AF C�-algebras that we
shall need. Lemmas 6.3 and 6.5 are from [35].

Lemma 6.3 [35, 3]. Let A be a simple unital tracially AF C �-algebra. Then A
has real rank 0 and stable rank 1, and K0�A� is weakly unperforated in the sense
of [3]. When p 2 A is a projection and n 2N, then both pAp and Mn�A� are
simple unital tracially AF C �-algebras.

The following fact can be deduced from [53, 1.1(i)]. We give a direct argument
for this more specialized claim.

Lemma 6.4. Let B be an in®nite-dimensional unital separable simple
C �-algebra of real rank 0 and stable rank 1, with K0�B� weakly unperforated.
Then for any n > 1 and any non-zero projection f 2 B there are mutually
orthogonal projections e1; . . . ; en and r in B such that e1 � . . .� en � r � 1B with
�e1� � . . . � �en � and �r� < � f �.

Proof. Let QT�B� denote the normalized quasitraces on B. The image of the
natural map r0: K0�B� ! Aff�QT�B�� is uniformly dense by [3, 6.9.3] and K0�B�
has the strict ordering induced from r0 by [3, 6.9.2]. If e is a projection, we
write be � r0�e�. By simplicity, we ®nd N big enough such that N � f � > �1�. If
« � 1=nN, then 1=nÿ « > 0 and n«b1 < bf . Since the image of r0 is uniformly

dense, there is a projection e 2 B such that �1=nÿ «�b1 < be < 1=nb1. Therefore

0 < 1ÿ nbe < n«b1 < bf ; hence

0 < �1� ÿ n�e� < � f �:
This is readily seen to imply the statement. Indeed if d i 2 B are projections
equivalent to e then d 1 � . . .� d n is equivalent to a subprojection d of 1B . If
r � 1ÿ d , then �r� � �1� ÿ n�e� < � f �. . . . . . . . . . . . . . . . . . . . . . . . . . . .A

The tracially AF C�-algebras are suitable for classi®cation because of the
following factorization property.

Lemma 6.5 [35]. Let A be a simple unital in®nite-dimensional tracially AF
C �-algebra. For any n > 1, any ®nite subset F Í A and any « > 0, there are

projections p; q 2 A with p'Ap' > Mn�qAq� and � p�< �q� and such that there
exists an approximate factorization of idA,

A������idA A

n
ÿÿÿÿÿ!

a

m

pAp�Mn�C�
with kmn�a� ÿ ak < « for a 2F, where C is a unital ®nite-dimensional
C �-subalgebra of qAq, n�a� � pap� �h�a� 
 1n� is «-multiplicative on F with
h: A! C a unital completely positive contractive map, and m is a unital
�-monomorphism whose restriction to pAp is the natural inclusion.
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Proof. We include a proof of this result which is somewhat different from the
original proof of Lin. We do not require A to be nuclear. It also suf®ces to prove
the statement with 8« instead of «. Since A is tracially AF, we ®nd a projection
P 2 A and a ®nite-dimensional C�-algebra C with P' 2 C Ì P'AP' such that for
all a 2F we have

(i) k�P; a�k < «,

(ii) P'aP' 2« C,

(iii) �n� 2��P�< �1�.
The idea of the proof is to ®nd a unital embedding of Mn�C� � C into the

relative commutant of C in P'AP' such that the image of C is supported by a
very small projection. Write C > Mm�1� � . . .�Mm�k� and let e1; . . . ; ek be the

minimal central projections of C. Let Bi be the relative commutant of ei Cei > Mm�i �
in ei Aei . Then ei Aei > Mm�i ��Bi� and hence Bi is tracially AF as it is isomorphic
to a corner of A. Let f be a non-zero projection in A with �n� 1�k� f � < �P �. For
each 1 < i < k we apply Lemma 6.4 for Bi . We obtain

ei � e1
i � . . .� en

i � ri

where e
j
i , for 1 < j < n , are mutually equivalent projections in Bi and �ri � < � f � in

K0�A�. Set e j � e
j
1 � . . .� e

j
k for 1 < j < n , r � r1 � . . .� rk and e � e1 � . . .� en.

Note that P ' � e1 � . . .� en � r with e j mutually equivalent in the relative
commutant of C in P'AP'. We have

�n� 1��r � � �n� 1���r1� � . . .� �rk �� < �n� 1�k� f � < �P�:
Therefore

�n� 1���P� � �r �� < �n� 2��P�< �1� � �P� � n�e1� � �r �;
hence n��P� � �r �� < n�e1�. By weak unperforation we get �P� r�< �e1�. We are
now ready to complete the proof. By Arveson's extension theorem [2], the identity
map on C extends to a completely positive contraction E: A! C. We have
E�x� � x for x 2 C . Hence kaÿ E�a�k< 2 dist�a; C� for a 2 A . Using (i) and (ii)
we have, for a 2F,

a ,2 « PaP� P 'aP ' ,2 « PaP� E�P 'aP '�
� PaP� E�P 'aP '�r � E�P 'aP '�e
,4 « �P� r�a�P� r� � E�P 'aP '�e:

The last estimate follows by compressing the estimate a ,4 « PaP� E�P 'aP '� by

P� r. It follows that a ,8« �P� r�a�P� r� � E�P 'aP '�e. We ®nish the proof by

setting p � P� r and q � e1 and noting that E�P 'aP '�e is of the form h�a� 
 1n

since e � e1 � . . .� en with e j mutually equivalent in the relative commutant of
C in P 'AP '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

The uniqueness Theorems 4.12 and 4.15 apply to tracially AF algebras because
of the following proposition.

Proposition 6.6. A simple unital in®nite-dimensional tracially AF C �-algebra
is an admissible target algebra (of ®nite type).
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Proof. Let B be a simple unital tracially AF C�-algebra. We get (i) and (ii) of
De®nition 4.9 by two results of Rieffel [43, 44]. For (iii.1), note that if nx > 0 then
nx� n�1B� > 0 and x� �1B� > 0 by weak unperforation. Finally, to prove (iv.1),
assume that dim�B� � 1 and let x and n be given. The image of the natural
map r0: K0�B� ! Aff�QT�B�� is uniformly dense by [3, 6.9.3], so we can
®nd z 2 K0�B� with r0�x� ÿ 1 < r0�nz� < r0�x� � 1. By [3, 6.9.2] we have
xÿ �1B�< nz < x� �1B�, so y � xÿ nz will work. . . . . . . . . . . . . . . . . . . .A

Theorem 6.7. Let A be a simple unital, exact, separable tracially AF
C �-algebra satisfying the UCT. Then for any ®nite subset F Í A and any « > 0,
there exists a K-triple �P; G; d� with the following property. For any unital simple
in®nite-dimensional tracially AF C �-algebra B, and any two unital nuclear
completely positive contractions J; w: A! B which are d-multiplicative on G,
with J]� p� � w]� p� for all p 2P, there exists a unitary u 2U�B� such that

kuJ�a�u� ÿ w�a�k < «

for all a 2F.

Proof. Let us begin by outlining the proof. We ®rst construct such a unitary in
the special case where J and w are nuclear �-homomorphisms agreeing on all of
K�A�. This involves invoking Lin's factorization result, Lemma 6.5, to pass to
another pair of �-homomorphisms J and w which are of a special form. Because
Lin's result only gives an approximate factorization, even though we start out with
�-homomorphisms, our proof will take us to a setting where our uniqueness
theorem for completely positive contractions, Theorem 4.15, is needed. The
general case will follow in the same way that Theorem 4.12 implies Theorem
4.15, by letting n � 0 and T � 0 in the proof of Theorem 4.15. We include a
sketch for the bene®t of the suspicious reader.

Part 1. Given F and «, we are going to prove that whenever

(i) B �Q Bi =
P

Bi with each Bi a unital simple in®nite-dimensional tracially
AF C�-algebra (or B itself is a unital simple in®nite-dimensional tracially
AF C�-algebra),

(ii) J; w: A! B are unital nuclear �-homomorphisms,

(iii) J� � w�: K�A� !K�B�,
then there exists u 2U�B� with kuJ�a�u� ÿ w�a�k < « for all a 2F.

Let us thus ®x n, P, G and d by applying Theorem 4.15 to F and 1
3

«.
Furthermore, let p, q, C, n and m be given by Lemma 6.5 such that n is
d-multiplicative on G and kmn�a� ÿ ak < 1

3
« for all a 2F.

Step 1a. Since B has stable rank 1 by Lemma 6.3, it has cancellation of
projections, and because J� � w� we may assume, after conjugating w by a
unitary in B, that the restrictions of J and w to the ®nite-dimensional algebra
m�Cp�Mn�C1C�� are equal. Applying m to the matrix units of Mn�C1C�, we can
de®ne matrix units �qi j� in A, where q � q11 � 1C . Let

e � J� p� � w� p� and fi j � J�qi j� � w�qi j�; �6:1�
abbreviating f � f11. Invoking cancellation again, since � p�< �q�, we can ®nd a
projection e0 and a unitary v in B with v�e� e0�v� � f . Let g � e0 � 1B 2M2�B�
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and note that �g� � �n� 1� ´ � f �. Hence an isomorphism g: gM2�B�g!Mn�1� f Bf �
can be found. Denoting the matrix units of Mn�1�C f � by efi j with 0 < i; j < n we
may choose g such that

g

��
e0 b0 e0

ebe

��
� ef00 v�ebe� e0 b0 e0�v�ef00 ; g

��
0

fi j

��
� efi j : �6:2�

Combining all of this, we get a �-homomorphism J ®tting in a diagram

A������idA
Aÿÿÿ!J Ba

i2
gM2�B�g

n
ÿÿÿÿÿ!

a

m g

???y
pAp�Mn�C�ÿÿÿÿÿ!

J
Mn�1� f Bf �

where i2 sends B into the (2, 2) corner of gM2�B�g. Identifying J using (6.1) and
(6.2) we see that for all d 2 pAp and x 2Mn�C�,

J�d � x� � J 00�d � � �J 0 
 idn��x�;
where

J 0: C! f Bf and J 00: pAp! f Bf

are de®ned as corestrictions of J and Ad�v�J, respectively. Furthermore, by
symmetry of (6.1), the same procedure shows that w � gi2 wm: pAp�Mn�C�!
Mn�1� f Bf � has the form

w�d � x� � w 00�d � � �w 0 
 idn��x�
for all d 2 pAp and x 2Mn�C�.

Step 1b. With if : f Bf ! B we clearly have �if J
0 �� � �if w

0 �� and �if J
00 �� �

�if w
00��. But since f is full in B as the image of a full projection under a unital

map, we ®nd by [5] that if induces an isomorphism from K� f Bf � to K�B�, so

that �J 0 �� � �w 0 �� and �J 00 �� � �w 00 �� . From this we may assume, after
conjugating w by a unitary of f Bf , that J 0 and w 0 agree on C. Thus the maps
Jn and wn are of the form

Jn�a� �

J 00q�a�
J 0h�a�

. .
.

J 0h�a�

26666664

37777775;

wn�a� �

w 00q�a�
J 0h�a�

. .
.

J 0h�a�

26666664

37777775;
where we de®ne q: A! pAp by q�a� � pap. Note that q is d-multiplicative on
G. Now J 00q, w 00q and J 0h are d-multiplicative on G and by Lemma 3.10 we
have �J 00q�]� p� � �w 00q�]� p� for all p 2P. Therefore, Theorem 4.15 applies to
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the triple of maps �J 00q; w 00q; J 0h� if we can prove that f Bf is an admissible
target. When B itself is a tracially AF C�-algebra, so is f Bf by Lemma 6.3, and
Proposition 6.6 applies. When B �Q Bi =

P
Bi we note that there are projections

fi 2 Bi such that f Bf is isomorphic toY
fi Bi fi

�X
fi Bi fi

and hence it is admissible of ®nite type by Lemma 3.4 since all the fi Bi fi

are. Thus, by Theorem 4.15, there is a partial isometry v 2Mn�1� f Bf � such
that v�v � Jn�1�, vv� � wn�1� and kvJn�a�v� ÿ wn�a�k < 1

3
« for all a 2F.

Since Jn�1� � wn�1� � gi2�1� and gi2�B� � gi2�1�Mn�1� f Bf �gi2�1�, we have
v � gi2�u� for some unitary u 2 B. Since gi2 is isometric, we obtain
kuJmn�a�u� ÿ wmn�a�k < 1

3
«; hence kuJ�a�u� ÿ w�a�k < « for all a 2F, since

kmn�a� ÿ ak < 1
3

« for all a 2F.

Part 2. As the argument reducing to the case covered in Part 1 closely
parallels that in the proof of Theorem 4.15, we only sketch it here. If the theorem
is false, we can choose sequences Pi , di and Gi with the properties (i)±(iii) of
that proof, and corresponding simple unital tracially AF C�-algebras Bi as well as
unital completely positive contractions Ji ; wi : A! Bi being di-multiplicative on
Gi , satisfying �Ji�]� p� � �wi�]� p� for all p 2Pi ; yet

inf
u2U�B�

max
a2F
kuJi�a�u� ÿ wi�a�k> «:

De®ne ÇF; ÇW: A!Q Bi =
P

Bi and check as in the proof of Theorem 4.15 that ÇF
and ÇW are �-homomorphisms inducing the same map on K�A�. Since (i)±(iii) of
Part 1 are met, we conclude from the ®rst part of the proof that there is a unitary
U 2U�Q Bi =

P
Bi� such that kU ÇF�a�U � ÿ ÇW�a�k < « for all a 2F. Lifting U

to a unitary �ui� 2
Q

Bi and projecting, we get the desired contradiction. . . . .A

Notes 6.8. As noted above, De®nition 6.1 is due to H. Lin. It was motivated
by a result of Popa [42] and the classi®cation theory of AH algebras [23, 4.6;
15, 9.1]. De®nition 6.1 is in fact a version of the original de®nition, slightly
simpli®ed for the class of simple algebras. To correlate this with [35] one
compares to [35, 3.7] and notes that since Popa's conditions imply the (SP)
property (all hereditary subalgebras have a non-zero projection), it suf®ces to ®nd
a p inside a generic corner rather than inside a generic hereditary subalgebra.

6.2. Classi®cation results

We begin this section by presenting a shape-type isomorphism result for simple
tracially AF C�-algebras. Note that in this setting, there is no need to appeal to
our existence results, as the KK-classes are represented by completely positive
contractions from the outset. We then prove, this time using both existence and
uniqueness, that certain tracially AF C�-algebras are isomorphic to the AD-algebra
with the same K-theory. This leads to our main classi®cation result, Theorem
6.13. We refer the reader to [8] for the basics of asymptotic morphisms.

Theorem 6.9. Let A and B be two unital, separable, nuclear, simple tracially
AF C �-algebras satisfying the UCT. Suppose that there are unital asymptotic
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morphisms J � �Jt�: A! B and w � �wt�: B! A such that J�: K�A� !K�B� is

bijective and Jÿ1
� � w�. For instance, this condition is satis®ed if A is homotopy

equivalent, or just shape equivalent, to B. Then A is isomorphic to B.

Proof. We may assume that both A and B are in®nite dimensional. We use
Theorem 6.7 repeatedly to ®nd an increasing sequence of positive numbers tn 2 �0; 1�
and sequences of unitaries u2 nÿ1 2 A and u2 n 2 B, with n > 1 such that the following
diagram is a two-sided approximate intertwining in the sense of Elliott [22]:

Aÿÿÿÿÿÿ!Ad�u1�
A ÿÿÿÿÿÿ!Ad�u3�

A ÿÿÿ! . . .

Jt 1

ÿÿÿ! wt 2

ÿÿÿ
!

Jt 3

ÿÿÿ! wt 4

ÿÿÿ
! ÿÿÿ!

Bÿÿÿÿÿÿ!
Ad�u2�

Bÿÿÿÿÿÿ!
Ad�u4�

Bÿÿÿ! . . . A

If r is a positive integer, we denote by I re the C�-algebra of continuous
functions f : �0; 1� !Mr�C� such that f �0�; f �1� 2 C1r . We denote by I r the
subalgebra of functions vanishing at 0. Let D be a class of algebras B of the form
B � B1 � . . .� Bn where each Bi is either a circle algebra Mk�C�S1�� or a
dimension-drop algebra Mk�I re�. An AD-algebra is a C�-algebra which is
isomorphic to an inductive limit of a sequence of C�-algebras in D.

Lemma 6.10. Let D � In or D � C0�R�. Let E be a simple unital tracially
AF algebra and let f be a non-zero projection in E. Then the map
�D; f E f � ! KK�D; E� is surjective.

Proof. Let n � 1 if D � C0�R�. The proof uses the following series of facts.

(i) [19] limÿÿ! �D; Mk�E�� � KK�D; E�.
(ii) ([17] when D � In) If C is a ®nite-dimensional C�-algebra, and h: D! C

is a �-homomorphism, then the map d 7! h�d � 
 1n from D!Mn�C� is
null homotopic.

(iii) [38] There is a ®nite subset F Í D and there is « > 0 such that if
a; b: D! B are two �-homomorphisms satisfying jja�d � ÿ b�d �k < «,
then a is homotopic to b.

(iv) [38] For any ®nite subset F Í D and « > 0 there is a ®nite subset F1 Í D
and there is «1 > 0 such that if a: D! B is any completely positive
contractive map which is «1-multiplicative on F1, then there exists a
�-homomorphism b: D! B with ka�d � ÿ b�d �k < 1

2
« for all d 2F.

Fix F and « as in (iii) and let F1 and «1 be given by (iv). We may assume
that F Í F1 and « > «1. Let x 2 KK�D; E�. Then by (i), x can be represented by
some �-homomorphism g: D!Mk�E�. With A �Mk�E�, A is a simple unital
tracially AF C�-algebra by Lemma 6.3. Since E is simple, there is m > 1 such
that �1E�< m� f �. Consider an approximation of idA provided by Lemma 6.5
applied for the set g�F1�, 1

2
«1, and the integer mnk:

A������idA
A

n
ÿÿÿÿÿ! ÿÿ

ÿ!m
pAp�Mmnk�C�
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Therefore

kmn�a� ÿ ak < 1
2

«1 �6:3�
for a 2 g�F1� , where C is a unital ®nite-dimensional C�-subalgebra of qAq,

n�a� � q�a� � �h�a� 
 1mnk�, q�a� � pap, n is «1-multiplicative on g�F1� and
h: A! C is a unital completely positive contractive map. We may arrange
that m� p�< f . Indeed, from � p�< �q� and � p� � mnk�q� � 1 we see that
�mnk � 1�� p�< �1�. Since m�1� � 1A , we obtain

�mnk � 1��m� p��< �1A� � n�1E�< mnk� f �:
Hence �m� p��< n�m� p�� < � f � since K0�E� is weakly unperforated in the sense of
[3] by Lemma 6.3. After conjugating m by a suitable unitary, we obtain m� p�< f .

Let us observe that qg and hg are «1-multiplicative on F1. By (iv)
there are �-homomorphisms q 0: D! pAp and h 0: D! C such that if we set
n 0 � q 0 � �h 0 
 1mn�, then

kng�d � ÿ n 0�d �k < 1
2

« �6:4�
for all d 2F. From (6.3) we have kmng�d � ÿ g�d �k < 1

2
«1 for d 2F1 .

Combining this with (6.4) we get

kmn 0�d � ÿ g�d �k < 1
2
�«1 � «� < «

for all d 2F1 Ç F �F. By (iii) this implies that g is homotopic to mn 0. By (ii), n 0

is homotopic to q 0 so that g is homotopic to mq 0. We conclude the proof by
observing that the image of mq 0 is contained in f E f since mq 0�1� � m� p�< f . . . A

Lemma 6.11. Let A be a unital C �-algebra with �K0�A�; �1A�� � �Q; 1�. Any

®nite set of projections P0 Í A
K can be augmented to a K0-triple �P0 ; G; d�
with the property that for any unital completely positive contraction J: A! A
which is d-multiplicative on G, one has J]� p� � � p� for all p 2P0 .

Proof. We may write � p� � �r=s��1A �, so s ´ p� m ´ 1A , �r � m� ´ 1A for some
m > 0. When J is suf®ciently multiplicative, we have

sJ]� p� � m�1A � � J]�s ´ p� m ´ 1A� � J]��r � m� ´ 1A� � �r � m��1A�: A

The following theorem generalizes a result of Lin [35] by the fact that it allows
non-zero (countable) K1-groups.

Theorem 6.12. Let A be a unital, separable, nuclear and simple tracially AF
C �-algebra satisfying the UCT and suppose that K0�A�> Q as ordered groups.
Then A is isomorphic to an AD-algebra.

Proof. Clearly A is in®nite dimensional, and we may assume that
�K0�A�; �1A��> �Q; 1� as ordered pointed groups. For any ®nite subset F Í A
and any « > 0 we will ®nd an algebra B 2D, and a �-homomorphism b: B! A
such that F Í« b�B�. This will prove the theorem as all elements of the class D
(introduced before Lemma 6.10) are semiprojective [38]. As noted in Remark
4.16, applying Theorem 4.15 to ®xed F and « associated to C �-algebras A and B
with torsion-free divisible K0-groups results in a K�-triple �P; G; d� rather than a
general K-triple.

204 marius dadarlat and sùren eilers



Let �P0 ; G0 ; d0� and �V; G1; d1� be a K0-triple and a K1-triple, respectively,
given by Lemma 3.11 for the input K�-triple �P; G; d�. Let �P 0; G 0; d 0 � be a
K�-triple given by Lemma 3.12 for the input triples �P; G0 ; d0� and �V; G1; d1�.
We also may assume that G 0 and d 0 satisfy the conclusion of Lemma 6.11 applied
for the unital C�-algebra A and the set of projections P0 .

By [22] there are an AD-algebra D and a group isomorphism k: K1�A� ! K1�D�. By
Theorem 5.5 there exist completely positive contractive maps j: A!MN�D� and
m: A!MN�C1D� which are d 0-multiplicative on G 0 and j]� p 0 � ÿ m]� p 0 � � k � p 0 �
for all p 0 2P 0. Here k is regarded as an element of Hom�K��A�; K��B��>
HomL�K�A�; K�B��. By the choice of the K�-triple �P 0; G 0; d 0 � we have
j]�u� ÿ m]�u� � k�u� for all unitaries u 2V. Note that m]�u� � 0 since K1�C� � 0,
so that we have j]�u� � k�u� for all u 2V.

Recall that j�1A� � q is a projection, so that if we set B � qMN �D�q, then
j: A! B is a unital map. Write B as the inductive limit of an increasing sequence
of algebras Bk 2D, and let jk : Bk! B be the inclusion map. Using the Choi±
Effros theorem as in Lemma 4.2 of [16], we ®nd a sequence of completely
positive contractive maps hk : B! Bk such that jk hk converges to idB in the
point-norm topology. Choose k large enough so that

j]�u� � � jk hk j�]�u� �6:5�
for all u 2V.

Consider the group morphism kÿ1� jk��: K1�Bk� ! K1�A�. There is a unital

�-homomorphism g: Bk! A such that g� � kÿ1� jk��, obtained as follows. Write

Bk �M,�1��B 0k1
� � . . .�M,�r��B 0kr

� where the B 0ki
are either C�S 1� or Ien�i � . Let

q1 � . . .� qr � 1A be a partition of 1A by non-zero projections. We have
K0�qi Aqi�> K0�A�> Q as ordered groups. Therefore we ®nd mutually ortho-
gonal projections pi such that ,�i�� pi �> �qi �. Since A has cancellation of
projections, we ®nd a unital inclusionMr

i�1

M,�i �� pi Api� Í A:

Using Lemma 6.10 we ®nd unital �-homomorphisms gi : Bi! pi Api such that
g �Lr

i�1�gi 
 id,�i �� has the desired property.
Next we want to show that g ± �hk j� gives an approximate factorization of

idA on K��A�. More precisely we want �ghk j�]� p� � � p� for all p 2P. By
virtue of our choice of the K0- and K1-triples above, it suf®ces to show that
�ghk j�]� p0� � � p0� for all p0 2P0 and �ghk j�]�u� � �u� for all u 2V. Using
Lemma 3.10 twice, the de®nition of g and (6.5), we have

�ghk j�]�u� � g��hk j�]�u� � kÿ1� jk���hk j�]�u�
� kÿ1� jk hk j�]�u� � kÿ1j]�u� � �u�

for all u 2V. It remains to check that �ghk j�]� p0� � � p0 � for all p0 2P0 , but
this follows from Lemma 6.11 by our choice of the G 0 and d 0.

De®ne a � hk j: A! Bk . We have seen that �ga�]� p� � � p� for all p 2P.
Therefore by Theorem 4.15 there is a unitary u 2 A such that if b � Ad�u� ± g,
then kba�a� ÿ ak < « for all a 2F , and hence F Í« b�B�. . . . . . . . . . . . . .A
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Theorem 6.13. Let A and B be unital, separable, nuclear and simple tracially AF
C �-algebras satisfying the UCT. Suppose that �K0�A�; �1A��> �K0�B�; �1B ��> �Q; 1�
as ordered groups, and K1�A�> K1�B�. Then A is isomorphic to B.

Proof. By Theorem 6.12 both A and B are isomorphic to simple AD-algebras of
real rank 0. These are classi®ed by their K-theory data as proved by Elliott [22]. .A

Notes 6.14. Lin proved Theorem 6.12 for K1�A� � 0 in [35]. He subse-
quently, independently from and at about the same time as the present work,
generalized his result to allow general K1-groups in [36]. This paper also attempts
to give classi®cation of C�-algebras with other K0-groups.

6.3. Purely in®nite C �-algebras

The purpose of this section is to demonstrate how our methods can be applied
to give the classi®cation result of Kirchberg and Phillips starting from three basic,
albeit deep, structural results about purely in®nite C�-algebras. The methods used
here are very similar to those used in the ®nite case, with Cuntz' algebra O2

playing the role of Mn�C�. The exposition will emphasize this similarity. Our
starting point is the following observation.

Proposition 6.15. A purely in®nite simple unital C �-algebra is an admissible
target (of in®nite type).

Proof. A purely in®nite simple C�-algebra A has real rank 0 as noted in [52],
and as seen in [10], the canonical maps from Proj�A� and U�A� to K0�A� and
K1�A� are surjective. Furthermore, it is also noted there that if p; q 2 A are
non-zero projections, then

� p� � �q� �) p , q;

proving the remaining requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

To make it very clear exactly how much else we need to import from the
theory of this class of C�-algebras we collect the required results below.

(I) [31, 2.8] Any exact, separable and unital C�-algebra embeds unitally
into O2 .

(II) [45, 3.6] Let B be an admissible target algebra. If J; w: O2! B is a pair
of unital �-homomorphisms, then for any ®nite set F Í O2 and any « > 0 there
exists u 2U�B� with kuJ�a�u� ÿ w�a�k < « for all a 2F.

(III) (A variation of [40, 2.4]) Let A be a purely in®nite simple nuclear
separable unital C�-algebra. For any n > 1, any ®nite subset F Í A and any « > 0,
there are a projection p 2 A and a unital inclusion Mn�O2� Ì p'Ap' such that
there exists an approximate factorization of idA,

A������idA
A

n
ÿÿÿÿÿ!

a

m

pAp�Mn�O2�
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where kmn�a� ÿ ak < « for a 2F, n�a� � pap� �h�a� 
 1n� is «-multiplicative
on F with h: A! O2 a unital completely positive contractive map, and m is a
unital �-monomorphism whose restriction to pAp is the natural inclusion.

Remark 6.16. We have rephrased (II) and (III) slightly to suit our needs.
Rùrdam requires that B satis®es

U�B�=U0�B�> K1�B�
and has ®nite exponential length [39], but this follows from De®nition 4.9 by
[32]. Also, Phillips proves (III) only for n � 1, but since it is easy to prove
directly, by splitting the unit of O2 into matrix units, that Mn�O2�> O2 , we may
replace O2 by Mn�O2� without loss of generality (and without using the theorem
we are aiming for).

Theorem 6.17. Let A and B be unital C �-algebras with A exact and
separable and B containing a unital copy of O2 , and let a 2 KKnuc�A; B�. Then
for any K-triple �P; F; d� there exists a nuclear completely positive contraction
j: A! B which is d-multiplicative on F and satis®es j]� p� � a�� p� for all
p 2P. We may arrange that j�1� is a projection.

Proof. By (I), A embeds unitally into O2 , so with i de®ned as the composite

Aa O2a B

we obtain a unital full embedding. By Theorem 2.22, the representation di is
absorbing, and it is clearly also quasidiagonal as it commutes with the projections
en � n ´ 1B . By Theorem 5.4, we ®nd N and j: A!M2 N �B� such that

�j�]� p� ÿ �gN�]� p� � a�� p�
where gN is a �-homomorphism of the form

gN �a� � 0� N ´ i�a�;
so that �gN�� � 0 by the fact that i factors through O2 . Thus �j�] � a� on P, and
assuming, as we may, that j�1� is a projection e, we ®nd that e 2M2 N�1�B� is a
subprojection of �2N � ´ 1B which is equivalent in M2 N�1�B� to a subprojection of
1B � 1O 2

via some unitary u. We may hence replace j by uju�: A! B inducing
the same partial map on P.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Remark 6.18. If B is simple purely in®nite and a��1� � �1�, then after taking
1 2P we may arrange that j is unital. Indeed, since j�1� � e is a projection and
j]�1� � a��1� � �1�, we have �1ÿ e� � 0, and hence �1ÿ e�B�1ÿ e� contains a
unital copy of O2 . Let |: A! �1ÿ e�B�1ÿ e� be a unital embedding with image
contained in this copy of O2 . Replacing j by j � | we see that j] � �j � |�] on
P and j � | is unital.

Remark 6.19. Kirchberg proved a stronger form of the previous theorem
where a is lifted to a �-monomorphism.

Theorem 6.20. Let A be a purely in®nite simple separable unital nuclear
C �-algebra satisfying the UCT. Then for any ®nite subset F Í A and any « > 0,
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there exists a K-triple �P; G; d� with the following property. For any purely
in®nite simple unital C �-algebra B, and any two unital nuclear completely
positive contractions J; w: A! B which are d-multiplicative on G, with
J]� p� � w]� p� for all p 2P, there exists a unitary u 2U�B� such that
kuJ�a�u� ÿ w�a�k < « for all a 2F.

Proof. The proof follows closely that of Theorem 6.7, and we are only going
to indicate the changes needed. Here Part 1 of the proof deals with a pair of
�-homomorphisms into B �Q Bi =

P
Bi with each Bi a purely in®nite simple

C�-algebra. Applying ®rst Theorem 4.15 and then (III) we get n, P, G, d, p, q, n
and m as in that proof. Then Step 1a applies verbatim as soon as one notes that
because they are all non-zero, one has cancellation on all the projections in play
by the result of Cuntz mentioned above. In Step 1b one applies (II) to obtain a
unitary of f Bf which conjugates w 0 to J 0 to within 1

3
« on F. This suf®ces to

achieve the desired conclusion by the argument given in Theorem 4.15.
Furthermore, to show that f Bf is admissible of in®nite type, one uses the same
argument to reduce to the case of showing that a corner of a purely in®nite
C�-algebra is also admissible of in®nite type. This is clear since it is itself
purely in®nite. Finally, Part 2 of the proof carries through verbatim because of
Proposition 6.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

Theorem 6.21 [30, 41]. Let A and B be purely in®nite simple separable
unital nuclear C �-algebras satisfying the UCT. Then any isomorphism
k: �K��A�; �1A�� ! �K��B�; �1B�� is induced by a �-isomorphism.

Proof. We may assume that A and B are in the standard form, that is 1A and
1B both represent the zero class in their respective K0-groups. It follows by [10]
that A and B both contain unital copies of O2 . We may thus apply the existence
result Theorem 6.17 in conjunction with Remark 6.18 to get unital maps
ji : A! B and ti : B! A which are increasingly multiplicative on larger and
larger sets, and induce k and kÿ1, respectively, on larger and larger subsets of
K�A� and K�B�. Arranging this appropriately, we may conclude by the uniqueness
result Theorem 6.20 that unitaries ui and vi exist making

Aÿÿÿÿÿÿ!Ad�u1�
A ÿÿÿÿÿÿ!Ad�u2�

A ÿÿÿ! . . .

j1

ÿÿÿ! t1

ÿÿÿ
!

j2

ÿÿÿ! t2

ÿÿÿ
!ÿÿÿ!

B ÿÿÿÿÿÿ!
Ad�v1�

Bÿÿÿÿÿÿ!
Ad�v2�

Bÿÿÿ! . . .

an approximate intertwining in the sense of Elliott [22]. . . . . . . . . . . . . . . .A
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